WO2016188177A1 - 一种发送增强物理下行链路控制信道的方法和装置 - Google Patents

一种发送增强物理下行链路控制信道的方法和装置 Download PDF

Info

Publication number
WO2016188177A1
WO2016188177A1 PCT/CN2016/075775 CN2016075775W WO2016188177A1 WO 2016188177 A1 WO2016188177 A1 WO 2016188177A1 CN 2016075775 W CN2016075775 W CN 2016075775W WO 2016188177 A1 WO2016188177 A1 WO 2016188177A1
Authority
WO
WIPO (PCT)
Prior art keywords
epdcch
precoding
downlink control
time
dcis
Prior art date
Application number
PCT/CN2016/075775
Other languages
English (en)
French (fr)
Inventor
牟海宁
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016188177A1 publication Critical patent/WO2016188177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to the field of communications, and more particularly, but not exclusively, to a method and apparatus for transmitting an enhanced physical downlink control channel.
  • the downlink control information occupies the first few symbols of the downlink subframe, and the frequency domain occupies the entire bandwidth. .
  • the capacity of the control channel is limited.
  • an EPDCCH Enhanced Physical Downlink Control Channel
  • the EPDCCH is a signaling channel dedicated to the UE (User Equipment), and uses a Physical Downlink Shared Channel (PDSCH) resource to transmit DCI (Downlink Control Information), which usually occupies only the entire downlink system. A small part of the bandwidth.
  • the introduction of the EPDCCH can not only increase the capacity of the control channel but also control the scheduling of the control information in the frequency domain and ICIC (Inter Cell Interference Coordination) in the frequency domain.
  • the EPDCCH is equipped with a dedicated DMRS (De-Modulation Reference Signal), and the normal (conventional) CP (Cyclic Prefix) supports port (ports) 107 to 110, which is the same as the PDSCH channel port 7 to port 10;
  • the (extended) CP supports ports 107, 108, which are the same as PDSCH channel ports 7, 8.
  • the system capacity is greatly improved, making the downlink signaling channel capacity a significant bottleneck of system performance.
  • the downlink traffic channel needs to increase the coverage by multi-antenna shaping gain or diversity gain.
  • the downlink EPDCCH channel does not support EPDCCH channel multiplexing of multiple UEs to be transmitted on the same time-frequency resource, so that the signaling overhead is large when the system capacity is high.
  • the embodiment of the present invention provides an improved EPDCCH transmission scheme, which improves the coverage and capacity of the EPDCCH, improves the use efficiency of the EPDCCH resource, and saves time-frequency resources.
  • a method for transmitting an enhanced physical downlink control channel EPDCCH includes:
  • the pre-processing includes: channel coding, scrambling, modulation, and layer mapping;
  • the pre-coded data is mapped to the same set of time-frequency resources in the EPDCCH, and orthogonal frequency division multiplexing OFDM symbols are generated and transmitted.
  • the method further includes:
  • the demodulation reference signal DMRS of the EPDCCH is precoded; the precoding performed on the DMRS is the same as the precoding performed on the DCI.
  • sequence r(m) of the DMRS is:
  • c() is a pseudo-random sequence
  • the initialization function c init that generates the pseudo-random sequence is:
  • n s is the slot number in the subframe; Configured by the upper layer, corresponding to the time-frequency resource group allocated by the EPDCCH, i ⁇ 0, 1 ⁇ ; Is two or more values in a positive integer set.
  • the method further includes:
  • the following parameters are set for a group of UEs on which the EPDCCH is mapped to the same set of time-frequency resources. The same value:
  • the transmissionType-r11 is set to a centralized resource allocation mode.
  • the precoding the pre-processed multiple DCIs includes:
  • the precoding weights are calculated according to any one or more of the following criteria: a zero forcing criterion, a maximum transmission ratio criterion, and a minimum mean square error criterion.
  • a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • An apparatus for transmitting an enhanced physical downlink control channel EPDCCH includes:
  • the pre-processing module is configured to perform pre-processing on the downlink control information DCI of the multiple user equipment UEs respectively; the pre-processing includes: channel coding, scrambling, modulation, and layer mapping;
  • a precoding module configured to precode a plurality of the DCIs that are preprocessed
  • the transmitting module is configured to map the pre-coded data to the same group of time-frequency resources in the EPDCCH, generate an orthogonal frequency division multiplexing OFDM symbol, and transmit.
  • the precoding module is further configured to precode the demodulation reference signal DMRS of the EPDCCH; the precoding performed on the DMRS is the same as the precoding performed on the DCI.
  • sequence r(m) of the DMRS is:
  • c() is a pseudo-random sequence
  • the initialization function c init that generates the pseudo-random sequence is:
  • n s is the slot number in the subframe; Configured by the upper layer, corresponding to the time-frequency resource group allocated by the EPDCCH, i ⁇ 0, 1 ⁇ ; Is two or more values in a positive integer set.
  • the device further includes:
  • the setting module is set to set the same value for the following parameters of the EPDCCH mapped to a group of UEs on the same set of time-frequency resources:
  • the transmissionType-r11 is set to a centralized resource allocation mode.
  • the precoding module precoding the preprocessed multiple DCIs includes:
  • the precoding module multiplies the preprocessed plurality of DCIs by a precoding weight in a matrix form
  • the precoding weights are calculated according to any one or more of the following criteria: a zero forcing criterion, a maximum transmission ratio criterion, and a minimum mean square error criterion.
  • the embodiments of the present invention can improve the capacity and coverage of the EPDCCH in the multi-antenna system, improve the use efficiency of the EPDCCH resources, and save time-frequency resources.
  • FIG. 1 is a schematic flowchart of a method for transmitting an EPDCCH according to Embodiment 1;
