WO2018132035A1 - Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии - Google Patents

Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии Download PDF

Info

Publication number
WO2018132035A1
WO2018132035A1 PCT/RU2017/000903 RU2017000903W WO2018132035A1 WO 2018132035 A1 WO2018132035 A1 WO 2018132035A1 RU 2017000903 W RU2017000903 W RU 2017000903W WO 2018132035 A1 WO2018132035 A1 WO 2018132035A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
patient
eye
central region
cos
Prior art date
Application number
PCT/RU2017/000903
Other languages
English (en)
French (fr)
Inventor
Александр Владимирович МЯГКОВ
Сергей Валерьевич ЛИСТРАТОВ
Наталия Павловна ПАРФЕНОВА
Original Assignee
Общество с ограниченной ответственностью "Окей Вижен Ритейл"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Окей Вижен Ритейл" filed Critical Общество с ограниченной ответственностью "Окей Вижен Ритейл"
Priority to KR1020197023663A priority Critical patent/KR102225097B1/ko
Publication of WO2018132035A1 publication Critical patent/WO2018132035A1/ru

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/047Contact lens fitting; Contact lenses for orthokeratology; Contact lenses for specially shaped corneae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the invention relates to the field of ophthalmology medicine, and more particularly, to a method for the treatment of progressive myopia and a lens for the treatment of progressive myopia used to implement the aforementioned method.
  • the pathogenesis of the progression of myopia is a complex and multifactorial process.
  • the main factors in the origin and progression of myopia are considered to be a violation of accommodative ability, a hereditary predisposition and, at the stage of progression, weakening of the support (biomechanical) properties of the scleral membrane of the eye caused by a violation of the metabolism of its collagen and other protein structures.
  • biomechanical biomechanical
  • the method of treating progressive myopia in a patient is determined by the parameters of his eye, including the length of the eye, static and dynamic refraction and the diameter of the pupil, as well as the parameters of the lens are determined by the parameters of the patient’s eye, including the total diameter of the lens and the diameter of its optical zone,
  • the orthokeratological method for treating progressive myopia (hereinafter referred to as the OK method) allows treating progressive myopia, and the use of OK lenses is convenient because they are used only during sleep, and during wakefulness, i.e. in the daytime, they are not worn.
  • the use of OK lenses really slows the growth of the anteroposterior axis of the eye (hereinafter - the PZO of the eye).
  • the results of myopia studies indicate a change in the level of expression of various protein growth factors, the activity of protein metalloproteinases and their inhibitors, the content of transmembrane proteins in the tissues of the eye, including in the extracellular matrix of the sclera, even before the clinical manifestation of myopia, as well as with a marked increase in myopic refraction. Studies have shown that the length of the eye in all peripheral points is less than in the center, which corresponds to the formation of hyperopic peripheral defocus characteristic of eyes with moderate myopia within the studied 30-degree zone.
  • Orthokeratological contact lenses in night-wear mode provide high, stable and well-predicted clinical results in the correction of weak and moderate myopia.
  • the main mechanism of action of the orthokeratological method is a decrease in the refractive power of the cornea in the center due to a change in the thickness of the epithelium (decrease in the center and increase in the middle periphery), as well as due to the deformation of the entire cornea in the form of its "deflection" in the anteroposterior direction.
  • a contraindication is the frequent incidence of colds and / or inflammatory diseases in patients.
  • wearing orthokeratological lenses has to be canceled for at least a few days, which ultimately negatively affects the therapeutic effect.
  • To obtain a therapeutic effect as a result of using the orthokeratological method involving the use of orthokeratological lenses, it is necessary that the patient continuously wears these lenses at night of his sleep, and if he does not do this because he has caught colds and / or inflammatory diseases , then the effectiveness of treatment is significantly reduced.
  • the therapeutic effect using orthokeratologic lenses is cumulative, i.e.
  • the necessary effect is not achieved immediately, as soon as the patient wears OK lenses, the necessary therapeutic effect is manifested after at least a few days, and if the lenses are not used or are used intermittently, the cornea of the patient’s eye returns to its original position, i.e. to the position before the appointment of OK-lenses, the therapeutic effect almost completely disappears, and there is a need for its restoration. In other words, if during treatment there is a long break caused by colds and / or inflammatory diseases, then the effectiveness of treatment is close to zero. Our practice of using the OK method using OK lenses has shown that, unfortunately, this is a significant drawback of this method of treatment of progressive myopia.
  • each such lens contains on the inner surface at least two smoothly passing one into another central region and an annular area concentric to the central area.
  • the inner surface of such a lens has a shape that does not coincide with the shape of the cornea of the eye, which can lead to, and usually leads to, an injury to the eye and, as a result, pain discomfort in the patient.
  • OK lenses are not lenses with controlled defocus and the doctor cannot increase peripheral myopic defocus during treatment, which means that the doctor cannot change the strength of the therapeutic effect on the patient’s eye during treatment.
  • the basis of the present invention is the task (first task) of creating an effective method of treating progressive myopia, which would allow to create a controlled peripheral myopic defocus on the patient’s retina during the entire period of his wakefulness, regardless of the resistance of his cornea, and also minimize the effect of colds and / or inflammatory diseases on the effectiveness of treatment.
  • Another objective (second task) of the present invention is the creation of a lens for the treatment of progressive myopia, the use of which would effectively implement the method of treatment of progressive myopia according to the present invention and reduce the risk of eye injury to the patient.
  • the first problem is solved in a method of treating progressive myopia, which consists in carrying out the following steps:
  • eye parameters including eye length, static and dynamic refraction, absolute visual acuity, pupil diameter, corneal diameter, radius of curvature of the main corneal meridians and average radius of curvature of the cornea;
  • a lens is made that contains at least two smoothly passing one on the other on the outer surface
  • a central region having a circle shape with a diameter of from about 2000 ⁇ m to about 4000 ⁇ m, and with Y values of the optical power at the measurement points, each of which is determined by the following formula
