WO2018133623A1 - 换热器组件 - Google Patents

换热器组件 Download PDF

Info

Publication number
WO2018133623A1
WO2018133623A1 PCT/CN2017/117977 CN2017117977W WO2018133623A1 WO 2018133623 A1 WO2018133623 A1 WO 2018133623A1 CN 2017117977 W CN2017117977 W CN 2017117977W WO 2018133623 A1 WO2018133623 A1 WO 2018133623A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchanger
communication
chambers
partition
Prior art date
Application number
PCT/CN2017/117977
Other languages
English (en)
French (fr)
Inventor
张凌杰
金俊峰
陆向迅
佩尔蒂埃·彼埃尔·奥利弗
Original Assignee
丹佛斯微通道换热器(嘉兴)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯微通道换热器(嘉兴)有限公司 filed Critical 丹佛斯微通道换热器(嘉兴)有限公司
Priority to EP17893006.1A priority Critical patent/EP3572743B1/en
Priority to US16/477,365 priority patent/US11624564B2/en
Publication of WO2018133623A1 publication Critical patent/WO2018133623A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • Embodiments of the invention relate to heat exchanger assemblies.
  • the heat exchanger assembly can include a trapezoidal heat exchanger and a rectangular heat exchanger.
  • Embodiments of the present invention provide a heat exchanger assembly including: a first heat exchanger including a first communication header, a first header, and a setting a heat exchange tube between the first communication header and the first header; and a second heat exchanger including a second communication header, a second header, and a setting a heat exchange tube between the second connecting header and the second header, wherein the first connecting header is provided with a partition and has a plurality of first arranged in the axial direction of the first connecting header a communication chamber, the second communication header is provided with a partition, and has a plurality of second communication chambers arranged in the axial direction of the second communication header, and the plurality of first communication chambers are correspondingly The second communication chambers are in fluid communication such that the refrigerant entering the heat exchanger assembly enters the second heat exchanger and the first heat exchanger in series.
  • the first connecting header is provided with a partition having two first communicating chambers
  • the second connecting header is provided with a partition, and has two second communicating chambers
  • the two first communication chambers are respectively in fluid communication with the two second communication chambers
  • the first header has a first chamber
  • the second header has a partition
  • the second has two a second chamber arranged in the axial direction of the header, the two second chambers being in fluid communication with the two second communication chambers respectively through the heat exchange tubes, and the two second chambers respectively being associated with the refrigerant inlet tubes and
  • the refrigerant outlet pipe is connected.
  • the first heat exchanger is a trapezoidal heat exchanger
  • the partition of the first connecting header of the first heat exchanger is from the midpoint of the axial direction of the first connecting header to the a wider side of a heat exchanger is offset by a predetermined distance
  • the second heat exchanger is a rectangular heat exchanger
  • a partition of the second connected current collector of the second heat exchanger is disposed at the second connected header
  • the partition in the second header is disposed at a midpoint of the axial direction of the second header
  • the first heat exchanger is a trapezoidal heat exchanger
  • the device is a rectangular heat exchanger, and the partition of the first connecting header of the first heat exchanger is higher than the partition of the second connecting header of the second heat exchanger.
  • the first heat exchanger is a rectangular heat exchanger, and the partition of the first connecting header of the first heat exchanger is at a midpoint of the axial direction of the first connecting header,
  • the second heat exchanger is a trapezoidal heat exchanger, and the partition in the second connecting header of the second heat exchanger is from the midpoint of the axial direction of the second connecting header to the second heat exchanger
  • the wide side is offset by a predetermined distance, and the partition in the second header is offset from the midpoint of the axial direction of the second header to a wider side of the second heat exchanger by a predetermined distance; or
  • the first heat exchanger is a rectangular heat exchanger, the second heat exchanger is a trapezoidal heat exchanger, and the separator in the second connected header of the second heat exchanger and the partition in the second header are high a separator that is connected to the first connecting header of the first heat exchanger.
  • the first connecting header is provided with two partitions and has three first communicating chambers
  • the second connecting header is provided with a partition and has two second communicating chambers a chamber, wherein the two first communication chambers at the two ends of the first communication manifold are respectively in fluid communication with the two second communication chambers
  • the first header is provided with a partition And having two first chambers arranged in the axial direction of the first header, the separator of the first header being located at the first connected current in the direction of arrangement of the heat exchange tubes of the first heat exchanger
  • the second header is provided with a partition, and has two second chambers arranged in the axial direction of the second header, and two of the second headers
  • the two chambers are in fluid communication with the two second communication chambers of the second communication header through the heat exchange tubes, respectively, and the two second chambers are respectively connected to the refrigerant inlet tube and the refrigerant outlet tube.
  • the partition of the first header is at a midpoint in the axial direction of the first header
  • the partition of the second connecting header is in the axial direction of the second connecting header At a midpoint of the second header and at a midpoint of the second header in the axial direction; or one of the two separators of the first connected header is higher than the second connected set
  • the separator of the flow tube, and the other of the two separators of the first communication header is lower than the separator of the second communication header.
  • one of the first heat exchanger and the second heat exchanger is a trapezoidal heat exchanger, and the other of the first heat exchanger and the second heat exchanger is a rectangular heat exchanger.
  • the first connecting header is provided with two partitions and has three first communicating chambers
  • the second connecting header is provided with a partition and has two second communicating chambers a chamber
  • two adjacent first communication chambers of the three first communication chambers are in fluid communication with one of the two second communication chambers
  • the other of the three first communication chambers The other of the two communication chambers is in fluid communication
  • the first header has a first chamber
  • the second header is provided with a partition
  • the two are arranged in the axial direction of the second header.
  • a second chamber, two second chambers of the second header are respectively in fluid communication with the two second communication chambers of the second communication header through the heat exchange tubes, and the two second chambers are respectively cooled
  • the agent inlet pipe is connected to the refrigerant outlet pipe.
  • the two partitions of the first connecting header are on both sides of the midpoint of the first connecting header, and the partition of the second connecting header is in the second connected set a midpoint of the flow tube in the axial direction, and the partition of the second header is at a midpoint of the axial direction of the second header; or one of the two partitions of the first connected header
  • the partition is higher than the second connecting header, and the other of the two partitions of the first connecting header is lower than the partition of the second connecting header.
  • the first heat exchanger is a trapezoidal heat exchanger
  • the second heat exchanger is a rectangular heat exchanger
  • the first heat exchanger is located in the three first communication chambers of the first heat exchanger
  • Two adjacent first communication chambers on a wider side are in fluid communication with one of the two second communication chambers, and the narrower of the first heat exchangers in the three first communication chambers One of the one sides is in fluid communication with the other of the two second communication chambers.
  • the first heat exchanger is a rectangular heat exchanger
  • the second heat exchanger is a trapezoidal heat exchanger
  • two adjacent ones of the three first communication chambers of the first heat exchanger One of the two second communication chambers on a wider side of the second heat exchanger, the other of the three first communication chambers and the second of the two second communication chambers
  • One of the narrower sides of the heat exchanger is in fluid communication.
  • the first connecting header is provided with two partitions and has three first communicating chambers
  • the second connecting header is provided with two partitions and has three second connections a chamber
  • three first communication chambers are respectively in fluid communication with three second communication chambers
  • the first header is provided with a partition and two are arranged in the axial direction of the first header a chamber
  • the second header is provided with a partition, and has two second chambers arranged in the axial direction of the second header
  • the first three communicating chambers of the first connecting header Two adjacent first communication chambers are in fluid communication with one of the two first chambers of the first header through the heat exchange tubes
  • three second communication chambers of the second communication header are Two adjacent second communication chambers are in fluid communication with one of the two second chambers of the second header through the heat exchange tubes, in the three first communication chambers of the first communication header
  • Another first communication chamber is in fluid communication with the other of the two first chambers of the first header via the heat exchange tube and with the second communication manifold One of the two adjacent second communication chambers of the second
  • the two partitions of the first connecting header are on both sides of the midpoint of the first connecting header, and the two partitions of the second connecting header are in the second Connect the sides of the midpoint of the axial direction of the header.