  • FIG. 2 is a schematic flowchart of processing of an EPDCCH at a transmitting end in an example of Embodiment 1;
  • FIG. 3 is a schematic diagram of a mapping process of EREG to RE in the example of Embodiment 1;
  • Example 4 is a schematic diagram of mapping of ECCE to EREG under centralized transmission in Example 1;
  • Example 5 is a schematic diagram of an EPDCCH transmission process when 8 UEs are multiplexed in Example 1;
  • FIG. 6 is a schematic diagram of an apparatus for transmitting an EPDCCH according to Embodiment 2.
  • the EPDCCH carries UE-specific information, which means that different UEs may have different EPDCCH configurations, and the EPDCCH of one UE is located on the time-frequency resource allocated to the UE.
  • the embodiments of the present invention enable multiple UEs to multiplex the same time-frequency resources. The specific solution is as follows.
  • a method for transmitting an EPDCCH includes:
  • S110 Perform pre-processing on DCIs of multiple UEs respectively; the pre-processing includes: channel coding, scrambling, modulation, and layer mapping;
  • S130 Map pre-coded data to the same set of time-frequency resources in the EPDCCH, generate an OFDM symbol, and transmit.
  • the pre-processing may further include adding a check code and rate matching.
  • FIG. 2 is an example of the embodiment, where the processing of the EPDCCH on the transmitting end includes:
  • DCI DCI 1 to DCI n
  • CRC Cyclic Redundancy Check
  • tail-biting convolutional coding After the modulation and layer mapping are performed by precoding and multiplexing, mapping to the same group of time-frequency resources, and then generating OFDM (Orthogonal Frequency Division Multiplexing) symbols, mapping to corresponding ports of the antenna, and passing through the antenna Launched.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method may further include:
  • the demodulation reference signal DMRS of the EPDCCH is precoded; the precoding performed on the DMRS is the same as the precoding performed on the DCI.
  • the EPDCCH-dedicated DMRS is subjected to the same precoding as the DCI and used for demodulation on the UE side.
  • the DMRS of the EPDCCH may use two pilot patterns, port 107 and port 108.
  • the sequence r(m) of the DMRS is as follows:
  • c() is a pseudo-random sequence
  • the initialization function c init that generates the pseudo-random sequence is defined as follows:
  • n s is the slot number in the subframe, and the value ranges from 0 to the maximum slot number, such as 0 to 19.
  • pilot generation function and its initialization function are independent of the UE, which means that for each set of EPDCCH time-frequency resources, there is only one set of pilot sequences. When multiple UEs multiplex the set of time-frequency resources, only the same pilot sequence can be used. At this time, it is necessary to perform forced space multiplexing (Spatial Multiplexing) using the precoding weight W, and the calculation of W will be described later.
  • parameters in the pilot sequence initialization function may be used. Set to multiple values, such as Is two or more values in a positive integer set; in practical applications, There are several values, and which values to take, can be designed by yourself.
  • each group of EPDCCH time-frequency resources can have multiple sets of pilot sequences. When more UEs multiplex the set of time-frequency resources, different UEs may select different pilot sequences, and the precoding weights of each UE may effectively distinguish UEs and reduce mutual interference between UEs.
  • the precoding weight W is a matrix form, which is a transmit beamforming vector
  • the precoding the preprocessed multiple DCIs may include: multiplying the plurality of DCIs by a precoding weight in a matrix form.
  • the precoding weight W is generated by SRS (Sounding Reference Signal) estimation
  • the FDD (Frequency Division Duplexing) system precoding weight W is CRS (Cell Reference Signal) or CSI-RS (Channel State Indication Reference) Signal, channel status indication reference signal) is estimated and generated and fed back to the base station.
  • the precoding weight W can be calculated according to the antenna configuration of the multi-antenna system using ZF (Zero Forcing), MRT (Maximum Ratio Transmission), and MMSE (Minimum Mean Square Error).
  • ZF Zero Forcing
  • MRT Maximum Ratio Transmission
  • MMSE Minimum Mean Square Error
  • the precoding weight W can be calculated according to the following formula, namely:
  • p 1 ... p n are the power of n UEs respectively
  • the specific value can be calculated according to the specific power allocation criterion
  • diag represents the diagonal matrix .
  • the pre-coded DCI is mapped to the corresponding resource particle (k, l) in the order of the first frequency domain and the time domain, and k and l are respectively a frequency domain index and a time domain index.
  • REs Resource Elements
  • EREG Enhanced Resource Element Group
  • the time domain index 1 is related to the transmission mode used by the PDSCH at the beginning of the first slot of a radio frame.
  • the starting position of the EPDCCH 1 EPDCCHStart is determined by the upper layer parameter. l' EPDCCHStart is obtained, otherwise it is obtained according to CFI (Canonical Format Indicator).
  • the mapping process of EREG to RE is as shown in FIG. 3.
  • a small square indicates an RE, and REs with the same number belong to the same EREG.
  • the RE numbered “0” belongs to EREG 0.
  • a PRB (Physical Resource Block) pair can define 16 EREGs, that is, EREG 0-15.
  • the details of the time-frequency resource allocation of the EPDCCH include:
  • the number of EPDCCH-PRB-pair sets (referred to as EPDCCH sets) to be monitored by the UE may be configured as one or two by using the parameter setConfigToAddModList-r11.
  • the index q of the EPDCCH set is configured by the parameter setConfigId-r11; the transmission mode of the EPDCCH set q is configured by the parameter transmissionType-r11; the number of PRB pairs included in the EPDCCH set q is configured by the parameter numberPRB-Pairs-r11;
  • the parameter resourceBlockAssignment-r11 configures the index of all PRB pairs included in the set q.
