WO2018133462A1 - 一种对射式小口径超声波流量计 - Google Patents

一种对射式小口径超声波流量计 Download PDF

Info

Publication number
WO2018133462A1
WO2018133462A1 PCT/CN2017/106125 CN2017106125W WO2018133462A1 WO 2018133462 A1 WO2018133462 A1 WO 2018133462A1 CN 2017106125 W CN2017106125 W CN 2017106125W WO 2018133462 A1 WO2018133462 A1 WO 2018133462A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe section
inner layer
transducer
pipe layer
small
Prior art date
Application number
PCT/CN2017/106125
Other languages
English (en)
French (fr)
Inventor
方欣
李新兴
Original Assignee
李新兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李新兴 filed Critical 李新兴
Priority to US16/330,453 priority Critical patent/US10948324B2/en
Publication of WO2018133462A1 publication Critical patent/WO2018133462A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • G01F15/185Connecting means, e.g. bypass conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/006Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus characterised by the use of a particular material, e.g. anti-corrosive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/10Preventing damage by freezing or excess pressure or insufficient pressure

Definitions

  • the utility model belongs to the technical field of pipeline fluid flow metering, in particular to a pair of small-caliber ultrasonic flowmeters.
  • ultrasonic flowmeters Compared with traditional mechanical flow meters and electromagnetic flow meters, ultrasonic flowmeters have higher measurement accuracy and larger turndown ratio, and are more adaptable to changes in parameters such as temperature, pressure, and density of the fluid to be measured.
  • the vertical orientation is adaptable, easy to use, and easy to manage digitally.
  • ultrasonic flowmeters have been widely used in the field of flow measurement in municipal heating, water, industrial, mining, power plants, etc., and the technology is increasingly mature.
  • the ultrasonic wave is emitted by a transducer, which is reflected by two reflectors and then received by the other transducer. Every reflection of the ultrasonic wave will have energy loss. Finally, the energy of the first wave of the plane acoustic wave that the transducer can receive is usually only 14% of the first wave of the transmitted wave, and the energy loss is very large.
  • the minimum safety value that the transducer can receive the first wave is 20mv.
  • the power and size of the transducer often need to be made larger.
  • the transducer's emission area is usually ⁇ 17mm. (after encapsulation). At present, the area of the reflecting plate is about ⁇ 8mm, and the larger the area from the angle of reflection, the better, but The assembly blocks water and generates eddy currents, which affects the sound wave speed and makes the measurement inaccurate.
  • the reflector is always in the water flow, especially in hot water.
  • the long-term use surface is easy to scale and the reflection efficiency is reduced.
  • the received signal will be unstable, which will cause the metering to not work properly.
  • the transducer mounting post In order to ensure the requirements of the live connection installation, the transducer mounting post must be placed inside the external thread at both ends of the pipe section. Therefore, at a limited length of the pipe, this shortens the distance between the two transducers and reduces the turndown ratio of the flowmeter.
  • the other is a through-flow flowmeter, such as the Chinese patent CN 201503288 U, which provides an ultrasonic flow meter transducer
  • the pipe section is a segmented structure
  • the transducer is disposed in the pipe section.
  • its own structure is that the diameter of the pipe section of the fixed transducer is large, and the diameter of the joint at both ends of the pipe section and the middle of the pipe section is small.
  • the pipe section at the fixed part of the transducer is special and can only be processed by injection molding.
  • the signal output cable of the transducer is above the transducer and is located inside the external thread of the pipe section.
  • the transducer Due to its structural limitation, the transducer can only be placed farther at the two ends of the flowmeter pipe section, and the ultrasonic sound path is better. Short, reducing the turndown ratio of the flowmeter.
  • the flowmeter as a whole is made of a plastic structure, obtained by segmental injection molding, and then fastened by bolts. Due to the use of plastic materials, due to the influence of temperature, the deformation of the plastic pipe section is large, which will inevitably affect the accurate positioning of the transducer, and thus the stability of the flow meter. At the same time, the processing method of segmentation processing and bolt fastening is complicated, and the disassembly and assembly process is complicated. When the plastic pipe section is connected with the joint, the thread strength is poor, it is easy to be damaged, and the installation is not reliable.
  • an on-beam small-caliber ultrasonic flowmeter is provided.
  • An on-beam small-caliber ultrasonic flowmeter comprising an outer layer of a pipe section, an inner layer of a pipe section, and a transducer assembly, wherein an end of the inner layer of the pipe section is formed with a transducer mount, and the transducer assembly is mounted on the installation In the seat, two pairs of transducer assemblies are arranged in pairs, and the inner layer of the pipe section is installed inside the outer layer of the pipe section.
  • the pipe section in the middle portion of the inner layer of the pipe section is smaller than the two ends.
  • the inner layer of the pipe section includes a pipe inner portion connected by a buckle and a second inner layer of the pipe segment, and the non-snapping end of the first inner layer of the pipe segment and the second inner layer of the pipe segment protrude radially outward Forming an annular boss edge, the annular boss edge protrudes axially inward to form a rectangular boss, and the outer end of the pipe segment is reamed to obtain a first hole adapted to the edge of the annular boss, and a first groove is formed on the inner wall to fit the rectangular boss, and the rectangular boss can be arranged in multiple places.
  • a fastening member is disposed on the first inner layer buckle connection end of the pipe segment, and an annular buckle groove is formed on the fastener component, and a second inner inner layer buckle connection end of the pipe segment is provided with a card member, and the card member is convex outward in a radial direction An annular second protrusion is formed, the fastener and the card are snap-fitted, and the second protrusion is fixed in the buckle groove.
