WO2018131676A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018131676A1
WO2018131676A1 PCT/JP2018/000623 JP2018000623W WO2018131676A1 WO 2018131676 A1 WO2018131676 A1 WO 2018131676A1 JP 2018000623 W JP2018000623 W JP 2018000623W WO 2018131676 A1 WO2018131676 A1 WO 2018131676A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
stti
monitoring
dci
tti
Prior art date
Application number
PCT/JP2018/000623
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
リュー リュー
ギョウリン コウ
ホイリン ジャン
キャン リ
ヨン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP18739384.8A priority Critical patent/EP3570609A4/en
Priority to JP2018561428A priority patent/JP7197367B2/ja
Priority to AU2018208325A priority patent/AU2018208325B2/en
Priority to CN201880016237.5A priority patent/CN110383921B/zh
Priority to US16/477,335 priority patent/US20190372743A1/en
Publication of WO2018131676A1 publication Critical patent/WO2018131676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE successor systems (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT: New Radio Access Technology), LTE Rel.
  • LTE-A LTE-Advanced
  • FRA Full Radio Access
  • 4G Long Term Evolution
  • 5G 5G +
  • NR New RAT: New Radio Access Technology
  • LTE Rel New RAT: New Radio Access Technology
  • a transmission time interval (also referred to as a subframe) is used for downlink (DL) and / or uplink. (UL: Uplink) communication is performed.
  • the 1 ms TTI is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ-ACK: Hybrid Automatic Repeat reQuest-Acknowledge).
  • the time domain for the DL control channel for example, PDCCH: Physical Downlink Control Channel
  • the DL control channel Data channel DL data channel (for example, PDSCH: Physical Downlink Shared Channel) and / or UL data channel (for example, PUSCH: Physical Uplink Shared Channel)
  • DCI Downlink Control Information
  • the DL control channel is arranged over the entire system band.
  • UL control channels for example, PUSCH: Physical Uplink Control Channel
  • UCI uplink control information
  • a UL data channel for example, PUSCH: Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the TTI for example, 1 ms TTI
  • the TTI is different from the 1 ms TTI (subframe) in the existing LTE system.
  • Introduction of TTI also referred to as short TTI, sTTI, etc. is under study.
  • the user terminal that communicates with sTTI monitors (blind decoding) DL control channel candidates (DL control channel candidates) with sTTI, and detects DCI for sTTI.
  • DL control channel candidates DL control channel candidates
  • the power consumption of the user terminal may increase as compared to the case of monitoring the DL control channel candidate for each 1 ms TTI. Therefore, it is desirable to appropriately control the monitoring of DL control channel candidates in sTTI.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a user terminal and a wireless communication method capable of appropriately controlling monitoring of DL control channel candidates in sTTI.
  • One aspect of the user terminal of the present invention includes a receiving unit that receives downlink control information (DCI), and a DL control channel in a second TTI that is shorter than the first transmission time interval (TTI) based on the DCI.
  • DCI downlink control information
  • TTI transmission time interval
  • 1A and 1B are diagrams illustrating a control example of enabling or disabling sTTI monitoring. It is a figure which shows an example of the detection error of slow DCI. It is a figure which shows the example of determination of the period and / or start position of slow DCI which concern on a 1st aspect. It is a figure which shows an example of the application period of the validation / invalidation which concerns on a 1st aspect. It is a figure which shows the 1st example of the slow DCI common to the user terminal which concerns on a 1st aspect. It is a figure which shows the 2nd example of the slow DCI common to the user terminal which concerns on a 1st aspect.
  • the first predetermined number of symbols (maximum 3 symbols) of 1 ms TTI covers the entire frequency band (system band) of a certain carrier (CC, cell).
  • DL control channels also referred to as PDCCH, legacy PDCCH, etc. are arranged.
  • frequency resources for example, physical resource block (PRB), resource block
  • PRB physical resource block
  • RBG Resource Block Group
  • TDM Time Division Multiplexing
  • a user terminal that communicates using sTTI monitors (blind decoding) one or more candidates (hereinafter also referred to as sPDCCH candidates) of a DL control channel for sTTI (hereinafter also referred to as sPDCCH candidates), and is specific to the user terminal for sTTI.
  • DCI also referred to as fast DCI, sDCI, sDCI1, first sDCI, etc.
  • the fast DCI schedules a DL data channel (also referred to as sPDSCH or the like) and / or a UL data channel (also referred to as sPUSCH or the like) for sTTI.
  • Such monitoring of sPDCCH candidates for detecting fast DCI is also referred to as sTTI monitoring.