  • x is the distance from the optical axis of the lens to the point of measurement of optical power
  • K is the coefficient of compensation of the spherical aberration of the patient’s eye, which is determined by the following formula
  • Ad is a value equal in value and opposite in sign to the spherical aberration of the eye at the edge of the central region of the optical zone of the lens; and g is the radius of the Central region of the optical zone of the lens; an annular region concentric with the central region, with the values of the additive to the optical power at the measurement points, each of which is determined by the following formula
  • a is the coefficient determined by the formula
  • the patient's eye parameters are re-determined in the patient and the need for continued treatment is determined.
  • the physician does not need to take into account the degree of resistance of the cornea of the patient’s eye, since this method does not directly affect the cornea of the patient’s eye, and thus, the application of the claimed method is limited by the resistance of the cornea of the patient’s eye.
  • a feature of the claimed method is that when it is implemented, the necessary therapeutic effect is achieved almost immediately after putting on the lenses. This is due to the shape of the lens, and not the degree of exposure of the lens to the cornea of the patient’s eye, as occurs with the implementation of the orthokeratological method of treating progressive myopia.
  • the doctor during treatment can enhance or reduce the therapeutic effect on the patient’s eye by increasing or decreasing the peripheral myopic defocus, this is done by replacing previously assigned lenses with stronger or weaker lenses.
  • the implementation of the claimed method involves the manufacture of special lenses for the treatment of progressive myopia.
  • Each of these lenses on its outer surface should contain at least two smoothly passing one into another
  • a central region having a circle shape with a diameter of from about 2000 ⁇ m to about 4000 ⁇ m, and with Y values of the optical power at the measurement points, each of which is determined by the following formula
  • x is the distance from the optical axis of the lens to the point of measurement of optical power
  • K is the coefficient of compensation of the spherical aberration of the patient’s eye, which is determined by the following formula
  • Ad is a value equal in value and opposite in sign to the spherical aberration of the eye at the edge of the central region of the optical zone of the lens; and g is the radius of the Central region of the optical zone of the lens; an annular region concentric with the central region, with values of the additive to the optical power, each of which is determined by the following formula
  • a is the coefficient determined by the formula
  • the change in the optical power of the lens is achieved by changing the shape of its outer surface, and the shape of the inner surface of the lens is as close as possible to the shape of the front surface of the eye, and thus, the risk of eye injury is minimized.
  • the thickness of the lens in the central region lies in the range of about 90 microns to about 240 microns. This is due to the fact that the lens has a certain coefficient of oxygen permeability to the cornea of the human eye, which depends on the thickness of the lens. If the thickness of the lens is more than 240 microns, then the oxygen permeability to the cornea of the human eye will be insufficient and there will be oxygen starvation of the surface of the eye under the lens, and if it is less than 90 microns, then problems arise in the lens with maintaining the given shape and resistance to mechanical stress during its operation.
  • Figure 1 attached to the documents of the present patent application, shows a schematic diagram of the formation of images on the retina of the eye of a patient suffering from progressive myopia.
  • Eye size (anteroposterior axis of the eye) - 24, 15 mm. Spherical aberration within the diameter of 2.5 mm - 0.1 diopters. The pupil diameter is 4 mm. The diameter of the cornea is 1 1.5 mm.
  • the size of the eye is 24.27 mm. Spherical aberration within the diameter of 2.5 mm - 0, 1 diopters.
  • the pupil diameter is 4 mm.
  • the diameter of the cornea is 1 1.5 mm.
  • a lens was made that contained on the outer surface at least two smoothly passing one into another central region, having the shape of a circle with a diameter of 2250 ⁇ m, and with Y values of the optical power at the measurement points, each of which determined by the following formula
  • x is the distance from the optical axis of the lens to the point of measurement of optical power
  • K is the coefficient of compensation for spherical aberration of the patient’s eye, which is determined by the following formula
  • Ad is a value equal in value and opposite in sign to the spherical aberration of the eye at the edge of the central region of the optical zone of the lens; and g is the radius of the Central region of the optical zone lenses; an annular region concentric with the central region, with values of the additive to the optical power, each of which is determined by the following formula
  • Lens for the right eye sphere –3.25 diopters, diameter 14.0 mm, radius of the base curvature of the lens 8.3 mm, the central region of the optical zone of the lens has a circle shape with a diameter of 2250 ⁇ m, the thickness of the lens of the central region of the optical zone is 1500 ⁇ m.
  • Lens for the left eye sphere -3.25 diopters, diameter 14.0 mm, radius of the base curvature of the lens 8.3 mm.
  • the central region of the optical zone of the lens has a circle shape with a diameter of 2250 ⁇ m, the thickness of the lens of the central region of the optical zone is 1500 ⁇ m.
  • the manufactured lenses were put on the patient's eyes, combining its central region with the pupil of the patient. After about fifteen minutes, the patient measured the visual acuity in the lenses:
  • FIG. 2 shows a schematic diagram of the image formation on the retina of a patient suffering from progressive myopia, and a lens made according to the present invention is put on the patient’s eye.
  • the patient wore the lens during the treatment period, which lasted three months, while the patient wore the lens in the daytime, i.e. during her wakefulness.
  • the patient At the end of the treatment period of three months, the patient re-measured visual acuity in contact lenses and the parameters of her eyes without lenses.
  • Subjective examination absolute visual acuity.
  • Right eye sphere -3.25 diopters, absolute visual acuity - 1.2.
  • Eye size (anteroposterior axis of the eye) - 24, 15 mm.
  • the pupil diameter is 4 mm.
  • the diameter of the cornea is 1 1.5 mm.
  • Left eye sphere-3.25 diopters, absolute visual acuity - 1.2.
  • the size of the eye is 24.27 mm.
  • the pupil diameter is 4 mm.
  • the diameter of the cornea is 11.5 mm.
  • the patient was prescribed continued treatment, i.e. in relation to her, all the studies performed during the initial examination were carried out, according to the results of which she was once again manufactured with lenses having the same parameters as the lenses assigned during the initial examination, and she continued to wear these lenses for an additional three months in the daytime .