  • the first sealing ring further includes a first sealing ring, the first inner layer of the pipe section and the end of the second inner layer of the pipe section opening a first annular groove, wherein the first sealing ring is disposed in the first annular groove,
  • the second sealing ring is disposed in the cavity formed by the buckle groove and the card member.
  • the transducer assembly includes a transducer, a gasket, a pressing piece and a protective cap which are sequentially disposed in the mounting seat from the inside to the outside
  • the mounting seat includes a mounting hole parallel to the axis of the pipe section, and connects the mounting hole to the outside a threading hole
  • the mounting hole end portion protrudes radially inward to form an edge protrusion, and protrudes in the axial direction to form a second card member
  • the protective cap includes a second buckle adapted to the second card member
  • the pressing portion the protective cap is fastened by the second fastening member and the second fastening member, and the pressing portion further presses the pressing piece.
  • Ultrasonic uses on-beam emission and reception, which can reduce the emission energy of the transducer and prolong the service life of the battery when the same signal receiving energy is obtained.
  • the first wave energy received by the transducer is 4 times larger than the reflection type, so the transducer size is appropriately reduced from ⁇ 17mm to ⁇ 12mm.
  • the transducer is arranged directly below the external thread at both ends of the pipe section, closer to the two ports of the pipe section, and the lead wire is led out through the middle outlet of the pipe section, and does not interfere with the live connection installation. According to the time difference formula and calculation, the flow rate is increased.
  • the range ratio of the meter Taking DN20 as an example, the distance between the two transducers is 60mm from the reflection type. Upgrade to 85mm.
  • the small stepless transducer design not only solves the problem that the transducer can not be installed in the small diameter, but also does not increase the pressure loss.
  • the water flow is rectified, the turbulence is reduced, and the measurement is more Accurately, taking the DN20 as an example, the water-passing area of the fixed transducer portion is 1.3 times the area of the intermediate neck portion.
  • the flowmeter pipe section has a simple structure and does not require conventional forging and manufacturing.
  • the outer layer can be made of standard pipe material, and the metal pipe section interface has plastic flange protection, and the whole metal pipe is not in contact with water. Therefore, this design can use copper, stainless steel and other standard pipe fittings, such as galvanized steel pipe, aluminum pipe, etc., can greatly reduce the cost under the condition of ensuring strength.
  • the inner layer structure of the pipe section is convenient and quick to assemble, the positioning is accurate, the buckle is firm, and the outer ring is well sealed.
  • the outer layer of the pipe section is made of metal, so the installation of the joint does not damage the thread.
  • Figure 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an intermediate portion of an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the inner layer structure of a pipe section according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a partial structure of a transducer assembly according to an embodiment of the present invention.
  • a small-diameter through-beam ultrasonic flowmeter as shown in FIG. 1, includes a pipe outer layer 1, a pipe inner layer 2, a transducer assembly 3, and a circuit box 4, and the circuit box 4 is disposed on the outer layer 1 of the pipe segment
  • the inner tube layer 2 is made by injection molding, and the end portion thereof is formed with a transducer mounting seat 23, the transducer assembly 3 is mounted in the mounting seat 23, and the two pairs of transducer assemblies 3 are paired.
  • the outer layer 1 of the pipe section is a standard pipe, and external threads are processed at both ends for connecting into the measuring pipe.
  • the inner layer 2 of the pipe section is mounted in the outer layer 1 of the pipe section.
  • the outer layer 1 of the pipe section is made of standard pipe material, for example, galvanized steel pipe, aluminum pipe, etc., the material cost is low, the processing is convenient, the reliability is high, and the package is sleeved outside the inner layer 2 of the pipe section to protect the support and prevent the inner layer of the pipe section. 2
  • the deformation caused by the influence of the ambient temperature affects the measurement accuracy.
  • the transducer assembly 3 is in the pipeline, and the ultrasonic wave adopts the opposite-beam emission and reception. Compared with the reflective ultrasonic flowmeter, the ultrasonic wave does not undergo two reflections, and the energy has no reflection attenuation loss, and the transducer can adopt a smaller size specification. The signal can be identifiable.
  • the receiving energy is 4 times larger than the reflection type, so the transducer size can be appropriately reduced from ⁇ 17mm to ⁇ 12mm, so that the transducer has lower emission energy when the same signal receiving energy is obtained. To extend battery life.
  • the pipe section of the inner portion of the inner layer 2 of the pipe section is smaller than the two ends. As shown in Figs. 1 and 3, a cavity 6 is formed between the inner wall of the outer layer 1 of the pipe section and the outer wall of the inner layer 2 of the pipe section.
  • a reinforcing rib 208 may be disposed at an intermediate portion of the inner layer 2 of the pipe section.
  • the inner layer 2 of the pipe segment comprises a pipe segment first inner layer 21 and a pipe segment second inner layer 22 connected by a snap, as shown in Figs. 1 and 3, the pipe segment first inner layer 21 and the pipe segment second inner layer 22
  • the other end is radial
  • An annular boss edge 204 is formed to protrude outwardly, and the annular boss edge 204 protrudes inward in the axial direction to form a rectangular boss 205, and the outer layer 1 of the pipe segment is reamed at both ends to obtain an annular boss edge 204.
  • the first hole 101 is fitted, and a first groove corresponding to the rectangular boss 205 is opened on the inner wall.
  • the first inner layer 21 of the pipe section and the second inner layer 22 of the pipe section are firmly connected by a snap connection, and are not separated by left and right movements.
  • the annular boss edge 204 is respectively engaged in the first hole 101 at both ends of the outer layer 1 of the pipe section, and the inner layer of the pipe section is positioned. 2 degrees of freedom in the axial direction.