  • the user terminal when the user terminal performs sTTI monitoring for each sTTI within each subframe, the number of times of blind decoding per subframe increases or blind decoding is performed continuously every short time interval (for example, Because blind decoding is performed every 2 to 7 symbols), the power consumption of the user terminal may increase. Therefore, it has been studied to control activation or deactivation of sTTI monitoring by DCI for controlling sTTI monitoring (also referred to as slow DCI, second sDCI, sDCI2 or the like). Yes.
  • FIG. 1 is a diagram illustrating a control example of enabling or disabling sTTI monitoring.
  • sTTI # 0 to # 5 are provided in one subframe (1 ms TTI), sTTI # 0 and # 5 are configured with three symbols, and sTTI # 1 to # 4 are It is assumed to be composed of two symbols. Note that the number of sTTIs in one subframe and the number of symbols per sTTI are not limited to those shown in FIGS. 1A and 1B.
  • the legacy PDCCH allocation area is assumed to be 3 symbols, but is not limited thereto.
  • the slow DCI is transmitted using the legacy PDCCH, but the present invention is not limited to this.
  • FIG. 1A shows a case where sTTI monitoring is enabled by slow DCI.
  • the user terminal detects a slow DCI that enables sTTI monitoring by monitoring (blind decoding) a legacy PDCCH candidate (legacy PDCCH candidate) in a legacy PDCCH allocation region.
  • the user terminal performs sTTI monitoring in each of sTTI # 1 to # 5 based on the detected slow DCI.
  • the user terminal performs sPDSCH reception or sPUSCH transmission based on the detected fast DCI in sTTI for detecting fast DCI for the user terminal.
  • FIG. 1B shows a case where sTTI monitoring is invalidated by slow DCI.
  • the user terminal detects a slow DCI that invalidates sTTI monitoring by monitoring legacy PDCCH candidates (blind decoding). In this case, the user terminal can stop sTTI monitoring in all sTTIs # 1 to # 5.
  • sTTI monitoring when enabling or disabling sTTI monitoring is controlled by slow DCI, sTTI monitoring can be disabled according to scheduling of sPDSCH or sPUSCH for the user terminal, and an increase in power consumption of the user terminal can be prevented. .
  • the user terminal fails to detect the slow DCI that enables sTTI monitoring, the performance may be greatly degraded.
  • FIG. 2 is a diagram showing an example of a detection error of slow DCI. Note that the configuration of the subframe shown in FIG. 2 is the same as that shown in FIGS. 1A and 1B.
  • the user terminal when the user terminal fails to detect the slow DCI that enables sTTI monitoring, the user terminal can schedule sPDSCH for the user terminal in sTTI # 1 to # 5. sTTI monitoring is not performed in sTTI # 1 to # 5. Therefore, there is a possibility that the reception of sPDSCH fails and the performance is greatly deteriorated.
  • the present inventors have conceived of preventing performance degradation by controlling sTTI monitoring in a fail-safe manner (that is, assuming that sTTI monitoring is enabled when slow DCI is not detected). did.
  • the present inventors indicate that the slow DCI indicates that the sTTI monitoring is enabled or disabled and the user terminal does not detect the slow DCI (in particular, the detection of the slow DCI indicating that the sTTI monitoring is enabled).
  • STTI monitoring is assumed to be effective (first mode), or slow DCI indicating that the sTTI monitoring is disabled is detected with the sTTI monitoring being enabled as the default operation of the user terminal.
  • sTTI monitoring is enabled (second aspect), unless otherwise noted.
  • the time length (symbol length) of symbols constituting a subframe (1 ms TTI) and the symbol length constituting sTTI are assumed to be equal (that is, the subcarrier interval is equal).
  • the symbol length of sTTI may be shorter than the symbol length of the subframe.
  • a subframe (1 ms TTI) may be configured with a TTI having a longer time length than sTTI, and may not be 1 ms.
  • the slow DCI includes instruction information for instructing to enable or disable sTTI monitoring (hereinafter also referred to as “validation / invalidation”).
  • the user terminal When the slow DCI is normally detected, the user terminal enables or disables sTTI monitoring according to the instruction information included in the slow DCI.
  • the slow DCI when the slow DCI is not detected (when the detection of the slow DCI fails), the user terminal assumes that sTTI monitoring is enabled.
  • the slow DCI including the instruction information may be transmitted in the legacy PDCCH (in the legacy PDCCH allocation area), or the sPDCCH (predetermined sPDCCH area) of a specific sTTI (for example, the first sTTI in the subframe) Within).
  • the slow DCI is transmitted on the legacy PDCCH
  • the user terminal monitors the one or more legacy PDCCH candidates and detects the slow DCI.