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

Изобретение относится к области медицины офтальмологии, а более конкретно к способу лечения прогрессирующей миопии и линзе для лечения прогрессирующей миопии, используемой для реализации упомянутого способа. Изобретение решает задачу создания эффективного способа лечения прогрессирующей миопии, который позволял бы создавать управляемый периферический миопический дефокус на сетчатке глаза пациента во время всего периода его бодрствования вне зависимости от резистентности его роговицы, а также минимизировать влияние простудных и/или воспалительных заболеваний на эффективность лечения.

Description

Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии
Изобретение относится к области медицины офтальмологии, а более конкретно к способу лечения прогрессирующей миопии и линзе для лечения прогрессирующей миопии, используемой для реализации упомянутого способа.
По данным исследования 2012 г., около 30% жителей Земли являются близорукими.
США: частота миопии за последние 30 лет увеличилась в 1,7 раза: с 25 до 42% .
Юго-Восточная Азия: Китай и Южная Корея, распространенность миопии достигает до 85-95% среди лиц молодого возраста. Более чем в 20% случаев - миопия высокой степени, т.е. более 6 дптр (диоптрий).
Патогенез прогрессирования близорукости является сложным и многофакторным процессом. Согласно трехфакторной теории патогенеза миопии Э.С. Аветисова, основными факторами происхождения и прогрессирования близорукости считают нарушение аккомодационной способности, наследственную предрасположенность и, на этапе прогрессирования, ослабление опорных (биомеханических) свойств склеральной оболочки глаза, вызванное нарушением метаболизма ее коллагеновых и других белковый структур. В большом числе работ прошлых лет, посвященных изучению склеры in vitro, показано, что нарушение метаболизма, структурных и биомеханических свойств склеры при прогрессирующей миопии в основном обусловлено поражением коллагеновых структур её экстрацеллюлярного матрикса. В частности, установлено, что в заднеэкваториальном отделе склеры глаз с миопией средней и высокой степени снижено содержание общего коллагена и одновременно повышен уровень его растворимых фракций. Причем, сетчатка может генерировать сигналы, модулирующие этот рост
В последние годы широкое распространение получил ортокератологический способ лечения прогрессирующей миопии (смотрите - Епишина М. В., Автореферат на тему КЛИНИЧЕСКОЕ ТЕЧЕНИЕ МИОПИИ НА ФОНЕ ОРТОКЕРАТОЛОГИЧЕСКОЙ КОРРЕКЦИИ И ФУНКЦИОНАЛЬНОГО ЛЕЧЕНИЯ, М., 2015 -24с), по сути это способ временного снижения или устранения миопической рефракции, осуществляемый путем использования жестких газопроницаемых контактных линз, изменяющих форму и оптическую силу роговицы глаза пациента. Для реализации указанного способа применяются специальные ортокератологические линзы (далее - ОК линзы). В ходе лечения по ортокератологическому способу лечения прогрессирующей миопии у пациента определяют параметры его глаза, в том числе - длину глаза, статическую и динамическую рефракции и диаметр зрачка, а также определяют параметры линзы по параметрам глаза пациента, в том числе - общий диаметр линзы и диаметр ее оптической зоны,
радиус базовой кривизны, рефракцию в оптическом центре линзы. Упомянутый ортокератологический способ лечения прогрессирующей миопии (далее - ОК способ) позволяет лечить прогрессирующую миопию, а применение ОК-линз удобно тем, что их используют только во время сна, а во время бодрствования, т.е. в дневное время, их не носят.
Все чаще, в том числе и в научной литературе (Смотрите - Нагорский П. Г. Автореферат диссертации по медицине на тему КЛИНИКО-ЛАБОРАТОРНОЕ ОБОСНОВАНИЕ ПРИМЕНЕНИЯ ОРТОКЕРАТОЛОГИЧЕСКИХ ЛИНЗ ПРИ ПРОГРЕССИРУЮЩЕЙ МИОПИИ У ДЕТЕЙ, М., 2014 -24с, Толорая Р. Р., Автореферат диссертации по медицине на тему ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ НОЧНЫХ ОРТОКЕРАТОЛОГИЧЕСКИХ КОНТАКТНЫХ ЛИНЗ В ЛЕЧЕНИИ ПРОГРЕССИРУЮЩЕЙ БЛИЗОРУКОСТИ, М., 2010 -17 с.) появляются сообщения о тормозящем влиянии ОК-линз на прогрессирование миопии, в ряде случаев подтвержденном не только показателями рефракции, но и ультразвуковой биометрией. Применение ОК-линз действительно замедляется рост передне-задней оси глаза (далее - ПЗО глаза). Результаты исследований миопии, свидетельствуют об изменении уровня экспрессии различных белковых факторов роста, активности белков-металлопротеиназ и их ингибиторов, содержания трансмембранных белков, в тканях глаза, в т.ч. в экстрацеллюлярном матриксе склеры, еще до клинической манифестации миопии, а также при выраженном усилении миопической рефракции. Как показали исследования, длина глаза во всех периферических точках меньше, чем в центре, что соответствует формированию гиперметропического периферического дефокуса, свойственного глазам с миопией средней степени в пределах исследованной 30-ти градусной зоны. Представляет научный и практический интерес разработка методов повышения тормозящего эффекта ортокератологии на прогрессирование миопии. Ортокератологические контактные линзы в режиме ночного ношения обеспечивают высокие, стабильные и хорошо прогнозируемые клинические результаты при коррекции близорукости слабой и средней степени. Основным механизмом действия ортокератологического метода является уменьшение преломляющей силы роговицы в центре вследствие изменения толщины эпителия (уменьшения её в центре и увеличения на средней периферии), а также за счет деформации всей роговицы в форме её «прогиба» в передне-заднем направлении. В настоящее время общепринятым является объяснение торможения роста близорукости с позиций миопического периферического дефокуса, индуцируемого в оптической системе глаза ОК-линзами, тогда как для миопических глаз характерен гиперметропический периферический дефокус.