  • the rectangular boss 205 on the inner layer 2 of the pipe section is engaged in the first groove 102 to position the degree of freedom of the inner layer 2 of the pipe section to rotate in the axial direction.
  • the rectangular boss 205 can be disposed in multiple places, as shown in FIG. 4, and two places are provided in this embodiment.
  • the buckle connection method is convenient and reliable, and is simpler and more convenient to install than the bolt, and the axial movement and axial rotation positioning of the inner layer 2 of the pipe section are accurate and reliable.
  • the snap-in connection structure of the inner layer 2 of the pipe section is as shown in FIG. 2, the buckle end of the first inner layer 21 of the pipe section is provided with a fastener 24, the buckle 24 is provided with an annular buckle groove 241, and the second inner layer 22 of the pipe section
  • the latching connecting portion is provided with a latching member 25, and the latching member 25 is outwardly protruded in the radial direction to form an annular second protrusion 251.
  • the fastener member 24 and the latching member 25 are engaged and coupled, and the second protrusion 251 It is fixed in the annular buckle groove 241.
  • the ultrasonic flowmeter further includes a first sealing ring 501 and a second sealing ring 502.
  • the first inner layer 21 of the pipe section and the end of the second inner layer 22 of the pipe section define a first annular groove 206.
  • the first sealing ring 501 is disposed in the first annular groove 206 and is pressed by the inner wall of the outer layer 1 of the pipe section to prevent water in the pipe from entering the cavity 6 through the gap between the inner and outer layers of the pipe section.
  • the second sealing ring 502 is disposed in the cavity formed by the annular buckle groove and the card member 25 to prevent water in the pipe from entering the cavity 6 from the snap connection.
  • the cavity 6 between the outer tube 1 of the inner tube section and the inner layer 2 of the tube section is water-free, providing a telescopic space for the slight expansion of the ice, which can effectively prevent the pipeline from freezing and cracking when the temperature is low;
  • copper, stainless steel, galvanized water gas pipes, aluminum pipes, etc. can be used for corrosion and scaling problems in metal pipe sections.
  • the transducer assembly 3 includes a transducer 301, which is disposed in the mounting seat 23 in order from the inside to the outside.
  • the mounting seat 23 includes a mounting hole 234 parallel to the axis of the pipe section, and a threading hole 233 for communicating the mounting hole 234 with the outside.
  • the connecting line of the transducer 301 is introduced into the cavity 6 through the threading hole 233. After entering the circuit box 4.
  • the end of the mounting hole 234 protrudes radially inward to form an edge protrusion 231, and protrudes in the axial direction to form a second card member 232.
  • the protective cap 31 includes a second fastener 312 and a pressing portion 311 that are adapted to the second clip 23 .
  • the outer diameter of the pressing piece 303 is equal to the diameter of the mounting hole 234, and is pressed and mounted in the mounting hole 234 by the edge protrusion 231.
  • the sealing pad 302 is elastically deformed and pressed, and the sealing pad 302 can be made of a silicone material.
  • the protective cap 31 is fastened by the second fastening member 312 and the second fastening member 232, and the pressing portion 311 further presses the pressing piece 303, and the pressing piece 303 gives a reaction force to the protective cap 31, and the entire transducer assembly 3 is tightly mounted. The positioning is accurate and firm.
  • the position at which the transducer assembly 3 is mounted is located directly below the nozzle threads, and unlike the prior art, the distance between the two transducer assemblies 3 is large.
  • the lead wire is led out through the middle outlet of the pipe section, and a gasket is arranged at the middle outlet of the pipe section to prevent external impurities from entering the cavity 6.
  • the distance between the two transducers is increased from the reflective 60mm to 85mm, which increases the beam-to-shoot distance of the transducer, ie the sound path.
  • Ultrasonic waves carry information about the average flow velocity V when propagating in the flowing fluid. Therefore, the flow velocity of the fluid can be detected by the time difference of the received ultrasonic waves, and converted into a flow rate.
  • the two transducer assemblies 3 used in conjunction with each other simultaneously emit ultrasonic waves, and then receive the transmitted ultrasonic waves, and the liquid flow in the inner layer 2 of the pipe segment can be calculated based on the received time difference ⁇ t:
  • the difference now is possible to calculate the time difference ⁇ t chips minimum value is 2.5ns, increase the L value of ⁇ t at the same conditions can be effectively reduced the average V value, i.e., the minimum flow rate meter can measure the accuracy requirements satisfied, when the pipe the diameter D is constant, it is determined that the cross sectional area S, T is a unit time (hour), then the flow rate Q is proportional to the average flow velocity V and 1, i.e., the smaller the average V, the flow rate Q per unit time a smaller range and ratio (Q The larger the 3 /Q 1 ), the higher the metering accuracy of the flowmeter, ie the increase of the flowmeter's turndown ratio.
  • V average the smallest average flow rate of the fluid in the tube that can be measured
  • the transducer 301 is designed as a small stepless transducer, which removes the excess compression fixing table and reduces the surface size of the transducer 301 to ⁇ 12 mm, which solves the problem that the transducer cannot be installed in the small diameter.
  • the water-passing area of the fixed transducer part is 1.3 times the area of the middle neck portion, which solves the problem that the transducer cannot be installed in the small pipe diameter, and does not increase the pressure loss.
  • Analytical optimization the water flow is rectified, turbulence is reduced, and the measurement is more accurate.
  • the cavity 6 between the outer tube 1 of the inner tube section and the inner layer 2 of the tube section is water-free, which effectively prevents the transducer from being soaked in water.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种小口径对射式超声波流量计,包括电路盒(4)、管段外层(1)、管段内层(2)、换能器组件(3),电路盒(4)设置在管段外层(1)上,管段内层(2)为注塑一体成型加工制成,其端部形成有换能器安装座(23),换能器组件(3)安装于安装座(23)中,两对换能器组件(3)成对设置,管段内层(2)安装在管段外层(1)内部。换能器组件(3)采用对射式发射与接收,能量损耗低,管段外层(1)可以采用标准管件,降低成本;管段内层(2)组装方便快捷,定位准确,密封良好;整个腔体是无水的,有效防止换能器组件(3)连线泡水,给管段内层(2)的变形和水变成冰的微小膨胀提供伸缩空间,有效防冻。