  • the first heat exchanger is a trapezoidal heat exchanger and the second heat exchanger is a rectangular heat exchanger, the two phases of the three first communication chambers of the first communication header The adjacent first communication chamber is located on a wider side of the first heat exchanger.
  • the first heat exchanger is a rectangular heat exchanger
  • the second heat exchanger is a trapezoidal heat exchanger
  • the two of the three second communication chambers of the second communication header are The adjacent second communication chamber is located on a narrower side of the second heat exchanger.
  • the heat exchange capability of the heat exchanger assembly is effectively improved.
  • FIG. 1 is a schematic perspective view of a heat exchanger assembly in accordance with an embodiment of the present invention
  • FIGS. 2 to 5 are schematic views of flow paths of a heat exchanger assembly in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a heat exchanger assembly in accordance with an embodiment of the present invention.
  • FIG. 7 to 10 are schematic views of flow paths of a heat exchanger assembly in accordance with an embodiment of the present invention.
  • 11 through 12 are combined heat exchangers constructed of heat exchanger assemblies in accordance with an embodiment of the present invention.
  • a heat exchanger assembly 100 includes: a first heat exchanger 1, the first heat exchanger 1 including a first communication header 10, a first current collector a tube 12, and a heat exchange tube 9 disposed between the first communication header 10 and the first header 12; and a second heat exchanger 2, the second heat exchanger 2 including a second communication current The tube 20, the second header 22, and the heat exchange tube 9 disposed between the second communication header 20 and the second header 22.
  • the first connecting header 10 is provided with a partition 30 having a plurality of first communicating chambers 14 arranged in the axial direction of the first connecting header 10, and the second connecting header 20 is provided with a partition 30. And having a plurality of second communication chambers 24 arranged in the axial direction of the second communication header 20, and the plurality of first communication chambers 14 are in fluid communication with the corresponding plurality of second communication chambers 24, so as to enter
  • the refrigerant of the heat exchanger assembly 100 enters the second heat exchanger 2 and the first heat exchanger 1 in series.
  • the heat exchange tubes 9 may be flat tubes, and the first heat exchanger 1 and the second heat exchanger 2 are provided with fins between the flat tubes.
  • the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are connected by a line 5.
  • the plurality of first communication chambers 14 are in fluid communication with the corresponding plurality of second communication chambers 24 via conduit 5.
  • the two heat exchanger assemblies 100 form a heat exchanger for an air-cooled modular chiller.
  • the line 5 can be a U-shaped tube (such as a copper tube) or a flute tube (such as a copper tube) or the like.
  • the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are in parallel, and the heat exchangers of the first heat exchanger 1 and the second heat exchanger 2
  • the plane of the core is at an angle of 90 degrees.
  • the refrigerant inlet pipe 6 (inlet pipe) of the heat exchanger assembly 100 is on the second header 22 of the second heat exchanger 2 (rectangular heat exchanger), and the refrigerant outlet pipe 7 (outlet pipe) can be set as needed On the second header 22 of the second heat exchanger 2 or the first header 12 of the first heat exchanger 1 (trapezoidal heat exchanger).
  • the first heat exchanger 1 (trapezoidal heat exchanger) is disposed substantially vertically, and the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are in parallel, Therefore, the second heat exchanger 2 (rectangular heat exchanger) is inclined.
  • the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are connected by a line 5.
  • the plurality of first communication chambers 14 are in fluid communication with the corresponding plurality of second communication chambers 24 via conduit 5.
  • the two heat exchanger assemblies 100 form a heat exchanger for an air-cooled modular chiller.
  • the line 5 can be a U-shaped tube (such as a copper tube) or a flute tube (such as a copper tube) or the like.
  • the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are in parallel, and the heat exchangers of the first heat exchanger 1 and the second heat exchanger 2
  • the plane of the core is at an angle of 90 degrees.
  • the refrigerant inlet pipe 6 (inlet pipe) of the heat exchanger assembly 100 is on the second header 22 of the second heat exchanger 2 (trapezoidal heat exchanger), and the refrigerant outlet pipe 7 (outlet nozzle) can be set as needed On the second header 22 of the second heat exchanger 2 or the first header 12 of the first heat exchanger 1 (rectangular heat exchanger).
  • the first heat exchanger 1 (rectangular heat exchanger) is disposed substantially vertically, and the first communication header 10 of the first heat exchanger 1 and the second communication header 20 of the second heat exchanger 2 are in parallel. Therefore, the second heat exchanger 2 (trapezoidal heat exchanger) is inclined.
  • the first connecting header 10 is provided with a partition 30 having two first communicating chambers 14, and the second connecting header 20 is provided with a a partition 30 having two second communication chambers 24, the two first communication chambers 14 being in fluid communication with the two second communication chambers 24, respectively, the first header 12 having a first chamber 16,
  • the second header 22 is provided with a partition 30 having two second chambers 26 arranged in the axial direction of the second header 22, and the two second chambers 26 are respectively passed through the heat exchange tubes 9 and
  • the two second communication chambers 24 are in fluid communication, and the two second chambers 26 are connected to the refrigerant inlet tube 6 and the refrigerant outlet tube 7, respectively.
  • the first heat exchanger 1 is a trapezoidal heat exchanger
  • the separator 30 of the first communication header 10 of the first heat exchanger 1 is from the first communication header
  • the midpoint of the axial direction of 10 is offset to a wider side of the first heat exchanger 1 by a predetermined distance
  • the second heat exchanger 2 is a rectangular heat exchanger
  • the second connected set of the second heat exchanger 2 The partition plate 30 of the flow tube 20 is disposed at a midpoint of the axial direction of the second communication header 20, and the partition 30 of the second header 22 is disposed in the axial direction of the second header 22. Point.
  • the first heat exchanger 1 is a trapezoidal heat exchanger
  • the second heat exchanger 2 is a rectangular heat exchanger
  • the first heat exchanger 1 of the first heat exchanger 1 is connected.
  • the partition 30 is higher than the partition 30 of the second communication header 20 of the second heat exchanger 2.
  • the upper and lower portions of the first heat exchanger 1 have the same area, and the refrigerant distribution is more uniform.
  • the first heat exchanger 1 is a rectangular heat exchanger
  • the partition 30 of the first connecting header 10 of the first heat exchanger 1 is in the first connecting header
  • the second heat exchanger 2 is a trapezoidal heat exchanger
  • the separator 30 in the second communication header 20 of the second heat exchanger 2 is from the second communication header 20
  • the midpoint of the axial direction is offset to a wider side of the second heat exchanger 2 by a predetermined distance
  • the partition 30 in the second header 22 is in the axial direction of the second header 22 The point is offset to a wider side of the second heat exchanger 2 by a predetermined distance.
  • the first connecting header 10 is provided with two partitions 30, and has three first communicating chambers 14, and the second connecting headers 20 are provided.
  • a partition 30 having two second communication chambers 24, two of the three first communication chambers 14 at the two ends of the first communication header 10 and two The two communication chambers 24 are in fluid communication
  • the first header 12 is provided with a partition 30 having two first chambers 16 arranged in the axial direction of the first header 12, and the first header 12
  • the partition plate 30 is located between the two partition plates 30 of the first communication header 10 in the direction in which the heat exchange tubes 9 of the first heat exchanger 1 are arranged, and the second header 22 is provided with a partition 30.
  • the two second chambers 26 are arranged in the axial direction of the second header 22, and the two second chambers 26 of the second header 22 pass through the heat exchange tubes 9 and the second communication headers, respectively.
  • the two second communication chambers 24 of 20 are in fluid communication, and the two second chambers 26 are connected to a refrigerant inlet tube 6 and a refrigerant outlet tube 7, respectively.
  • the partition 30 of the first header 12 is at the midpoint of the first header 12 in the axial direction, and the second connecting header 20 is separated.
  • the plate 30 is at the midpoint of the axial direction of the second communication header 20, and the partition 30 of the second header 22 is at the midpoint of the axial direction of the second header 22.
  • one of the first heat exchanger 1 and the second heat exchanger 2 is a trapezoidal heat exchanger, and the first heat exchanger 1 and the second heat exchanger 2 The other of them is a rectangular heat exchanger.
  • the first heat exchanger 1 is a trapezoidal heat exchanger, and the first connecting header 10 is provided with two partitions 30, and the inner cavity of the first connecting header 10 is divided into three.
  • the first communication chamber 14, the first heat exchanger 1 forms four circuits.
  • the refrigerant side pressure drop can be increased, and the unit operation is more stable.
  • the first communication header 10 is provided with two partitions 30, and the inner chamber of the first communication header 10 is divided into three first communication chambers 14.
  • the two partitions 30 of the first communication header 10 are higher and lower than the partitions 30 of the second communication header 20, respectively.
  • the first connecting header 10 is provided with two partitions 30, and has three first communicating chambers 14, and the second connecting headers 20 are provided.