Однако, противопоказанием к использованию вышеуказанного ортокератологического способа лечения прогрессирующей миопии и к назначению ортокератологических линз является резистентность (излишняя упругость) роговицы глаза пациента, которая приводит к неустойчивому эффекту воздействия и остаточной миопической рефракции в течение времени бодрствования, что заставляет пациента надевать во время его бодрствования несколько пар корригирующих очков в зависимости от степени проявляющейся миопии. Это не только неудобно для пациента, но и отрицательно сказывается на лечебном эффекте в целом, В результате использования корригирующих очков на периферическую область сетчатки минимизировано воздействие положительных сферических аберраций, что уменьшает периферический миопический дефокус во время бодрствования пациента. Это в конечном итоге уменьшает эффективность вышеуказанного способа лечения прогрессирующей миопии.
Также противопоказанием является частая заболеваемость пациентов простудными и/или воспалительными заболеваниями. В случае заболевания приходится отменять ношение ортокератологичских линз по меньшей мере на несколько дней, что в конечном итоге отрицательно сказывается на лечебном эффекте. Для получения лечебного эффекта, как результат использования ортокератологического способа, предусматривающего использование ортокератологических линз, необходимо, чтобы пациент беспрерывно носил эти линзы в ночное время своего сна, и если он этого не делает из-за того, что он заболел простудными и/или воспалительными заболеваниями, то эффективность лечения значительно снижается. Лечебный эффект с применением ортокератологичских линз является накопительным, т.е. необходимый эффект достигается не сразу, как только пациент надевает ОК-линзы, необходимый лечебный эффект проявляется как минимум через несколько дней, и если линзы не используются или используются с перерывами, то роговица глаза пациента возвращается в исходное положение, т.е. в положение до назначения ОК-линз, лечебный эффект практически полностью пропадает, и возникает необходимость его восстановления. Другими словами - если в ходе лечения происходит длительный перерыв, вызванный простудными и/или воспалительными заболеваниями, то эффективность лечения близка к нулю. Наша практика использования ОК-способа с применением ОК-линз показала, что это, к сожалению, существенный недостаток данного способа лечения прогрессирующей миопии.
Как это отмечалось выше применения вышеописанного ортокератологического способа лечения прогрессирующей миопии предусматривает обязательное использование специальных ортокератологических линз. Каждая такая линза содержит на внутренней поверхности по меньшей мере две плавно переходящие одна в другую центральную область и кольцевую область, концентричную центральной области. На практике внутренняя поверхность такой линзы имеет форму, не совпадающую с формой роговицы глаза, что может привести, и как правило приводит, к травме глаза, как следствие - к болевому дискомфорту у пациента.
Следует подчеркнуть, что ОК-линзы не являются линзами с управляемым дефокусом и врач не может в ходе лечения увеличить периферический миопический дефокус, а это означает, что врач в ходе лечения не может изменять силу лечебного воздействия на глаз пациента.
В основу настоящего изобретения положена задача (первая задача) создания эффективного способа лечения прогрессирующей миопии, который позволял бы создавать управляемый периферический миопический дефокус на сетчатке глаза пациента во время всего периода его бодрствования вне зависимости от резистентности его роговицы, а также минимизировать влияние простудных и/или воспалительных заболеваний на эффективность лечения.
Еще одной задачей (вторая задача) настоящего изобретения является создание линзы для лечения прогрессирующей миопии, применение которой позволило бы эффективно реализовать способ лечения прогрессирующей миопии согласно настоящему изобретению и снизить риск травмы глаза пациента.
Первая задача решена в способе лечения прогрессирующей миопии, заключающемся в проведении нижеследующих этапов:
(а) определяют у пациента параметры его глаза, в том числе - длину глаза, статическую и динамическую рефракции, абсолютную остроту зрения, диаметр зрачка, диаметр роговицы, радиус кривизны основных меридианов роговицы и средний радиус кривизны роговицы;
(б) определяют параметры линзы по параметрам глаза пациента, в том числе - общий диаметр линзы и диаметр центральной области оптической зоны, радиус базовой кривизны, рефракцию в оптическом центре линзы и аддидацию (add);
(в) по параметрам линзы изготавливают линзу, содержащую на наружной поверхности по меньшей мере две плавно переходящие одна в другую
центральную область, имеющую форму круга с диаметром от около 2000 мкм до около 4000 мкм, и со значениями Y добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
Y= (l-cos(x))k, в которой
х - расстояние от оптической оси линзы до точки измерения оптической силы; к- коэффициент компенсации сферической аберрации глаза пациента, который определяется по нижеследующей формуле
k - Ad
1— cos(r)
в которой
Ad - величина, равная по значению и обратная по знаку, сферической абберации глаза на краю центральной области оптической зоны линзы; и г - радиус центральной области оптической зоны линзы; кольцевую область, концентричную центральной области, со значениями у добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
у = ((1-cos (x-r)) а) - Ad;
в которой
а - коэффициент, определяемый по формуле
_ add - (1 - cos(r)) k
а ~ 1 - (cos(R-r)) при этом R - радиус оптической зоны линзы;
(г) надевают линзу на глаз пациента, совмещая ее центральную область со зрачком пациента;
(д) измеряют остроту зрения пациента в линзе, после чего пациент носит линзу в течение лечебного периода, длящегося от около двух месяцев до около шести месяцев, во время по меньшей мере своего бодрствования;
(е) по завершению лечебного периода повторно определяют у пациента параметры его глаза, и определяют необходимость продолжения лечения.
Наша лечебная практика и наблюдение за пациентами в ходе и после лечения, предусматривающего использование заявленного нами способа лечения прогрессирующей миопии, показали, что заявленный нами способ позволяет эффективно лечить прогрессирующую миопию. В результате лечения согласно заявленному способу происходит мгновенное, т.е. сразу после надевания линз на глаза пациента, создание периферического миопического дефокуса на сетчатке глаза пациента, что вызывает изменение уровня экспрессии различных белковых факторов роста, изменение активности белков- металлопротеиназ и их ингибиторов, а также изменение содержания трансмембранных белков в тканях глаза в сторону торможения роста глаза и уменьшения степени прогрессирования миопии.