  • the slow DCI is transmitted using the sPDCCH of a specific sTTI
  • the user terminal monitors the one or more sPDCCH candidates in the specific sTTI and detects the slow DCI.
  • the slow DCI including the instruction information is transmitted at a predetermined cycle.
  • the period (Periodicity) and / or the start position (Start position) of the slow DCI is set based on parameters relating to the slow DCI.
  • the parameter regarding the slow DCI is notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling.
  • the parameters related to the slow DCI may include, for example, an identifier of a configuration of the slow DCI (also referred to as a configuration identifier, a configuration index, IsDCI2, or the like).
  • a parameter related to the slow DCI for example, a configuration identifier (I sDCI2 ) indicating the cycle and / or start position
  • the slow DCI including the instruction information is a legacy PDCCH.
  • the cycle and / or start position of the slow DCI may be a legacy PDCCH value (for example, for each subframe).
  • the configuration identifier (I sDCI2 ) of the slow DCI is notified from the radio base station to the user terminal by higher layer signaling when the slow DCI is transmitted by the legacy PDCCH, and the slow DCI is transmitted by the sPDCCH of a specific sTTI.
  • the radio base station may notify the user terminal by higher layer signaling or legacy PDCCH.
  • the user terminal determines the slow DCI cycle (sDCI2 PERIODICITY ) and / or the start position based on the configuration identifier (I sDCI2 ).
  • the period and / or start position is determined in units of subframes (TTI, for example, 1 ms) when slow DCI is transmitted by legacy PDCCH, and when slow DCI is transmitted by sPDCCH of a specific sTTI.
  • STTI may be set as a unit.
  • FIG. 3 is a diagram illustrating an example of determining the period and / or start position of the slow DCI according to the first aspect.
  • the slow DCI configuration identifier (I sDCI2 ) includes a slow DCI cycle (also called a transmission cycle, sDCI2 PERIODICITY, etc.) and / or a slow DCI start offset (subframe offset, offset, N OFFSET, sDCI2 etc.).
  • the user terminal may determine the slow DCI period (sDCI2 PERIODICITY ) as a value associated with the configuration identifier (I sDCI2 ) from the radio base station. For example, in FIG. 3, if the value of the configuration identifier (I sDCI2 ) is 0-4, 5-14, 15 , the user terminal sets the slow DCI period (sDCI2 PERIODICITY ) to 5, 10, 1 [TTI, respectively. Or sTTI].
  • the user terminal determines the start offset (N OFFSET, sDCI2 ) of the slow DCI to a value associated with the configuration identifier (I sDCI2 ) from the radio base station , and based on the start offset (N OFFSET, sDCI2 )
  • the start position of the slow DCI may be determined. For example, in FIG.
  • the user terminal determines the start position of the slow DCI based on the start offset (N OFFSET, sDCI2 ). For example, the user terminal may determine a TTI or sTTI that satisfies the following equation (1) as a start position of a slow DCI (also referred to as a transmission subframe or a transmission instance).
  • n f is a system frame number (SFN)
  • i is a TTI number or sTTI number in a radio frame
  • N OFFSET is the start offset
  • sDCI2 is the start offset
  • sDCI2 PERIODICITY is the slow frame It is the period of DCI.
  • ⁇ Validation or invalidation application period> even when the user terminal has the same effective period of sTTI monitoring based on the instruction information included in the slow DCI, the same as the slow DCI period (sDCI2 PERIODICITY ) Good.
  • FIG. 4 is a diagram illustrating an example of an application period of validation / invalidation according to the first aspect.
  • the slow DCI is transmitted using the legacy PDCCH.
  • the slow DCI may be transmitted using the sPDCCH of a specific sTTI.
  • FIG. 4 illustrates a case where the slow DCI cycle (sDCI2 PERIODICITY ) is 5 subframes and the start position of the slow DCI is subframe # 0. However, FIG. It is not something that can be done.
  • the user terminal can detect the five subframes (# 5 to # 5 to the transmission timing of the next slow DCI). In # 9), sTTI monitoring is disabled.
  • the subframe # 0 of the radio frame # 1 is the transmission timing of the slow DCI including instruction information for enabling / disabling sTTI monitoring, but the user terminal fails to detect the slow DCI in the subframe # 0. To do. In this case, the user terminal validates sTTI monitoring in five subframes (# 0 to # 4) until the next slow DCI transmission timing.
  • the user terminal assumes that sTTI monitoring is enabled. Therefore, when the detection of the slow DCI fails, it is possible to prevent the performance from deteriorating due to the failure in receiving the sPDSCH.