  • a partition 30 having two second communication chambers 24, one of the two adjacent first communication chambers 14 and one of the two second communication chambers 24 In communication, the other of the three first communication chambers 14 is in fluid communication with the other of the two second communication chambers 24, the first header 12 having a first chamber 16, and the second header 22
  • a partition 30 is provided, and there are two second chambers 26 arranged in the axial direction of the second header 22, and the two second chambers 26 of the second header 22 pass through the heat exchange tubes 9, respectively.
  • the two second communication chambers 24 of the second communication header 20 are in fluid communication, and the two second chambers 26 are connected to the refrigerant inlet tube 6 and the refrigerant outlet tube 7, respectively.
  • the two partitions 30 of the first communication header 10 are on both sides of the midpoint of the first communication header 10, and the partition 30 of the second communication header 20 is At the midpoint of the axial direction of the second communication header 20, and the partition 30 of the second header 22 is at the midpoint of the axial direction of the second header 22.
  • the first heat exchanger 1 is a trapezoidal heat exchanger
  • the second heat exchanger 2 is a rectangular heat exchanger
  • the three first communication chambers of the first heat exchanger 1 Two adjacent first communication chambers 14 on the wider side of the first heat exchanger 1 in 14 are in fluid communication with one of the two second communication chambers 24, three first communication chambers One of the narrower sides of the first heat exchanger 1 in 14 is in fluid communication with the other of the two second communication chambers 24.
  • the first communication header 10 is provided with two partitions 30, and the inner chamber of the first communication header 10 is divided into three first communication chambers 14. The two partitions 30 of the first communication header 10 are higher and lower than the partitions 30 of the second communication header 20, respectively.
  • the refrigerant of the second heat exchanger 2 enters the wider side of the first heat exchanger 1 through the tee pipe (one-two) into the three first communication chambers 14 of the first heat exchanger 1. Two adjacent first communication chambers 14.
  • the refrigerants are heat exchanged in parallel in parallel, which can increase the heat transfer coefficient and increase the heat exchange capacity.
  • the first heat exchanger 1 is a rectangular heat exchanger
  • the second heat exchanger 2 is a trapezoidal heat exchanger
  • the three first communication chambers of the first heat exchanger 1 Adjacent two of 14 are in fluid communication with one of the two second communication chambers 24 on the wider side of the second heat exchanger 2, and the other of the three first communication chambers 14
  • One of the two second communication chambers 24 on the narrower side of the second heat exchanger 2 is in fluid communication.
  • the first connecting header 10 is provided with two partitions 30, and has three first communicating chambers 14, and the second connecting headers 20 are provided.
  • Two partitions 30 having three second communication chambers 24, three first communication chambers 14 being in fluid communication with the three second communication chambers 24, respectively, and the first header 12 is provided with a partition 30
  • the second header 22 is provided with a partition 30, and has two shafts at the second header 22.
  • One of the two first chambers 16 of 12 is in fluid communication
  • two of the three second communication chambers 24 of the second communicating header 20 are passed through the heat exchange tubes 9
  • One of the two second chambers 26 of the second header 22 is in fluid communication
  • the other of the three first communication chambers 14 of the first communication header 10 passes through the heat exchange tube 9 and the first stream
  • the other of the two first chambers 16 of 12 is in fluid communication and is located with the two adjacent second communication chambers 24 of the three second communication chambers 24 of the second communication header 20
  • One second communication chamber 24 of the end of the second communication header 20 is in fluid communication
  • the other of the three second communication chambers 24 of the second communication header 20 is heat exchanged.
  • the tube 9 is in fluid communication with the other of the two second chambers 26 of the second header 22 and adjacent to the two of the three first communication chambers 14 of the first communication header 10
  • One first communication chamber 14 of the first communication chamber 14 at the end of the first communication header 10 is in fluid communication, and the other of the two first chambers 16 of the first header 12
  • the other of the two second chambers 26 of the second header 22 is connected to the refrigerant inlet pipe 6 and the refrigerant outlet pipe 7, respectively.
  • two partitions 30 of the first communication header 10 are on both sides of the midpoint of the first communication header 10
  • two partitions of the second communication header 20 30 is on both sides of the midpoint of the second communicating header 20 in the axial direction.
  • the first heat exchanger 1 is a trapezoidal heat exchanger
  • the second heat exchanger 2 is a rectangular heat exchanger
  • the first first communication chamber of the first connecting header 10 The two adjacent first communication chambers 14 in the chamber 14 are located on a wider side of the first heat exchanger 1.
  • the inner cavity of the first communication header 10 is divided into three equal first communication chambers 14, and the inner cavity of the second communication header 20 is divided into three equal second communication chambers. twenty four.
  • the partition plate 30 of the first communication header 10 and the partition plate 30 of the second communication header 20 are respectively aligned in the height direction.
  • An S-shaped refrigerant series circuit is formed in the heat exchanger assembly 100 and three circuits are formed. The refrigerant enters from the upper second chamber 26 of the two second chambers 26 of the second header 22, and from the lower first chamber of the two first chambers 16 of the first header 12 16 outflow.
  • the first heat exchanger 1 is a rectangular heat exchanger
  • the second heat exchanger 2 is a trapezoidal heat exchanger
  • the second connecting chambers of the second connecting header 20 are connected.
  • the two adjacent second communication chambers 24 in the chamber 24 are located on a narrower side of the second heat exchanger 2.
  • the refrigerant enters the trapezoidal heat exchanger and the rectangular heat exchanger in series, or enters the rectangular heat exchanger and the trapezoidal change.
  • Heater The trapezoidal heat exchanger and the rectangular heat exchanger are connected in series through a copper tube to form a heat exchanger assembly.
  • a plurality of partitions are arranged in the header to realize different flow circuits.
  • the combined microchannel heat exchanger with two heat exchanger components can effectively increase the heat exchange area of the chiller and improve the heat exchange capacity.
  • the refrigerant can be accessed in the same side or in the diagonal direction, and the heat exchanger is connected to the unit for installation and connection.
  • two different heat exchanger modules can be joined into a combined microchannel heat exchanger for air-cooled modular chillers.
  • the microchannel heat exchanger of Figure 11 is a combination of the heat exchanger assembly shown in Figure 2 and the heat exchanger assembly shown in Figure 7.
  • the inlet and outlet nozzles of the two heat exchanger assemblies are respectively located on the manifolds of the trapezoidal heat exchanger and the rectangular heat exchanger, and are all on the same side.
  • the heat exchanger assembly shown in FIG. 3 and the heat exchanger assembly shown in FIG. 8 can be combined, and the heat exchanger assembly shown in FIG. 4 and the heat exchanger assembly shown in FIG. 9 can be combined, FIG.
  • the heat exchanger assembly shown and the heat exchanger assembly shown in Figure 10 can be combined and the inlet and outlet nozzles are all on the same side.
  • the installer can conveniently operate on the same side when welding the heat exchanger to the copper tube of the compressor and expansion valve. And the refrigerant gas coming out of the compressor enters the microchannel heat exchanger through the tee, the length of the inlet copper joint is the same, and there is no complicated long joint of one heat exchanger component, so that the two heat exchanger components can be realized.
  • the pressure drop is relatively even and the refrigerant distribution is more uniform.
  • the microchannel heat exchanger of Fig. 12 is a combination of the heat exchanger assembly shown in Fig. 5 and the heat exchanger assembly shown in Fig. 10.
  • the inlet connections of the two heat exchanger assemblies are all on the same side and the outlet connections are on the other side in the diagonal direction.
  • the refrigerant gas from the compressor enters through the tee from the upper part of the rectangular heat exchanger and the trapezoidal heat exchanger, and performs a three-circuit flow heat exchange in the respective heat exchanger components, respectively, from the diagonal
  • the direction of the rectangle and the trapezoidal heat exchanger flow out of the lower part of the collector.
  • the length of the copper joint from the tee to the inlet is the same, and uniform distribution of the refrigerant can be achieved.
  • the heat exchange area is increased, the refrigerant distribution is uniform, and the heat exchange capability is improved.
  • the area of the V-shaped area on both sides is fully utilized, the area is increased by about 22%; and the length of the copper joint from the entrance of the three-way to the heat exchanger assembly is the same, achieving two
  • the refrigerant of the heat exchanger component is evenly distributed, and the heat exchange capacity is effectively improved.
  • the flow path and the connection form are various. Two, three or four loops can be realized, and the flow paths are also connected in series or in series and parallel.
  • the inlet and outlet nozzles can be on the same side or on the diagonal side.
  • a variety of flow paths and take-over forms can meet the needs of different client group settings and different working conditions.
  • the heat exchanger assembly 100 according to an embodiment of the present invention is convenient to transport and simple to install.
  • the core of the heat exchanger disassembled into a flat state is packed and transported, and does not occupy space; the customer combines four flat cores into a whole heat exchanger through a U-shaped copper tube, a flute tube or a tee tube.

