WO2018132857A1 - Module de batterie - Google Patents

Module de batterie Download PDF

Info

Publication number
WO2018132857A1
WO2018132857A1 PCT/AT2018/060014 AT2018060014W WO2018132857A1 WO 2018132857 A1 WO2018132857 A1 WO 2018132857A1 AT 2018060014 W AT2018060014 W AT 2018060014W WO 2018132857 A1 WO2018132857 A1 WO 2018132857A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
layer
housing
battery
compensation element
Prior art date
Application number
PCT/AT2018/060014
Other languages
German (de)
English (en)
Inventor
Theo VOLCK
Wolfgang Fritz
Volker Hennige
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Publication of WO2018132857A1 publication Critical patent/WO2018132857A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a battery module, in particular a secondary battery, having a housing, in which at least one stack of battery cells arranged one behind the other is arranged, wherein at least one volume compensation element consisting of a composite material is arranged between at least one outer battery cell and the housing.
  • battery modules must be able to withstand, among other things, certain mechanical loads during standardized tests. For example, in some standardized tests, we dictate that the battery module must withstand 1000 times its own weight or be compressible to 50% of its original dimensions.
  • the battery module is usually not allowed to show dangerous reactions (eg fire, leakage, ).
  • Inside the module housing are the battery cells, which are to be protected from the occurring loads and deformations in order to prevent dangerous conditions of the battery cells.
  • So-called pouch cells ie battery cells without a fixed housing, have to be protected particularly well against mechanical loads.
  • Compression Pads Another function of the Compression Pads is the mechanical fixation of the stacked battery cells. In order to ensure the function over the entire service life, the Compression Pads often have a volume requirement that has a negative influence on the achievable energy density of the battery module, since less usable space for the installation of battery cells is available.
  • the object of the invention is to avoid the disadvantages mentioned and to increase the energy density in a battery module of the type mentioned.
  • volume compensation element is designed in sandwich construction and has multiple layers with different physical and / or chemical properties.
  • sandwich construction materials with different properties are assembled in layers to form a component or semi-finished product.
  • the use of composite materials in a battery module in the sandwich construction allows a low weight with a high strength of the housing.
  • the volume compensation element has at least a first, a second and a third layer, wherein the between the first and third layer - the so-called cover layers - arranged second layer - the so-called core - has a lower tensile strength than the first and / or third layer.
  • the core transmits occurring shear forces and supports the cover layers.
  • the first and / or third layer may be formed by a metallic structure, for example of aluminum.
  • the first and / or third layer may have a non-porous structure.
  • the weight and the required volume of the module housing can be proportionately kept low and thus high gravimetric and volumetric power densities of the battery module can be implemented.
  • a core of lighter and less solid material eg: polyurethane foam
  • a shear stress carrier between the cover layers of a material with a high tensile strength (eg: aluminum).
  • the structure of the core is chosen so that it can perform a certain elastic and / or plastic volume change under pressure load.
  • the resulting wall thickness reduction of the housing provides space within the battery module in which the volume increase of the battery cells can be accommodated.
  • An appropriate design of the elastic core material ensures that the required bias voltage of the battery cells remains in the specified range over the entire service life.
  • a housing of a battery module can be realized, which has a high mechanical strength at a low weight. Furthermore, given given outer dimensions of the battery module, there is an advantage in terms of usable volume.
  • At least one volume compensation element is integrated in an end wall of the housing, which is arranged essentially perpendicular to the stacking direction of the stack of battery cells. This results in the advantage that more usable space for the installation of battery cells in a housing is available. The volumetric energy density of the battery module is thus advantageously increased.
  • the housing of the battery module is not executed in sandwich construction.