  • the slow DCI may include, for example, information on the length of sTTI (or the number of symbols) and information on frequency resources for performing sTTI monitoring, in addition to the instruction information for instructing the validation / invalidation of sTTI monitoring. .
  • sTTI parameter sets that can be used for the user terminal are set to 2 or more by upper layer signaling, and slow DCI can be detected.
  • slow DCI instructs the validation of sTTI monitoring
  • sTTI monitoring is performed based on any one parameter set included in the slow DCI
  • STTI monitoring may be performed based on any one of the parameter sets.
  • sTTI scheduling can be performed more flexibly when the slow DCI detection is successful.
  • slow DCI signaling including instruction information for enabling / disabling sTTI monitoring will be described in detail.
  • the slow DCI including the instruction information may be common to a plurality of user terminals or may be specific to the user terminals.
  • the slow DCI common to the user terminals may include instruction information indicating the activation / invalidation of sTTI monitoring of one or more user terminals.
  • the instruction information may be a value of a predetermined field (for example, an sTTI monitoring (SM) field) in the slow DCI.
  • SM sTTI monitoring
  • the instruction information in the slow DCI common to the user terminals is set for each user terminal (first Example), enabling / disabling sTTI monitoring for each CC of each user terminal (second example) or for each group (CC group) including one or more CCs of each user terminal (third example) May indicate.
  • FIG. 5 is a diagram illustrating a first example of slow DCI common to user terminals according to the first aspect.
  • the SM field in the slow DCI is composed of a predetermined number of bits identified by a predetermined index (also referred to as an sTTI monitoring (SM) index or the like).
  • the SM field includes n bits identified by SM indexes 1 to n and a predetermined number of padding bits.
  • the structure of the SM field is the same in the following FIGS.
  • the SM index is assigned to each user terminal even when one or more CCs are set in the user terminal.
  • the bit value corresponding to the SM index i (1 ⁇ i ⁇ n in FIG. 5) indicates the validation / invalidation of sTTI monitoring in all CCs set in the user terminal to which the SM index i is assigned. For example, if the bit value is “0”, it indicates invalidation of sTTI monitoring in all CCs set in the user terminal, and if the bit value is “1”, all the bits set in the user terminal The validation of sTTI monitoring in CCI may be indicated.
  • the user terminal 1 is assigned to the SM index 1, and the sTTI monitoring in all CCs set in the user terminal 1 by the value of the most significant bit (MSB) corresponding to the SB index 1 Activation / deactivation is indicated.
  • the user terminal 2 is assigned to the SM index 2, and the value of the second bit from the left corresponding to the SM index 2 indicates whether the sTTI monitoring in all CCs set in the user terminal 2 is enabled / disabled. .
  • the SM index assigned to each user terminal may be notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (for example, legacy PDCCH).
  • higher layer signaling and / or physical layer signaling for example, legacy PDCCH.
  • information for detecting slow DCI including the SM field for example, a wireless network temporary identifier (RNTI: Radio Network Temporary Identifier, also called sTTI monitoring (SM) -RNTI, etc.)
  • RNTI Radio Network Temporary Identifier
  • the user terminal may be notified to the user terminal by legacy PDCCH, for example, the user terminal detects the slow DCI by cyclic redundancy check (CRC) using SM-RNTI. May be.
  • CRC cyclic redundancy check
  • the bit value corresponding to the SM index indicates whether sTTI monitoring is enabled / disabled in all CCs of user terminals to which the SM index is assigned. For this reason, the number of bits of the SM field can be reduced and the overhead can be reduced as compared with the case where the validation / invalidation of sTTI monitoring is instructed for each CC or CC group of each user terminal.
  • FIG. 6 is a diagram illustrating a second example of the slow DCI common to user terminals according to the first aspect.
  • the SM index is assigned for each CC (that is, assigned for each user terminal and for each CC).
  • the SM index is also referred to as an sTTI monitoring (SM) -CC index.
  • the bit value corresponding to the SM-CC index i (1 ⁇ i ⁇ n in FIG. 6) indicates the validation / invalidation of sTTI monitoring in the CC having the user terminal to which the SM-CC index i is assigned. For example, when the bit value is “0”, it may indicate that sTTI monitoring is disabled in the certain CC, and when the bit value is “1”, it may indicate that sTTI monitoring is enabled in the certain CC. .
  • 5 SM-CC indexes are assigned to the user terminal.
  • the same number of SM-CC indexes as the number of CCs set in the user terminal are allocated to the user terminal.
  • CC1 of the user terminal 1 is assigned to the SM-CC index 1, and the value of the most significant bit corresponding to the SM-CC index 1 enables / disables sTTI monitoring in the CC1 of the user terminal 1 Is shown.