Abstract

一种换热器组件(100),换热器组件(100)包括:第一换热器(1),第一换热器(1)包括第一连通集流管(10),第一集流管(12),和设置在第一连通集流管(10)和第一集流管(12)之间的换热管(9);以及第二换热器(2),第二换热器(2)包括第二连通集流管(20),第二集流管(22),和设置在第二连通集流管(20)和第二集流管(22)之间的换热管(9),第一连通集流管(10)设有隔板(30),而具有在第一连通集流管(10)轴向上排列的多个第一连通腔室(14),第二连通集流管(20)设有隔板(30),而具有多个在第二连通集流管(20)的轴向上排列的第二连通腔室(24),并且多个第一连通腔室(14)与对应的多个第二连通腔室(24)流体连通,使得进入换热器组件(100)的制冷剂是以串联的方式先后进入第二换热器(2)和第一换热器(1)。换热器组件(100)的换热能力可以得到有效提升。

Description

换热器组件
相关申请的交叉引用
本申请要求于2017年1月20日递交中国专利局的、申请号为201720076519.7的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明的实施例涉及换热器组件。
背景技术
换热器组件可以包括梯形换热器和矩形换热器。
发明内容
本发明的实施例的目的是提供一种换热器组件,由此例如使换热器组件的换热能力得到有效提升。
本发明的实施例提供了一种换热器组件,该换热器组件包括:第一换热器,所述第一换热器包括第一连通集流管,第一集流管,和设置在第一连通集流管和第一集流管之间的换热管;以及第二换热器,所述第二换热器包括第二连通集流管,第二集流管,和设置在第二连通集流管和第二集流管之间的换热管,其中第一连通集流管设有隔板,而具有在第一连通集流管轴向上排列的多个第一连通腔室,第二连通集流管设有隔板,而具有多个在第二连通集流管的轴向上排列的第二连通腔室,并且多个第一连通腔室与对应的多个第二连通腔室流体连通,使得进入所述换热器组件的制冷剂是以串联的方式先后进入第二换热器和第一换热器。
根据本发明的实施例,第一连通集流管设有一个隔板,而具有两个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,两个第一连通腔室分别与两个第二连通腔室流体连通,第 一集流管具有一个第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,两个第二腔室分别通过换热管与两个第二连通腔室流体连通,并且两个第二腔室分别与制冷剂入口管和制冷剂出口管连接。
根据本发明的实施例,第一换热器是梯形换热器,且第一换热器的第一连通集流管的隔板从第一连通集流管的轴向方向的中点向第一换热器的较宽的一侧偏置预定距离,第二换热器是矩形换热器,且第二换热器的第二连通集流管的隔板设置在第二连通集流管的轴向方向的中点处,第二集流管中的隔板设置在第二集流管的轴向方向的中点处;或者第一换热器是梯形换热器,第二换热器是矩形换热器,且第一换热器的第一连通集流管的隔板高于第二换热器的第二连通集流管的隔板。
根据本发明的实施例,第一换热器是矩形换热器,且第一换热器的第一连通集流管的隔板在第一连通集流管的轴向方向的中点处,第二换热器是梯形换热器,且第二换热器的第二连通集流管中的隔板从第二连通集流管的轴向方向的中点向第二换热器的较宽的一侧偏置预定距离,且第二集流管中的隔板从第二集流管的轴向方向的中点向第二换热器的较宽的一侧偏置预定距离;或者第一换热器是矩形换热器,第二换热器是梯形换热器,且第二换热器的第二连通集流管中的隔板和第二集流管中的隔板高于第一换热器的第一连通集流管的隔板。
根据本发明的实施例,第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,三个第一连通腔室中的位于第一连通集流管的两端的两个第一连通腔室分别与两个第二连通腔室流体连通,第一集流管设有一个隔板,而具有两个在第一集流管的轴向上排列的第一腔室,第一集流管的隔板在第一换热器的换热管的排列方向上位于第一连通集流管的两个隔板之间,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第二集流管的两个第二腔室分别通过换热管与第二连通集流管的两个第二连通腔室流体连通,并且两个第 二腔室分别与制冷剂入口管和制冷剂出口管连接。
根据本发明的实施例,第一集流管的隔板在第一集流管的轴向上的中点处,第二连通集流管的隔板在第二连通集流管的轴向方向的中点处,且第二集流管的隔板在第二集流管的轴向方向的中点处;或者第一连通集流管的两个隔板中的一个高于第二连通集流管的隔板,并且第一连通集流管的两个隔板中的另一个低于第二连通集流管的隔板。
根据本发明的实施例,第一换热器和第二换热器中的一个是梯形换热器,第一换热器和第二换热器中的另一个是矩形换热器。
根据本发明的实施例,第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,三个第一连通腔室中的两个相邻的第一连通腔室与两个第二连通腔室中的一个流体连通,三个第一连通腔室中的另一个与两个第二连通腔室中的另一个流体连通,第一集流管具有一个第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第二集流管的两个第二腔室分别通过换热管与第二连通集流管的两个第二连通腔室流体连通,并且两个第二腔室分别与制冷剂入口管和制冷剂出口管连接。
根据本发明的实施例,第一连通集流管的两个隔板在第一连通集流管的轴向上的中点的两侧,第二连通集流管的隔板在第二连通集流管的轴向方向的中点处,且第二集流管的隔板在第二集流管的轴向方向的中点处;或者第一连通集流管的两个隔板中的一个高于第二连通集流管的隔板,并且第一连通集流管的两个隔板中的另一个低于第二连通集流管的隔板。
根据本发明的实施例,第一换热器是梯形换热器,第二换热器是矩形换热器,第一换热器的三个第一连通腔室中的位于第一换热器的较宽的一侧的两个相邻的第一连通腔室与两个第二连通腔室中的一个流体连通,三个第一连通腔室中的位于第一换热器的较窄的一侧的一个与两个第二连通腔室中的另一个流体连通。
根据本发明的实施例,第一换热器是矩形换热器,第二换热器 是梯形换热器,第一换热器的三个第一连通腔室中的相邻的两个与两个第二连通腔室中的位于第二换热器的较宽的一侧的一个流体连通,三个第一连通腔室中的另一个与两个第二连通腔室中的位于第二换热器的较窄的一侧的一个流体连通。
根据本发明的实施例,第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有两个隔板,而具有三个第二连通腔室,三个第一连通腔室与三个第二连通腔室分别流体连通,第一集流管设有一个隔板,而具有两个在第一集流管的轴向上排列的第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第一连通集流管的三个第一连通腔室中的两个相邻的第一连通腔室通过换热管与第一集流管的两个第一腔室中的一个流体连通,第二连通集流管的三个第二连通腔室中的两个相邻的第二连通腔室通过换热管与第二集流管的两个第二腔室中的一个流体连通,第一连通集流管的三个第一连通腔室中的另一个第一连通腔室通过换热管与第一集流管的两个第一腔室中的另一个流体连通并且与第二连通集流管的三个第二连通腔室中的所述两个相邻的第二连通腔室的位于第二连通集流管的端部的一个第二连通腔室流体连通,第二连通集流管的三个第二连通腔室中的另一个第二连通腔室通过换热管与第二集流管的两个第二腔室中的另一个流体连通并且与第一连通集流管的三个第一连通腔室中的所述两个相邻的第一连通腔室的位于第一连通集流管的端部的一个第一连通腔室流体连通,第一集流管的两个第一腔室中的所述另一个和第二集流管的两个第二腔室中的另一个分别与制冷剂入口管和制冷剂出口管连接。