  • at least one normal to the stacking direction of the volume compensation element adjacent region of the end wall of the housing is not designed in sandwich construction - ie, for example, in single-layer construction - and / or with a smaller wall thickness than the volume compensation element.
  • the thinning of the material results in a predetermined bending point, which absorbs energy during deformation over a defined deformation path, before the solid structure of the housing and the battery cells has to absorb further energy.
  • the material of the second layer is made electrically insulating, which is true for most elastic core materials, then a separate electrical insulation between the battery cells and the module housing at least partially omitted. This allows the battery module to be made very compact.
  • the inventive design of the battery module and the combination of the housing of the battery module in sandwich construction with a system for compensating the change in volume of the battery cells and for biasing and fixing the battery cells during operation the space required for a separate bias and volume compensation system can be completely or partially saved.
  • more usable space is available for the installation of battery cells, which makes it possible to increase the volumetric energy density of the battery module.
  • This very advantageous weight saving also increases the gravimetric energy density.
  • the local absence of a sandwich-type solid structure provides an advantage in path-controlled stress testing because the solid structure is partially protected from high loads and hence collapse.
  • FIG. 1a shows a battery module according to the invention against a volume change of the battery cells
  • FIG. 1b shows the battery module after a volume change of the battery cells
  • Fig. 5 is a force / displacement diagram during the crash test.
  • FIGS. 1 to 4 schematically show a battery module 1 with a housing 2, in which a stack 3 of battery cells 4 is arranged, the arrow 5 indicating the stacking direction of the battery cells 4.
  • the volume compensation element 7 is designed in sandwich construction and has a plurality of layers 8, 9, 10 with different physical and / or chemical properties.
  • the volume compensation element 7 with a to the Battery cell 4 adjacent first layer 8 (cover layer), a second layer 9 (core layer) and a battery cell 4 facing away from the third layer 10 (cover layer), wherein the arranged between the cover layers 8, 10 second layer 9 has a lower tensile strength than that other two layers 8, 10.
  • the first layer 8 and the third layer 10 may for example consist of aluminum.
  • the second layer 9 has a porous electrically non-conductive structure, for example of PU foam (polyurethane foam) on.
  • PU foam polyurethane foam
  • the core layer 9 locally takes over the electrical insulation between the battery cells 4 and the housing 2. On a separate insulation can be omitted.
  • the volume compensation element 7 is integrated into the end wall 6 of the housing 2 arranged substantially normal to the stacking direction 5 of the stack 3 on the battery cells 4. In this case, however, not the entire housing 2, but only the areas 6a of the two end walls 6 adjacent to the battery cells 4 in the stacking direction 5 are designed in sandwich construction. In particular, areas 6b of the end wall 6 of the housing 2 which follow the stacking direction 5 perpendicular to the stacking direction 5 are not realized in sandwich construction and / or as material dilution with a smaller wall thickness S than the volume compensation element 7, as in FIG. 1a, FIG. 1b and FIG is apparent.
  • the wall thickness of the volume compensation element 7 in the non-deformed state is denoted by Si (FIG.
  • FIGS. 2 to 4 show, by way of example, a crash test of the battery module 1, with a force F being exerted on the battery module 1 normal to the stacking direction 5.
  • 2 shows the battery module 1 in the undeformed state
  • FIG. 3 shows the battery module 1 under the action of the force F, the housing 2 collapsing in the region of the predetermined buckling point 11 formed by the material dilution.
  • FIG. 4 shows the battery module 1 with a housing 2 completely collapsed in the region of the predetermined bending point 11.
  • Fig. 5 shows a force F - way X - diagram.
  • the energy consumption during the crash test is composed of a path-controlled first region Xi and a force-controlled second region.
  • the energy absorption takes place by deformation of the housing.
  • the energy is absorbed by the fixed structure of the volume compensation element 7 of the housing 2 and by the battery cells 4 in the region of the predetermined buckling point 11, in the second travel range X 2 .
  • the transition between the first region Xi and the second region X 2 is denoted by A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