  • CC2 of user terminal 1 is assigned to SM-CC index 2, and the value of the second bit from the left corresponding to SM-CC index 2 enables / disables sTTI monitoring in CC2 of user terminal 1. Indicated.
  • SM-CC indexes 3 and 4 are assigned to CCs 1 and 2 of the user terminal 2, respectively.
  • the number of SM-CC indexes equal to the number of CCs set in the user terminal is notified to the user terminal.
  • the SM-CC index may be notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (eg, legacy PDCCH).
  • information for detecting slow DCI including the SM field is notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (for example, legacy PDCCH). May be.
  • the user terminal may detect the slow DCI by CRC using SM-RNTI.
  • the sTTI monitoring validation / invalidation of the user terminal is controlled for each CC based on the bit value corresponding to the SM-CC index, so that sTTI monitoring can be flexibly controlled. Become.
  • FIG. 7 is a diagram illustrating a third example of the slow DCI common to user terminals according to the first aspect.
  • the SM index is allocated for each group (CC group) including one or more CCs (that is, for each user terminal and each CC group). ).
  • the SM index is also called an sTTI monitoring (SM) -CC group index.
  • the bit value corresponding to the SM-CC group index i (1 ⁇ i ⁇ n in FIG. 7) is used to enable / disable sTTI monitoring in a CC group having a user terminal to which the SM-CC group index i is assigned. Show. For example, when the bit value is “0”, it indicates that sTTI monitoring is disabled in the certain CC group, and when the bit value is “1”, it indicates that sTTI monitoring is enabled in the certain CC group. Also good.
  • the CC group 1 of the user terminal 1 is assigned to the SM-CC group index 1, and the sTTI monitoring in the CC group 1 of the user terminal 1 is performed according to the value of the most significant bit corresponding to the SM-CC group index 1.
  • Activation / deactivation of is indicated.
  • the CC group 2 of the user terminal 1 is assigned to the SM-CC group index 2, and the value of the second bit from the left corresponding to the SM-CC group index 2 is used for sTTI monitoring in the CC group 2 of the user terminal 1.
  • Activation / deactivation is indicated.
  • SM-CC indexes 3 and 4 are assigned to CC groups 1 and 2 of the user terminal 2, respectively.
  • the same number of SM-CC group indexes as the number of CC groups set in the user terminal is notified to the user terminal.
  • the SM-CC group index may be notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (eg, legacy PDCCH).
  • information for detecting slow DCI including the SM field is notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (for example, legacy PDCCH). May be.
  • the user terminal may detect the slow DCI by CRC using SM-RNTI.
  • the SM field can be controlled while flexibly controlling sTTI monitoring.
  • the increase in overhead due to can be reduced.
  • the slow DCI specific to the user terminal may include instruction information indicating the validation / invalidation of sTTI monitoring of the user terminal.
  • the instruction information may be a value of a predetermined field (for example, SM field) in the slow DCI.
  • the instruction information in the slow DCI specific to the user terminal is common to all CCs (first example), for each CC (second example),
  • the activation / invalidation of sTTI monitoring may be indicated in any CC group (third example).
  • FIG. 8 is a diagram illustrating a first example of the slow DCI specific to the user terminal according to the first aspect.
  • the enabling / disabling of sTTI monitoring in the user terminal is controlled in common for all CCs by the SM field value in the slow DCI specific to the user terminal.
  • the SM field in the slow DCI is composed of 1 bit.
  • the bit value of the SM field is “0”, it indicates invalidation of sTTI monitoring in all CCs set in the user terminal.
  • the bit value is “1”, all the bits set in the user terminal The validation of sTTI monitoring in CCI may be indicated.
  • the slow DCI specific to the user terminal including the SM field may be detected by CRC using the RNTI specific to the user terminal.
  • validation / invalidation of sTTI monitoring in all CCs is indicated by the bit value of the SM field in the slow DCI specific to the user terminal. For this reason, the number of bits of the SM field can be reduced and the overhead can be reduced as compared with the case of enabling / disabling sTTI monitoring for each CC or CC group.
  • FIG. 9 is a diagram illustrating a second example of the slow DCI specific to the user terminal according to the first aspect.
  • validation / invalidation of sTTI monitoring in the user terminal is controlled for each CC based on the SM field value in the slow DCI unique to the user terminal.
  • the SM field in the slow DCI of each user terminal is configured to include n bits identified by the SM indexes 1 to n and a predetermined number of padding bits.
  • an SM index is assigned for each CC.