  • the method may further include:
  • the following parameters can be set for the following parameters of a group of UEs on which the EPDCCH is mapped to the same group of time-frequency resources:
  • the value set by the parameter setConfigToAddModList-r11 of the first UE is the same as the value set by the parameter setConfigToAddModList-r11 of the second UE. ; the other four parameters and so on.
  • UEs that multiplex the same set of time-frequency resources need to listen to the same search space.
  • the UE performs blind detection on all ECCEs (Enhanced Control Channel Elements) in the search space for different aggregation levels. Different UEs detect ECCEs in different order but with the same detection result.
  • ECCEs Enhanced Control Channel Elements
  • the setting details of the EPDCCH transmission mode include:
  • R11 defines two EPDCCH transmission modes, namely centralized transmission and distributed transmission.
  • centralized transmission the intent is to select physical resources and antenna precoding based on immediate channel conditions to transmit the EPDCCH.
  • centralized transmission can be used, and the EPDCCH is transmitted on those PRB pairs with better channel quality. This is beneficial for utilizing frequency domain scheduling gains, as well as combining multi-antenna patterns in CoMP (Coordinated Multiple Points).
  • CoMP Coordinatd Multiple Points
  • different UEs are multiplexed into the same time-frequency resource by precoding.
  • the acquisition of precoding weights depends on good channel state information. Therefore, the transmissionType-r11 is set to the centralized resource allocation mode.
  • CMAC Control Medium Access Control, controlled Media access control selects an ECCE with better channel conditions among available time-frequency resources according to channel quality to transmit EPDCCH channel information.
  • EPDCCHs of 8 UEs (UE1 to UE8) is required, and a normal CP and a normal subframe are used.
  • the RNTI (Radio Network Tempory Identity) values of the eight UEs are 1 to 8.
  • the parameters of the 8 UEs are configured to the same value according to Table 1 below.
  • the ECCE number used for transmitting the EPDCCH is 0 to N ECCE, q, i -1.
  • the ECCE numbered z is indexed as The index in the PRB pair is The composition of the EREG. among them Indicates rounding down, Indicates the number of EREGs in each ECCE (4 in this example).
  • the RB pair index and the EREG index corresponding to the 16 ECCEs in this example can be obtained:
  • the PRB pair index in the above table is calculated on the premise that the PRB pair number in the EPDCCH set q is 0 to N ECCE, q, i -1.
  • the actual PRB pair index corresponding to this example is 47 to 50.
  • the mapping from ECCE to EREG is shown in Figure 4 (a grid in the figure represents an EPEG, the numbers 0 to 15 in the grid are the indexes of the EREG, and one ECCE contains 4 EREGs, such as ECCE0 including EPEG ⁇ 0 4 8 12 ⁇ , others
  • the EREG included in ECCE is shown in Table 3).
  • the EPDCCH channel transmission process is as shown in FIG. 5, including: channel coding, scrambling, and modulation of DCI 1 to DCI 8, respectively.
  • the layer mapping is multiplexed by precoding and the resources are mapped to the PRB pair 47, and the OFDM symbols are generated and transmitted through the antenna.
  • L is the degree of polymerization
  • EPDCCH resources ECCE index S0 ECCE0 ⁇ ECCE3 S1 ECCE4 ⁇ ECCE7 S2 ECCE8 ⁇ ECCE11 S3 ECCE12 ⁇ ECCE15
  • the EPDCCH candidate resources M0 to M3 that each UE needs to monitor can be obtained by the calculation formula of the EPDCCH search space specified by the protocol, as shown in Table 6:
  • Embodiments of the present invention further provide a computer readable storage medium storing a computer executable The instructions, when the computer executable instructions are executed, implement the above method.
  • Embodiment 2 An apparatus for transmitting an enhanced physical downlink control channel (EPDCCH), as shown in FIG. 6, includes:
  • the pre-processing module 61 is configured to perform pre-processing on downlink control information DCI of multiple user equipments, respectively; the pre-processing includes: channel coding, scrambling, modulation, and layer mapping;
  • the precoding module 62 is configured to precode the plurality of the DCIs that are preprocessed;
  • the transmitting module 63 is configured to map the precoded data to the same group of time-frequency resources in the EPDCCH, generate an orthogonal frequency division multiplexing OFDM symbol, and transmit.
  • the apparatus may be disposed in whole or in part in the base station.
  • the precoding module 62 is further configured to precode the demodulation reference signal DMRS of the EPDCCH; the precoding performed on the DMRS is the same as the precoding performed on the DCI.
  • sequence r(m) of the DMRS is:
  • c() is a pseudo-random sequence
  • the initialization function c init that generates the pseudo-random sequence is:
  • n s is the slot number in the subframe, and the value range may be from 0 to the maximum slot number, such as 0 to 19; Configured by the upper layer, corresponding to the time-frequency resource group allocated by the EPDCCH, i ⁇ 0, 1 ⁇ ; Is two or more values in a positive integer set.
  • the device further includes:
  • the transmissionType-r11 is set to a centralized resource allocation mode.
  • the precoding module precoding the preprocessed multiple DCIs includes:
  • the precoding module multiplies the plurality of DCIs by a precoding weight in a matrix form
  • the precoding weights are calculated according to any one or more of the following criteria: a zero forcing criterion, a maximum transmission ratio criterion, and a minimum mean square error criterion.
  • the embodiment of the present invention provides an improved EPDCCH transmission scheme, which improves the coverage and capacity of the EPDCCH, improves the use efficiency of the EPDCCH resource, and saves time-frequency resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送增强物理下行链路控制信道的方法及装置;所述方法包括:对多个用户设备的下行控制信息分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;将经过预处理的多个所述下行控制信息进行预编码;将预编码后得到的数据映射到增强物理下行链路控制信道中的同一组时频资源上,生成正交频分复用符号并发射。上述方案使得增强物理下行链路控制信道的覆盖和容量都得到改善,还能提高增强物理下行链路控制信道资源的使用效率,并且节省时频资源。