В ходе лечения согласно заявленному способу у врача нет необходимости учитывать степень резистентности роговицы глаза пациента, так как данный способ не предусматривает прямого физического воздействия на роговицу глаза пациента, и, таким образом, ограничение применения заявленного способа в зависимости резистентности роговицы глаза пациента снимается.
Особенностью заявленного способа является то, что при его реализации необходимый лечебный эффект достигается практически сразу после надевания линз. Это обусловлено формой линзы, а не степенью воздействия линзы на роговицу глаза пациента, как это происходит при реализации ортокератологического способа лечения прогрессирующей миопии.
Даже если пациент заболеет и на время болезни снимет линзу, то ранее накопленный лечебный эффект практически не теряется, так как периферический миопический дефокус на сетчатке глаза пациента возникает сразу после надевания линзы. В результате нет необходимости в повторном накоплении ранее достигнутого лечебного эффекта, как это происходит при ортокератологическом лечении.
Следует подчеркнуть, что при реализации заявленного способа врач в ходе лечения может усилить или уменьшить лечебное воздействия на глаз пациента путем увеличения или уменьшения периферического миопического дефокуса, это осуществляется заменой ранее назначенных линз на более сильные или слабые линзы.
Реализация заявленного способа предусматривает изготовление специальных линз для лечения прогрессирующей миопии. Каждая из таких линз на своей наружной поверхности должна содержать по меньшей мере две плавно переходящие одна в другую
центральную область, имеющую форму круга с диаметром от около 2000 мкм до около 4000 мкм, и со значениями Y добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
Y= (l-cos(x))k,
в которой
х - расстояние от оптической оси линзы до точки измерения оптической силы; к- коэффициент компенсации сферической аберрации глаза пациента, который определяется по нижеследующей формуле
д
к = л 1— cos(r)
в которой
Ad - величина, равная по значению и обратная по знаку, сферической абберации глаза на краю центральной области оптической зоны линзы; и г - радиус центральной области оптической зоны линзы; кольцевую область, концентричную центральной области, со значениями у добавки к оптической силе, каждое из которых определяется по нижеследующей формуле
у = ((1 -cos (x-r)) а) - Ad;
в которой
а - коэффициент, определяемый по формуле
_ add - (1 - cos(r)) k
а _ 1 - (cos(R-r)) при этом R - радиус оптической зоны линзы.
В результате осуществления расчетов по формулам, раскрытым выше, мы получаем массив значений оптической силы для каждой точки оптической зоны линзы. И в дальнейшем для каждого пациента индивидуально изготавливается своя линза с учетом полученного массива значений оптической силы и параметров глаза пациента. В результате всего этого каждому пациенту изготавливается своя индивидуальная линза, с помощью которой можно реализовать раскрытый выше способ лечения прогрессирующей миопии.
Следует подчеркнуть, что изменение оптической силы линзы достигается путем изменения формы именно её наружной поверхности, а форма внутренней поверхности линзы максимально приближена к форме передней поверхности глаза, и, таким образом, риск травмы глаза сводится практически к минимуму.
Было бы целесообразно, чтобы толщина линзы в центральной области лежала бы в пределах от около 90 мкм до около 240 мкм. Это связано с тем, что линза имеет определенный коэффициент кислородо-проницаемости к роговице глаза человека, который зависит от толщины линзы. Если толщина линзы будет более 240 мкм, то кислородо-проницаемость к роговице глаза человека будет недостаточна и будет происходит кислородное голодание поверхности глаза, находящейся под линзой, а если она будет меньше 90 мкм, то в линзе возникают проблемы с сохранением заданной формы и стойкости к механическим воздействиям в ходе ее эксплуатации.
Пример лечения прогрессирующей миопии с применением способа и линзы согласно изобретению.
Пациентка 2006 г.р. (10 лет), жалобы на ухудшение зрения вдаль. При первичном осмотре пациентке была диагностирована прогрессирующая миопия.
Диагноз:
Правый глаз: прогрессирующая миопия средней степени. Левый глаз: прогрессирующая миопия средней степени.
На Фиг.1 , приложенной к документам настоящей патентной заявки, показана принципиальная схема формирования изображения на сетчатке глаза пациентки, страдающего прогрессирующей миопией. Объективное обследование: с широким зрачком (статическая рефракция)
Правый глаз, сфера -3,75 дптр, цилиндр -0,5 дптр, ось 157 градусов. Левый глаз, сфера -3,75 дптр, цилиндр -0,25 дптр, ось 138 градусов.
с узким зрачком (динамическая рефракция)
Правый глаз, сфера -3,5 дптр, цилиндр -0,5 дптр, ось 150 градусов; Левый глаз, сфера -3,5 дптр, цилиндр -0,25 дптр, ось 141 градус.
Субъективное обследование: абсолютная острота зрения
Правый глаз: сфера -3,25 дптр, цилиндр -0,5 дптр, ось 150 градусов, абсолютная острота зрения - 1,0.
Размер глаза (передне-задняя ось глаза) - 24, 15 мм. Сферическая аберрация в пределах диаметра 2,5 мм - 0,1 дптр. Диаметр зрачка - 4 мм. Диаметр роговицы - 1 1,5 мм.
Радиус кривизны основных меридианов роговицы: R1 = 7,65 мм, R2 = 7, 69 мм. Средний радиус кривизны роговицы Rcp = 7,67 мм.
Левый глаз: сфера -3,25 дптр, цилиндр -0,25 дптр, ось 141 градус, абсолютная острота зрения - 1,0.
Размер глаза (передне-задняя ось глаза) - 24,27 мм. Сферическая аберрация в пределах диаметра 2,5 мм - 0, 1 дптр. Диаметр зрачка - 4 мм. Диаметр роговицы - 1 1,5 мм. Радиус кривизны основных меридианов роговицы: R1 = 7,59 мм, R2 = 7,63 мм. Средний радиус кривизны роговицы Rcp = 7,61 мм.
Далее пациентке определили параметры линзы по параметрам её глаза, в том числе общий диаметр линзы = 14,0 мм; диаметр центральной области оптической зоны линзы = 2,3 мм. радиус базовой кривизны = 8,3 мм рефракцию в оптическом центре линзы правый глаз: -3,25 дптр; левый глаз: - 3,5 дптр. аддидация (add) = 4,0 дптр.