  • the SM index is also called an SM-CC index.
  • the bit value corresponding to the SM-CC index i (1 ⁇ i ⁇ n in FIG. 9) indicates the validation / invalidation of sTTI monitoring in the CC to which the SM-CC index i is assigned. For example, when the bit value is “0”, it may indicate that sTTI monitoring is disabled in the certain CC, and when the bit value is “1”, it may indicate that sTTI monitoring is enabled in the certain CC. .
  • CC1 is assigned to SM-CC index 1 of the SM field in the slow DCI for user terminal 1 and CC2 is assigned to SM-CC index 2.
  • the bit values corresponding to the SM-CC indexes 1 and 2 (here, the most significant bit and the value of the second bit from the left) enable / disable sTTI monitoring in CCs 1 and 2 of the user terminal 1, respectively. Indicated. The same applies to the SM field in the slow DCI for the user terminal 2.
  • the number of SM-CC indexes equal to the number of CCs set in the user terminal is notified to the user terminal.
  • the SM-CC index may be notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (eg, legacy PDCCH).
  • the slow DCI specific to the user terminal including the SM field may be detected by CRC using the RNTI specific to the user terminal.
  • FIG. 10 is a diagram illustrating a third example of the slow DCI specific to the user terminal according to the first aspect.
  • the activation / invalidation of sTTI monitoring in the user terminal is controlled for each CC group by the SM field value in the slow DCI specific to the user terminal.
  • the SM field in the slow DCI of each user terminal includes n bits identified by SM indexes 1 to n and a predetermined number of padding bits.
  • the SM index is assigned for each CC group.
  • the SM index is also called an SM-CC group index.
  • the bit value corresponding to the SM-CC group index i (1 ⁇ i ⁇ n in FIG. 9) indicates the validation / invalidation of sTTI monitoring in the CC group to which the SM-CC group index i is assigned. For example, when the bit value is “0”, it indicates that sTTI monitoring is disabled in the certain CC group, and when the bit value is “1”, it indicates that sTTI monitoring is enabled in the certain CC group. Also good.
  • CC group 1 is assigned to SM-CC group index 1 in the SM field in the slow DCI for user terminal 1
  • CC group 2 is assigned to SM-CC group index 2.
  • Enabling / disabling sTTI monitoring in CC groups 1 and 2 of user terminal 1 based on the bit values (here, the most significant bit and the value of the second bit from the left) corresponding to the SM-CC group indexes 1 and 2 Each is shown. The same applies to the SM field in the slow DCI for the user terminal 2.
  • the number of SM-CC group indexes equal to the number of CC groups set in the user terminal is notified to the user terminal.
  • the SM-CC group index may be notified from the radio base station to the user terminal by higher layer signaling and / or physical layer signaling (eg, legacy PDCCH).
  • the slow DCI specific to the user terminal including the SM field may be detected by CRC using the RNTI specific to the user terminal.
  • the instruction information (for example, SM field) indicating the enable / disable of sTTI monitoring is included in the slow DCI for all CCs, for each CC or for each CC group. Therefore, even when one or more CCs are set in the user terminal, sTTI monitoring of each CC can be appropriately controlled.
  • the slow DCI includes instruction information for instructing invalidation of sTTI monitoring.
  • the user terminal invalidates the sTTI monitoring according to the instruction information included in the slow DCI.
  • the slow DCI is not detected, the user terminal assumes that sTTI monitoring is enabled.
  • the slow DCI including the instruction information may be transmitted on the legacy PDCCH, or may be transmitted on the sPDCCH of a specific sTTI (for example, the first sTTI in the subframe).
  • the user terminal monitors the one or more legacy PDCCH candidates and detects the slow DCI.
  • the slow DCI is transmitted using the sPDCCH of a specific sTTI
  • the user terminal monitors the one or more sPDCCH candidates in the specific sTTI and detects the slow DCI.
  • the user terminal enables sTTI monitoring as a default operation. For this reason, the slow DCI including the instruction information may be transmitted in a non-period instead of a predetermined period as in the first aspect.
  • the effective time of the invalidation of sTTI monitoring based on the instruction information included in the slow DCI by the user terminal is determined according to a rule defined in the specification (that is, a fixed rule) Or may be set by higher layer signaling or may be specified by physical layer signaling (eg, slow DCI).
  • the application period may be determined using either 1 ms TTI (subframe) or sTTI as a unit (granularity).
  • the slow DCI may include information (application period information) regarding the application period of invalidation of sTTI monitoring.
  • the application period information may be a value of a predetermined field in the slow DCI (hereinafter also referred to as an application period field).