根据本发明的实施例,第一连通集流管的两个隔板在第一连通集流管的轴向上的中点的两侧,第二连通集流管的两个隔板在第二连通集流管的轴向方向的中点的两侧。
根据本发明的实施例,第一换热器是梯形换热器,第二换热器是矩形换热器,第一连通集流管的三个第一连通腔室中的所述两个相邻的第一连通腔室位于第一换热器的较宽的一侧。
根据本发明的实施例,第一换热器是矩形换热器,第二换热器 是梯形换热器,第二连通集流管的三个第二连通腔室中的所述两个相邻的第二连通腔室位于第二换热器的较窄的一侧。
根据本发明的实施例,使换热器组件的换热能力得到有效提升。
附图说明
图1是根据本发明的实施例的换热器组件的示意立体图;
图2至5是根据本发明的实施例的换热器组件的流路的示意图;
图6是根据本发明的实施例的换热器组件的示意立体图;
图7至10是根据本发明的实施例的换热器组件的流路的示意图;
图11至12是根据本发明的实施例的换热器组件构成的组合式换热器。
具体实施方式
下面参照附图结合本发明的实施例对本发明进行详细说明。
图1至12示出了根据本发明的实施例的换热器组件100以及换热器组件100的示例性的使用状态,为了使附图更清楚,没有画出图1、6、11、12中的换热器的中间部分的翅片和换热管。如图1至12所示,根据本发明的实施例的换热器组件100包括:第一换热器1,所述第一换热器1包括第一连通集流管10,第一集流管12,和设置在第一连通集流管10和第一集流管12之间的换热管9;以及第二换热器2,所述第二换热器2包括第二连通集流管20,第二集流管22,和设置在第二连通集流管20和第二集流管22之间的换热管9。第一连通集流管10设有隔板30,而具有在第一连通集流管10轴向上排列的多个第一连通腔室14,第二连通集流管20设有隔板30,而具有多个在第二连通集流管20的轴向上排列的第二连通腔室24,并且多个第一连通腔室14与对应的多个第二连通腔室24流体连通,使得进入所述换热器组件100的制冷剂是以串联的方式先后进入第二换热器2和第一换热器1。换热管9可以是扁管,第一换热器1和第二换热器2设有位于扁管之间的翅片。
参见图1至5,第一换热器1的第一连通集流管10和第二换热 器2的第二连通集流管20通过管路5连接。具体而言,多个第一连通腔室14与对应的多个第二连通腔室24通过管路5流体连通。两个换热器组件100构成风冷模块化冷水机组的换热器。管路5可以是U形管(例如铜管)或笛形管(例如铜管)等。第一换热器1的第一连通集流管10和第二换热器2的第二连通集流管20平行贴合,第一换热器1和第二换热器2的换热器芯体的平面成90度角。换热器组件100的制冷剂入口管6(进口接管)在第二换热器2(矩形换热器)的第二集流管22上,制冷剂出口管7(出口接管)根据需要可设置在第二换热器2的第二集流管22或第一换热器1(梯形换热器)的第一集流管12上。第一换热器1(梯形换热器)大致竖直设置,第一换热器1的第一连通集流管10和第二换热器2的第二连通集流管20平行贴合,因此,第二换热器2(矩形换热器)倾斜设置。
参见图6至10,第一换热器1的第一连通集流管10和第二换热器2的第二连通集流管20通过管路5连接。具体而言,多个第一连通腔室14与对应的多个第二连通腔室24通过管路5流体连通。两个换热器组件100构成风冷模块化冷水机组的换热器。管路5可以是U形管(例如铜管)或笛形管(例如铜管)等。第一换热器1的第一连通集流管10和第二换热器2的第二连通集流管20平行贴合,第一换热器1和第二换热器2的换热器芯体的平面成90度角。换热器组件100的制冷剂入口管6(进口接管)在第二换热器2(梯形换热器)的第二集流管22上,制冷剂出口管7(出口接管)根据需要可设置在第二换热器2的第二集流管22或第一换热器1(矩形换热器)的第一集流管12上。第一换热器1(矩形换热器)大致竖直设置,第一换热器1的第一连通集流管10和第二换热器2的第二连通集流管20平行贴合,因此,第二换热器2(梯形换热器)倾斜设置。
在本发明的实施例中,参见图2和图7,第一连通集流管10设有一个隔板30,而具有两个第一连通腔室14,第二连通集流管20设有一个隔板30,而具有两个第二连通腔室24,两个第一连通腔室14分别与两个第二连通腔室24流体连通,第一集流管12具有一个第一腔室16,第二集流管22设有一个隔板30,而具有两个在第二集流管 22的轴向上排列的第二腔室26,两个第二腔室26分别通过换热管9与两个第二连通腔室24流体连通,并且两个第二腔室26分别与制冷剂入口管6和制冷剂出口管7连接。
在本发明的实施例中,参见图2,第一换热器1是梯形换热器,且第一换热器1的第一连通集流管10的隔板30从第一连通集流管10的轴向方向的中点向第一换热器1的较宽的一侧偏置预定距离,第二换热器2是矩形换热器,且第二换热器2的第二连通集流管20的隔板30设置在第二连通集流管20的轴向方向的中点处,第二集流管22中的隔板30设置在第二集流管22的轴向方向的中点处。
在图2所示的实施例中,第一换热器1是梯形换热器,第二换热器2是矩形换热器,且第一换热器1的第一连通集流管10的隔板30高于第二换热器2的第二连通集流管20的隔板30。这样使第一换热器1的上下两部分面积相等,制冷剂分配更为均匀。
在本发明的实施例中,参见图7,第一换热器1是矩形换热器,且第一换热器1的第一连通集流管10的隔板30在第一连通集流管10的轴向方向的中点处,第二换热器2是梯形换热器,且第二换热器2的第二连通集流管20中的隔板30从第二连通集流管20的轴向方向的中点向第二换热器2的较宽的一侧偏置预定距离,且第二集流管22中的隔板30从第二集流管22的轴向方向的中点向第二换热器2的较宽的一侧偏置预定距离。
在本发明的实施例中,参见图3和图8,第一连通集流管10设有两个隔板30,而具有三个第一连通腔室14,第二连通集流管20设有一个隔板30,而具有两个第二连通腔室24,三个第一连通腔室14中的位于第一连通集流管10的两端的两个第一连通腔室14分别与两个第二连通腔室24流体连通,第一集流管12设有一个隔板30,而具有两个在第一集流管12的轴向上排列的第一腔室16,第一集流管12的隔板30在第一换热器1的换热管9的排列方向上位于第一连通集流管10的两个隔板30之间,第二集流管22设有一个隔板30,而具有两个在第二集流管22的轴向上排列的第二腔室26,第二集流管22的两个第二腔室26分别通过换热管9与第二连通集流管20的两 个第二连通腔室24流体连通,并且两个第二腔室26分别与制冷剂入口管6和制冷剂出口管7连接。
在本发明的实施例中,参见图3和图8,第一集流管12的隔板30在第一集流管12的轴向上的中点处,第二连通集流管20的隔板30在第二连通集流管20的轴向方向的中点处,且第二集流管22的隔板30在第二集流管22的轴向方向的中点处。
在本发明的实施例中,参见图3和图8,第一换热器1和第二换热器2中的一个是梯形换热器,第一换热器1和第二换热器2中的另一个是矩形换热器。
在图3所示的实施例中,第一换热器1是梯形换热器,第一连通集流管10设有两个隔板30,第一连通集流管10的内腔分成三个第一连通腔室14,第一换热器1形成四个回路。采用该实施例所示的换热器组件100,可提高制冷剂侧压降,机组工作更为稳定。在图示的实施例中,第一连通集流管10设有两个隔板30,第一连通集流管10的内腔分成三个第一连通腔室14。第一连通集流管10的两个隔板30分别高于和低于第二连通集流管20的隔板30。