Description

一种发送增强物理下行链路控制信道的方法和装置 技术领域
本发明涉及通信领域,尤其涉及但不限于一种发送增强物理下行链路控制信道的方法和装置。
背景技术
在3GPP(the 3rd Generation Partnership Project,第三代合作伙伴项目)R11(Release 11)协议之前的协议版本中,下行控制信息占据下行子帧的前几个符号,在频域上是占据整个带宽的。这种设计使得控制信道的容量是有限的,为了提升LTE(Long Term Evolution,长期演进)系统的容量,R11协议中引入了EPDCCH(Enhanced Physical Downlink Control Channel,增强物理下行链路控制信道)。EPDCCH是UE(User Equipment,用户设备)专用的信令信道,它使用PDSCH(Physical Downlink Shared Channel,物理下行共享信道)资源来发送DCI(Downlink Control Information,下行控制信息),通常只占用整个下行系统带宽的一小部分。EPDCCH的引入不但可以增加控制信道的容量还支持控制信息在频域上进行调度以及在频域上的ICIC(Inter Cell Interference Coordination,小区间干扰协调)。EPDCCH配有专用的DMRS(De-Modulation Reference Signal,解调参考信号),normal(常规)CP(Cyclic Prefix,循环前缀)支持port(端口)107~110,与PDSCH信道port 7~port10相同;extended(扩展)CP支持port 107、108,与PDSCH信道port 7、8相同。
LTE系统中引入多天线之后,系统容量得到很大提升,使得下行信令信道容量成为了系统性能的显著瓶颈。同时,由于多天线系统每根天线的发射功率减小,下行业务信道需要通过多天线赋形增益或者分集增益来提高覆盖范围。现有的LTE协议中下行EPDCCH信道不支持多个UE的EPDCCH信道复用在相同的时频资源上传输,使得在系统容量很高的时候信令开销很大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种改进的EPDCCH发射方案,使得EPDCCH的覆盖和容量都得到改善,还能提高EPDCCH资源的使用效率,并且节省时频资源。
本发明实施例采用如下技术方案:
一种发送增强物理下行链路控制信道EPDCCH的方法,包括:
对多个用户设备UE的下行控制信息DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
将经过预处理的多个所述DCI进行预编码;
将预编码后得到的数据映射到EPDCCH中的同一组时频资源上,生成正交频分复用OFDM符号并发射。
可选地,所述的方法还包括:
对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
可选地,所述DMRS的序列r(m)为:
Figure PCTCN2016075775-appb-000001
其中,m为子载波索引,
Figure PCTCN2016075775-appb-000002
为下行最大资源块RB个数,c()为伪随机序列;
生成所述伪随机序列的初始化函数cinit为:
Figure PCTCN2016075775-appb-000003
其中,ns为子帧中的时隙号;
Figure PCTCN2016075775-appb-000004
由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1};
Figure PCTCN2016075775-appb-000005
为正整数集合中的两个或者两个以上的值。
可选地,所述的方法还包括:
对于EPDCCH映射到同一组时频资源上的一组UE的以下参数均设置相 同的值:
setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11;
所述transmissionType-r11设置成集中式资源分配模式。
可选地,所述将经过预处理的多个DCI进行预编码包括:
将所述经过预处理的多个DCI乘以矩阵形式的预编码权值;
所述预编码权值根据以下任意一种或多种准则进行计算:迫零准则、最大发送比准则、以及最小均方差准则。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述方法。
一种发送增强物理下行链路控制信道EPDCCH的装置,包括:
预处理模块,设置为对多个用户设备UE的下行控制信息DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
预编码模块,设置为将经过预处理的多个所述DCI进行预编码;
发射模块,设置为将预编码后的数据映射到EPDCCH中的同一组时频资源上,生成正交频分复用OFDM符号并发射。
可选地,所述预编码模块还设置为对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
可选地,所述DMRS的序列r(m)为:
Figure PCTCN2016075775-appb-000006
其中,m为子载波索引,
Figure PCTCN2016075775-appb-000007
为下行最大资源块RB个数,c()为伪随机序列;
生成所述伪随机序列的初始化函数cinit为:
Figure PCTCN2016075775-appb-000008
其中,ns为子帧中的时隙号;
Figure PCTCN2016075775-appb-000009
由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1};
Figure PCTCN2016075775-appb-000010
为正整数集合中的两个或者两个以上的 值。
可选地,所述的装置还包括:
设置模块,设置为对于EPDCCH映射到同一组时频资源上的一组UE的以下参数均设置相同的值:
setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11;
所述transmissionType-r11设置成集中式资源分配模式。
可选地,所述预编码模块将经过预处理的多个DCI进行预编码包括:
所述预编码模块将所述经过预处理的多个DCI乘以矩阵形式的预编码权值;
所述预编码权值根据以下任意一种或多种准则进行计算:迫零准则、最大发送比准则、以及最小均方差准则。
本发明实施例能够提升多天线系统中EPDCCH的容量和覆盖,提高EPDCCH资源的使用效率,同时节省时频资源。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是实施例一的发送EPDCCH的方法的流程示意图;
图2是实施例一的例子中EPDCCH在发射端的处理流程示意图;
图3是实施例一的例子中EREG到RE的映射过程示意图;
图4是示例1中在集中式传输下,ECCE到EREG的映射示意图;
图5是示例1中8个UE复用时EPDCCH发射过程示意图;
图6是实施例二的发送EPDCCH的装置的示意图。
本发明的较佳实施方式
下面将结合附图对本发明实施例的技术方案进行更详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
EPDCCH携带的是UE特定的信息,这意味着不同的UE可以有不同的EPDCCH配置,并且一个UE的EPDCCH位于分配给该UE的时频资源上。本发明实施例能够使多个UE复用相同的时频资源,具体方案如下。
实施例一
一种发送EPDCCH的方法,如图1所示,包括:
S110:对多个UE的DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
S120:将经过预处理的多个DCI进行预编码;
S130:将预编码后的数据映射到EPDCCH中同一组时频资源上,生成OFDM符号并发射。
S110中,所述预处理还可以包括添加校验码和速率匹配。
图2为本实施例的一个例子,EPDCCH在发射端的处理过程包括:
n(n为大于1的整数)个UE的DCI(DCI 1~DCI n)经过添加16bit的CRC(Cyclic Redundancy Check,循环冗余校验码)、咬尾卷积编码、速率匹配、加扰、调制、层映射之后通过预编码复用在一起,映射到同一组时频资源上面,然后生成OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,映射到天线的相应端口后,经过天线发射出去。其中,预编码是本实施例新添加的步骤,用于多用户复用发射EPDCCH。
其中,所述方法还可以包括:
对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
EPDCCH专用的DMRS经过与DCI相同的预编码,在UE侧用于解调。为了降低导频信令开销,与PDSCH信道TM(Transmission Mode,传输模式)8类似,EPDCCH的DMRS可选用port 107和port 108两种导频图案。
所述DMRS的序列r(m)如下:
Figure PCTCN2016075775-appb-000011
其中,m为子载波索引,
Figure PCTCN2016075775-appb-000012
为下行最大资源块RB个数,c()为伪随机序列;
生成所述伪随机序列的初始化函数cinit定义如下:
Figure PCTCN2016075775-appb-000013
其中,ns为子帧中的时隙号,取值范围可以是从0到最大的时隙号,比如0~19。
目前的协议中,
Figure PCTCN2016075775-appb-000014
由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1}。
可以看出导频生成函数和其初始化函数与UE无关,这意味着对于每一组EPDCCH时频资源,仅有一组导频序列。当多个UE复用该组时频资源时,只能使用相同的导频序列。这时需要利用预编码权值W进行强制空分复用(空分复用:Spatial Multiplexing),W的计算在后面有描述。
但是当UE数较多的时候,比如多天线系统中复用的UE数高达8到12个,仅仅通过预编码权值W并不能很好地区分UE。为了进一步降低UE间的相互干扰,本实施例中,可以将导频序列初始化函数中的参数
Figure PCTCN2016075775-appb-000015
设置为多个值,比如
Figure PCTCN2016075775-appb-000016
为正整数集合中的两个或者两个以上的值;在实际应用时,
Figure PCTCN2016075775-appb-000017
有几个取值,以及具体取哪几个值,可以自行设计。这样每一组EPDCCH时频资源就可以有多组导频序列。当较多UE复用该组时频资源时,不同UE可以选择不同的导频序列,再加上每个UE的预编码权值,可以有效地区分UE并降低UE间的相互干扰。
可选地,预编码权值W为矩阵形式,是发射波束成型矢量,所述将经过预处理的多个DCI进行预编码可以包括:将所述多个DCI乘以矩阵形式的预编码权值。TDD(Time Division Duplexing,时分双工)系统中,预编码权值W由SRS(Sounding Reference Signal,探测参考信号)估计生成,FDD(Frequency Division Duplexing,频分双工)系统预编码权值W由CRS(Cell Reference Signal,小区参考信号)或CSI-RS(Channel State Indication Reference  Signal,信道状态指示参考信号)估计生成并反馈给基站。预编码权值W可以根据多天线系统的天线配置选用ZF(Zero Forcing,迫零)、MRT(Maximum Ratio Transmission,最大发送比)以及MMSE(Minimum Mean Square Error,最小均方差)等准则来计算。下面以ZF准则为例进行说明:
假设共有n个UE复用传输,下行多用户的空间信道矩阵为
Figure PCTCN2016075775-appb-000018
则预编码权值W可以按照下式计算,即:
W=HH(HHH)-1diag(p)1/2
其中p=(p1…pn)T表示功率归一化系数,p1…pn分别为n个UE的功率,其具体的数值可以根据具体的功率分配准则计算出来,diag表示对角矩阵。
经过预编码之后的DCI按照先频域再时域的顺序映射到相应的资源粒子(k,l)上,k和l分别为频域索引和时域索引。这些RE(Resource Element,资源单元)属于分配给EPDCCH传输的EREG(Enhanced Resource Element Group,增强资源单元组)的一部分,且不用来传输CRS和CSI-RS。时域索引l在一个无线帧的第一时隙的起始位置与PDSCH所使用的传输模式有关。如果PDSCH使用传输模式1~9且高层给UE配置参数epdcch-StartSymbol-r11,或者如果PDSCH使用传输模式10且高层给UE配置参数pdsch-Start-r11,则EPDCCH的起始位置lEPDCCHStart由高层参数l′EPDCCHStart获得,否则根据CFI(Canonical Format Indicator,标准格式指示位)获得。
本实施例的一个例子中,EREG到RE的映射过程如图3所示。图3中一个小方格表示一个RE,编号相同的RE属于同一个EREG,比如编号为“0”的RE同属于EREG 0。可以看出一个PRB(Physical Resource Block,物理资源块)pair(对)可以定义16个EREG,即EREG 0~15。
本实施例中,EPDCCH的时频资源分配的细节包括:
小区可以通过参数setConfigToAddModList-r11为UE配置需要监听的EPDCCH-PRB-pair集合(简称为EPDCCH集合)个数,为1个或2个;通 过参数setConfigId-r11对EPDCCH集合的索引q进行配置;通过参数transmissionType-r11对EPDCCH集合q的传输方式进行配置;通过参数numberPRB-Pairs-r11对EPDCCH集合q包含的PRB pair个数进行配置;通过参数resourceBlockAssignment-r11对集合q包含的所有PRB pair的索引进行配置。
本实施例中,为了将一组中的多个UE的EPDCCH映射到相同的时频资源上,所述方法还可以包括:
对于EPDCCH映射到同一组时频资源上的一组UE的以下参数可以均设置相同的值:
setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11。
比如对于EPDCCH映射到同一组时频资源上的第一UE、第二UE,对第一UE的参数setConfigToAddModList-r11所设置的值,与对第二UE的参数setConfigToAddModList-r11所设置的值是相同的;其它四个参数以此类推。
在接收端,复用同一组时频资源的UE需要监听相同的搜索空间。UE针对不同的聚合度水平对搜索空间中的所有ECCE(Enhanced Control Channel Element,增强控制信道单元)进行盲检测,不同UE检测ECCE的顺序不同但是检测结果相同。
本实施例中,EPDCCH传输方式的设置细节包括:
R11定义了两种EPDCCH的传输方式,分别是集中式传输和分布式传输。对于集中式传输而言,其意图在于基于即时的信道条件来选择物理资源以及天线预编码以传输EPDCCH。简单地说,在小区能够获取到足够的下行信道状态信息时,可以使用集中式传输,并将EPDCCH放在信道质量较好的那些PRB pair上传输。这对于利用频域调度增益,以及联合CoMP(Coordinated Multiple Points,协作多点)中的多天线样式是有好处的。
本发明实施例中,不同的UE通过预编码复用到相同的时频资源上。预编码权值的获取依赖于良好的信道状态信息。因此将transmissionType-r11设置成集中式资源分配模式。CMAC(Control Medium Access Control,控制的 媒体接入控制)根据信道质量在可用时频资源中选择信道条件较好的ECCE发送EPDCCH信道信息。
下面以一个示例来说明本发明实施例的具体实施过程。
示例1
(1)参数设置
假设需要进行8UE(UE1~UE8)的EPDCCH的复用传输,采用常规CP,普通子帧。8个UE的RNTI(Radio Network Tempory Identity,无线网络临时标识)值分别为1~8。那8个UE的参数按照下面的表1来配置成相同的值。
表1、参数配置
Figure PCTCN2016075775-appb-000019
根据以上配置可以推算得到表2中的参数:
表2、推算出来的参数
Figure PCTCN2016075775-appb-000020
(2)资源映射
假设集中式传输方式下,在子帧i的EPDCCH集合q中,用于传输EPDCCH的ECCE编号为0~NECCE,q,i-1。则根据协议规定,编号为z的ECCE由索引为
Figure PCTCN2016075775-appb-000021
的PRB pair中的索引为
Figure PCTCN2016075775-appb-000022
的EREG组成。 其中
Figure PCTCN2016075775-appb-000023
表示向下取整,
Figure PCTCN2016075775-appb-000024
表示每个ECCE中的EREG个数(本例中为4)。
可以求出本例中16个ECCE对应的RB pair索引和EREG索引:
表3、ECCE对应的RB pair索引和EREG索引
ECCE编号 PRB pair索引 EREG索引
0 0 {0 4 8 12}
1 0 {1 5 9 13}
2 0 {2 6 10 14}
3 0 {3 7 11 15}
4 1 {0 4 8 12}
5 1 {1 5 9 13}
6 1 {2 6 10 14}
7 1 {3 7 11 15}
8 2 {0 4 8 12}
9 2 {1 5 9 13}
10 2 {2 6 10 14}
11 2 {3 7 11 15}
12 3 {0 4 8 12}
13 3 {1 5 9 13}
14 3 {2 6 10 14}
15 3 {3 7 11 15}
需要注意的是,上表中的PRB pair索引是在假设EPDCCH集合q中的PRB pair编号为0~NECCE,q,i-1的前提下计算出来的。对应到本例中的实际PRB pair索引为47~50。ECCE到EREG的映射具体见图4(图中一个格子表示一个EPEG,格子中的编号0~15为EREG的索引,一个ECCE中包含4个EREG,比如ECCE0包括EPEG{0 4 8 12},其它ECCE所包含的EREG如表3所示)。
假设CMAC根据当前信道条件选择了ECCE0~ECCE3进行8UE的EPDCCH信号的复用传输,那么EPDCCH信道发射过程如图5所示,包括:将DCI 1~DCI 8分别进行信道编码、加扰、调制、层映射之后通过预编码复用在一起,并资源映射到PRB pair 47上,生成OFDM符号后通过天线发射。
(3)搜索空间计算
假设本例中不同聚合度水平下UE需要监听的EPDCCH候选资源个数如 表4所示:
表4、UE需要监听的EPDCCH资源个数
Figure PCTCN2016075775-appb-000025
其中L为聚合度水平,
Figure PCTCN2016075775-appb-000026
为搜索空间中EPDCCH候选资源的个数。则根据协议规定的搜索空间中ECCE的计算公式可以求出8个UE在每个聚合度水平下需要监听的EPDCCH候选资源s所对应的ECCE。
以聚合度水平L=4为例,这时搜索空间
Figure PCTCN2016075775-appb-000027
中共有4个EPDCCH资源s0~s3,假设它们对应的ECCE索引如表5所示:
表5、L=4时搜索空间
Figure PCTCN2016075775-appb-000028
中的EPDCCH资源
EPDCCH资源 ECCE索引
s0 ECCE0~ECCE3
s1 ECCE4~ECCE7
s2 ECCE8~ECCE11
s3 ECCE12~ECCE15
通过协议规定的EPDCCH搜索空间的计算公式可以求出每个UE需要监听的EPDCCH候选资源M0~M3如表6所示:
表6、L=4时每个UE需要监听的EPDCCH候选资源
Figure PCTCN2016075775-appb-000029
由表5和表6可以得出,L=4时8个UE需要监听的EPDCCH资源是相同的,只是对资源的搜索顺序不同。
本发明实施例另外提供一种计算机可读存储介质,存储有计算机可执行 指令,所述计算机可执行指令被执行时实现上述方法。
实施例二、一种发送增强物理下行链路控制信道EPDCCH的装置,如图6所示,包括:
预处理模块61,设置为对多个用户设备UE的下行控制信息DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
预编码模块62,设置为将经过预处理的多个所述DCI进行预编码;
发射模块63,设置为将预编码后的数据映射到EPDCCH中的同一组时频资源上,生成正交频分复用OFDM符号并发射。
本实施例中,所述装置可以全部或部分设置在基站中。
可选地,所述预编码模块62还设置为对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
可选地,所述DMRS的序列r(m)为:
Figure PCTCN2016075775-appb-000030
其中,m为子载波索引,
Figure PCTCN2016075775-appb-000031
为下行最大资源块RB个数,c()为伪随机序列;
生成所述伪随机序列的初始化函数cinit为:
Figure PCTCN2016075775-appb-000032
其中,ns为子帧中的时隙号,取值范围可以是从0到最大的时隙号,比如0~19;
Figure PCTCN2016075775-appb-000033
由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1};为正整数集合中的两个或者两个以上的值。
可选地,所述的装置还包括:
设置模块,设置为对于EPDCCH映射到同一组时频资源上的一组UE配置相同的参数:setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11;
所述transmissionType-r11设置成集中式资源分配模式。
可选地,所述预编码模块将经过预处理的多个DCI进行预编码包括:
所述预编码模块将所述多个DCI乘以矩阵形式的预编码权值;
所述预编码权值根据以下任意一种或多种准则进行计算:迫零准则、最大发送比准则、以及最小均方差准则。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供一种改进的EPDCCH发射方案,使得EPDCCH的覆盖和容量都得到改善,还能提高EPDCCH资源的使用效率,并且节省时频资源。