Description

一种对射式小口径超声波流量计 技术领域
本实用新型属于管道传输流体流量计量技术领域,具体涉及对射式小口径超声波流量计。
背景技术
超声波流量计和传统的机械式流量仪表、电磁式流量仪表相比具有计量精度高、量程比更大,更能适应被测流体温度、压力、密度等参数的变化,对管径及其管道水平、垂直走向的适应性强,使用方便,易于数字化管理等优点。目前,超声波流量计已经广泛的应用到市政供热、水务、工业、矿山、发电厂等流量测量领域,技术日益成熟。
然而,对于小口径管道,由于其管道直径本身较小,对于标准给定的管段长度,换能器设置在如此小的管径的通道中是个技术难题,制约着超声波流量计在小口径管道流量计量的应用,例如,生活用水领域等。
对于小口径超声波流量计,常用的有两种,一种是反射式超声波流量计,例如中国专利CN 201697666 U和CN 104764499 A,由于其本身工作原理的限制,存在诸多缺点。超声波由一个换能器发射,先后经过了两个反射板的反射后,被另一个换能器接收。超声波的每一次反射都会有能量损耗,最后换能器能接收到的平面声波的首波的能量通常只有发射波首波的14%,能量损耗非常大。86%的超声波都通过管壁漫反射,而且,漫反射形成的次波容易叠加干扰在第二个反射面的反射波,形成杂波影响和干扰接收换能器的接收。通常换能器能够接收到首波最小的安全值是20mv,为了保证这一稳定的信号值,换能器的功率和尺寸往往需要做的较大,目前,通常采用换能器发射面积为Φ17mm(封装后)。目前反射板的面积大约为Φ8mm,从反射的角度其面积越大越好,但过 大会阻水并产生涡流,影响声波速度稳定,使计量不准确;反射板一直处于水流中,尤其在热水中,长期使用表面容易结垢,反射效率降低。一旦首波信号小于20mv,接收到的信号就会不稳定,将导致计量无法正常进行。为保证活接安装需求,换能器安装柱必须设置在管段两端的外螺纹的内侧。所以,在有限的管段长度下,这就缩短了两个换能器间的距离,降低了流量计的量程比。
另一种是对射式流量计,例如中国专利CN 201503288 U,提供了一种超声波流量表换能器,管段为分段结构,换能器对射方式设置于管段中。首先,其本身的结构是,在固定换能器的管段处直径较大,管段两端连接处以及管段中间的直径较小。换能器固定处的管段结构特殊,只能采用注塑加工方式。其次,换能器的信号输出缆线在换能器的上方,位于管段外螺纹的内侧,由于本身结构限制,换能器只能设置于流量计管段两端较远处,超声波的声程较短,降低了流量计的量程比。另外,流量计整体都采用塑料结构,分段注塑加工获得,然后通过螺栓紧固连接。由于采用塑料材料,受温度影响,塑料管段的变形较大,这必然会影响换能器的准确定位,进而流量计量的稳定性。同时,分段加工再通过螺栓紧固的加工方式复杂,拆装工序复杂。塑料管段在与活接连接时,螺纹强度差,容易损坏,安装不牢靠。
实用新型内容
针对现有技术中小口径超声波流量计存在的问题,提供了一种对射式小口径超声波流量计。
一种对射式小口径超声波流量计,包括管段外层、管段内层、换能器组件,所述管段内层的端部形成有换能器安装座,所述换能器组件安装于安装座中,两对换能器组件成对设置,所述管段内层安装在管段外层内部。
所述管段内层中间部管段直径小于两端。
所述管段内层包括通过卡扣相连接的管段第一内层和管段第二内层,所述管段第一内层和管段第二内层的非卡扣连接端沿径向向外凸出形成环形凸台边缘,所述环形凸台边缘上沿轴向向内凸出形成矩形凸台,所述管段外层两端扩孔加工得到与环形凸台边缘相适配的第一孔,并在内壁上开设与矩形凸台相适配的第一槽,所述矩形凸台可设置多处,
所述管段第一内层卡扣连接端设置有扣件,扣件上开设环形扣槽,管段第二内层卡扣连接端设置有卡件,所述卡件上沿径向方向向外凸出形成环形第二凸起,所述扣件和卡件卡合连接,第二凸起固定在扣槽中。
还包括第一密封圈,第二密封圈,所述管段第一内层和管段第二内层的端部开设第一环形槽,所述第一密封圈设置于第一环形槽中,所述第二密封圈设置于扣槽与卡件形成的腔体中。
所述换能器组件包括由内到外依次设置在安装座中的换能器、密封垫、压片和防护帽,所述安装座包括与管段轴线平行的安装孔、将安装孔与外部连通的穿线孔,所述安装孔端部沿径向向内凸出形成边缘凸起,沿轴向凸出形成第二卡件,所述防护帽包括与第二卡件相适配的第二扣件和压紧部,防护帽通过第二扣件和第二卡件扣合紧密,压紧部进一步压紧压片。
本实用新型的有益效果:
1.超声波采用对射式发射与接收,在得到相同的信号接收能量时,可以降低换能器的发射能量,延长电池使用寿命。以DN20为例,换能器接收到的首波能量比反射式大4倍,所以换能器尺寸由Φ17mm适当减小为Φ12mm。
2.换能器设置于管段两端外螺纹的正下方,更靠近管段两端口,其引出线是通过管段中间出口引出,不会干扰活接安装,按照时差公式及推算可知,增大了流量计的量程比。以DN20为例,两换能器之间的距离,由反射式的60mm, 提升到85mm。
3.整个管体内部管段外层与管段内层之间的腔体是无水的,这样有效解决金属管段内部腐蚀及结垢问题,金属管段接口处有塑料翻边保护,也不接触水,因此,这种设计可以采用铜、不锈钢以及之外的标准管件,例如,镀锌钢管,铝管等,在保证强度情况下,可以大大降低成本。
4.小型无台阶形换能器设计,既解决了小管径内无法安装换能器的问题,又不会增加压损,通过软件分析优化,使水流得到整流,减少紊流,使计量更准确,以DN20为例,其固定换能器部分的通水面积是中间缩颈部分面积的1.3倍。
5.流量计管段结构简单,不需要以往的锻压制造,外层可以选用标准管材,金属管段接口处有塑料翻边保护,整体金属管都不接触水。因此,这种设计可以采用铜、不锈钢以及之外的标准管件,例如,镀锌钢管,铝管等,在保证强度情况下,可以大大降低成本。
6.管段内层结构组装方便快捷,定位准确,卡扣牢靠,外圈密封良好。
7.管段内层与管段外层内壁有预留空间,整个腔体是无水的,这样有效防止换能器连线泡水,还可以有效抗冻。即在冰点附近时,管段内套在冰膨胀时的微变形能有效克服冰冻破坏管段。
8.管段外层为金属制造,所以,安装活接不会破坏螺纹。
附图说明
图1为本实用新型一个实施例的结构示意图;
图2为本实用新型一个实施例中间部分结构示意图;
图3为本实用新型一个实施例管段内层结构示意图;
图4为本实用新型实施例换能器组件局部结构示意图。
具体实施方式
下面结合本实用新型实施例中的附图,对本实用新型的技术方案做进一步说明。
一种小口径对射式超声波流量计,如图1所示,包括管段外层1、管段内层2、换能器组件3、电路盒4,所述电路盒4设置在管段外层1上,所述管段内层2为注塑一体成型加工制成,其端部形成有换能器安装座23,所述换能器组件3安装于安装座23中,两对换能器组件3成对设置,所述管段外层1为标准管材,两端加工有外螺纹,用于连接入测量的管路。所述管段内层2安装在管段外层1内。
管段外层1选用标准管材,例如,镀锌钢管,铝管等,材料成本较低,加工方便,可靠性高,包套在管段内层2外部,起到保护支撑的作用,防止管段内层2受环境温度影响产生的变形,从而影响计量精度。换能器组件3在管道内,超声波采用对射式发射与接收,相比反射式超声波流量计,超声波没有经过两次反射,能量没有反射衰减损耗,换能器可以采用较小尺寸规格,其信号就可以达到可识别程度。按照DN20管段实验测试得到其接收能量比反射式大4倍,所以可以将换能器尺寸由Φ17mm适当减小至Φ12mm,这样,在得到相同的信号接收能量时,换能器的发射能量较低,延长电池使用寿命。
所述管段内层2中间部管段直径小于两端,如图1、3所示,管段外层1内壁与管段内层2外壁之间形成腔体6。管段内层2的中间部可设置加强筋208。在同样的流量下,由于管段内层2缩径(与现在供热DN20流量计相同,为Φ14mm),所以流速较快,超声波的时差变大,流量计的测量精度范围得到提高。
所述管段内层2包括通过卡扣相连接的管段第一内层21和管段第二内层22,如图1、3所示,所述管段第一内层21和管段第二内层22的另一端沿径向 向外凸出形成环形凸台边缘204,所述环形凸台边缘204上沿轴向向内凸出形成矩形凸台205,所述管段外层1两端扩孔加工得到与环形凸台边缘204相适配的第一孔101,并在内壁上开设与矩形凸台205相适配的第一槽。管段第一内层21和管段第二内层22通过卡扣连接牢固,不会左右移动分开,环形凸台边缘204分别卡合于管段外层1两端第一孔101中,定位管段内层2的轴向方向的自由度。管段内层2上的矩形凸台205卡合在第一槽102中,定位管段内层2绕轴向旋转的自由度。所述矩形凸台205可设置多处,如图4所示,本实施例设置有两处。采用卡扣连接的方式,方便可靠,比螺栓固定安装简单方便,管段内层2的轴向移动和轴向旋转定位准确可靠。
所述管段内层2卡扣连接结构为,如图2所示,管段第一内层21卡扣连接端设置有扣件24,扣件24上开设环形扣槽241,管段第二内层22卡扣连接段设置有卡件25,所述卡件25上沿径向方向向外凸出形成环形第二凸起251,所述扣件24和卡件25卡合连接,第二凸起251固定在环形扣槽241中。
