WO2018133052A1 - 下行信号传输方法、装置及系统 - Google Patents

下行信号传输方法、装置及系统 Download PDF

Info

Publication number
WO2018133052A1
WO2018133052A1 PCT/CN2017/071992 CN2017071992W WO2018133052A1 WO 2018133052 A1 WO2018133052 A1 WO 2018133052A1 CN 2017071992 W CN2017071992 W CN 2017071992W WO 2018133052 A1 WO2018133052 A1 WO 2018133052A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
measurement channel
downlink measurement
paired
Prior art date
Application number
PCT/CN2017/071992
Other languages
English (en)
French (fr)
Inventor
钱锋
楼群芳
石娴文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/071992 priority Critical patent/WO2018133052A1/zh
Publication of WO2018133052A1 publication Critical patent/WO2018133052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a downlink signal transmission method, apparatus, and system.
  • MIMO Multiple Input Multiple Output
  • LTE Long Term Evolution
  • MU-MIMO multi-user multiple input multiple output
  • the base station when there is a common information requirement for multiple paired terminals, if the base station still transmits the shared information independently and repeatedly for different paired terminals on the same time-frequency resource, on the one hand, the shared information occupies multiple resources on the air interface. , is repeatedly sent multiple times, so it will cause waste of air interface resources; on the other hand, because the base station in the existing MU-MIMO system usually uses linear zero-forcing technology to design the MU weight value to achieve the effect of eliminating interference at the terminal. Finally, spatial multiplexing is realized, and the MU-MIMO system has unavoidable errors in the measurement of channel information, resulting in the MU weight value designed by the base station according to the linear zero-forcing technology cannot achieve the expected interference zero-forcing effect. The simultaneous transmission of the shared information for different paired terminals on the same frequency resource still has strong interference, so that the expected gain of spatial multiplexing cannot be obtained.
  • the embodiments of the present application provide a downlink signal transmission method, apparatus, and system, to at least solve the problem that the existing MU-MIMO system wastes air interface resources and cannot obtain the expected gain of spatial multiplexing caused by transmitting the shared information.
  • the embodiment of the present application provides the following technical solutions:
  • the first aspect provides a downlink signal transmission method, where the method includes: determining, by the base station, whether the shared information exists in the service information of the N paired terminals, where the shared information is information used for demodulation and decoding of the N paired terminals; Determining the existence, obtaining an error of the virtual downlink measurement channel between the paired terminal and the base station, and the true downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel, where N is a positive integer;
  • the multi-user MU weight of the private information of each paired terminal is obtained by using a linear zero-forcing algorithm, and the MU weight of the shared information is obtained by using a minimum receiving rate maximization principle, and the private information is used only for the target paired terminal solution.
  • Transmitting the decoded information determining a transmit power of the private information of each paired terminal and a transmit power of the shared information according to the power allocation policy; and corresponding to the virtual downlink measurement channel, the virtual downlink measurement channel according to the virtual downlink measurement channel
  • the private information of each paired terminal is modulated by the MCS code of the private information of each paired terminal
  • the shared information is modulated by the MCS code of the shared information.
  • the embodiment of the present application layeres the downlink transmission signal, and uses the idea of rate splitting to classify the downlink transmission signal into two types: private information and shared information.
  • the shared information can be demodulated and decoded by all the configuration terminals, and is usually used to carry the service data required by the MU pairing terminal.
  • the private information can only be demodulated and decoded by the target terminal, and is usually used to carry the service data unique to each terminal. Because the rate splitting is performed, the base station does not need to send the shared information by multiple downlink transmissions, but only needs one downlink transmission to transmit the shared information to the N paired terminals, so that the shared information can be avoided in the air interface. Repeated transmission on top, saving air interface resources.
  • the embodiment of the present application also uses the linear zero-forcing algorithm to obtain the MU weight of the private information of each paired terminal, so that interference suppression between the private information can be implemented; and the minimum receiving rate is also adopted in the embodiment of the present application.
  • the downlink signal transmission method provided by the embodiment of the present application can solve the problem that the existing MU-MIMO system wastes air interface resources and cannot obtain the expected gain of spatial multiplexing caused by transmitting the shared information, and can save the air interface. Resources can also increase the expected gain of space taking, while ensuring that each terminal can correctly demodulate the decoded common information.
  • the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel, and the MU weight and the transmission power of the private information of each paired terminal And determining, by the MU weight and the transmit power of the shared information, the MCS of the private information of each paired terminal and the MCS of the shared information, including: respectively, based on the first preset formula and the second preset formula, according to the virtual a downlink measurement channel, an error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel, a MU weight and a transmission power of the private information of each paired terminal, and a MU weight and a transmission power of the shared information Determining a signal to interference and noise ratio of the private information of each paired terminal and a signal to interference and noise ratio of the shared information; a signal to interference and noise ratio of the private information of each paired terminal and a signal to interference and noise ratio of the shared information, and
  • the private information when the MCS of the shared information is designed, the private information is treated as noise; when the MCS of the private information is designed, the shared information is considered to have been eliminated, and only the interference of the noise floor and other private information remains. Therefore, when the terminal acquires the signal including the shared information and the private information, the private information may be first used as noise processing to demodulate the decoded common information; then the shared information is deleted, and other private information and noise are treated as noise processing. Tune to decode private information. Since the state between the private signals is exactly the same as that of the traditional MU pairing scheme, the performance of each terminal is saturated at a lower transmission power, so the spectrum efficiency of the private signal is similar to that of the conventional scheme.
  • the rate of the shared signal becomes the main source of gain for the embodiments of the present application. That is to say, this design method enables the entire air-to-air transmission scheme to obtain the expected gain of spatial multiplexing under the determined CSI error conditions.
  • the power allocation strategy is: the transmit power of the shared information occupies a weight of t, 0 ⁇ t ⁇ 1, and the transmit power of the private information of each paired terminal is equal.
  • the transmit power of the private information of each paired terminal may also be unequal, which is not specifically limited in this embodiment of the present application.
  • the obtaining the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel includes: determining, according to a third preset formula, the virtual downlink measurement channel and the virtual downlink measurement
  • the error of the real downlink measurement channel corresponding to the channel, the third preset formula includes: among them, Determining the error of the virtual downlink measurement channel between the i-th paired terminal and the base station and the real downlink measurement channel corresponding to the virtual downlink measurement channel between the i-th paired terminal and the base station; h i (t) is used for characterization a real downlink measurement channel corresponding to the virtual downlink measurement channel between the i-th paired terminal and the base station; Generating a virtual downlink measurement channel between the i-th paired terminal and the base station; Express Conjugate transposition.
  • the channel is generally measured by the base station, that is, the real downlink measurement channel is obtained by the base station measurement, and the virtual downlink measurement channel corresponding to the real downlink measurement channel is an outdated real downlink measurement channel measured by the base station, that is, Real downlink measurement channel at non-current time. That is to say, the channel error of the TDD system mainly comes from the channel measurement obsolescence. Therefore, the base station can obtain the foregoing error calculation formula based on the error model, and further determine an error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel.
  • the acquiring the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel includes: receiving, between each paired terminal and each of the base stations sent by the pairing terminal The error of the virtual downlink measurement channel corresponding to the virtual downlink measurement channel and the real downlink measurement channel.
  • the channel is generally measured by the terminal, that is, the real downlink measurement channel is obtained by terminal measurement.
  • the virtual downlink measurement channel corresponding to the real downlink measurement channel is a channel that is quantized by the real downlink measurement channel, that is, a PMI. That is to say, the main reason for the channel error of the FDD system is the PMI codebook quantization error.
  • the terminal can obtain the real downlink measurement channel according to the third downlink formula of the above formula according to the real downlink measurement channel and the corresponding virtual downlink measurement channel.
  • the error of the virtual downlink measurement channel Further, the base station receives an error of the virtual downlink measurement channel sent by the terminal and the real downlink measurement channel corresponding to the virtual downlink measurement channel.
  • a second aspect provides a downlink signal transmission method, where the method includes: acquiring, by a terminal, a first signal, where the first signal includes common information and private information of the N paired terminals, where the shared information is used for the N paired terminal solutions Decoding the information, the private information is information used only for demodulation decoding of the target pairing terminal; obtaining the equivalent channel of the shared information and the modulation and coding mode MCS, and the equivalent channel and MCS of the private information of the terminal; When the private information of the N paired terminals is regarded as noise, the shared information is demodulated and decoded according to the equivalent channel of the shared information and the MCS to obtain the shared information; and the common signal is deleted.
  • Sharing information obtaining a second signal
  • the second signal includes private information of the N paired terminals; and in the case that the private information of the N paired terminals is regarded as noise in the private information of the terminal, according to the terminal
  • the equivalent channel of the private information and the MCS demodulate and decode the private information of the terminal to obtain the private information of the terminal.
  • the terminal can obtain the first signal including the shared information and the private information of the N paired terminals, that is, the downlink transmission signal is layered in the embodiment of the present application, and the downlink transmission signal is divided into private information by using the idea of rate splitting. There are two types of information.
  • the shared information can be demodulated and decoded by all the configuration terminals, and is usually used to carry the service data required by the MU pairing terminal.
  • the private information can only be demodulated and decoded by the target terminal, and is usually used to carry the service data unique to each terminal. Because the rate splitting is performed, the base station does not need to send the shared information by multiple downlink transmissions, but only needs one downlink transmission to transmit the shared information to the N paired terminals, so that the shared information can be avoided in the air interface. Repeated transmission on top, saving air interface resources.
  • the CSI error can not obtain the ideal interference zero-forcing effect, the interference between the paired terminals always exists, so increasing the transmission power does not improve the user throughput, and the performance is achieved. saturation.
  • the excess power after the private signal is saturated is used to transmit the common signal, and the additional throughput of the shared signal is obtained, which can improve the expected gain of spatial multiplexing and increase the transmission rate.
  • the terminal demodulates and decodes first all the private information is treated as noise to demodulate the decoded common information; after the demodulation and decoding of the shared information is completed, the common signal is deleted in the first signal, and the obtained N is included.
  • the downlink signal transmission method provided by the embodiment of the present application can solve the problem that the existing MU-MIMO system wastes air interface resources and cannot obtain the expected gain of spatial multiplexing caused by transmitting the shared information, and can save the air interface. Resources can also increase the expected gain of space taking.
  • acquiring the MCS of the shared information and the MCS of the private information includes: receiving an MCS of the shared information sent by the base station and an MCS of the private information. That is, in the above manner, the base station can acquire the MCS of the shared information and the MCS of the private information.
  • the obtaining the equivalent channel of the shared information and the equivalent channel of the private information includes: receiving a downlink time-frequency resource sent by the base station, where the first demodulation reference signal is set in the downlink time-frequency resource a DMRS and a second DMRS, the first DMRS is used by the terminal to measure an equivalent channel of the shared information, the second DMRS is used by the terminal to measure an equivalent channel of the private information; and the common information is measured according to the first DMRS The equivalent channel; according to the first DMRS, the equivalent channel of the private information is measured. That is, in the above manner, the base station can acquire the equivalent channel of the shared information and the equivalent channel of the private information.
  • the embodiment of the present application provides a base station, where the base station includes: a determining module, an obtaining module, and a sending module, where the determining module is configured to determine whether the shared information exists in the service information of the N paired terminals, where the shared information is Information for demodulating and decoding the N paired terminals; the acquiring module, configured to acquire a virtual downlink measurement channel between each of the paired terminals and the base station, and if the determining module determines that the presence exists The error of the real downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel, N is a positive integer; the acquisition module is further configured to acquire the multi-user MU right of the private information of each paired terminal by using a linear zero-forcing algorithm And determining, by using a minimum receiving rate maximization principle, the MU weight of the shared information, where the private information is information used only for demodulation decoding of the target pairing terminal; the determining module is further configured to determine, according to the power allocation
  • the determining module is specifically configured to: respectively be based on the first preset formula and The second preset formula, according to the virtual downlink measurement channel, the error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel, and the MU weight and the transmission power of the private information of each paired terminal, a MU weight value and a transmission power of the shared information, determining a signal to interference and noise ratio of the private information of each paired terminal and a signal to interference and noise ratio of the shared information; and a signal to interference and noise ratio according to the private information of each paired terminal
  • the signal-to-noise ratio of the shared information, and the correspondence between the pre-stored signal-to-noise ratio and the MCS, the MCS of the private information of each paired terminal and the MCS of the shared information are determined. For details, refer to the description of the foregoing first aspect. I will not repeat them here.
  • the power allocation strategy is: the transmit power of the shared information occupies a weight of t, 0 ⁇ t ⁇ 1, and the transmit power of the private information of each paired terminal is equal.
  • the acquiring module is specifically configured to: determine, according to the third preset formula, an error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel, and specifically refer to the foregoing first The description of the aspects will not be repeated here.
  • the acquiring module is specifically configured to: receive the real downlink measurement corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel between each paired terminal and the base station sent by each pairing terminal Channel error.