Claims (10)

  1. 一种发送增强物理下行链路控制信道EPDCCH的方法,包括:
    对多个用户设备UE的下行控制信息DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
    将经过预处理的多个所述DCI进行预编码;
    将预编码后得到的数据映射到EPDCCH中的同一组时频资源上,生成正交频分复用OFDM符号并发射。
  2. 如权利要求1所述的方法,还包括:
    对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
  3. 如权利要求2所述的方法,其中,所述DMRS的序列r(m)为:
    Figure PCTCN2016075775-appb-100001
    Figure PCTCN2016075775-appb-100002
    其中,m为子载波索引,
    Figure PCTCN2016075775-appb-100003
    为下行最大资源块RB个数,c( )为伪随机序列;
    Figure PCTCN2016075775-appb-100004
    其中,ns为子帧中的时隙号;
    Figure PCTCN2016075775-appb-100005
    由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1};
    Figure PCTCN2016075775-appb-100006
    为正整数集合中的两个或者两个以上的值。
  4. 如权利要求1所述的方法,还包括:
    对于EPDCCH映射到同一组时频资源上的一组UE的以下参数均设置相同的值:
    setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11;
    所述transmissionType-r11设置成集中式资源分配模式。
  5. 如权利要求1~4中任一项所述的方法,其中,所述将经过预处理的多个DCI进行预编码包括:
    将所述经过预处理的多个DCI乘以矩阵形式的预编码权值;
    所述预编码权值根据以下任意一种或多种准则进行计算:迫零准则、最大发送比准则、以及最小均方差准则。
  6. 一种发送增强物理下行链路控制信道EPDCCH的装置,包括:
    预处理模块,设置为对多个用户设备UE的下行控制信息DCI分别进行预处理;所述预处理包括:信道编码、加扰、调制和层映射;
    预编码模块,设置为将经过预处理的多个所述DCI进行预编码;
    发射模块,设置为将预编码后的数据映射到EPDCCH中的同一组时频资源上,生成正交频分复用OFDM符号并发射。
  7. 如权利要求6所述的装置,其中,
    所述预编码模块还设置为对EPDCCH的解调参考信号DMRS进行预编码;对DMRS所进行的预编码与对所述DCI进行的预编码相同。
  8. 如权利要求7所述的装置,其中,所述DMRS的序列r(m)为:
    Figure PCTCN2016075775-appb-100007
    Figure PCTCN2016075775-appb-100008
    其中,m为子载波索引,
    Figure PCTCN2016075775-appb-100009
    为下行最大资源块RB个数,c( )为伪随机序列;
    生成所述伪随机序列的初始化函数cinit为:
    Figure PCTCN2016075775-appb-100010
    其中,ns为子帧中的时隙号;
    Figure PCTCN2016075775-appb-100011
    由高层配置,与EPDCCH分配的时频资源组对应,i∈{0,1};
    Figure PCTCN2016075775-appb-100012
    为正整数集合中的两个或者两个以上的值。
  9. 如权利要求6所述的装置,还包括:
    设置模块,设置为对于EPDCCH映射到同一组时频资源上的一组UE的 以下参数均设置相同的值:
    setConfigToAddModList-r11,transmissionType-r11,setConfigId-r11,numberPRB-Pairs-r11以及resourceBlockAssignment-r11;
    所述transmissionType-r11设置成集中式资源分配模式。
  10. 如权利要求6~9中任一项所述的装置,其中,所述预编码模块设置为通过以下方式将经过预处理的多个DCI进行预编码:
    将所述经过预处理的多个DCI乘以矩阵形式的预编码权值;
    所述预编码权值根据以下任意一种或多种准则进行计算:迫零准则、最大发送比准则、以及最小均方差准则。
PCT/CN2016/075775 2015-10-30 2016-03-07 一种发送增强物理下行链路控制信道的方法和装置 WO2016188177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510728208.XA CN106656894A (zh) 2015-10-30 2015-10-30 一种发送增强物理下行链路控制信道的方法和装置
CN201510728208.X 2015-10-30