超声波流量计还包括第一密封圈501、第二密封圈502,如图4所示,所述管段第一内层21和管段第二内层22的端部开设第一环形槽206,所述第一密封圈501设置于第一环形槽206中,通过管段外层1的内壁压紧,防止管道中的水通过管段内、外层之间的间隙进入到腔体6中。所述第二密封圈502设置于环形扣槽与卡件25形成的腔体中,防止管道中的水从卡扣连接处进入到腔体6中。
整个管体内部管段外层1与管段内层2之间的腔体6是无水的,给冰的微小膨胀提供伸缩空间,可以有效防止温度低时管路冻裂;由于无水,避免了金属管段内部腐蚀及结垢问题,可以采用铜、不锈钢以及镀锌水煤气管、铝管等。
所述换能器组件3包括由内到外依次设置在安装座23中的换能器301、密 封垫302、压片303和防护帽31。如图4所示,所述安装座23包括与管段轴线平行的安装孔234、将安装孔234与外部连通的穿线孔233,换能器301的连接线经过穿线孔233引入到腔体6中后进入电路盒4。所述安装孔234端部沿径向向内凸出形成边缘凸起231,沿轴向凸出形成第二卡件232。所述防护帽31包括与第二卡件23相适配的第二扣件312和压紧部311。压片303的外径等于安装孔234的孔径,通过边缘凸起231压紧安装于安装孔234中,密封垫302弹性变形被压紧,密封垫302可以采用硅胶材质制成。防护帽31通过第二扣件312和第二卡件232扣合紧密,压紧部311进一步压紧压片303,同时压片303给防护帽31一个反作用力,整个换能器组件3紧安装定位准确牢固了。换能器组件3安装的位置位于管口螺纹的正下方,与现有技术不同,两换能器组件3之间的距离较大。其引出线是通过管段中间出口引出,管段中间出口处设置有密封垫,防止外部杂质进入腔体6。以DN20为例,两换能器之间的距离,从反射式的60mm提升到85mm,增大了对射的换能器的对射距离,即声程。对于按标准给定的管段长度,增大换能器之间的对射距离有重要意义。
超声波在流动的流体中传播时就载上流体流速V平均的信息。因此通过接收到的超声波的时差就可以检测出流体的流速,从而换算成流量。相互配合使用的两个换能器组件3同时发射超声波,然后接收所发射的超声波,根据接收到的时间差Δt就可以计算出管段内层2中的液体流量:
c1=c+V平均,顺流声速
c2=c-V平均,逆流声速
t1=L/c1,顺流时间
t2=L/c2,逆流时间
Figure PCTCN2017106125-appb-000001
c>>V平均
Figure PCTCN2017106125-appb-000002
制定常数K,令
Figure PCTCN2017106125-appb-000003
Figure PCTCN2017106125-appb-000004
Figure PCTCN2017106125-appb-000005
现在的时差芯片能够计算出时差Δt的最小值是2.5nS,在Δt不变的条件下加大L值可以有效地减小V平均值,即流量计可以测量满足精度要求的最小流速,当管道直径D一定时,截面积S就确定,T是单位时间(小时),那么流量Q1与流速V平均成正比,即V平均越小,单位时间的流量Q1越小,而量程比(Q3/Q1)越大,提高了流量计的最小计量精度,即增大流量计的量程比。
其中:
c,超声波在被测液体中速度;
c1,去程超声波速度;
t1,去程时间;
c2,回程超声波速度;
t2,回程时间;
Δt,去回程时间差;
V平均,能测量到的管内流体最小平均流速;
L,换能器间对射距离,即声程;
S,管段横截面;
Q1,流量计能计量的最小流量;
Q3,常用流量,对特定口径,为定值。
换能器301为小型无台阶形换能器设计,去掉了多余的压紧固定台,并且将换能器301表面尺寸缩小为Φ12mm,解决了小管径内不能安装换能器的问题。以DN20为例,其固定换能器部分的通水面积是中间缩颈部分面积的1.3倍,既解决了小管径内无法安装换能器的问题,又不会增加压损,通过软件分析优化,使水流得到整流,减少紊流,使计量更准确。
整个管体内部管段外层1与管段内层2之间的腔体6是无水的,这样有效防止换能器连线泡水。
可理解的是,尽管已经示出和描述了本实用新型的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本实用新型的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本实用新型的范围由所附权利要求及其等同物限定。