在本发明的实施例中,参见图4和图9,第一连通集流管10设有两个隔板30,而具有三个第一连通腔室14,第二连通集流管20设有一个隔板30,而具有两个第二连通腔室24,三个第一连通腔室14中的两个相邻的第一连通腔室14与两个第二连通腔室24中的一个流体连通,三个第一连通腔室14中的另一个与两个第二连通腔室24中的另一个流体连通,第一集流管12具有一个第一腔室16,第二集流管22设有一个隔板30,而具有两个在第二集流管22的轴向上排列的第二腔室26,第二集流管22的两个第二腔室26分别通过换热管9与第二连通集流管20的两个第二连通腔室24流体连通,并且两个第二腔室26分别与制冷剂入口管6和制冷剂出口管7连接。根据本发明的示例,第一连通集流管10的两个隔板30在第一连通集流管10的轴向上的中点的两侧,第二连通集流管20的隔板30在第二连通集流管20的轴向方向的中点处,且第二集流管22的隔板30在第二集流管22的轴向方向的中点处。
在本发明的实施例中,参见图4,第一换热器1是梯形换热器,第二换热器2是矩形换热器,第一换热器1的三个第一连通腔室14中的位于第一换热器1的较宽的一侧的两个相邻的第一连通腔室14与两个第二连通腔室24中的一个流体连通,三个第一连通腔室14中的位于第一换热器1的较窄的一侧的一个与两个第二连通腔室24中的另一个流体连通。在图示的实施例中,第一连通集流管10设有两个隔板30,第一连通集流管10的内腔分成三个第一连通腔室14。第一连通集流管10的两个隔板30分别高于和低于第二连通集流管20的隔板30。第二换热器2的制冷剂通过三通管(一分二)进入到第一换热器1的三个第一连通腔室14中的位于第一换热器1的较宽的一侧的两个相邻的第一连通腔室14。利用第一换热器1上部区域风速较大的特点,制冷剂并联平行地换热,可提高换热系数,增大换热能力。
在本发明的实施例中,参见图9,第一换热器1是矩形换热器,第二换热器2是梯形换热器,第一换热器1的三个第一连通腔室14中的相邻的两个与两个第二连通腔室24中的位于第二换热器2的较宽的一侧的一个流体连通,三个第一连通腔室14中的另一个与两个第二连通腔室24中的位于第二换热器2的较窄的一侧的一个流体连通。
在本发明的实施例中,参见图5和图10,第一连通集流管10设有两个隔板30,而具有三个第一连通腔室14,第二连通集流管20设有两个隔板30,而具有三个第二连通腔室24,三个第一连通腔室14与三个第二连通腔室24分别流体连通,第一集流管12设有一个隔板30,而具有两个在第一集流管12的轴向上排列的第一腔室16,第二集流管22设有一个隔板30,而具有两个在第二集流管22的轴向上排列的第二腔室26,第一连通集流管10的三个第一连通腔室14中的两个相邻的第一连通腔室14通过换热管9与第一集流管12的两个第一腔室16中的一个流体连通,第二连通集流管20的三个第二连通腔室24中的两个相邻的第二连通腔室24通过换热管9与第二集流管22的两个第二腔室26中的一个流体连通,第一连通集流管10的三 个第一连通腔室14中的另一个第一连通腔室14通过换热管9与第一集流管12的两个第一腔室16中的另一个流体连通并且与第二连通集流管20的三个第二连通腔室24中的所述两个相邻的第二连通腔室24的位于第二连通集流管20的端部的一个第二连通腔室24流体连通,第二连通集流管20的三个第二连通腔室24中的另一个第二连通腔室24通过换热管9与第二集流管22的两个第二腔室26中的另一个流体连通并且与第一连通集流管10的三个第一连通腔室14中的所述两个相邻的第一连通腔室14的位于第一连通集流管10的端部的一个第一连通腔室14流体连通,并且第一集流管12的两个第一腔室16中的所述另一个和第二集流管22的两个第二腔室26中的另一个分别与制冷剂入口管6和制冷剂出口管7连接。根据本发明的示例,第一连通集流管10的两个隔板30在第一连通集流管10的轴向上的中点的两侧,第二连通集流管20的两个隔板30在第二连通集流管20的轴向方向的中点的两侧。
在本发明的实施例中,参见图5,第一换热器1是梯形换热器,第二换热器2是矩形换热器,第一连通集流管10的三个第一连通腔室14中的所述两个相邻的第一连通腔室14位于第一换热器1的较宽的一侧。在图示的实施例中,第一连通集流管10的内腔分成相等的三个第一连通腔室14,第二连通集流管20的内腔分成三个相等的第二连通腔室24。第一连通集流管10的隔板30与第二连通集流管20的隔板30在高度方向上分别对齐。在换热器组件100中形成一个S形制冷剂串联回路,并形成三个回路。制冷剂从第二集流管22的两个第二腔室26中的上部第二腔室26进入,并且从第一集流管12的两个第一腔室16中的下部第一腔室16流出。
在本发明的实施例中,参见图10,第一换热器1是矩形换热器,第二换热器2是梯形换热器,第二连通集流管20的三个第二连通腔室24中的所述两个相邻的第二连通腔室24位于第二换热器2的较窄的一侧。
如图1至12所示,根据本发明的实施例的换热器组件100,制冷剂是以串联的方式先后进入梯形换热器和矩形换热器,或者先后进 入矩形换热器和梯形换热器。将梯形换热器和矩形换热器通过铜管以串联的形式连接起来,形成换热器组件。集流管中设置多个隔板,实现不同的流动回路。两个换热器组件拼接成的组合式微通道换热器,能有效增加冷水机组的换热面积,提高换热能力。且制冷剂可以实现同侧或对角方向进出,便于将换热器与机组进行安装连接。
如图11和12所示,两种不同的换热器模块可以拼接成一个组合式的微通道换热器,用于风冷模块化冷水机组上。
图11的微通道换热器是由图2所示的换热器组件和图7所示的换热器组件组合而成。两个换热器组件的进出口接管分别位于梯形换热器和矩形换热器的集流管上,且都在同一侧。图3所示的换热器组件和图8所示的换热器组件可以组合在一起、图4所示的换热器组件和图9所示的换热器组件可以组合在一起、图5所示的换热器组件和图10所示的换热器组件可以组合在一起,进出口接管也都在同一侧。
安装人员在焊接换热器与压缩机和膨胀阀的连接铜管时,可方便地在同一侧进行操作。并且从压缩机出来的制冷剂气体通过三通进入微通道换热器,进口铜接管长度是一样的,不会出现一个换热器组件有复杂的长接管,这样能使两个换热器组件的压降较为平均,制冷剂分配更为均匀。
图12的微通道换热器是由图5所示的换热器组件和图10所示的换热器组件组合而成。两个换热器组件的进口接管都在同一侧,出口接管都在处于对角线方向上的另一侧。压缩机出来的制冷剂气体通过三通从矩形换热器和梯形换热器的集流管的上部进入,在各自的换热器组件中进行一个三回路流程换热后,分别从对角线方向的矩形和梯形换热器集流管下部流出。同样地,从三通到进口的铜接管长度是一样的,可以实现制冷剂的均匀分配。
如图1至12所示,根据本发明的实施例的换热器组件100,增大换热面积,制冷剂分配均匀,提升换热能力。与传统的风冷模块冷水机组换热器相比,充分利用了两侧V形区域,面积增加了约22%;且从三通到换热器组件的进口的铜接管长度一致,实现两个换热器组件的制冷剂均匀分配,换热能力得到有效提升。此外,流路和接管形 式多样。可实现两、三或四回路,流路也有串联或串并联的关系,进出口接管可在同一侧也可在对角线侧。多样的流路和接管形式,能够满足不同客户机组设置和不同工况的需要。再者,根据本发明的实施例的换热器组件100运输方便、安装简便。拆成平板状态的换热器芯体进行装箱运输,不占用空间;客户通过U形铜管、笛形管或三通管等将四个平板芯体组合成整体的换热器。