Необходимая коррекция сферической аберрации в пределах диаметра 2,5 мм - - 0,1 дптр.
Далее, по параметрам линзы для данной пациентки изготовили линзу, содержащую на наружной поверхности по меньшей мере две плавно переходящие одна в другую центральную область, имеющую форму круга с диаметром 2250 мкм, и со значениями Y добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
Y= (l-cos(x))k,
в которой
х - расстояние от оптической оси линзы до точки измерения оптической силы; к- коэффициент компенсации сферической аберрации глаза пациента, который определяется по нижеследующей формуле
Ad
1— cos(r)
в которой
Ad - величина, равная по значению и обратная по знаку, сферической абберации глаза на краю центральной области оптической зоны линзы; и г - радиус центральной области оптической зоны линзы; кольцевую область, концентричную центральной области, со значениями у добавки к оптической силе, каждое из которых определяется по нижеследующей формуле
у = ((1-cos (х-г)) α) - Δά;
в которой
а - коэффициент, определяемый по формуле add— (1— cos(r)) k
= 1 - (cos(R-r)) при этом R - радиус оптической зоны линзы.
Финальные расчеты значений Y и у добавки к оптической силе в зависимости от расстояния х, т.е. расстояния от оптической оси линзы до точки измерения оптической силы, были сведены в нижеследующую таблицу
X Y У
0 0
0,0375 -0,0001
0,075 -0,00041
0,1 125 -0,00092
0,15 -0,00164
0,1875 -0,00256
0,225 -0,00368
0,2625 -0,005
0,3 -0,00652
0,3375 -0,00824
0,375 -0,01015
0,4125 -0,01225
0,45 -0,01454
0,4875 -0,01701
0,525 -0,01967
0,5625 -0,0225
0,6 -0,02551 0,6375 -0,02869
0,675 -0,03203
0,7125 -0,03553
0,75 -0,03919
0,7875 -0,043
0,825 -0,04695
0,8625 -0,05104
0,9 -0,05527
0,9375 -0,05962
0,975 -0,06409
1,0125 -0,06868
1,05 -0,07338
1,0875 -0,07818
1,125 -0,08308
1,1625 -0,08806
1,2 -0,09313
1,25 -од -ο,ι
1,275 -0,09891
1,3125 -0,09321
1,35 -0,08262
1,3875 -0,06716
1,425 -0,04685
1,4625 -0,02173
1,5 0,008177
1,5375 0,042824
1,575 0,082162
1,6125 0,126138
1,65 0,174688
1,6875 0,227745
1,725 0,285233
1,7625 0,347073
1,8 0,413178
1,8375 0,483453
1,875 0,557801
1,9125 0,6361 17 1,95 0,71829
1,9875 0,804206
2,025 0,893743
2,0625 0,986776
2,1 1,083173
2,1375 1,1828
2,175 1,285515
2,2125 1,391176
2,25 1,499632
2,2875 1,610732
2,325 1,72432
2,3625 1,840235
2,4 1,958315
2,4375 2,078393
2,475 2,200302
2,5125 2,323869
2,55 2,44892
2,5875 2,57528
2,625 2,702771
2,6625 2,831215
2,7 2,960429
2,7375 3,090233
2,775 3,220445
2,8125 3,35088
2,85 3,481356
2,8875 3,61 1688
2,925 3,741695
2,9625 3,871193
3 4
Данные, раскрытые в таблице выше, в комбинации с другими параметрами, в том числе и с учетом параметров глаза пациентки, были введены в специализированное программное обеспечение прецизионного токарного станка, который изготовил индивидуальные линзы для конкретной пациентки. В результате изготовления пациентке были предоставлены линзы с нижеследующими параметрами
Линза для правого глаза: сфера -3,25 дптр, диаметр 14,0 мм, радиус базовой кривизны линзы 8,3 мм, центральная область оптической зоны линзы имеет форму круга с диаметром 2250 мкм, толщина линзы центральной области оптической зоны - 1500 мкм.
Линза для левого глаза: сфера -3,25 дптр, диаметр 14,0 мм, радиус базовой кривизны линзы 8,3 мм. центральная область оптической зоны линзы имеет форму круга с диаметром 2250 мкм, толщина линзы центральной области оптической зоны - 1500 мкм.
Далее изготовленные линзы были надеты на глаза пациентки, совмещая ее центральную область со зрачком пациентки. Примерно через пятнадцать минут у пациентки измерили остроту зрения в линзах:
Острота зрения правого глаза = 1,0;
Острота зрения левого глаза = 1 ,0;
Сразу после надевания линз на глаза пациентки произошло создание периферического миопического дефокуса на сетчатке глаза. Формирование периферического миопического дефокуса на сетчатке глаза пациентки изображено на Фиг.2, приложенной к документам настоящей патентной заявки, на которой показана принципиальная схема формирования изображения на сетчатке глаза пациентки, страдающего прогрессирующей миопией, при этом на глаз пациентки надета линза, выполненная согласно настоящему изобретению.
После это пациентка носила линзы в течение лечебного периода, длившегося три месяца, при этом пациент носил линзы в дневное время, т.е. во время её бодрствования.
По завершению лечебного периода в три месяца пациентке повторно измерили остроту зрения в контактных линзах и параметры её глаза без линз.
Острота зрения правого глаза = 1 ,2
Острота зрения левого глаза = 1 ,2
Объективное обследование: с широким зрачком (статическая рефракция):
Правый глаз, сфера -3,75 дптр, цилиндр -0,25 дптр, ось 157 градусов.
Левый глаз, сфера -3,75 дптр. с узким зрачком (динамическая рефракция):
Правый глаз, сфера -3,5 дптр,
Левый глаз, сфера -3,5 дптр,
Субъективное обследование: абсолютная острота зрения Правый глаз: сфера -3,25 дптр, абсолютная острота зрения - 1,2. Размер глаза (передне-задняя ось глаза) - 24, 15 мм. Диаметр зрачка - 4 мм. Диаметр роговицы - 1 1,5 мм.
Радиус кривизны основных меридианов роговицы: R1 = 7,65 мм, R2 = 7, 69 мм.
Средний радиус кривизны роговицы Rcp = 7,67 мм.
Левый глаз: сфера -3,25 дптр, абсолютная острота зрения - 1,2. Размер глаза (передне-задняя ось глаза) - 24,27 мм. Диаметр зрачка - 4 мм. Диаметр роговицы - 11,5 мм.
Радиус кривизны основных меридианов роговицы: R1 = 7,59 мм, R2 = 7,63 мм. Средний радиус кривизны роговицы Rcp = 7,61 мм.
По результатам исследований пациентке назначили продолжение лечения, т.е. в ее отношении были произведены все исследования, осуществленные при первичном осмотре, по результатам которых её еще раз изготовили линзы, имеющие такие же параметры, как и линзы, назначенные при первичном осмотре, и она продолжала носить эти линзы еще дополнительно три месяца в дневное время суток.
В конечном итоге, через 6 месяцев лечебного периода ношения назначенных мягких контактных линз с управляемым дефокусом, у пациентки не наблюдалось существенной прогрессии близорукости, а именно ПЗО и рефракция не изменились. Также на фоне ношения линз повысилась абсолютная острота зрения в коррекции каждого глаза с 1,0 до 1,2, что говорит об эффективности данного способа коррекции.