  • an embodiment of the present application provides a base station, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the base station is running The processor executes the computer-executable instructions stored by the memory to cause the base station to perform the downlink signal transmission method of any of the above first aspects.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, including a program designed to perform the foregoing aspects for a base station.
  • an embodiment of the present application provides a computer program, the computer program comprising instructions, when the computer program is executed by a computer, to cause the computer to perform the downlink signal transmission method according to any one of the above first aspects.
  • the embodiment of the present application provides a terminal, where the terminal includes: an obtaining module, a demodulation decoding module, and a deleting module; the acquiring module is configured to acquire a first signal, where the first signal includes N pairing terminals.
  • the shared information is information for demodulation and decoding of the N paired terminals
  • the private information is information for demodulation decoding only for the target paired terminal
  • the obtaining module is further configured to acquire the information The equivalent channel of the shared information and the modulation and coding mode MCS, and the equivalent channel and MCS of the private information of the terminal
  • the demodulation and decoding module is configured to treat the private information of the N paired terminals as noise Decoding and decoding the shared information according to the equivalent channel of the shared information and the MCS to obtain the shared information
  • the deleting module is configured to delete the shared information in the first signal to obtain a second signal, where the The two signals include the private information of the N paired terminals
  • the demodulation and decoding module is further configured to: in the case that the private information of the N paired terminals is regarded as noise in addition to the private information of the terminal, It is equivalent channel private information with the MCS of the terminal demodulates decode the private information of the terminal, the terminal to obtain private information.
  • the acquiring module is specifically configured to: receive an MCS of the shared information sent by the base station, and an MCS of the private information.
  • the acquiring module is specifically configured to: receive a downlink time-frequency resource sent by the base station, where the first demodulation reference signal DMRS and the second DMRS are set, where the first DMRS is used by the The terminal measures an equivalent channel of the shared information, the second DMRS is used by the terminal to measure an equivalent channel of the private information; according to the first DMRS, an equivalent channel of the shared information is measured; and according to the first DMRS, the measured The equivalent channel of private information.
  • an embodiment of the present application provides a terminal, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the terminal is running The processor executes the computer-executed instructions stored in the memory to cause the terminal to perform the downlink signal transmission method of any of the above second aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the foregoing aspects for the terminal.
  • the embodiment of the present application provides a computer program, the computer program comprising instructions, when the computer program is executed by a computer, to enable the computer to perform the downlink signal transmission method of any one of the foregoing second aspects.
  • the embodiment of the present application provides a downlink signal transmission system, where the downlink signal transmission system includes the base station according to any of the foregoing aspects, and at least two terminals according to any of the foregoing aspects.
  • 1 is a schematic diagram of downlink transmission of a conventional MU-MIMO system
  • FIG. 2 is a schematic structural diagram of a downlink signal transmission system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 4 is a downlink signal transmission method according to an embodiment of the present application.
  • FIG. 5 is another downlink signal transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of downlink transmission of a conventional MU-MIMO system.
  • the base station simultaneously transmits downlink data for multiple users on the same air interface time-frequency resource, for example, transmitting downlink data for terminal 1, terminal 2, ..., terminal m at the same time.
  • the signal received by the terminal 1 includes not only the target signal transmitted by the base station to the terminal 1, but also the interference signal transmitted by the base station to the target signal transmitted by the base station 2 to the target signal transmitted by the base station 1 and the target signal sent by the base station to the terminal m.
  • the signal received by the terminal 2 includes not only the target signal sent by the base station to the terminal 2 but also the target signal sent by the base station to the terminal 1 to the target signal sent by the base station to the terminal 2.
  • the signal received by the terminal m includes not only the target signal sent by the base station to the terminal m but also the interference signal of the target signal sent by the base station to the terminal 1 to the target signal transmitted by the base station to the terminal m and the target signal transmitted by the base station to the terminal 2 to the base station.
  • the interference signal of the target signal sent to the terminal m and the like.
  • the base station in the existing MU-MIMO system usually adopts a linear zero-forcing algorithm to design the MU weight value, so as to achieve the effect of eliminating interference at the terminal, and finally realize spatial multiplexing.
  • the purpose of the linear zero-forcing algorithm is to make the MU weight of each terminal and the channel between the base station and other paired terminals as orthogonal as possible, namely:
  • H i is used to represent a channel between the base station and the i-th paired terminal, and may be a vector representation or a matrix representation
  • w j represents a MU weight value of the j-th paired terminal.
  • This orthogonal effect is such that the interference of the target signal transmitted by the base station to one terminal to the target signal transmitted by the base station to other paired terminals is effectively suppressed, thereby maximizing the target signal of each paired terminal.
  • EZF Eigenvector Zero Forcing
  • REZF Regularized Eigen Vector Zero Forcing
  • SNR Signal to Leakage plus Noise Ratio
  • the principle of the EZF algorithm is: for the terminals a 1 , ..., a N ⁇ S m in the cell, the transmission signal of each terminal is orthogonal to the channel characteristic direction of other terminals in the set S m .
  • the algorithm actually uses the single-user (SU) weight of the terminal to reconstruct the joint channel matrix from base station to terminal.
  • SU single-user
  • the base station to the paired terminal in the serving cell can be obtained by measuring a Cell-specific Reference Signal (CRS) or a Channel State Information (CSI) process.
  • CRS Cell-specific Reference Signal
  • CSI Channel State Information
  • the Precoding Matrix Indicator (PMI) can further reconstruct the joint channel matrix of the base station to the terminal by using the weight corresponding to the PMI as the optimal SU weight of the terminal, as shown in the formula (1).
  • H(k) is used to represent the joint channel matrix of the base station to the terminal, and V 0 (k) and V 1 (k) respectively represent the SU weights of the two paired terminals, the dimensions are all T*1, and T represents the base station.
  • number of transmit antennas V 0 (k) H represents V 0 (k) is a conjugate transpose; V 1 (k) H represents V 1 (k) is the conjugate transpose.
  • each column of W is the MU weight of each MU pairing terminal;
  • H(k) H represents the conjugate transition of H(k), and
  • (H(k)H(k) H ) -1 represents (H(k) ) Inverse matrix of H(k) H ),
  • diag( ⁇ ) represents a diagonal matrix composed of ⁇ i , the elements on the diagonal are the column normalization factors of the preceding matrix; the elements ⁇ i in diag( ⁇ ) Is the disturbance factor.
  • the MU weight of the paired terminal can also be calculated by referring to the foregoing manner, and details are not described herein again.
  • the optimal SU weight of the terminal is the right singular vector v 1 corresponding to the maximum singular value after the channel matrix SVD decomposition, as shown below.
  • the principle of the REZF algorithm is: for the terminals a 1 , ..., a N ⁇ S m in the cell, so that the transmission signal of each terminal is orthogonal to the channel characteristic direction of other terminals in the set S m .
  • the algorithm actually uses the single-user (SU) weight of the terminal to reconstruct the joint channel matrix from base station to terminal.
  • SU single-user
  • each column of W is the MU weight of each MU pairing terminal; diag( ⁇ ) represents a diagonal matrix composed of ⁇ i , and the elements on the diagonal are column normalization factors of the preceding matrix; diag( ⁇ )
  • the element ⁇ i in the middle is the disturbance factor, SINR i represents the Singal-to-Interference plus Noise Ratio (SINR) reported by the i-th paired terminal in the SU state.
  • SINR i Singal-to-Interference plus Noise Ratio
  • L indicates the number of pairing layers.
  • diag( ⁇ ) represents a diagonal matrix composed of ⁇ i , the elements on the diagonal are the column normalization factor of the preceding matrix; the element ⁇ i in diag( ⁇ ) Is the disturbance factor.
  • the MU weight of the paired terminal can also be calculated by referring to the foregoing manner, and details are not described herein again.
  • the optimal SU weight of the terminal is the right singular vector v 1 corresponding to the maximum singular value after the channel matrix SVD decomposition, as shown in the EZF algorithm.
  • the principle of the SLNR algorithm is to maximize the ratio of the signal received power of the terminal to the interference leakage plus noise power of the terminal to other paired terminals for the terminals a 1 , . . . , a N ⁇ S m in the cell. That is to say, the constraint condition for generating the MU weight is to maximize the sum of the signal power and the signal power and noise leaked to other terminals, so that the MU weight can be compatible with the interference leakage problem of other terminals and the target user's letter. Noise ratio problem.
  • the value of the PMI corresponding to the low-level terminal is also determined by the pairing of the two terminals in the FDD system.
  • the weight corresponding to the PMI reported by the high-level terminal Then, the formula for calculating the MU weight of the paired terminal under the SLNR can be as shown in formula (4):
  • the largest eigenvector of A is the MU weight of the low-level terminal.
  • N R represents the number of receiving antennas of the low-level terminal, Indicates the SINR reported in the SU state of the low-level terminal, and I t ⁇ t represents an identity matrix having a dimension of t*t.
  • Express Conjugate transpose Express Conjugate transpose, Express Conjugate transpose, Express The inverse matrix, VDV -1 represents the inverse matrix of VDV.
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application, where the communication system includes a base station and a plurality of terminals in a cell managed by the base station.
  • the base station can communicate with each of the plurality of terminals separately.
  • the number of antennas of the base station in the embodiment of the present application is greater than or equal to 2, so as to form a MU-MIMO system.
  • the foregoing communication system can be applied to the current LTE or LTE-A system, and can also be applied to other networks in the future, such as a 5th-generation (5G) network in the future.
  • 5G 5th-generation
  • the terminal in the embodiment of the present application may be a mobile terminal device or a non-mobile terminal device.
  • the device can be distributed in different networks and is mainly used to receive or send service data.
  • the terminals have different names in different networks, for example, User Equipment (UE).
  • UE User Equipment
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN), such as exchanging voice and/or data with the radio access network.
  • RAN Radio Access Network
  • the base station in the embodiment of the present application is a device deployed in a radio access network to provide a wireless communication function.
  • An apparatus that provides a base station function for example, in an LTE system or an LTE-A system, includes an evolved Node B (eNB).
  • eNB evolved Node B
  • the base station and the terminal in the communication system shown in FIG. 2 can be implemented by the communication device (or system) in FIG.
  • FIG. 3 it is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device includes at least one processor 301, a communication bus 302, a memory 303, and at least one communication interface 304.
  • the processor 301 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 302 can include a path for communicating information between the components described above.
  • the communication interface 304 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 303 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 303 is used to store application code for executing the solution of the present application, and is controlled by the processor 301 for execution.
  • the processor 301 is configured to execute the application code stored in the memory 303, thereby implementing the downlink signal transmission method described in the embodiment of the present application.
  • processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 300 can include multiple processors, such as processor 301 and processor 308 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 300 can also include an output device 305 and an input device 306.
  • Output device 305 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 305 can be a liquid crystal display (LCD), a light-emitting diode (Light) Emitting Diode, LED) display device, cathode ray tube (CRT) display device, or projector (projector).
  • Input device 306 is in communication with processor 301 and can accept user input in a variety of ways.
  • input device 306 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the communication device 300 described above may be a general communication device or a dedicated communication device.
  • the communication device 300 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet, a wireless terminal device, an embedded device, or the like in FIG. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 300.
  • the downlink signal transmission method provided in the embodiment of the present application is applied to the base station side in the communication system shown in FIG. 2, and includes the following steps:
  • the base station determines whether the shared information exists in the service information of the N configuration terminals.
  • the shared information is information used for demodulation decoding of the N paired terminals.
  • the shared information may be the service information that is required for each of the paired terminals, and may be the service information that is required by the terminal.
  • terminal pairing can refer to the implementation of the prior art, and details are not described herein again.
  • the base station acquires an error of the virtual downlink measurement channel between the paired terminal and the base station, and the true downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel, where N is a positive integer. .
  • the channel in the embodiment of the present application may be a vector representation form or a matrix representation form, which is not specifically limited in this embodiment of the present application.
  • the channel is generally measured by the base station, that is, the real downlink measurement channel is obtained by the base station, and the virtual downlink measurement channel corresponding to the real downlink measurement channel is an obsolete real downlink measurement channel measured by the base station. It is the real downlink measurement channel that is not at the current moment. That is to say, the channel error of the TDD system mainly comes from the channel measurement obsolescence.
  • the base station obtains the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel, including:
  • the base station determines an error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel based on formula (5).
  • h i (t) is used to represent the ith a real downlink measurement channel corresponding to the virtual downlink measurement channel between the paired terminal and the base station; Means for characterizing a virtual downlink measurement channel between the i-th paired terminal and the base station; Express Conjugate transposition.
  • a channel is generally measured by a terminal, that is, a real downlink measurement channel is obtained by terminal measurement.
  • the virtual downlink measurement channel corresponding to the real downlink measurement channel is a channel that is quantized by the real downlink measurement channel, that is, the foregoing PMI. That is to say, the main cause of the channel error of the FDD system is the PMI codebook quantization error.
  • the terminal can obtain the error of the real downlink measurement channel and the virtual downlink measurement channel according to the above formula (5) according to the real downlink measurement channel and the corresponding virtual downlink measurement channel.
  • the base station acquires a virtual downlink measurement signal between each of the paired terminals and the base station.
  • the channel and the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel may include: the base station receives the real downlink corresponding to the virtual downlink measurement channel and the virtual downlink measurement channel between each paired terminal and the base station sent by each pairing terminal. Measure the error of the channel.
  • the base station acquires a virtual downlink measurement channel between each of the paired terminals and the base station, where the base station receives one precoding in the PMI sent by each of the paired terminals, and further, according to the precoding and precoding Coding with the PMI, determining the PMI of each of the N paired terminals, that is, the virtual downlink measurement channel.
  • ⁇ i is the correlation between the virtual downlink measurement channel and the real downlink measurement channel corresponding to the virtual downlink measurement channel
  • the base station acquires the MU weight value of the private information of each paired terminal by using a linear zero-forcing principle, and acquires the MU weight value of the shared information by using a minimum receiving rate maximization principle.