L'invention concerne un module (1) de batterie, en particulier d'une batterie secondaire, comprenant un boîtier (2) dans lequel est agencé au moins un empilement (3) d'éléments (4) de batterie alignés, au moins un élément de compensation de volume (7) constitué d'un matériau composite étant agencé entre au moins un élément extérieur (4) de batterie et le boîtier (2) . L'objet de l'invention est d'augmenter la densité énergétique. À cet effet, l'élément de compensation de volume (7) présente une structure de type sandwich et comporte plusieurs couches (8, 9, 10) aux propriétés physiques et/ou chimiques différentes.
PCT/AT2018/060014 2017-01-19 2018-01-18 Module de batterie WO2018132857A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50035/2017A AT519359B1 (de) 2017-01-19 2017-01-19 Batteriemodul
ATA50035/2017 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018132857A1 true WO2018132857A1 (fr) 2018-07-26

Family

ID=61054065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2018/060014 WO2018132857A1 (fr) 2017-01-19 2018-01-18 Module de batterie

Country Status (2)

Country Link
AT (1) AT519359B1 (fr)
WO (1) WO2018132857A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021204435A1 (de) 2021-05-03 2022-11-03 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriemodul

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057430A1 (de) * 2008-11-07 2010-05-12 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Batteriesystem
WO2010076053A1 (fr) * 2008-12-29 2010-07-08 Robert Bosch Gmbh Module de batterie à couche déformable
WO2013000882A1 (fr) * 2011-06-30 2013-01-03 Avl List Gmbh Batterie électrique
WO2013110406A1 (fr) * 2012-01-23 2013-08-01 Robert Bosch Gmbh Module de batterie pourvu d'au moins un élément de batterie comportant une isolation thermique, ainsi que véhicule à moteur
EP2985804A1 (fr) * 2014-08-14 2016-02-17 König Metall GmbH & Co. KG Boitier de batterie
WO2016124386A1 (fr) * 2015-02-06 2016-08-11 Siemens Aktiengesellschaft Accumulateur d'énergie électrique à dissipation de chaleur efficace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051627A1 (de) * 2011-07-07 2013-01-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Baukastensystem für eine Batterie
DE102013112753A1 (de) * 2013-11-19 2015-05-21 Johnson Controls Advanced Power Solutions Gmbh Akkumulatoranordnung und Verfahren zu deren Herstellung
DE102014201836A1 (de) * 2014-02-03 2015-08-06 Robert Bosch Gmbh Galvanische Batteriezelle, insbesondere wiederaufladbare Lithium-Schwefel-Batteriezelle, mit Volumenausgleichselement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057430A1 (de) * 2008-11-07 2010-05-12 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Batteriesystem
WO2010076053A1 (fr) * 2008-12-29 2010-07-08 Robert Bosch Gmbh Module de batterie à couche déformable
WO2013000882A1 (fr) * 2011-06-30 2013-01-03 Avl List Gmbh Batterie électrique
WO2013110406A1 (fr) * 2012-01-23 2013-08-01 Robert Bosch Gmbh Module de batterie pourvu d'au moins un élément de batterie comportant une isolation thermique, ainsi que véhicule à moteur
EP2985804A1 (fr) * 2014-08-14 2016-02-17 König Metall GmbH & Co. KG Boitier de batterie
WO2016124386A1 (fr) * 2015-02-06 2016-08-11 Siemens Aktiengesellschaft Accumulateur d'énergie électrique à dissipation de chaleur efficace

Also Published As

Publication number Publication date
AT519359A4 (de) 2018-06-15
AT519359B1 (de) 2018-06-15

Similar Documents

Publication Publication Date Title
DE102011086050A1 (de) Batteriezelle, Batterie und Kraftfahrzeug
DE102019125382A1 (de) Batterie mit einer Druckbegrenzungsvorrichtung, Funktionsvorrichtung mit einer Batterie und Verfahren zur Druckbegrenzung
DE102019205777A1 (de) Spanneinrichtung für ein Batteriemodul, Batteriemodul und Kraftfahrzeug
DE102014221493A1 (de) Kraftfahrzeugbatteriemodul
DE102016201605A1 (de) Batteriemodul mit einer Mehrzahl an Batteriezellen, Verfahren zu dessen Herstellung und Batterie
DE102019211093A1 (de) Batterie für eine zumindest teilweise elektrisch betriebene/angetriebene Funktionsvorrichtung sowie Funktionsvorrichtung
DE102018206665A1 (de) Strukturbauteil sowie System und Verfahren zur Detektion von Beschädigungen
DE102009006991A1 (de) Elektrischer Energiespeicher für Kraftfahrzeuge
DE102017115878A1 (de) Brennstoffzellenvorrichtung
DE102019111769A1 (de) Batteriemodul einer Hochvolt-Batterie für ein Elektrofahrzeug
AT519359B1 (de) Batteriemodul
DE102016222676A1 (de) Elektrischer Energiespeicher für ein Kraftfahrzeug
DE102020002514A1 (de) Batteriesystem
DE102014106204A1 (de) Batteriezelle sowie Batterie mit ein oder mehreren Batteriezellen
EP3055231B1 (fr) Courroie transporteuse en tube à haute flexibilité et en même temps à haute propriété ignifuge
DE102021202862A1 (de) Hochvolt-Batteriesystem
WO2022053281A1 (fr) Accumulateur d'énergie électrique comportant au moins un empilement d'électrodes et un dispositif de compensation de pression, et procédé
DE102020130835A1 (de) Energiespeichervorrichtung zur Speicherung elektrischer Energie, Verfahren zur Herstellung einer Energiespeichervorrichtung und Kraftfahrzeug
WO2015180914A2 (fr) Boîtier de pile à combustible
DE102021004937A1 (de) Batteriemodulgehäuse für ein Batteriemodul, Batteriemodul sowie elektrischer Energiespeicher
DE102018205609A1 (de) Hochvoltbatterie für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102016225058A1 (de) Hochvoltspeicher mit Pufferbereich und Puffereinrichtung
EP4315467A1 (fr) Module de batterie et procédé de serrage de module de batterie
DE102022001079A1 (de) Gehäuseteil, Batteriegehäuse und Traktionsbatterie
DE102017201290B4 (de) Fahrzeug mit einem Hochvoltspeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18701659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18701659

Country of ref document: EP

Kind code of ref document: A1