Claims

Формула изобретения
1. Способ лечения прогрессирующей миопии, заключающийся в проведении нижеследующих этапов:
(а) определяют у пациента параметры его глаза, в том числе - длину глаза, статическую и динамическую рефракции, абсолютную остроту зрения, диаметр зрачка, диаметр роговицы, радиус кривизны основных меридианов роговицы и средний радиус кривизны роговицы;
(б) определяют параметры линзы по параметрам глаза пациента, в том числе - общий диаметр линзы и диаметр центральной области оптической зоны, радиус базовой кривизны, рефракцию в оптическом центре линзы и аддидацию (add);
(в) по параметрам линзы изготавливают линзу, содержащую на наружной поверхности по меньшей мере две плавно переходящие одна в другую центральную область, имеющую форму круга с диаметром от около 2000 мкм до около 4000 мкм, и со значениями Y добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
Y= (l-cos(x))k,
в которой
х - расстояние от оптической оси линзы до точки измерения оптической силы; к- коэффициент компенсации сферической аберрации глаза пациента, который определяется по нижеследующей формуле k - М
1— cos(r)
в которой
Ad - величина, равная по значению и обратная по знаку, сферической абберации глаза на краю центральной области оптической зоны линзы; и г - радиус центральной области оптической зоны линзы; кольцевую область, концентричную центральной области, со значениями у добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле у = ((1-cos (x-r)) a) - Ad; в которой a - коэффициент, определяемый по формуле add— (1— cos(r)) k
α = 1 - (cos(R-r)) при этом R - радиус оптической зоны линзы;
(г) надевают линзу на глаз пациента, совмещая ее центральную область со зрачком пациента;
(д) измеряют остроту зрения пациента в линзе, после чего пациент носит линзу в течение лечебного периода, длящегося от около двух месяцев до около шести месяцев, во время по меньшей мере своего бодрствования;
(е) по завершению лечебного периода повторно определяют у пациента параметры его глаза, и определяют необходимость продолжения лечения.
2. Способ лечения прогрессирующей миопии по п.1, в котором, если пациенту показано продолжение лечения, то повторяют этапы (а) - (е).
3. Линза для лечения прогрессирующей миопии, содержащая на наружной поверхности по меньшей мере две плавно переходящие одна в другую центральную область, имеющую форму круга с диаметром от около 2000 мкм до около 4000 мкм, и со значениями Y добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
Y= (l-cos(x))k,
в которой
х - расстояние от оптической оси линзы до точки измерения оптической силы; к- коэффициент компенсации сферической аберрации глаза пациента, который определяется по нижеследующей формуле
Ad
1— cos(r)
в которой Ad - величина, равная по значению и обратная по знаку, сферической абберации глаза на краю центральной области оптической зоны линзы; и г - радиус центральной области оптической зоны линзы; кольцевую область, концентричную центральной области, со значениями у добавки к оптической силе в точках измерения, каждое из которых определяется по нижеследующей формуле
у = ((1 -cos (x-r)) а) - Ad;
в которой
а - коэффициент, определяемый по формуле add - (1 - cos(r)) k
а = 1 - (cos(R-r)) при этом R - радиус оптической зоны линз.
4. Линза для лечения прогрессирующей миопии по п.З, в которой толщина линзы в центральной области лежит в пределах от около 90 мкм до около 240 мкм.
PCT/RU2017/000903 2017-01-13 2017-12-05 Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии WO2018132035A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197023663A KR102225097B1 (ko) 2017-01-13 2017-12-05 진행성 근시의 치료 방법 및 진행성 근시 치료용 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017101126 2017-01-13
RU2017101126A RU2657854C1 (ru) 2017-01-13 2017-01-13 Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии

Publications (1)

Publication Number Publication Date
WO2018132035A1 true WO2018132035A1 (ru) 2018-07-19

Family

ID=62620430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000903 WO2018132035A1 (ru) 2017-01-13 2017-12-05 Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии

Country Status (3)

Country Link
KR (1) KR102225097B1 (ru)
RU (1) RU2657854C1 (ru)
WO (1) WO2018132035A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125679A (zh) * 2023-01-19 2023-05-16 天津松润医疗器械有限公司 一种个性化离焦参数确定方法、配镜方法和效果评估设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058407A1 (en) * 2001-07-11 2003-03-27 Aller Thomas A. Myopia progression control using bifocal contact lenses
WO2006086839A1 (en) * 2005-02-15 2006-08-24 Queensland University Of Technology Control of myopia using contact lenses
RU2013119731A (ru) * 2010-09-27 2014-11-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Асимметричная смещаемая контактная линза
CN104834107A (zh) * 2015-01-29 2015-08-12 广州琦安琦视觉科技有限公司 一种近视性离焦型功能性隐形眼镜
RU2575048C2 (ru) * 2009-06-25 2016-02-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Конструкция офтальмологических линз для контроля близорукости

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7882122B2 (en) * 2005-03-18 2011-02-01 Capital Source Far East Limited Remote access of heterogeneous data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058407A1 (en) * 2001-07-11 2003-03-27 Aller Thomas A. Myopia progression control using bifocal contact lenses
WO2006086839A1 (en) * 2005-02-15 2006-08-24 Queensland University Of Technology Control of myopia using contact lenses
RU2575048C2 (ru) * 2009-06-25 2016-02-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Конструкция офтальмологических линз для контроля близорукости
RU2013119731A (ru) * 2010-09-27 2014-11-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Асимметричная смещаемая контактная линза
CN104834107A (zh) * 2015-01-29 2015-08-12 广州琦安琦视觉科技有限公司 一种近视性离焦型功能性隐形眼镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125679A (zh) * 2023-01-19 2023-05-16 天津松润医疗器械有限公司 一种个性化离焦参数确定方法、配镜方法和效果评估设备
CN116125679B (zh) * 2023-01-19 2023-10-10 天津松润医疗器械有限公司 一种个性化离焦参数确定方法、配镜方法和效果评估设备

Also Published As

Publication number Publication date
RU2657854C1 (ru) 2018-06-15
KR102225097B1 (ko) 2021-03-08
KR20190105065A (ko) 2019-09-11

Similar Documents

Publication Publication Date Title
TWI828696B (zh) 包含用於預防及/或減緩近視加深之微透鏡的眼用鏡片
JP6039155B2 (ja) コンタクトレンズ及び方法
EP3031457B1 (en) Medicament comprising pilocarpine and brimonidine
US9551883B2 (en) Contact lens for keratoconus
TWI587035B (zh) 用於預防及/或減緩近視加深之非對稱鏡片的設計及方法
CN102763025B (zh) 用于新兴近视调节的系统和方法
US20090171305A1 (en) Combination therapy for long-lasting ckr
Stillitano et al. Corneal changes and wavefront analysis after orthokeratology fitting test
JP2015503769A (ja) 多焦点光学レンズ
JP2016053714A (ja) 近視が進行する者が経験する視力変化を最小限に抑えるためのレンズ設計および方法
JPH02211119A (ja) トーリック型眼内レンズの乱視度数及び眼内レンズ度数決定方法
TW202131060A (zh) 用於近視管理之隱形眼鏡解決方案
RU2657854C1 (ru) Способ лечения прогрессирующей миопии и линза для лечения прогрессирующей миопии
RU2737199C1 (ru) Способ лечения гиперметропии с помощью наведенного гиперметропического дефокуса, основанный на физиологической элонганции глазного яблока у детей
Liang et al. Correlation of accommodation and lens location with higher-order aberrations and axial length elongation during orthokeratology lens wear
Sah et al. The effects of soft contact lens wear on corneal thickness, curvature, and surface regularity
RU2780271C1 (ru) Ортокератологическая линза для замедления развития близорукости
RU2792078C2 (ru) Офтальмологические линзы, содержащие элементарные линзы, для предотвращения и/или замедления прогрессирования миопии
US20240047037A1 (en) System and method for determining a modification or a change of an initial myopia control solution used by a myopic subject
Kholmirzaev et al. MODERN CONTACT CORRECTION
Levit A randomised control trial of corneal vs. scleral rigid gas permeable contact lenses for ectatic corneal disorders
Azizi Prescription of Spectacles in Keratoconus
Hsu et al. Corneal thickness changes after long-term ortho-k lens wear in astigmatic children
Gujaničić Multifocal Contact Lenses
Levine Rigid Gas Permeable Contact Lens Management of Infantile Aphakia Status-Post Cataract Extraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023663

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17891763

Country of ref document: EP

Kind code of ref document: A1