  • the private information is information used only for demodulation decoding of the target paired terminal.
  • the specific manner for the base station to obtain the MU weight of the private information of each paired terminal by using the linear zero-forcing principle can be referred to the brief description part of the above linear zero-forcing technology, and details are not described herein again.
  • the MU weight of the shared information may be obtained by using a minimum receiving rate maximization principle. Regardless of the MU weight of the shared information, there is always a minimum value in the common signal receiving rate of all the paired terminals. By designing the MU weight of the shared information, the minimum value is as large as possible, which is the minimum receiving. The principle of maximizing the rate.
  • the base station determines, according to the power allocation policy, a transmit power of the private information of each paired terminal and a transmit power of the shared information.
  • the power allocation policy may be: the weight of the transmit power of the shared information is t, 0 ⁇ t ⁇ 1, and the transmit power of the private information of each paired terminal is equal.
  • the above is only an exemplary power distribution strategy, and the power policy may be other.
  • the embodiment of the present application does not specifically limit this.
  • the transmit power of the private information of each paired terminal may not be the same.
  • the base station determines, according to the virtual downlink measurement channel, the error of the virtual downlink measurement channel and the true downlink measurement channel corresponding to the virtual downlink measurement channel, the MU weight and the transmit power of the private information of each paired terminal, and the MU weight of the shared information. And the transmit power, the Modulation and Coding Scheme (MCS) of the private information of each paired terminal and the MCS of the shared information.
  • MCS Modulation and Coding Scheme
  • the base station is configured according to the virtual downlink measurement channel, the virtual downlink measurement channel, and the virtual downlink measurement signal.
  • the error of the real downlink measurement channel corresponding to the channel, the MU weight and the transmission power of the private information of each paired terminal, and the MU weight and transmission power of the shared information determine the MCS and the shared information of the private information of each paired terminal.
  • the MCS may specifically include:
  • the base station may determine the SINR of the private information of each paired terminal and the SINR of the shared information based on the formula (7) and the formula (8), and further, according to the SINR of the private information of each paired terminal and the SINR of the shared information, and the pre-stored
  • the correspondence between the SINR and the MCS determines the MCS of the private information of each paired terminal and the MCS of the shared information.
  • SINR r, c represents the SINR of the r th shared information pairs terminals; P c represents the total transmission power information; ⁇ r, c represents the downlink between w c (t) and r-th terminal and the base pairs Measuring the correlation of the channel; ⁇ r represents the correlation between w r (t) and the downlink measurement channel between the r-th paired terminal and the base station; P r represents the transmission power of the private information of the r-th paired terminal; P j represents The transmit power of the private information of the jth paired terminal; Determining the error of the real downlink measurement channel corresponding to the virtual downlink measurement channel between the jth paired terminal and the base station; Indicates the interference noise of the rth paired terminal in the SU state; For characterizing the virtual downlink measurement channel between the rth paired terminal and the base station; w c (t) represents the MU weight of the shared information; w r (t) represents the MU
  • the MCS of the shared information when the MCS of the shared information is designed by the above formula (7), the private information is treated as noise; when the MCS of the private information is designed by the above formula (8), the shared information is considered to have been eliminated. Only the noise of the noise floor and other private information remains.
  • the base station sends a downlink signal to the N paired terminals, where the downlink signal includes private information and shared information of each paired terminal.
  • the private information of each paired terminal is modulated by the MCS code of the private information of each paired terminal, and the shared information is modulated by the MCS code of the shared information.
  • step S401 if the base station determines that the shared information does not exist in the service information of the N configuration terminals, the solution may be rolled back to the original MU-MIMO or SU-MIMO solution, which is not used in this embodiment. Specific definition and elaboration.
  • the embodiment of the present application layeres the downlink transmission signal, and uses the idea of rate splitting to classify the downlink transmission signal into two types: private information and shared information.
  • the shared information can be demodulated and decoded by all the configuration terminals, and is usually used to carry the service data required by the MU pairing terminal.
  • the private information can only be demodulated and decoded by the target terminal, and is usually used to carry the service data unique to each terminal. Because the rate splitting is performed, the base station does not need to send the shared information by multiple downlink transmissions, but only needs one downlink transmission to transmit the shared information to the N paired terminals, so that the shared information can be avoided in the air interface. Repeated transmission on top, saving air interface resources.
  • the embodiment of the present application also uses the linear zero-forcing algorithm to obtain the MU weight of the private information of each paired terminal, so that interference suppression between the private information can be implemented; and the minimum receiving rate is also adopted in the embodiment of the present application.
  • the downlink signal transmission method provided by the embodiment of the present application can solve the problem that the existing MU-MIMO system wastes air interface resources and cannot obtain the expected gain of spatial multiplexing caused by transmitting the shared information, and can save the air interface. Resources can also increase the expected gain of space taking, while ensuring that each terminal can correctly demodulate the decoded common information.
  • the action of the base station in the foregoing S401-S406 can be performed by the processor 301 in the computer device 300 shown in FIG. 3, and the application code stored in the memory 303 is called, and the embodiment of the present application does not impose any limitation.
  • the downlink signal transmission method provided in the embodiment of the present application is applied to any terminal side in the communication system shown in FIG. 2, and includes the following steps:
  • the terminal acquires a first signal, where the first signal includes shared information and private information of the N paired terminals.
  • the shared information is information used for demodulation decoding of the N paired terminals, and the private information is information used only for demodulation decoding of the target paired terminal.
  • the shared information may be the service information that is required for each of the paired terminals, and may be the service information that is required by the terminal.
  • the terminal in the embodiment of the present application does not have any one of the N paired terminals, and is uniformly described herein, and details are not described herein again.
  • the terminal acquires an equivalent channel and the MCS of the shared information, and an equivalent channel and an MCS of the private information of the terminal.
  • the terminal obtains the equivalent channel of the shared information and the equivalent channel of the private information, and specifically includes: receiving, by the terminal, a downlink time-frequency resource sent by the base station, where the first demodulation reference signal is set in the downlink time-frequency resource (Reference Signal Demodulation) And a second DMRS, the first DMRS is used for the terminal to measure the equivalent channel of the shared information, and the second DMRS is used by the terminal to measure the equivalent channel of the private information; and then the terminal measures the shared information according to the first DMRS, etc. Effective channel; according to the second DMRS, the equivalent channel of the private information is measured.
  • the terminal can design a DMRS in the downlink time-frequency resource by using the protocol design of the 3rd Generation Partnership Project (3GPP) for the terminal to measure the shared letter.
  • 3GPP 3rd Generation Partnership Project
  • the specific implementation can be referred to the description in the 3GPP protocol 36.211, which is not specifically described in this embodiment of the present application.
  • the acquiring, by the terminal, the MCS of the shared information and the MCS of the private information may include: the terminal receiving the MCS of the shared information sent by the base station and the MCS of the private information. That is to say, the MCS can be notified to the terminal by the base station through the downlink control signaling, and the specific notification process can be referred to the description in the 3GPP protocol 36.213, which is not specifically described in this embodiment of the present application.
  • the terminal demodulates and decodes the shared information according to the equivalent channel of the shared information and the MCS to obtain the shared information.
  • the terminal deletes the shared information in the first signal to obtain a second signal, where the second signal includes private information of the N paired terminals.
  • the terminal demodulates and decodes the private information of the terminal according to the equivalent channel of the private information of the terminal and the MCS to obtain the terminal according to the private information of the terminal. Private information.
  • the terminal can obtain the first signal including the shared information and the private information of the N paired terminals, that is, the downlink transmission signal is layered in the embodiment of the present application, and the downlink transmission signal is divided into private information by using the idea of rate splitting.
  • the shared information can be demodulated and decoded by all the configuration terminals, and is usually used to carry the service data required by the MU pairing terminal.
  • the private information can only be demodulated and decoded by the target terminal, and is usually used to carry the service data unique to each terminal.
  • the base station does not need to send the shared information by multiple downlink transmissions, but only needs one downlink transmission to transmit the shared information to the N paired terminals, so that the shared information can be avoided in the air interface. Repeated transmission on top, saving air interface resources.
  • the CSI error can not obtain the ideal interference zero-forcing effect, the interference between the paired terminals always exists, so increasing the transmission power does not improve the user throughput, and the performance is saturated.
  • the excess power after the private signal is saturated is used to transmit the common signal, and the additional throughput of the shared signal is obtained, which can improve the expected gain of spatial multiplexing and increase the transmission rate.
  • the terminal when the terminal demodulates and decodes, first all the private information is treated as noise to demodulate the decoded common information; after the demodulation and decoding of the shared information is completed, the common signal is deleted in the first signal, and the obtained N is included.
  • a second signal that pairs the private information of the terminal, and then demodulates and decodes its own private information. Since the state between the private signals is exactly the same as that of the traditional MU pairing scheme, the performance of each terminal is saturated at a lower transmission power, so the spectrum efficiency of the private signal is similar to that of the conventional scheme. On the basis of no significant degradation in private signal performance, the rate of the shared signal becomes the main source of gain for the embodiments of the present application.
  • this design method enables the entire air-to-air transmission scheme to obtain the expected gain of spatial multiplexing under the determined CSI error conditions.
  • the downlink signal transmission method provided by the embodiment of the present application can solve the problem that the existing MU-MIMO system wastes air interface resources and cannot obtain the expected gain of spatial multiplexing caused by transmitting the shared information, and can save the air interface. Resources can also increase the expected gain of space taking.
  • the action of the terminal in the foregoing S501-S505 can be performed by the processor 301 in the computer device 300 shown in FIG. 3, and the application code stored in the memory 303 is called, which is not limited in this embodiment.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of a terminal or a base station. Can reason
  • the above-mentioned terminal or base station includes a hardware structure and/or a software module corresponding to each function in order to implement the above functions.
  • Those skilled in the art will readily appreciate that the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide a function module into a base station or a terminal according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 6 shows a possible structural diagram of the base station 60 involved in the above embodiment.
  • the base station includes: a determining module 601, an obtaining module 602, and a sending module 603.
  • the determining module 601 is configured to support the base station 60 to perform steps S401, S404, and S405 shown in FIG. 4;
  • the obtaining module 602 is configured to support the base station 60 to perform steps S402 and S403 shown in FIG. 4;
  • the sending module 603 is configured to support the base station 60.
  • Step S406 shown in Fig. 4 is executed.
  • FIG. 7 shows a possible structural diagram of the base station 70 involved in the above embodiment.
  • the base station includes a processing module 701 and a communication module 702.
  • the processing module 701 is configured to support the base station 70 to perform steps S401, S402, S403, S404, and S405 shown in FIG. 4;
  • the communication module 702 is configured to support the base station 70 to perform step S406 shown in FIG.
  • the base station is presented in the form of dividing each functional module corresponding to each function, or the base station is presented in a form that divides each functional module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • base station 60 or base station 70 may take the form shown in FIG.
  • the determining module 601, the obtaining module 602, and the sending module 603 in FIG. 6 can be implemented by the processor 301 and the memory 303 of FIG.
  • the determining module 601, the obtaining module 602, and the sending module 603 may be executed by using the application code stored in the memory 303 by the processor 301, which is not limited in this embodiment.
  • the processing module 701 and the communication module 702 in FIG. 7 may be implemented by the processor 301 and the memory 303 of FIG. 3.
  • the processing module 701 and the communication module 702 may be called by the processor 301 in the memory 303.
  • the stored application code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the base station provided by the embodiment of the present application can be used to perform the foregoing method for transmitting a downlink signal. Therefore, the technical solution can be obtained by referring to the foregoing method embodiments.
  • FIG. 8 shows the above implementation.
  • the terminal includes: an obtaining module 801, a demodulation decoding module 802, and a deleting module 803.
  • the obtaining module 801 is configured to support the terminal 80 to perform steps S501 and S502 shown in FIG. 5;
  • the demodulation and decoding module 802 is configured to support the terminal 80 to perform steps S503 and S505 shown in FIG. 5;
  • the deleting module 803 is configured to support the terminal.
  • 80 executes step S504 shown in FIG.
  • FIG. 9 shows a possible structural diagram of the terminal 90 involved in the above embodiment.
  • the terminal includes a processing module 901.
  • the processing module 901 is configured to support the terminal 90 to perform steps S501, S502, S503, S504, and S505 shown in FIG. 5.
  • the terminal is presented in the form of dividing each functional module corresponding to each function, or the terminal is presented in a form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • terminal 80 or terminal 90 may take the form shown in FIG.
  • the obtaining module 801, the demodulation decoding module 802, and the deleting module 803 in FIG. 8 can be implemented by the processor 301 and the memory 303 of FIG.
  • the obtaining module 801, the demodulation and decoding module 802, and the deleting module 803 can be executed by using the application code stored in the memory 303 by the processor 301, which is not limited in this embodiment.
  • the processing module 901 in FIG. 9 may be implemented by the processor 301 and the memory 303 of FIG. 3.
  • the processing module 901 may be executed by calling the application code stored in the memory 303 by the processor 301.
  • the embodiment of the present application does not impose any limitation on this.
  • the terminal provided by the embodiment of the present application can be used to perform the foregoing method for transmitting a downlink signal. Therefore, the technical solution can be obtained by referring to the foregoing method embodiments.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable medium or transferred from one computer readable medium to another computer readable medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg, coaxial cable , Fiber, Digital Subscriber Line (DSL) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • a website site computer, server or data center
  • DSL Digital Subscriber Line
  • wireless eg infrared, wireless, microwave, etc.
  • the computer readable medium can be any available media that can be stored by a computer or a storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).