Claims (15)

  1. 一种换热器组件,包括:
    第一换热器,所述第一换热器包括第一连通集流管,第一集流管,和设置在第一连通集流管和第一集流管之间的换热管;以及
    第二换热器,所述第二换热器包括第二连通集流管,第二集流管,和设置在第二连通集流管和第二集流管之间的换热管,其中
    第一连通集流管设有隔板,而具有在第一连通集流管轴向上排列的多个第一连通腔室,第二连通集流管设有隔板,而具有多个在第二连通集流管的轴向上排列的第二连通腔室,并且多个第一连通腔室与对应的多个第二连通腔室流体连通,使得进入所述换热器组件的制冷剂是以串联的方式先后进入第二换热器和第一换热器。
  2. 根据权利要求1所述的换热器组件,其中:
    第一连通集流管设有一个隔板,而具有两个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,两个第一连通腔室分别与两个第二连通腔室流体连通,第一集流管具有一个第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,两个第二腔室分别通过换热管与两个第二连通腔室流体连通,并且两个第二腔室分别与制冷剂入口管和制冷剂出口管连接。
  3. 根据权利要求2所述的换热器组件,其中:
    第一换热器是梯形换热器,且第一换热器的第一连通集流管的隔板从第一连通集流管的轴向方向的中点向第一换热器的较宽的一侧偏置预定距离,第二换热器是矩形换热器,且第二换热器的第二连通集流管的隔板设置在第二连通集流管的轴向方向的中点处,第二集流管中的隔板设置在第二集流管的轴向方向的中点处;或者
    第一换热器是梯形换热器,第二换热器是矩形换热器,且第一换热器的第一连通集流管的隔板高于第二换热器的第二连通集流管 的隔板。
  4. 根据权利要求2所述的换热器组件,其中:
    第一换热器是矩形换热器,且第一换热器的第一连通集流管的隔板在第一连通集流管的轴向方向的中点处,第二换热器是梯形换热器,且第二换热器的第二连通集流管中的隔板从第二连通集流管的轴向方向的中点向第二换热器的较宽的一侧偏置预定距离,且第二集流管中的隔板从第二集流管的轴向方向的中点向第二换热器的较宽的一侧偏置预定距离;或者
    第一换热器是矩形换热器,第二换热器是梯形换热器,且第二换热器的第二连通集流管中的隔板和第二集流管中的隔板高于第一换热器的第一连通集流管的隔板。
  5. 根据权利要求1所述的换热器组件,其中:
    第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,三个第一连通腔室中的位于第一连通集流管的两端的两个第一连通腔室分别与两个第二连通腔室流体连通,第一集流管设有一个隔板,而具有两个在第一集流管的轴向上排列的第一腔室,第一集流管的隔板在第一换热器的换热管的排列方向上位于第一连通集流管的两个隔板之间,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第二集流管的两个第二腔室分别通过换热管与第二连通集流管的两个第二连通腔室流体连通,并且两个第二腔室分别与制冷剂入口管和制冷剂出口管连接。
  6. 根据权利要求5所述的换热器组件,其中:
    第一集流管的隔板在第一集流管的轴向上的中点处,第二连通集流管的隔板在第二连通集流管的轴向方向的中点处,且第二集流管的隔板在第二集流管的轴向方向的中点处;或者
    第一连通集流管的两个隔板中的一个高于第二连通集流管的隔 板,并且第一连通集流管的两个隔板中的另一个低于第二连通集流管的隔板。
  7. 根据权利要求1或5所述的换热器组件,其中:
    第一换热器和第二换热器中的一个是梯形换热器,第一换热器和第二换热器中的另一个是矩形换热器。
  8. 根据权利要求1所述的换热器组件,其中:
    第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有一个隔板,而具有两个第二连通腔室,三个第一连通腔室中的两个相邻的第一连通腔室与两个第二连通腔室中的一个流体连通,三个第一连通腔室中的另一个与两个第二连通腔室中的另一个流体连通,第一集流管具有一个第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第二集流管的两个第二腔室分别通过换热管与第二连通集流管的两个第二连通腔室流体连通,并且两个第二腔室分别与制冷剂入口管和制冷剂出口管连接。
  9. 根据权利要求8所述的换热器组件,其中:
    第一连通集流管的两个隔板在第一连通集流管的轴向上的中点的两侧,第二连通集流管的隔板在第二连通集流管的轴向方向的中点处,且第二集流管的隔板在第二集流管的轴向方向的中点处;或者
    第一连通集流管的两个隔板中的一个高于第二连通集流管的隔板,并且第一连通集流管的两个隔板中的另一个低于第二连通集流管的隔板。
  10. 根据权利要求9所述的换热器组件,其中:
    第一换热器是梯形换热器,第二换热器是矩形换热器,第一换热器的三个第一连通腔室中的位于第一换热器的较宽的一侧的两个相邻的第一连通腔室与两个第二连通腔室中的一个流体连通,三个第 一连通腔室中的位于第一换热器的较窄的一侧的一个与两个第二连通腔室中的另一个流体连通。
  11. 根据权利要求9所述的换热器组件,其中:
    第一换热器是矩形换热器,第二换热器是梯形换热器,第一换热器的三个第一连通腔室中的相邻的两个与两个第二连通腔室中的位于第二换热器的较宽的一侧的一个流体连通,三个第一连通腔室中的另一个与两个第二连通腔室中的位于第二换热器的较窄的一侧的一个流体连通。
  12. 根据权利要求1所述的换热器组件,其中:
    第一连通集流管设有两个隔板,而具有三个第一连通腔室,第二连通集流管设有两个隔板,而具有三个第二连通腔室,三个第一连通腔室与三个第二连通腔室分别流体连通,第一集流管设有一个隔板,而具有两个在第一集流管的轴向上排列的第一腔室,第二集流管设有一个隔板,而具有两个在第二集流管的轴向上排列的第二腔室,第一连通集流管的三个第一连通腔室中的两个相邻的第一连通腔室通过换热管与第一集流管的两个第一腔室中的一个流体连通,第二连通集流管的三个第二连通腔室中的两个相邻的第二连通腔室通过换热管与第二集流管的两个第二腔室中的一个流体连通,第一连通集流管的三个第一连通腔室中的另一个第一连通腔室通过换热管与第一集流管的两个第一腔室中的另一个流体连通并且与第二连通集流管的三个第二连通腔室中的所述两个相邻的第二连通腔室的位于第二连通集流管的端部的一个第二连通腔室流体连通,第二连通集流管的三个第二连通腔室中的另一个第二连通腔室通过换热管与第二集流管的两个第二腔室中的另一个流体连通并且与第一连通集流管的三个第一连通腔室中的所述两个相邻的第一连通腔室的位于第一连通集流管的端部的一个第一连通腔室流体连通,并且第一集流管的两个第一腔室中的所述另一个和第二集流管的两个第二腔室中的另一个分别与制冷剂入口管和制冷剂出口管连接。
  13. 根据权利要求12所述的换热器组件,其中:
    第一连通集流管的两个隔板在第一连通集流管的轴向上的中点的两侧,第二连通集流管的两个隔板在第二连通集流管的轴向方向的中点的两侧。
  14. 根据权利要求12所述的换热器组件,其中:
    第一换热器是梯形换热器,第二换热器是矩形换热器,第一连通集流管的三个第一连通腔室中的所述两个相邻的第一连通腔室位于第一换热器的较宽的一侧。
  15. 根据权利要求12所述的换热器组件,其中:
    第一换热器是矩形换热器,第二换热器是梯形换热器,第二连通集流管的三个第二连通腔室中的所述两个相邻的第二连通腔室位于第二换热器的较窄的一侧。
PCT/CN2017/117977 2017-01-20 2017-12-22 换热器组件 WO2018133623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17893006.1A EP3572743B1 (en) 2017-01-20 2017-12-22 Heat exchanger assembly
US16/477,365 US11624564B2 (en) 2017-01-20 2017-12-22 Heat exchanger assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720076519.7 2017-01-20
CN201720076519.7U CN206420193U (zh) 2017-01-20 2017-01-20 换热器组件