  • the application period field includes, for example, a predetermined number of bits (unit bits) indicating a unit of the application period, and a predetermined number of bits (application) indicating an application period in a unit (for example, 1 ms TTI, sTTI). (Period bit).
  • FIG. 11 is a diagram illustrating an example of an application period field according to the second aspect.
  • FIG. 11 shows a case where the application period field is composed of 3 bits, the most significant bit is a unit bit, and the remaining 2 bits are application period bits.
  • the application period of invalidation of sTTI monitoring is a unit of TTI (subframe) of 1 ms.
  • one of four types of application periods here, 1, 2, 5, 10 [TTI]
  • TTI time division duplex
  • the value of the unit bit is “1”, it may be indicated that the applicable period is in sTTI.
  • four types of application periods may be indicated for each sTTI length (here, one slot or two symbols) by the value of the application period bit of 2 bits.
  • the sTTI length is 1 slot, any one of 1, 3, 5, 15 [sTTI] is shown, and when the sTTI length is 2 symbols, 1, 2, 3, 4 [sTTI] Either is shown.
  • the unit bit may indicate the sTTI length by using two or more unit bits.
  • FIG. 12 is a diagram illustrating an example of an invalidation application period according to the second mode.
  • the slow DCI is transmitted using the legacy PDCCH.
  • the slow DCI may be transmitted using the sPDCCH of a specific sTTI.
  • the slow DCI includes the application period field value described in FIG. 11.
  • the application period of invalidation may be determined by the specification or may be set by higher layer signaling.
  • the user terminal detects the slow DCI including the application period field value “001” in the subframe # 5 of the radio frame # 0, and uses the unit bit value “0” of the most significant bit as a unit of the application period. Is recognized as TTI, and the application period is recognized as 2 TTI (subframe) based on the value “01” of the remaining 2 application period bits (see FIG. 11).
  • the user terminal disables sTTI monitoring in two subframes indicated by the applicable period field value (ie, subframe # 5 in which slow DCI is detected and the next subframe # 6). Turn into. Further, the user terminal validates sTTI monitoring after subframe # 7 after the application period has passed.
  • the user terminal in the second mode, when a slow DCI including instruction information for invalidating sTTI monitoring is not detected, the user terminal assumes that sTTI monitoring is validated. Accordingly, it is possible to prevent the performance from being deteriorated due to the reception failure of sPDSCH.
  • slow DCI signaling including instruction information for invalidating sTTI monitoring will be described in detail.
  • the slow DCI including the instruction information may be common to a plurality of user terminals or may be specific to the user terminals.
  • the slow DCI common to user terminals may include instruction information indicating invalidation of sTTI monitoring of one or more user terminals.
  • the instruction information may be a value of a predetermined field (for example, SM field) in the slow DCI.
  • the instruction information in the slow DCI common to the user terminals is for each user terminal (first example), for each CC of each user terminal (second Example), invalidation of sTTI monitoring may be indicated in any one of groups (CC groups) including one or more CCs (third group) including each user terminal.
  • the bit value corresponding to the SM index i indicates invalidation of sTTI monitoring to which the SM index i is assigned instead of validation / invalidation. Is the same as the first to third examples (FIGS. 5-7) of the slow DCI common to the user terminals of the first mode except for, and thus the description thereof is omitted.
  • the bit value corresponding to the SM index i is “1” or “ Regardless of whether it is “0”, it may indicate invalidation of sTTI monitoring assigned to the SM index i.
  • the slow DCI specific to the user terminal may include instruction information indicating invalidation of sTTI monitoring of the user terminal.
  • the instruction information may be a value of a predetermined field (for example, SM field) in the slow DCI.
  • the instruction information in the slow DCI of each user terminal is common to all CCs (first example), for each CC (second example),
  • the invalidation of sTTI monitoring may be indicated in any CC group (third example).
  • the bit value corresponding to the SM index i indicates invalidation of sTTI monitoring to which the SM index i is assigned instead of validation / invalidation. Is the same as the first to third examples (FIGS. 8-10), of the slow DCI specific to the user terminal in the first mode, and the description thereof is omitted.
  • the user terminal may disable the sTTI monitoring assigned to the SM index i.
  • the instruction information (for example, the SM field) indicating invalidation of sTTI monitoring is included in the slow DCI in all CCs, for each CC, or for each CC group. Even when one or more CCs are set in the user terminal, sTTI monitoring of each CC can be appropriately controlled.
  • instruction information for instructing validation or invalidation (validation / invalidation) of sTTI monitoring
  • instruction information for instructing invalidation of sTTI monitoring
  • first mode for instructing validation or invalidation (validation / invalidation) of sTTI monitoring
  • second mode for instructing invalidation of sTTI monitoring
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Rat), or the like.