Abstract

本申请实施例提供下行信号传输方法、装置及系统,以至少解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题。方法包括:基站确定N个配对终端的业务信息中是否存在共有信息;若确定存在,确定每个配对终端的私有信息的MCS和共有信息的MCS;并向N个配对终端发送下行信号,该下行信号包括该每个配对终端的私有信息和该共有信息,其中,该每个配对终端的私有信息采用该每个配对终端的私有信息的MCS编码调制,该共有信息采用该共有信息的MCS编码调制。本申请适用于通信技术领域。

Description

下行信号传输方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及下行信号传输方法、装置及系统。
背景技术
随着无线通信业务对网络容量和通信性能需求的不断增长,以往如提高带宽、优化调制方式、码分复用等方式提高频谱效率的潜力越来越有限。因此,在长期演进(Long Term Evolution,LTE)中提出了多输入多输出(Multiple Input Multiple Output,MIMO)系统,利用空间复用技术来提高所使用带宽的效率。并且,在高负载场景下,又提出了多用户多输入多输出(Multi-User Multiple Input Multiple Output,MU-MIMO)系统,基站分别将多个用户的数据复用在相同的时频资源上发送,以进一步提高小区容量。
然而,当多个配对终端存在共有信息需求时,若基站仍在相同时频资源上独立且重复的为不同的配对终端发送共有信息,则一方面,由于共有信息在空口上占用了多份资源,被重复发送了多次,因此将造成空口资源的浪费;另一方面,由于现有MU-MIMO系统中的基站通常采用线性迫零技术来设计MU权值,以达到在终端消除干扰的效果,最终实现空间复用,而MU-MIMO系统对信道信息的测量存在无法避免的误差,导致基站根据线性迫零技术设计的MU权值无法达到预期的干扰迫零效果,因此,此时在相同时频资源上为不同的配对终端独立发送共有信息依然存在较强的干扰,从而无法获得空间复用的预期增益。
发明内容
本申请实施例提供下行信号传输方法、装置及系统,以至少解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供一种下行信号传输方法,该方法包括:基站确定N个配对终端的业务信息中是否存在共有信息,该共有信息为用于该N个配对终端解调译码的信息;若确定存在,获取该N个配对终端中每个配对终端与该基站之间的虚拟下行测量信道以及该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,N为正整数;采用线性迫零算法获取该每个配对终端的私有信息的多用户MU权值,以及,采用最小接收速率最大化原则获取该共有信息的MU权值,该私有信息为仅用于目标配对终端解调译码的信息;根据功率分配策略,确定该每个配对终端的私有信息的发射功率和该共有信息的发射功率;根据该虚拟下行测量信道,该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该每个配对终端的私有信息的MU权值和发射功率,以及该共有信息的MU权值和发射功 率,确定该每个配对终端的私有信息的编码调制方式MCS和该共有信息的MCS;向该N个配对终端发送下行信号,该下行信号包括该每个配对终端的私有信息和该共有信息,其中,该每个配对终端的私有信息采用该每个配对终端的私有信息的MCS编码调制,该共有信息采用该共有信息的MCS编码调制。一方面,本申请实施例对下行发射信号进行分层,利用速率分裂的思想将下行发射信号分为私有信息和共有信息两类。共有信息可以被所有配置终端解调译码,通常用来承载MU配对终端均需要的业务数据。私有信息只能被目标终端解调译码,通常用来承载各终端自己独有的业务数据。由于进行了速率分裂,相对于现有技术,基站不需要通过多次下行传输发送共有信息,而是仅需一次下行传输即可将共有信息发送给N个配对终端,因此可以避免共有信息在空口上的重复发送,节约空口资源。同时,在现有传统的MU方案中,因为CSI误差导致无法获得理想的干扰迫零效果,配对终端间的干扰始终存在,所以增加发射功率并不能提高用户吞吐量,性能达到饱和。而本申请实施例将私有信号达到饱和后的多余功率用于发送共有信号,获得了共有信号这部分额外的吞吐量,可以提升空间复用的预期增益,同时提升了发射速率。另一方面,本申请实施例还采用线性迫零算法获取每个配对终端的私有信息的MU权值,因此可以实现私有信息之间的干扰抑制;以及,本申请实施例还采用最小接收速率最大化原则获取共有信息的MU权值,因此可以保证每个终端可以正确解调译码共有信息。综上,基于本申请实施例提供的下行信号传输方法,可以解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题,不仅可以节约空口资源,还可以提升空间服用的预期增益,同时可以保证每个终端可以正确解调译码共有信息。
在一种可能的设计中,根据该虚拟下行测量信道,该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该每个配对终端的私有信息的MU权值和发射功率,以及该共有信息的MU权值和发射功率,确定该每个配对终端的私有信息的MCS和该共有信息的MCS,包括:分别基于第一预设公式和第二预设公式,根据该虚拟下行测量信道,该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该每个配对终端的私有信息的MU权值和发射功率,该共有信息的MU权值和发射功率,确定该每个配对终端的私有信息的信干噪比和该共有信息的信干噪比;根据该每个配对终端的私有信息的信干噪比和该共有信息的信干噪比,以及预先存储的信干噪比与MCS的对应关系,确定该每个配对终端的私有信息的MCS和该共有信息的MCS;该第一预设公式包括:
Figure PCTCN2017071992-appb-000001
该第二预设公式包括:
Figure PCTCN2017071992-appb-000002
其中,
Figure PCTCN2017071992-appb-000003
SINRr,c表示第r个配对终端的共有信息的信干噪比;Pc表示该共有信息的发射功率;βr,c表示wc(t)和该第r个配对终端与基站之间的下行测量信道的相关性;βr表示wr(t)和该第r个配对终端与基站之间的下行测量信道的相关性;Pr表示该第r个配对终端的私有信息的发射功率;Pj表示第j个配对终端的私有信息的发射功率;
Figure PCTCN2017071992-appb-000004
表示该第j个配对终端与该基站之间的虚拟下行测量信道和该第j个配对终端与该基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;
Figure PCTCN2017071992-appb-000005
表示该第r个配对终端在单用户SU状态时的干扰噪声;
Figure PCTCN2017071992-appb-000006
用于表征该第r个配对终端与该基站之间的虚拟下行测量信道;wc(t)表示该共有信息的MU权值;wr(t)表示该第r个配对终端的私有信息的MU权值,
Figure PCTCN2017071992-appb-000007
表示对于变量的所有取值前述等式都成立。上述方案在设计共有信息的MCS时,将私有信息当做噪声处理;在设计私有信息的MCS时,认为共有信息已经被消除,只残留底噪和其他私有信息的干扰。因此,在终端获取到包含共有信息和私有信息的信号时,可以先将私有信息当做噪声处理来解调译码共有信息;进而将共有信息删除,将其他私有信息和底噪当做噪声处理来解调译码私有信息。由于此时私有信号间的状态与传统MU配对方案的干扰形态完全一致,各终端的性能在较低发射功率下已经达到饱和,因此私有信号的频谱效率与传统方案的性能也相近。在私有信号性能没有显著下降的基础上,共有信号的速率便成为了本申请实施例主要的增益来源。也就是说,这种设计方法使得整个空口发射方案能够在确定的CSI误差条件下,获得空间复用的预期增益。
在一种可能的设计中,该功率分配策略为:该共有信息的发射功率所占的权重为t,0≤t<1,该每个配对终端的私有信息的发射功率相等。当然,每个配对终端的私有信息的发射功率也可能不相等,本申请实施例对此不作具体限定。
在一种可能的设计中,该获取该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,包括:基于第三预设公式,确定该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该第三预设公式包括:
Figure PCTCN2017071992-appb-000008
其中,
Figure PCTCN2017071992-appb-000009
表示第i个配对终端与该基站之间的虚拟下行测量信道和该第i个配对终端与该基站之间的虚拟下行测量信道对应的真实下行测量信道 的误差;hi(t)用于表征该第i个配对终端与该基站之间的虚拟下行测量信道对应的真实下行测量信道;用于表征该第i个配对终端与该基站之间的虚拟下行测量信道;
Figure PCTCN2017071992-appb-000011
表示
Figure PCTCN2017071992-appb-000012
的共轭转置。考虑到对于TDD系统,一般由基站测量信道,也就是真实下行测量信道是由基站测量获得的,而该真实下行测量信道对应的虚拟下行测量信道是基站测量的过时的真实下行测量信道,也就是非当前时刻的真实下行测量信道。也就是说,TDD系统的信道误差主要来自于信道测量过时。因此,基站可以基于误差模型得到上述误差计算公式,进而确定虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差。
在一种可能的设计中,该获取该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,包括:接收该每个配对终端发送的该每个配对终端与该基站之间的该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差。考虑到对于FDD系统,一般由终端测量信道,也就是真实下行测量信道是由终端测量获得的。而该真实下行测量信道对应的虚拟下行测量信道是对该真实下行测量信道进行量化后的信道,也即PMI。也就是说,FDD系统信道误差的主要原因是PMI码本量化误差,因此,终端可以根据该真实下行测量信道和对应的虚拟下行测量信道,结合上述公式第三预设公式得到真实下行测量信道和虚拟下行测量信道的误差。进而,基站接收终端发送的虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差。
第二方面,提供一种下行信号传输方法,该方法包括:终端获取第一信号,该第一信号包括N个配对终端的共有信息和私有信息,该共有信息为用于该N个配对终端解调译码的信息,该私有信息为仅用于目标配对终端解调译码的信息;获取该共有信息的等效信道与调制编码方式MCS、以及该终端的私有信息的等效信道与MCS;在将该N个配对终端的私有信息视作噪声的情况下,根据该共有信息的等效信道与MCS对该共有信息进行解调译码,得到该共有信息;删除该第一信号中的该共有信息,得到第二信号,该第二信号包括该N个配对终端的私有信息;在将该N个配对终端的私有信息中除该终端的私有信息视作噪声的情况下,根据该终端的私有信息的等效信道与MCS对该终端的私有信息进行解调译码,得到该终端的私有信息。一方面,终端可以获取包括N个配对终端的共有信息和私有信息的第一信号,也就是本申请实施例对下行发射信号进行分层,利用速率分裂的思想将下行发射信号分为私有信息和共有信息两类。共有信息可以被所有配置终端解调译码,通常用来承载MU配对终端均需要的业务数据。私有信息只能被目标终端解调译码,通常用来承载各终端自己独有的业务数据。由于进行了速率分裂,相对于现有技术,基站不需要通过多次下行传输发送共有信息,而是仅需一次下行传输即可将共有信息发送给N个配对终端,因此可以避免共有信息在空口上的重复发送,节约空口资源。同时,在现有传统的MU方案中,因为CSI误差导致无法获得理想的干扰迫零效果,配对终端间的干扰始终存在,所以增加发射功率并不能提高用户吞吐量,性能达到 饱和。而本申请实施例将私有信号达到饱和后的多余功率用于发送共有信号,获得了共有信号这部分额外的吞吐量,可以提升空间复用的预期增益,同时提升了发射速率。另一方面,终端在解调译码时,首先将所有私有信息当做噪声处理来解调译码共有信息;完成共有信息的解调译码后,在第一信号中删除共有信号,得到包括N个配对终端的私有信息的第二信号,进而再解调译码自己的私有信息。由于此时私有信号间的状态与传统MU配对方案的干扰形态完全一致,各终端的性能在较低发射功率下已经达到饱和,因此私有信号的频谱效率与传统方案的性能也相近。在私有信号性能没有显著下降的基础上,共有信号的速率便成为了本申请实施例主要的增益来源。也就是说,这种设计方法使得整个空口发射方案能够在确定的CSI误差条件下,获得空间复用的预期增益。综上,基于本申请实施例提供的下行信号传输方法,可以解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题,不仅可以节约空口资源,还可以提升空间服用的预期增益。
在一种可能的设计中,获取该共有信息的MCS和该私有信息的MCS,包括:接收该基站发送的该共有信息的MCS和该私有信息的MCS。即,通过上述方式,基站可以获取共有信息的MCS和私有信息的MCS。
在一种可能的设计中,该获取该共有信息的等效信道和该私有信息的等效信道,包括:接收基站发送的下行时频资源,该下行时频资源中设置第一解调参考信号DMRS和第二DMRS,该第一DMRS用于该终端测量该共有信息的等效信道,该第二DMRS用于该终端测量该私有信息的等效信道;根据该第一DMRS,测量该共有信息的等效信道;根据该第而DMRS,测量该私有信息的等效信道。即,通过上述方式,基站可以获取共有信息的等效信道和私有信息的等效信道。
第三方面,本申请实施例提供一种基站,该基站包括:确定模块、获取模块和发送模块;该确定模块,用于确定N个配对终端的业务信息中是否存在共有信息,该共有信息为用于该N个配对终端解调译码的信息;该获取模块,用于若该确定模块确定存在,获取该N个配对终端中每个配对终端与该基站之间的虚拟下行测量信道以及该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,N为正整数;该获取模块,还用于采用线性迫零算法获取该每个配对终端的私有信息的多用户MU权值,以及,采用最小接收速率最大化原则获取该共有信息的MU权值,该私有信息为仅用于目标配对终端解调译码的信息;该确定模块,还用于根据功率分配策略,确定该每个配对终端的私有信息的发射功率和该共有信息的发射功率;该确定模块,还用于根据该虚拟下行测量信道,该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该每个配对终端的私有信息的MU权值和发射功率,以及该共有信息的MU权值和发射功率,确定该每个配对终端的私有信息的编码调制方式MCS和该共有信息的MCS;该发送模块,用于向该N个配对终端发送下行信号,该下行信号包括该每个配对终端的私有信息和该共有信息,其中,该每个配对终端的私有信息采用该每个配对终端的私有信息的MCS编码调制,该共有信息采用该共有信息的MCS编码调制。
在一种可能的设计中,该确定模块具体用于:分别基于上述第一预设公式和上 述第二预设公式,根据该虚拟下行测量信道,该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,该每个配对终端的私有信息的MU权值和发射功率,该共有信息的MU权值和发射功率,确定该每个配对终端的私有信息的信干噪比和该共有信息的信干噪比;根据该每个配对终端的私有信息的信干噪比和该共有信息的信干噪比,以及预先存储的信干噪比与MCS的对应关系,确定该每个配对终端的私有信息的MCS和该共有信息的MCS,具体可参考上述第一方面的描述在此不再赘述。
在一种可能的设计中,该功率分配策略为:该共有信息的发射功率所占的权重为t,0≤t<1,该每个配对终端的私有信息的发射功率相等。
在一种可能的设计中,该获取模块具体用于:基于上述第三预设公式,确定该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,具体可参考上述第一方面的描述在此不再赘述。
在一种可能的设计中,该获取模块具体用于:接收该每个配对终端发送的该每个配对终端与该基站之间的该虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差。