Publications (1)

Publication Number Publication Date
WO2018133623A1 true WO2018133623A1 (zh) 2018-07-26

Family

ID=59571715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117977 WO2018133623A1 (zh) 2017-01-20 2017-12-22 换热器组件

Country Status (4)

Country Link
US (1) US11624564B2 (zh)
EP (1) EP3572743B1 (zh)
CN (1) CN206420193U (zh)
WO (1) WO2018133623A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206420193U (zh) * 2017-01-20 2017-08-18 丹佛斯微通道换热器(嘉兴)有限公司 换热器组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788213A (zh) * 2009-01-22 2010-07-28 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN101806550A (zh) * 2010-03-24 2010-08-18 三花丹佛斯(杭州)微通道换热器有限公司 微通道换热器
WO2011013672A1 (ja) * 2009-07-28 2011-02-03 東芝キヤリア株式会社 熱源ユニット
CN102252464A (zh) * 2011-06-10 2011-11-23 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN205784008U (zh) * 2016-05-16 2016-12-07 丹佛斯微通道换热器(嘉兴)有限公司 换热器和换热模块
CN206420193U (zh) * 2017-01-20 2017-08-18 丹佛斯微通道换热器(嘉兴)有限公司 换热器组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3030036B2 (ja) 1989-08-23 2000-04-10 昭和アルミニウム株式会社 複式熱交換器
JP2837396B2 (ja) 1996-10-08 1998-12-16 シャープ株式会社 熱交換器
JP5308275B2 (ja) * 2009-08-24 2013-10-09 国立大学法人東京工業大学 太陽光集光システム
FR2952172A1 (fr) 2009-11-03 2011-05-06 Peugeot Citroen Automobiles Sa Condenseur de circuit de refrigeration a encombrement vertical reduit
WO2012071196A2 (en) * 2010-11-22 2012-05-31 Carrier Corporation Multiple tube bank flattened tube finned heat exchanger
US20140124183A1 (en) * 2012-11-05 2014-05-08 Soonchul HWANG Heat exchanger for an air conditioner and an air conditioner having the same
KR102202418B1 (ko) 2015-03-19 2021-01-13 한온시스템 주식회사 자동차용 열교환기
KR101837046B1 (ko) * 2015-07-31 2018-04-19 엘지전자 주식회사 열교환기
CN107388637B (zh) * 2016-05-16 2023-04-28 丹佛斯微通道换热器(嘉兴)有限公司 换热器和换热模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788213A (zh) * 2009-01-22 2010-07-28 三花丹佛斯(杭州)微通道换热器有限公司 换热器
WO2011013672A1 (ja) * 2009-07-28 2011-02-03 東芝キヤリア株式会社 熱源ユニット
CN101806550A (zh) * 2010-03-24 2010-08-18 三花丹佛斯(杭州)微通道换热器有限公司 微通道换热器
CN102252464A (zh) * 2011-06-10 2011-11-23 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN205784008U (zh) * 2016-05-16 2016-12-07 丹佛斯微通道换热器(嘉兴)有限公司 换热器和换热模块
CN206420193U (zh) * 2017-01-20 2017-08-18 丹佛斯微通道换热器(嘉兴)有限公司 换热器组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572743A4 *

Also Published As

Publication number Publication date
EP3572743A4 (en) 2020-10-14
CN206420193U (zh) 2017-08-18
EP3572743B1 (en) 2023-05-10
US20200033072A1 (en) 2020-01-30
EP3572743A1 (en) 2019-11-27
US11624564B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
KR100216052B1 (ko) 기화기
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
US8250879B2 (en) Dual-circuit chiller with two-pass heat exchanger in a series counterflow arrangement
US9746256B2 (en) Shell and tube heat exchanger with a vapor port
WO2013160954A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
KR100765557B1 (ko) 열교환기
US20110203308A1 (en) Heat exchanger including multiple tube distributor
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
CA2596328A1 (en) Tube insert and bi-flow arrangement for a header of a heat pump
WO2014181400A1 (ja) 熱交換器及び冷凍サイクル装置
US20220282927A1 (en) Cooling system
US20080011463A1 (en) Dual flow heat exchanger header
US20100170664A1 (en) Parallel flow heat exchanger with connectors
WO2018133623A1 (zh) 换热器组件
CN105737453B (zh) 冷却装置及其使用方法
WO2024001737A1 (zh) 换热器
CN104748592B (zh) 具有流体流动以与不同的制冷剂回路串联地热交换的钎焊换热器
WO2021082618A1 (zh) 换热器
JP7112164B2 (ja) 冷媒分配器、熱交換器および空気調和装置
JPH09229467A (ja) 熱交換器
WO2023030508A1 (zh) 换热器和多系统空调机组
KR20060044044A (ko) 열교환기
CN113649775B (zh) 一种冷凝器的制作方法
KR20040038328A (ko) 열교환기의 연결 장치
US20220196345A1 (en) Heat exchanger, method of manufacturing the same, and air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893006

Country of ref document: EP

Effective date: 20190820