Claims (6)

  1. 一种小口径对射式超声波流量计,其特征在于:包括管段外层(1)、管段内层(2)、换能器组件(3),所述管段内层(2)端部形成有换能器安装座(23),所述换能器组件(3)安装于安装座(23)中,两对换能器组件(3)成对设置,所述管段内层(2)安装在管段外层(1)内部。
  2. 如权利要求1所述的小口径对射式超声波流量计,其特征在于,所述管段内层(2)中间部管段直径小于两端。
  3. 如权利要求2所述的小口径对射式超声波流量计,其特征在于,所述管段内层(2)包括通过卡扣相连接的管段第一内层(21)和管段第二内层(22),所述管段第一内层(21)和管段第二内层(22)的非卡扣连接端沿径向向外凸出形成环形凸台边缘(204),所述环形凸台边缘(204)上沿轴向向内凸出形成矩形凸台(205),所述管段外层(1)两端扩孔加工得到与环形凸台边缘(204)相适配的第一孔(101),并在内壁上开设与矩形凸台(205)相适配的第一槽(102),所述矩形凸台(205)可设置多处,
  4. 如权利要求3所述的小口径对射式超声波流量计,其特征在于,管段第一内层(21)卡扣连接端设置有扣件(24),扣件(24)上开设环形扣槽(241),管段第二内层(22)卡扣连接端设置有卡件(25),所述卡件(25)上沿径向方向向外凸出形成环形第二凸起(251),所述扣件(24)和卡件(25)卡合连接,第二凸起(251)固定在扣槽(241)中。
  5. 如权利要求4所述的小口径对射式超声波流量计,其特征在于,还包括第一密封圈(501)、第二密封圈(502),所述管段第一内层(21)和管段第二内层(22)的端部开设第一环形槽(206),所述第一密封圈(501)设置于第一环形槽(206)中,所述第二密封圈(502)设置于扣槽(241)与卡件(25)形成的腔体中。
  6. 如权利要求5所述的小口径对射式超声波流量计,其特征在于,所述换能器组件(3)包括由内到外依次设置在安装座(23)中的换能器(301)、密封垫(302)、压片(303)和防护帽(31),所述安装座(23)包括与管段轴线平行的安装孔(234)、将安装孔(234)与外部连通的穿线孔(233),所述安装孔(234)端部沿径向向内凸出形成边缘凸起(231),沿轴向凸出形成第二卡件(232),所述防护帽(31)包括与第二卡件(23)相适配的第二扣件(312)和压紧部(311),防护帽(31)通过第二扣件(312)和第二卡件(232)扣合紧密,压紧部(311)进一步压紧压片(303)。
PCT/CN2017/106125 2017-01-23 2017-10-13 一种对射式小口径超声波流量计 WO2018133462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/330,453 US10948324B2 (en) 2017-01-23 2017-10-13 Small-diameter ultrasonic flow meter having opposing transducers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710057701.2 2017-01-23
CN201710057701.2A CN106595785B (zh) 2017-01-23 2017-01-23 一种对射式小口径超声波流量计

Publications (1)

Publication Number Publication Date
WO2018133462A1 true WO2018133462A1 (zh) 2018-07-26

Family

ID=58586338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106125 WO2018133462A1 (zh) 2017-01-23 2017-10-13 一种对射式小口径超声波流量计

Country Status (3)