第四方面,本申请实施例提供一种基站,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该基站运行时,该处理器执行该存储器存储的该计算机执行指令,以使该基站执行如上述第一方面中任意一项的下行信号传输方法。
第五方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含其包含用于执行上述方面为基站所设计的程序。
第六方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行如上述第一方面中任意一项的下行信号传输方法。
另外,第三方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第七方面,本申请实施例提供一种终端,该终端包括:获取模块、解调译码模块和删除模块;该获取模块,用于获取第一信号,该第一信号包括N个配对终端的共有信息和私有信息,该共有信息为用于该N个配对终端解调译码的信息,该私有信息为仅用于目标配对终端解调译码的信息;该获取模块,还用于获取该共有信息的等效信道与调制编码方式MCS、以及该终端的私有信息的等效信道与MCS;该解调译码模块,用于在将该N个配对终端的私有信息视作噪声的情况下,根据该共有信息的等效信道与MCS对该共有信息进行解调译码,得到该共有信息;该删除模块,用于删除该第一信号中的该共有信息,得到第二信号,该第二信号包括该N个配对终端的私有信息;该解调译码模块,还用于在将该N个配对终端的私有信息中除该终端的私有信息视作噪声的情况下,根据该终端的私有信息的等效信道与MCS对该终端的私有信息进行解调译码,得到该终端的私有信息。
在一种可能的设计中,该获取模块具体用于:接收该基站发送的该共有信息的MCS和该私有信息的MCS。
在一种可能的设计中,该获取模块具体用于:接收基站发送的下行时频资源,该下行时频资源中设置第一解调参考信号DMRS和第二DMRS,该第一DMRS用于该终端测量该共有信息的等效信道,该第二DMRS用于该终端测量该私有信息的等效信道;根据该第一DMRS,测量该共有信息的等效信道;根据该第而DMRS,测量该私有信息的等效信道。
第八方面,本申请实施例提供一种终端,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该终端运行时,该处理器执行该存储器存储的该计算机执行指令,以使该终端执行如上述第二方面中任意一项的下行信号传输方法。
第九方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面为终端所设计的程序。
第十方面,本申请实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行上述第二方面中任意一项的下行信号传输方法。
另外,第七方面至第十方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,本申请实施例提供一种下行信号传输系统,该下行信号传输系统包括如上述任一方面所述的基站以及至少两个如上述任一方面所述的终端。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为现有MU-MIMO系统的下行发射示意图;
图2为本申请实施例提供的下行信号传输系统的架构示意图;
图3为本申请实施例提供的一种通信设备的硬件结构示意图;
图4为本申请实施例提供的一种下行信号传输方法;
图5为本申请实施例提供的另一种下行信号传输方法;
图6为本申请实施例提供的一种基站的结构示意图;
图7为本申请实施例提供的另一种基站的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的另一种终端的结构示意图。
具体实施方式
首先给出线性迫零技术的简要描述如下:
图1为现有MU-MIMO系统的下行发射示意图。如图1所示,现有MU-MIMO系统中,在相同的空口时频资源上基站为多个用户同时发送下行数据,比如同时为终端1、终端2、……、终端m发送下行数据。这样,终端1接收的信号中不仅包括基站发送给终端1的目标信号,还包括基站发送给终端2的目标信号对基站发送给终端1的目标信号的干扰信号以及基站发送给终端m的目标信号对基站发送给终端1的目标信号的干扰信号。类似的,终端2接收的信号中不仅包括基站发送给终端2的目标信号,还包括基站发送给终端1的目标信号对基站发送给终端2的目标信号 的干扰信号以及基站发送给终端m的目标信号对基站发送给终端2的目标信号的干扰信号。终端m接收的信号中不仅包括基站发送给终端m的目标信号,还包括基站发送给终端1的目标信号对基站发送给终端m的目标信号的干扰信号以及基站发送给终端2的目标信号对基站发送给终端m的目标信号的干扰信号,等。
基于此,现有MU-MIMO系统中的基站通常采用线性迫零算法来设计MU权值,以达到在终端消除干扰的效果,最终实现空间复用。其中,线性迫零算法的目的是使各终端的MU权值与基站和其他配对终端之间的信道尽量正交化,即:
Figure PCTCN2017071992-appb-000013
其中,Hi用于表征基站与第i个配对终端之间的信道,可以是向量表示,也可以是矩阵表示;wj表示第j个配对终端的MU权值。这种正交效果使得基站发送给一个终端的目标信号对基站发送给其他配对终端目标信号的干扰被有效抑制,从而使得各配对终端的目标信号最大化。
但是,要真正获得这种理想的空间复用增益,存在一个重要前提,就是线性迫零算法中使用的基站到终端的信道信息必须非常精确。一旦存在信道状态信息(Channel State Information,CSI)误差,由线性迫零技术设计的MU权值与对应干扰信道之间的正交性将不再理想,残留干扰将极易吞噬空间复用增益。
常用的线性迫零算法有特征向量迫零(Eigenvector Zero Forcing,EZF)、正则化特征向量迫零(Regularized Eigenvector Zero Forcing,REZF)、最大化信号泄露噪声比(Signal to Leakage plus Noise Ratio,SLNR)等。这里分别介绍如下:
(1)EZF算法
EZF算法的原理是:对小区内的终端a1,...,aN∈Sm,使每个终端的发送信号与集合Sm内其它终端的信道特征方向正交。该算法实际上使用终端的单用户(Single-User,SU)权值来重构基站到终端的联合信道矩阵。
考虑到目前主要为两终端Rank=1配对,因此以频分双工(Frequency Division Duplexing,FDD)系统两终端配对Rank=1为例进行说明:
具体的,在FDD系统中,通过小区特定参考信号(Cell-specific Reference Signal,CRS)或者信道状态信息(Channel State Information,CSI)过程(Process)的测量,可以获得服务小区中的基站到配对终端的预编码矩阵指示(Precoding Matrix Indicator,PMI),进而可以将PMI对应的权值作为终端的最佳SU权值来重构基站到终端的联合信道矩阵,如公式(1)所示。
Figure PCTCN2017071992-appb-000014
其中,H(k)用于表征基站到终端的联合信道矩阵,V0(k)和V1(k)分别表示两个配对终端的SU权值,维度均为T*1,T表示基站的发射天线数量;V0(k)H表示V0(k)的共轭转置;V1(k)H表示V1(k)的共轭转置。
进而,EZF算法中配对终端的MU权值的计算公式如公式(2)所示:
W=H(k)H(H(k)H(k)H)-1diag(β);                 公式(2)
其中,W的各列就是各个MU配对终端的MU权值;H(k)H表示H(k)的共轭转 置,(H(k)H(k)H)-1表示(H(k)H(k)H)的逆矩阵,diag(β)表示由βi构成的对角矩阵,对角线上的元素是前面矩阵的列归一化因子;diag(β)中的元素βi为扰动因子。
当然,对于时分双工(Time Division Duplexing,TDD)系统,也可以参照上述方式计算配对终端的MU权值,此处不再赘述。区别仅在于在TDD系统中,以Rank=1为例,终端的最佳SU权值就是信道矩阵SVD分解后最大奇异值对应的右奇异向量v1,如下所示。
Figure PCTCN2017071992-appb-000015
(2)REZF算法
REZF算法的原理是:对小区内的终端a1,...,aN∈Sm,使每个终端的发送信号与集合Sm内其它终端的信道特征方向正交。该算法实际上使用终端的单用户(Single-User,SU)权值来重构基站到终端的联合信道矩阵。
仍然以FDD系统两终端配对Rank=1为例,令V0(k)和V1(k)分别表示两个配对终端的SU权值,维度均为T*1,则参考上述EZF算法,可以构造如公式(1)的联合信道矩阵,在此不再赘述。
进而,REZF算法中配对终端的MU权值的计算公式如公式(3)所示:
W=H(k)H(H(k)H(k)H+diag(α))-1diag(β);               公式(3)
其中,W的各列就是各个MU配对终端的MU权值;diag(α)表示由αi构成的对角矩阵,对角线上的元素是前面矩阵的列归一化因子;diag(α)中的元素αi为扰动因子,
Figure PCTCN2017071992-appb-000016
SINRi表示第i个配对终端在SU状态下上报的信干噪比(Singal-to-Interference plus Noise Ratio,SINR),
Figure PCTCN2017071992-appb-000017
表示第i个配对终端在SU状态时的干扰噪声,L表示配对层数,
Figure PCTCN2017071992-appb-000018
表示第i个配对终端的接收信号功率,diag(β)表示由βi构成的对角矩阵,对角线上的元素是前面矩阵的列归一化因子;diag(β)中的元素βi为扰动因子。
当然,对于TDD系统,也可以参照上述方式计算配对终端的MU权值,此处不再赘述。区别仅在于在TDD系统中,以Rank=1为例,终端的最佳SU权值就是信道矩阵SVD分解后最大奇异值对应的右奇异向量v1,如EZF算法中所示。
(3)SLNR算法
SLNR算法的原理是:对小区内的终端a1,...,aN∈Sm,最大化该终端的信号接收功率与该终端对其他配对终端的干扰泄露加噪声功率之比。也就是说其MU权值的生成约束条件是实现信号功率相对于泄露到其他终端的信号功率及噪声的和最大化,从而使MU权值能够兼容对其他终端的干扰泄露问题以及目标用户的信噪比问题。
仍然以FDD系统两终端配对Rank=1为例,混合配对时,令低等级终端上报的PMI对应的权值为
Figure PCTCN2017071992-appb-000019
高等级终端上报的PMI对应的权值为
Figure PCTCN2017071992-appb-000020
则SLNR准侧下配对终端的MU权值的计算公式可以如公式(4)所示:
Figure PCTCN2017071992-appb-000021
其中,A的最大特征向量就是低等级终端的MU权值。NR表示该低等级终端的接收天线数,
Figure PCTCN2017071992-appb-000022
表示该低等级终端的SU状态下上报的SINR,It×t表示维度为t*t的单位矩阵,
Figure PCTCN2017071992-appb-000023
表示
Figure PCTCN2017071992-appb-000024
的共轭转置,
Figure PCTCN2017071992-appb-000025
表示
Figure PCTCN2017071992-appb-000026
的共轭转置,
Figure PCTCN2017071992-appb-000027
表示
Figure PCTCN2017071992-appb-000028
的逆矩阵,VDV-1表示VDV的逆矩阵。
当然,上述实施例仅是示例性的给出几种常用的线性迫零算法,还可能存在其他线性迫零算法,本申请实施例对此不作具体限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或多于两个。
如图2所示,为本申请实施例提供的通信系统的架构示意图,该通信系统包括基站、以及该基站管理的小区内的多个终端。其中,基站可以与这多个终端中的每个终端分别进行通信。另外,本申请实施例中基站的天线数量大于等于2,以便于形成MU-MIMO系统。
具体的,上述通信系统可以应用于目前的LTE或者LTE-A系统中,也可以应用于未来的其它网络中,比如未来的第五代(5rd-Generation,5G)网络,本申请实施例对此不作具体限定。
具体的,本申请实施例中的终端可以是可移动的终端设备,也可以是不可移动的终端设备。该设备可分布于不同的网络中,主要用于接收或者发送业务数据。其中,在不同的网络中终端有不同的名称,例如:用户设备(User Equipment,UE), 移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
具体的,本申请实施例中的基站是一种部署在无线接入网用以提供无线通信功能的装置。例如在LTE系统或者LTE-A系统中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB)。
具体的,图2所示的通信系统中的基站和终端可以通过图3中的通信设备(或系统)来实现。
如图3所示,为本申请实施例提供的一种通信设备的硬件结构示意图,该通信设备包括至少一个处理器301,通信总线302,存储器303以及至少一个通信接口304。
处理器301可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线302可包括一通路,在上述组件之间传送信息。
通信接口304,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器303可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器303用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器303中存储的应用程序代码,从而实现本申请实施例中所述的下行信号传输方法。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备300可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备300还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。例如,输出设备305可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light  Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备306和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备306可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备300可以是一个通用通信设备或者是一个专用通信设备。在具体实现中,通信设备300可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图3中类似结构的设备。本申请实施例不限定通信设备300的类型。
如图4所示,为本申请实施例提供的下行信号传输方法,应用于如图2所示的通信系统中的基站侧,包括如下步骤:
S401、基站确定N个配置终端的业务信息中是否存在共有信息。
其中,共有信息为用于N个配对终端解调译码的信息。
当然,共有信息可以为每个配对终端均需要的业务信息,也可以为部分配对终端需求的业务信息,本申请实施例对此不作具体限定。
其中,终端配对的方式可参考现有技术的实现,此处不再赘述。
S402、若确定存在,基站获取N个配对终端中每个配对终端与基站之间的虚拟下行测量信道以及虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,N为正整数。
具体的,本申请实施例中的信道可以是向量表征形式,也可以是矩阵表征形式,本申请实施例对此不作具体限定。
具体的,对于TDD系统,一般由基站测量信道,也就是真实下行测量信道是由基站测量获得的,而该真实下行测量信道对应的虚拟下行测量信道是基站测量的过时的真实下行测量信道,也就是非当前时刻的真实下行测量信道。也就是说,TDD系统的信道误差主要来自于信道测量过时。进而,基站获取虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,包括:
基站基于公式(5),确定虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差。