Publications (1)

Publication Number Publication Date
WO2016188177A1 true WO2016188177A1 (zh) 2016-12-01

Family

ID=57392412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075775 WO2016188177A1 (zh) 2015-10-30 2016-03-07 一种发送增强物理下行链路控制信道的方法和装置

Country Status (2)

Country Link
CN (1) CN106656894A (zh)
WO (1) WO2016188177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447688A (zh) * 2017-07-08 2020-07-24 上海朗帛通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915381A (zh) 2017-07-24 2022-08-16 日本电气株式会社 用于参考信号配置的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056299A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种传输下行控制信令的方法和装置
CN102710375A (zh) * 2012-06-05 2012-10-03 中兴通讯股份有限公司 数据的解调处理、下行资源的调度方法及装置
US20150003352A1 (en) * 2011-12-27 2015-01-01 Lg Electronics Inc. Method and device for receiving data in wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291192B (zh) * 2007-04-18 2012-01-11 中兴通讯股份有限公司 时分双工方式下下行多用户多输入多输出的预编码方法
JP6307434B2 (ja) * 2011-11-16 2018-04-04 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムで制御情報送信のための方法及び装置
CN103391624A (zh) * 2012-05-11 2013-11-13 北京三星通信技术研究有限公司 一种处理e-pdcch的方法和设备
EP2898621B1 (en) * 2012-09-19 2016-03-30 Telefonaktiebolaget LM Ericsson (publ) Method and communication node for mapping an enhanced physical downlink control channel, epdcch, message

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056299A (zh) * 2009-10-28 2011-05-11 北京三星通信技术研究有限公司 一种传输下行控制信令的方法和装置
US20150003352A1 (en) * 2011-12-27 2015-01-01 Lg Electronics Inc. Method and device for receiving data in wireless communication system
CN102710375A (zh) * 2012-06-05 2012-10-03 中兴通讯股份有限公司 数据的解调处理、下行资源的调度方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447688A (zh) * 2017-07-08 2020-07-24 上海朗帛通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置
CN111447688B (zh) * 2017-07-08 2023-04-07 上海琦予通信科技服务中心 一种被用于动态调度的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
CN106656894A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US20230246754A1 (en) Method for indicating reference signal configuration information, base station, and terminal
JP6441377B2 (ja) 非直交多元接続(noma)無線システムおよび方法
US9391752B2 (en) Base station, terminal, communication system, communication method, and integrated circuit
US9560644B2 (en) Base station, terminal, communication system, communication method, and integrated circuit
US9510337B2 (en) Base station apparatus, terminal apparatus, communication method, integrated circuit, and communication system
US20130058285A1 (en) Spatial hashing for enhanced control channel search spaces
CN108235418B (zh) 在无线通信系统中监视下行链路控制信道的方法和装置
JP2018510547A (ja) より高次のmu−mimoのためのdmrs拡張
WO2013068834A1 (en) Method and apparatus for transmitting and receiving downlink control information based on multi-user mimo transmission
CN108024382B (zh) 一种控制信息的传输方法、装置及通信节点
CN112313892B (zh) 用于在无线通信系统中发送和接收调制信号的方法和设备
CN105792373B (zh) 一种干扰信息指示方法、干扰抑制方法及装置
WO2016188177A1 (zh) 一种发送增强物理下行链路控制信道的方法和装置
JP2014033327A (ja) 基地局、端末、通信システム、通信方法および集積回路
KR102598083B1 (ko) 무선 통신 시스템에서 하향링크 제어채널 자원요소 매핑 방법 및 장치
WO2013030793A2 (en) Improvements relating to enhanced control channel search spaces
JP2014023018A (ja) 基地局、端末、通信システム、通信方法および集積回路
GB2494394A (en) Spatial hashing for enhanced control channel search spaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799066

Country of ref document: EP

Kind code of ref document: A1