Country Link
US (1) US10948324B2 (zh)
CN (1) CN106595785B (zh)
WO (1) WO2018133462A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148578A1 (en) * 2019-01-18 2020-07-23 Sensus Spectrum, Llc Ultrasonic gas meters and related flowtubes
WO2021217209A1 (en) * 2020-04-30 2021-11-04 Yarra Valley Water Corporation Digital water meter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595785B (zh) * 2017-01-23 2019-01-01 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计
CN108051040B (zh) * 2017-12-11 2024-06-11 金卡智能集团股份有限公司 电子式计量表的计量模组组件及电子式计量表
TW201946763A (zh) * 2018-05-16 2019-12-16 日商琉Sok股份有限公司 超音波流量計的測量管路部的製造方法
EP3588017A1 (de) * 2018-06-27 2020-01-01 Sensus Spectrum LLC Ultraschallmessvorrichtung
CN109142542A (zh) * 2018-11-05 2019-01-04 江苏迅创科技股份有限公司 一种晶体含量测量装置及安装方法
CN112414498B (zh) * 2019-08-20 2024-03-22 侯耀淞 流量计接管的强化结构
CN111121895A (zh) * 2020-01-10 2020-05-08 青岛海威茨仪表有限公司 大口径超声波流量计
CN211317425U (zh) * 2020-01-21 2020-08-21 青岛海威茨仪表有限公司 超声波流量计管段结构
CN114413983B (zh) * 2022-03-30 2022-06-21 济南沛华信息科技有限公司 一种分体式换能器封装结构及超声流量计
CN116690180B (zh) * 2023-05-31 2024-02-13 珠海市新万山仪表有限公司 单直管液体密度测量装置及其装配方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806605A (zh) * 2010-04-16 2010-08-18 山东万华电子信息科技有限公司 平行对射式超声波流量传感器
CN202229859U (zh) * 2011-09-02 2012-05-23 浙江铭仕阀业有限公司 稳流型超声波热量表铜管件
US8689638B2 (en) * 2012-01-12 2014-04-08 Spire Metering Technology LLC Ultrasonic flow sensor
CN104101399A (zh) * 2013-04-05 2014-10-15 玉环友恒阀门有限公司 一种新型超声波热量表和水表的支架和管段
CN204214501U (zh) * 2014-12-02 2015-03-18 姜跃炜 分离式流量表表壳
CN104792375A (zh) * 2015-04-14 2015-07-22 吉安精程仪表科技有限公司 一种超声波对射式水表
CN204788578U (zh) * 2015-07-28 2015-11-18 青岛积成电子有限公司 超声波液体流量计管路
CN106595785A (zh) * 2017-01-23 2017-04-26 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计
CN206440317U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181536B2 (en) * 2009-12-19 2012-05-22 Cameron International Corporation Ultrasonic Flow Meter including a transducer having conical face
CN102426038A (zh) * 2011-09-14 2012-04-25 苏州聚元微电子有限公司 高可靠性超声流量传感器
US10006791B2 (en) * 2015-09-23 2018-06-26 Texas Instruments Incorporated Ultrasonic flow meter auto-tuning for reciprocal operation of the meter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806605A (zh) * 2010-04-16 2010-08-18 山东万华电子信息科技有限公司 平行对射式超声波流量传感器
CN202229859U (zh) * 2011-09-02 2012-05-23 浙江铭仕阀业有限公司 稳流型超声波热量表铜管件
US8689638B2 (en) * 2012-01-12 2014-04-08 Spire Metering Technology LLC Ultrasonic flow sensor
CN104101399A (zh) * 2013-04-05 2014-10-15 玉环友恒阀门有限公司 一种新型超声波热量表和水表的支架和管段
CN204214501U (zh) * 2014-12-02 2015-03-18 姜跃炜 分离式流量表表壳
CN104792375A (zh) * 2015-04-14 2015-07-22 吉安精程仪表科技有限公司 一种超声波对射式水表
CN204788578U (zh) * 2015-07-28 2015-11-18 青岛积成电子有限公司 超声波液体流量计管路
CN106595785A (zh) * 2017-01-23 2017-04-26 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计
CN206440317U (zh) * 2017-01-23 2017-08-25 青岛海威茨仪表有限公司 一种对射式小口径超声波流量计

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020148578A1 (en) * 2019-01-18 2020-07-23 Sensus Spectrum, Llc Ultrasonic gas meters and related flowtubes
US10866127B2 (en) 2019-01-18 2020-12-15 Sensus Spectrum, Llc Dual class ultrasonic gas meters and related flowtubes
CN113574349A (zh) * 2019-01-18 2021-10-29 传感频谱有限责任公司 超声波气体计量器和相关流量管
WO2021217209A1 (en) * 2020-04-30 2021-11-04 Yarra Valley Water Corporation Digital water meter

Also Published As

Publication number Publication date
CN106595785B (zh) 2019-01-01
CN106595785A (zh) 2017-04-26
US20210003435A1 (en) 2021-01-07
US10948324B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2018133462A1 (zh) 一种对射式小口径超声波流量计
CN206440317U (zh) 一种对射式小口径超声波流量计
CN101576399B (zh) 超声波水表、热量表流量传感器
CN106871981A (zh) 一种用于超声波燃气、水、热表或流量计的流道结构
CN204388932U (zh) 具有防冻功能的超声流量、热量计转换器用测量管段
CN208818268U (zh) 一种超声波水表的测量管段
CN113701852A (zh) 一种耐高温型雷达液位计
CN205352483U (zh) 整流型气体超声波流量测量装置
CN215217710U (zh) 一种新型小口径超声水表基表结构
CN205403872U (zh) 一种阀壳无缝一体化的超声波管段
CN209524966U (zh) 一种四声道超声流量计的探头布置结构
CN202661118U (zh) 新型反射式超声波流量传感器
CN211346934U (zh) 一种全段密封性超声波流量计测量系统
CN219141926U (zh) 一种气体输送管道弯头下游使用的整流装置
CN203443617U (zh) 插入式一体型温压补偿涡街流量计
CN218673764U (zh) 一种超声波燃气流量计量装置
CN2599530Y (zh) 超声流量、热量计换能器专用管段
CN217818886U (zh) 一种超声波水表管段用内衬结构和管段
CN219624829U (zh) 一种超声波流量计管道结构
CN111561976A (zh) 全零截面检测流道结构的气体超声流量计及其检测方法
CN216348891U (zh) 一种大口径物联网远传水表
CN215414120U (zh) 智能热量表的超声波反射模块
CN205719135U (zh) 一种改进型立柱式超声波流量计基管
CN217276339U (zh) 工业气体超声波流量计
CN212539293U (zh) 一种超声波测量装置的整流结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892206

Country of ref document: EP

Kind code of ref document: A1