Figure PCTCN2017071992-appb-000029
其中,
Figure PCTCN2017071992-appb-000030
表示第i个配对终端与基站之间的虚拟下行测量信道和第i个配对终端与基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;hi(t)用于表征第i个配对终端与基站之间的虚拟下行测量信道对应的真实下行测量信道;
Figure PCTCN2017071992-appb-000031
用于表征第i个配对终端与基站之间的虚拟下行测量信道;
Figure PCTCN2017071992-appb-000032
表示
Figure PCTCN2017071992-appb-000033
的共轭转置。
具体的,对于FDD系统,一般由终端测量信道,也就是真实下行测量信道是由终端测量获得的。而该真实下行测量信道对应的虚拟下行测量信道是对该真实下行测量信道进行量化后的信道,也即上述的PMI。也就是说,FDD系统信道误差的主要原因是PMI码本量化误差。进而,终端可以根据该真实下行测量信道和对应的虚拟下行测量信道,结合上述公式(5)得到真实下行测量信道和虚拟下行测量信道的误差。进而,基站获取N个配对终端中每个配对终端与基站之间的虚拟下行测量信 道以及该虚拟下行测量信道对应的真实下行测量信道的误差,具体可以包括:基站接收每个配对终端发送的每个配对终端与基站之间的虚拟下行测量信道和虚拟下行测量信道对应的真实下行测量信道的误差。基站获取N个配对终端中每个配对终端与基站之间的虚拟下行测量信道,包括:基站接收N个配对终端中每个配对终端发送的PMI中的一个预编码,进而根据该预编码和预编码与PMI的对应关系,确定N个配对终端中每个配对终端的PMI,也就是虚拟下行测量信道。
需要说明的是,上述公式(5)是基于下述公式(6)所示的误差模型得到的。
Figure PCTCN2017071992-appb-000034
其中,
Figure PCTCN2017071992-appb-000035
为虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,ρi为虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的相关性,
Figure PCTCN2017071992-appb-000036
S403、基站采用线性迫零原则获取每个配对终端的私有信息的MU权值,以及,采用最小接收速率最大化原则获取共有信息的MU权值。
其中,私有信息为仅用于目标配对终端解调译码的信息。
具体的,基站采用线性迫零原则获取每个配对终端的私有信息的MU权值的具体方式可参考上述线性迫零技术的简要描述部分,在此不再赘述。
具体的,本申请实施例中,为保证每个配对终端均能够有效解调译码共有信息,可以采用最小接收速率最大化原则获取共用信息的MU权值。其中,无论采用怎样的共用信息的MU权值,所有配对终端的共有信号接收速率中始终存在一个最小值,通过共用信息的MU权值的设计,令这个最小值尽量的大,这就是最小接收速率最大化的原则。
S404、基站根据功率分配策略,确定每个配对终端的私有信息的发射功率和共有信息的发射功率。
可选的,功率分配策略可以为:共有信息的发射功率所占的权重为t,0≤t<1,每个配对终端的私有信息的发射功率相等。
示例性的,假设基站侧的发射总功率为P,配对终端数为2,则基于上述功率分配策略,两个配对终端的共有信息的发射功率为Pc=tP,两个配对终端的私有信息的发射功率分别为P0=P1=(1-t)P/2。
当然,上述仅是示例性的给出了一种功率分配策略,功率策略还可能为其它,本申请实施例对此不作具体限定。比如,每个配对终端的私有信息的发射功率可能并不相同。
S405、基站根据虚拟下行测量信道,虚拟下行测量信道和该虚拟下行测量信道对应的真实下行测量信道的误差,每个配对终端的私有信息的MU权值和发射功率,以及共有信息的MU权值和发射功率,确定每个配对终端的私有信息的编码调制方式(Modulation and Coding Scheme,MCS)和共有信息的MCS。
可选的,基站根据虚拟下行测量信道,虚拟下行测量信道和该虚拟下行测量信 道对应的真实下行测量信道的误差,每个配对终端的私有信息的MU权值和发射功率,以及共有信息的MU权值和发射功率,确定每个配对终端的私有信息的MCS和共有信息的MCS,具体可以包括:
基站可以基于公式(7)和公式(8),确定每个配对终端的私有信息的SINR和共有信息的SINR,进而根据每个配对终端的私有信息的SINR和共有信息的SINR,以及预先存储的SINR与MCS的对应关系,确定每个配对终端的私有信息的MCS和共有信息的MCS。
Figure PCTCN2017071992-appb-000037
Figure PCTCN2017071992-appb-000038
其中,
Figure PCTCN2017071992-appb-000039
SINRr,c表示第r个配对终端的共有信息的信干噪比;Pc表示共有信息的发射功率;βr,c表示wc(t)和第r个配对终端与基站之间的下行测量信道的相关性;βr表示wr(t)和第r个配对终端与基站之间的下行测量信道的相关性;Pr表示第r个配对终端的私有信息的发射功率;Pj表示第j个配对终端的私有信息的发射功率;
Figure PCTCN2017071992-appb-000040
表示第j个配对终端与基站之间的虚拟下行测量信道该第j个配对终端与基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;
Figure PCTCN2017071992-appb-000041
表示第r个配对终端在SU状态时的干扰噪声;
Figure PCTCN2017071992-appb-000042
用于表征第r个配对终端与基站之间的虚拟下行测量信道;wc(t)表示共有信息的MU权值;wr(t)表示第r个配对终端的私有信息的MU权值,
Figure PCTCN2017071992-appb-000043
表示对于变量的所有取值前述等式都成立。
需要说明的是,本申请实施例中,通过上述公式(7)设计共有信息的MCS时,将私有信息当做噪声处理;通过上述公式(8)设计私有信息的MCS时,认为共有信息已经被消除,只残留底噪和其他私有信息的干扰。
S406、基站向N个配对终端发送下行信号,下行信号包括每个配对终端的私有信息和共有信息。
其中,每个配对终端的私有信息采用每个配对终端的私有信息的MCS编码调制,共有信息采用共有信息的MCS编码调制。
可选的,在步骤S401中,若基站确定N个配置终端的业务信息中不存在共有信息,可将方案回退到原有的MU-MIMO或SU-MIMO方案,本申请实施例对此不作具体限定和阐述。
一方面,本申请实施例对下行发射信号进行分层,利用速率分裂的思想将下行发射信号分为私有信息和共有信息两类。共有信息可以被所有配置终端解调译码,通常用来承载MU配对终端均需要的业务数据。私有信息只能被目标终端解调译码,通常用来承载各终端自己独有的业务数据。由于进行了速率分裂,相对于现有技术,基站不需要通过多次下行传输发送共有信息,而是仅需一次下行传输即可将共有信息发送给N个配对终端,因此可以避免共有信息在空口上的重复发送,节约空口资源。同时,在现有传统的MU方案中,因为CSI误差导致无法获得理想的干扰迫零效果,配对终端间的干扰始终存在,所以增加发射功率并不能提高用户吞吐量,性能达到饱和。而本申请实施例将私有信号达到饱和后的多余功率用于发送共有信号,获得了共有信号这部分额外的吞吐量,可以提升空间复用的预期增益,同时提升了发射速率。另一方面,本申请实施例还采用线性迫零算法获取每个配对终端的私有信息的MU权值,因此可以实现私有信息之间的干扰抑制;以及,本申请实施例还采用最小接收速率最大化原则获取共有信息的MU权值,因此可以保证每个终端可以正确解调译码共有信息。综上,基于本申请实施例提供的下行信号传输方法,可以解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题,不仅可以节约空口资源,还可以提升空间服用的预期增益,同时可以保证每个终端可以正确解调译码共有信息。
其中,上述S401-S406中基站的动作可以由图3所示的计算机设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
如图5所示,为本申请实施例提供的下行信号传输方法,应用于如图2所示的通信系统中的任意一个终端侧,包括如下步骤:
S501、终端获取第一信号,该第一信号包括N个配对终端的共有信息和私有信息。
其中,共有信息为用于N个配对终端解调译码的信息,私有信息为仅用于目标配对终端解调译码的信息。
当然,共有信息可以为每个配对终端均需要的业务信息,也可以为部分配对终端需求的业务信息,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的终端未N个配对终端中的任意一个配对终端,在此进行统一说明,以下不再赘述。
S502、终端获取共有信息的等效信道与MCS、以及该终端的私有信息的等效信道与MCS。
具体的,终端获取共有信息的等效信道和私有信息的等效信道,具体可以包括:终端接收基站发送的下行时频资源,该下行时频资源中设置第一解调参考信号(Reference Signal Demodulation,DMRS)和第二DMRS,第一DMRS用于终端测量共有信息的等效信道,第二DMRS用于终端测量所述私有信息的等效信道;进而终端根据第一DMRS,测量共有信息的等效信道;根据第二DMRS,测量私有信息的等效信道。也就是说,终端可以借助第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的协议设计,在下行时频资源中设置DMRS,用于终端测量共有信 息的等效信道和私有信息的等效信道,具体实现可参见3GPP协议36.211中的描述,本申请实施例对此不作具体阐述。
具体的,终端获取共有信息的MCS和私有信息的MCS,具体可以包括:终端接收基站发送的共有信息的MCS和私有信息的MCS。也就是说,MCS可以由基站通过下行控制信令告知终端,具体告知过程可参见3GPP协议36.213中的描述,本申请实施例对此不作具体阐述。
S503、终端在将N个配对终端的私有信息视作噪声的情况下,根据共有信息的等效信道与MCS对共有信息进行解调译码,得到共有信息。
S504、终端删除第一信号中的共有信息,得到第二信号,第二信号包括N个配对终端的私有信息。
S505、终端在将N个配对终端的私有信息中除该终端的私有信息视作噪声的情况下,根据终端的私有信息的等效信道与MCS对终端的私有信息进行解调译码,得到终端的私有信息。
一方面,终端可以获取包括N个配对终端的共有信息和私有信息的第一信号,也就是本申请实施例对下行发射信号进行分层,利用速率分裂的思想将下行发射信号分为私有信息和共有信息两类。共有信息可以被所有配置终端解调译码,通常用来承载MU配对终端均需要的业务数据。私有信息只能被目标终端解调译码,通常用来承载各终端自己独有的业务数据。由于进行了速率分裂,相对于现有技术,基站不需要通过多次下行传输发送共有信息,而是仅需一次下行传输即可将共有信息发送给N个配对终端,因此可以避免共有信息在空口上的重复发送,节约空口资源。同时,在现有传统的MU方案中,因为CSI误差导致无法获得理想的干扰迫零效果,配对终端间的干扰始终存在,所以增加发射功率并不能提高用户吞吐量,性能达到饱和。而本申请实施例将私有信号达到饱和后的多余功率用于发送共有信号,获得了共有信号这部分额外的吞吐量,可以提升空间复用的预期增益,同时提升了发射速率。另一方面,终端在解调译码时,首先将所有私有信息当做噪声处理来解调译码共有信息;完成共有信息的解调译码后,在第一信号中删除共有信号,得到包括N个配对终端的私有信息的第二信号,进而再解调译码自己的私有信息。由于此时私有信号间的状态与传统MU配对方案的干扰形态完全一致,各终端的性能在较低发射功率下已经达到饱和,因此私有信号的频谱效率与传统方案的性能也相近。在私有信号性能没有显著下降的基础上,共有信号的速率便成为了本申请实施例主要的增益来源。也就是说,这种设计方法使得整个空口发射方案能够在确定的CSI误差条件下,获得空间复用的预期增益。综上,基于本申请实施例提供的下行信号传输方法,可以解决现有的MU-MIMO系统在传输共用信息时造成的空口资源浪费和无法获得空间复用的预期增益的问题,不仅可以节约空口资源,还可以提升空间服用的预期增益。
其中,上述S501-S505中终端的动作可以由图3所示的计算机设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
上述主要从终端或基站的角度对本申请实施例提供的方案进行了介绍。可以理 解的是,上述终端或基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站或者终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的基站60的一种可能的结构示意图。如图6所示,该基站包括:确定模块601、获取模块602和发送模块603。其中,确定模块601用于支持基站60执行图4所示的步骤S401、S404和S405;获取模块602用于支持基站60执行图4所示的步骤S402和S403;发送模块603用于支持基站60执行图4所示的步骤S406。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的方式划分各个功能模块的情况下,图7示出了上述实施例中所涉及的基站70的一种可能的结构示意图。如图7所示,该基站包括:处理模块701和通信模块702。其中,处理模块701用于支持基站70执行图4所示的步骤S401、S402、S403、S404和S405;通信模块702用于支持基站70执行图4所示的步骤S406。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该基站以对应各个功能划分各个功能模块的形式来呈现,或者,该基站以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到基站60或者基站70可以采用图3所示的形式。比如,图6中的确定模块601、获取模块602和发送模块603可以通过图3的处理器301和存储器303来实现。具体的,确定模块601、获取模块602和发送模块603可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图7中的处理模块701和通信模块702可以通过图3的处理器301和存储器303来实现,具体的,处理模块701和通信模块702可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的基站可用于执行上述下行信号传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
比如,在采用对应各个功能划分各个功能模块的情况下,图8示出了上述实施 例中所涉及的终端80的一种可能的结构示意图。如图8所示,该终端包括:获取模块801、解调译码模块802和删除模块803。其中,获取模块801用于支持终端80执行图5所示的步骤S501和S502;解调译码模块802用于支持终端80执行图5所示的步骤S503和S505;删除模块803用于支持终端80执行图5所示的步骤S504。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的方式划分各个功能模块的情况下,图9示出了上述实施例中所涉及的终端90的一种可能的结构示意图。如图9所示,该终端包括:处理模块901。其中,处理模块901用于支持终端90执行图5所示的步骤S501、S502、S503、S504和S505。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该终端以对应各个功能划分各个功能模块的形式来呈现,或者,该终端以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端80或者终端90可以采用图3所示的形式。比如,图8中的获取模块801、解调译码模块802和删除模块803可以通过图3的处理器301和存储器303来实现。具体的,获取模块801、解调译码模块802和删除模块803可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图9中的处理模块901可以通过图3的处理器301和存储器303来实现,具体的,处理模块901可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的终端可用于执行上述下行信号传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式来实现。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种下行信号传输方法,其特征在于,所述方法包括:
    基站确定N个配对终端的业务信息中是否存在共有信息,所述共有信息为用于所述N个配对终端解调译码的信息;
    若确定存在,获取所述N个配对终端中每个配对终端与所述基站之间的虚拟下行测量信道以及所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,N为正整数;
    采用线性迫零算法获取所述每个配对终端的私有信息的多用户MU权值,以及,采用最小接收速率最大化原则获取所述共有信息的MU权值,所述私有信息为仅用于目标配对终端解调译码的信息;
    根据功率分配策略,确定所述每个配对终端的私有信息的发射功率和所述共有信息的发射功率;
    根据所述虚拟下行测量信道,所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述每个配对终端的私有信息的MU权值和发射功率,以及所述共有信息的MU权值和发射功率,确定所述每个配对终端的私有信息的编码调制方式MCS和所述共有信息的MCS;
    向所述N个配对终端发送下行信号,所述下行信号包括所述每个配对终端的私有信息和所述共有信息,其中,所述每个配对终端的私有信息采用所述每个配对终端的私有信息的MCS编码调制,所述共有信息采用所述共有信息的MCS编码调制。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述虚拟下行测量信道,所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述每个配对终端的私有信息的MU权值和发射功率,以及所述共有信息的MU权值和发射功率,确定所述每个配对终端的私有信息的MCS和所述共有信息的MCS,包括:
    分别基于第一预设公式和第二预设公式,根据所述虚拟下行测量信道,所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述每个配对终端的私有信息的MU权值和发射功率,所述共有信息的MU权值和发射功率,确定所述每个配对终端的私有信息的信干噪比和所述共有信息的信干噪比;
    根据所述每个配对终端的私有信息的信干噪比和所述共有信息的信干噪比,以及预先存储的信干噪比与MCS的对应关系,确定所述每个配对终端的私有信息的MCS和所述共有信息的MCS;
    所述第一预设公式包括:
    Figure PCTCN2017071992-appb-100001
    所述第二预设公式包括:
    Figure PCTCN2017071992-appb-100002
    其中,
    Figure PCTCN2017071992-appb-100003
    SINRr,c表示第r个配对终端的共有信息的信干噪比;Pc表示所述共有信息的发射功率;βr,c表示wc(t)和所述第r个配对终端与基站之间的下行测量信道的相关性;βr表示wr(t)和所述第r个配对终端与基站之间的下行测量信道的相关性;Pr表示所述第r个配对终端的私有信息的发射功率;Pj表示第j个配对终端的私有信息的发射功率;
    Figure PCTCN2017071992-appb-100004
    表示所述第j个配对终端与所述基站之间的虚拟下行测量信道和所述第j个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;
    Figure PCTCN2017071992-appb-100005
    表示所述第r个配对终端在单用户SU状态时的干扰噪声;
    Figure PCTCN2017071992-appb-100006
    用于表征所述第r个配对终端与所述基站之间的虚拟下行测量信道;wc(t)表示所述共有信息的MU权值;wr(t)表示所述第r个配对终端的私有信息的MU权值,
    Figure PCTCN2017071992-appb-100007
    表示对于变量的所有取值前述等式都成立。
  3. 根据权利要求1或2所述的方法,其特征在于,所述功率分配策略为:所述共有信息的发射功率所占的权重为t,0≤t<1,所述每个配对终端的私有信息的发射功率相等。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述获取所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,包括:
    基于第三预设公式,确定所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述第三预设公式包括:
    Figure PCTCN2017071992-appb-100008
    其中,
    Figure PCTCN2017071992-appb-100009
    表示第i个配对终端与所述基站之间的虚拟下行测量信道和所述第i个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;hi(t)用于表征所述第i个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道;
    Figure PCTCN2017071992-appb-100010
    用于表征所述第i个配对终端与所述基站之间的虚拟下行测量信道;
    Figure PCTCN2017071992-appb-100011
    表示
    Figure PCTCN2017071992-appb-100012
    的共轭转置。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述获取所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,包括:
    接收所述每个配对终端发送的所述每个配对终端与所述基站之间的所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差。
  6. 一种下行信号传输方法,其特征在于,所述方法包括:
    终端获取第一信号,所述第一信号包括N个配对终端的共有信息和私有信息,所 述共有信息为用于所述N个配对终端解调译码的信息,所述私有信息为仅用于目标配对终端解调译码的信息;
    获取所述共有信息的等效信道与调制编码方式MCS、以及所述终端的私有信息的等效信道与MCS;
    在将所述N个配对终端的私有信息视作噪声的情况下,根据所述共有信息的等效信道与MCS对所述共有信息进行解调译码,得到所述共有信息;
    删除所述第一信号中的所述共有信息,得到第二信号,所述第二信号包括所述N个配对终端的私有信息;
    在将所述N个配对终端的私有信息中除所述终端的私有信息视作噪声的情况下,根据所述终端的私有信息的等效信道与MCS对所述终端的私有信息进行解调译码,得到所述终端的私有信息。
  7. 根据权利要求6所述的方法,其特征在于,所述获取所述共有信息的MCS和所述私有信息的MCS,包括:
    接收所述基站发送的所述共有信息的MCS和所述私有信息的MCS。
  8. 根据权利要求6或7所述的方法,其特征在于,所述获取所述共有信息的等效信道和所述私有信息的等效信道,包括:
    接收基站发送的下行时频资源,所述下行时频资源中设置第一解调参考信号DMRS和第二DMRS,所述第一DMRS用于所述终端测量所述共有信息的等效信道,所述第二DMRS用于所述终端测量所述私有信息的等效信道;
    根据所述第一DMRS,测量所述共有信息的等效信道;
    根据所述第而DMRS,测量所述私有信息的等效信道。
  9. 一种基站,其特征在于,所述基站包括:确定模块、获取模块和发送模块;
    所述确定模块,用于确定N个配对终端的业务信息中是否存在共有信息,所述共有信息为用于所述N个配对终端解调译码的信息;
    所述获取模块,用于若所述确定模块确定存在,获取所述N个配对终端中每个配对终端与所述基站之间的虚拟下行测量信道以及所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,N为正整数;
    所述获取模块,还用于采用线性迫零算法获取所述每个配对终端的私有信息的多用户MU权值,以及,采用最小接收速率最大化原则获取所述共有信息的MU权值,所述私有信息为仅用于目标配对终端解调译码的信息;
    所述确定模块,还用于根据功率分配策略,确定所述每个配对终端的私有信息的发射功率和所述共有信息的发射功率;
    所述确定模块,还用于根据所述虚拟下行测量信道,所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述每个配对终端的私有信息的MU权值和发射功率,以及所述共有信息的MU权值和发射功率,确定所述每个配对终端的私有信息的编码调制方式MCS和所述共有信息的MCS;
    所述发送模块,用于向所述N个配对终端发送下行信号,所述下行信号包括所述每个配对终端的私有信息和所述共有信息,其中,所述每个配对终端的私有信息采用所述每个配对终端的私有信息的MCS编码调制,所述共有信息采用所述共有信息的 MCS编码调制。
  10. 根据权利要求9所述的基站,其特征在于,所述确定模块具体用于:
    分别基于第一预设公式和第二预设公式,根据所述虚拟下行测量信道,所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差,所述每个配对终端的私有信息的MU权值和发射功率,所述共有信息的MU权值和发射功率,确定所述每个配对终端的私有信息的信干噪比和所述共有信息的信干噪比;
    根据所述每个配对终端的私有信息的信干噪比和所述共有信息的信干噪比,以及预先存储的信干噪比与MCS的对应关系,确定所述每个配对终端的私有信息的MCS和所述共有信息的MCS;
    所述第一预设公式包括:
    Figure PCTCN2017071992-appb-100013
    所述第二预设公式包括:
    Figure PCTCN2017071992-appb-100014
    其中,
    Figure PCTCN2017071992-appb-100015
    SINRr,c表示第r个配对终端的共有信息的信干噪比;Pc表示所述共有信息的发射功率;βr,c表示wc(t)和所述第r个配对终端与基站之间的下行测量信道的相关性;βr表示wr(t)和所述第r个配对终端与基站之间的下行测量信道的相关性;Pr表示所述第r个配对终端的私有信息的发射功率;Pj表示第j个配对终端的私有信息的发射功率;
    Figure PCTCN2017071992-appb-100016
    表示所述第j个配对终端与所述基站之间的虚拟下行测量信道和所述第j个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;
    Figure PCTCN2017071992-appb-100017
    表示所述第r个配对终端在单用户SU状态时的干扰噪声;
    Figure PCTCN2017071992-appb-100018
    用于表征所述第r个配对终端与所述基站之间的虚拟下行测量信道;wc(t)表示所述共有信息的MU权值;wr(t)表示所述第r个配对终端的私有信息的MU权值,
    Figure PCTCN2017071992-appb-100019
    表示对于变量的所有取值前述等式都成立。
  11. 根据权利要求9或10所述的基站,其特征在于,所述功率分配策略为:所述共有信息的发射功率所占的权重为t,0≤t<1,所述每个配对终端的私有信息的发射功率相等。
  12. 根据权利要求9-11任一项所述的基站,其特征在于,所述获取模块具体用于:
    基于第三预设公式,确定所述虚拟下行测量信道和所述虚拟下行测量信道对应的 真实下行测量信道的误差,所述第三预设公式包括:
    Figure PCTCN2017071992-appb-100020
    其中,
    Figure PCTCN2017071992-appb-100021
    表示第i个配对终端与所述基站之间的虚拟下行测量信道和所述第i个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道的误差;hi(t)用于表征所述第i个配对终端与所述基站之间的虚拟下行测量信道对应的真实下行测量信道;
    Figure PCTCN2017071992-appb-100022
    用于表征所述第i个配对终端与所述基站之间的虚拟下行测量信道;
    Figure PCTCN2017071992-appb-100023
    表示
    Figure PCTCN2017071992-appb-100024
    的共轭转置。
  13. 根据权利要求9-11任一项所述的基站,其特征在于,所述获取模块具体用于:
    接收所述每个配对终端发送的所述每个配对终端与所述基站之间的所述虚拟下行测量信道和所述虚拟下行测量信道对应的真实下行测量信道的误差。
  14. 一种终端,其特征在于,所述终端包括:获取模块、解调译码模块和删除模块;
    所述获取模块,用于获取第一信号,所述第一信号包括N个配对终端的共有信息和私有信息,所述共有信息为用于所述N个配对终端解调译码的信息,所述私有信息为仅用于目标配对终端解调译码的信息;
    所述获取模块,还用于获取所述共有信息的等效信道与调制编码方式MCS、以及所述终端的私有信息的等效信道与MCS;
    所述解调译码模块,用于在将所述N个配对终端的私有信息视作噪声的情况下,根据所述共有信息的等效信道与MCS对所述共有信息进行解调译码,得到所述共有信息;
    所述删除模块,用于删除所述第一信号中的所述共有信息,得到第二信号,所述第二信号包括所述N个配对终端的私有信息;
    所述解调译码模块,还用于在将所述N个配对终端的私有信息中除所述终端的私有信息视作噪声的情况下,根据所述终端的私有信息的等效信道与MCS对所述终端的私有信息进行解调译码,得到所述终端的私有信息。
  15. 根据权利要求14所述的终端,其特征在于,所述获取模块具体用于:
    接收所述基站发送的所述共有信息的MCS和所述私有信息的MCS。
  16. 根据权利要求14或15所述的终端,其特征在于,所述获取模块具体用于:
    接收基站发送的下行时频资源,所述下行时频资源中设置第一解调参考信号DMRS和第二DMRS,所述第一DMRS用于所述终端测量所述共有信息的等效信道,所述第二DMRS用于所述终端测量所述私有信息的等效信道;
    根据所述第一DMRS,测量所述共有信息的等效信道;
    根据所述第而DMRS,测量所述私有信息的等效信道。
  17. 一种基站,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1-5中任意一项所述的下行信号传输方法。
  18. 一种终端,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述终端运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述终端执行如权利要求6-8中任意一项所述的下行信号传输方法。
  19. 一种下行信号传输系统,其特征在于,所述下行信号传输系统包括如权利要求9-13任一项所述的基站以及至少两个如权利要求14-16任一项所述的终端;
    或者,所述下行信号传输系统包括如权利要求17所述的基站以及至少两个如权利要求18所述的终端。
PCT/CN2017/071992 2017-01-20 2017-01-20 下行信号传输方法、装置及系统 WO2018133052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071992 WO2018133052A1 (zh) 2017-01-20 2017-01-20 下行信号传输方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071992 WO2018133052A1 (zh) 2017-01-20 2017-01-20 下行信号传输方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018133052A1 true WO2018133052A1 (zh) 2018-07-26

Family

ID=62907589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071992 WO2018133052A1 (zh) 2017-01-20 2017-01-20 下行信号传输方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2018133052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024054711A1 (en) * 2022-09-08 2024-03-14 Qualcomm Incorporated Demodulation reference signal (dm-rs) design for rate-splitting multi-user multiple input multiple output (mu-mimo) communication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571261A (zh) * 2010-12-30 2012-07-11 中兴通讯股份有限公司 一种空间流的mcs指示方法和装置
CN102595488A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 一种信道方向信息反馈方法及其设备
CN102714526A (zh) * 2009-10-30 2012-10-03 韩国电子通信研究院 用于在多用户无线通信系统中传送数据的方法
US20120294255A1 (en) * 2010-01-15 2012-11-22 Lg Electronics Inc. Link adaptation method and apparatus in wireless lan system
WO2016049543A1 (en) * 2014-09-27 2016-03-31 Ping Liang Methods for multi-user mimo wireless communication using approximation of zero-forcing beamforming matrix

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714526A (zh) * 2009-10-30 2012-10-03 韩国电子通信研究院 用于在多用户无线通信系统中传送数据的方法
US20120294255A1 (en) * 2010-01-15 2012-11-22 Lg Electronics Inc. Link adaptation method and apparatus in wireless lan system
CN102571261A (zh) * 2010-12-30 2012-07-11 中兴通讯股份有限公司 一种空间流的mcs指示方法和装置
CN102595488A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 一种信道方向信息反馈方法及其设备
WO2016049543A1 (en) * 2014-09-27 2016-03-31 Ping Liang Methods for multi-user mimo wireless communication using approximation of zero-forcing beamforming matrix

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024054711A1 (en) * 2022-09-08 2024-03-14 Qualcomm Incorporated Demodulation reference signal (dm-rs) design for rate-splitting multi-user multiple input multiple output (mu-mimo) communication

Similar Documents

Publication Publication Date Title
WO2020156103A1 (zh) 信息反馈方法及装置
CN113346935B (zh) 用于码本设计和信令的方法和装置
CN112803975B (zh) 确定预编码矩阵的方法、设备及系统
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
JP6733938B2 (ja) プリコーディング情報を送信し、且つプリコーディング情報をフィードバックするための方法及び装置
BR112020009497A2 (pt) método de comunicação, aparelho de comunicações, e sistema
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
TWI734936B (zh) 一種干擾測量方法、使用者終端和網路側設備
WO2021017571A1 (zh) 一种空频合并系数的指示方法及装置
CN108781105B (zh) 用于信道状态信息(csi)报告的方法和装置
CN111771340A (zh) 用于高级无线通信系统中的宽带csi报告的方法和装置
US20220408288A1 (en) Channel state information measurement method and apparatus
CN109120313A (zh) 一种秩指示上报方法和装置、指示方法和装置
US11196522B2 (en) Enhanced sounding reference signal scheme
US11510213B2 (en) Method for signal transmission, and corresponding user terminals and base stations
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
WO2022077484A1 (zh) 一种信息指示方法及装置
WO2018133052A1 (zh) 下行信号传输方法、装置及系统
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
WO2022048400A1 (zh) 一种信道反馈方法及装置
WO2018145626A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2017016325A1 (zh) 导频功率通知、获取方法及装置
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备
WO2016188177A1 (zh) 一种发送增强物理下行链路控制信道的方法和装置
WO2020155116A1 (zh) 一种pmi上报方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892323

Country of ref document: EP

Kind code of ref document: A1