  • a radio communication system 1 shown in FIG. 13 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • CC cells
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1), and the like, respectively.
  • each cell either a long TTI or a short TTI may be applied, or both a long TTI or a short TTI may be applied.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal. Further, the user terminal 20 can perform inter-terminal communication (D2D) with other user terminals 20.
  • D2D inter-terminal communication
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • DL channels DL data channels (PDSCH: Physical Downlink Shared Channel, also referred to as DL shared channel) shared by each user terminal 20, broadcast channels (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • HARQ retransmission indication information (ACK / NACK) for PUSCH can be transmitted by at least one of PHICH, PDCCH, and EPDCCH.
  • a UL data channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL shared channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of retransmission instruction information (ACK / NACK) and channel state information (CSI) is transmitted by PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, error correction on UL data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • the transmission / reception unit 103 performs DL signals (eg, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI). , Including slow DCI), and receiving UL signals (eg, at least one of PUSCH, sPUSCH, UCI). Further, the transmission / reception unit 103 may transmit parameters related to the slow DCI and application period information.
  • DL signals eg, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI).
  • DL signals eg, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI).
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control unit 301 includes, for example, DL signal generation by the transmission signal generation unit 302, DL signal mapping by the mapping unit 303, UL signal reception processing (for example, demodulation) by the reception signal processing unit 304, and measurement unit 305. Control the measurement.
  • the control unit 301 performs scheduling of DL data channels (including PDSCH and sPDSCH) and UL data channels (including PUSCH and sPUSCH) for the user terminal 20.
  • control unit 301 transmits DCI (DL grant and / or UL data) including scheduling information of UL data channels to DL control channels (including legacy PDCCH and sPDSCH) including scheduling information of DL data channels. Control is performed by mapping to candidate resources (including legacy PDCCH candidates and sPDCCH candidates).
  • control unit 301 may control sTTI monitoring in the user terminal 20. Specifically, the control unit 301 may control generation and transmission of DCI including instruction information for instructing validation / invalidation of sTTI monitoring (first mode). Alternatively, the control unit 301 may control generation and transmission of DCI including instruction information that instructs invalidation of sTTI monitoring (second mode). For example, the control unit 301 may generate the instruction information based on a scheduling result of sPDSCH and / or sPUSCH for the user terminal 20.
  • control unit 301 may control the setting of one or more CCs (cells) for the user terminal 20.
  • the control unit 301 When one or more CCs are set in the user terminal 20, the control unit 301 generates the instruction information (for example, SM field) for each user terminal, for each CC, or for each CC group, and sets the DCI including the instruction information. You may control to transmit.
  • instruction information for example, SM field
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a DL data channel, a DL control channel, and a DL reference signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on UL signals (for example, including UL data channels, UL control channels, and UL control signals) transmitted from the user terminal 20. I do.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • UL signals for example, including UL data channels, UL control channels, and UL control signals
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • FIG. 16 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Broadcast information is also transferred to the application unit 205.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Are transferred to each transmitting / receiving unit 203.
  • UCI for example, DL retransmission control information, channel state information, and the like
  • UCI is also subjected to channel coding, rate matching, puncturing, DFT processing, IFFT processing, and the like, and is transferred to each transmission / reception section 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 performs DL signals (for example, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI). , Including a slow DCI) and a UL signal (eg, at least one of PUSCH, sPUSCH, UCI). Further, the transmission / reception unit 203 may receive parameters regarding slow DCI and application period information.
  • DL signals for example, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI).
  • DL signals for example, PDSCH, sPDSCH, DCI (first DCI) in subframes (first TTI, 1 ms TTI, TTI longer than sTTI) and / or sTTI (second TTI).
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 17 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 17, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20. For example, the control unit 401 controls generation of the UL signal by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405.
  • the control unit 401 receives DL data channels (including PDSCH and sPDSCH) and transmits UL data channels (including PUSCH and sPUSCH) based on DCI (DL assignment and / or UL grant) to the user terminal 20. Control.
  • the control unit 401 controls monitoring of legacy PDCCH candidates in subframes and / or monitoring of sPDCCH candidates in sTTI (sTTI monitoring). Specifically, the control unit 401 controls sTTI monitoring based on DCI (slow DCI) transmitted using legacy PDCCH or specific sTTI. The control unit 401 may assume that sTTI monitoring is enabled when the slow DCI is not detected.
  • the slow DCI may include instruction information (first mode) for instructing validation or invalidation of sTTI monitoring, or instruction information (second mode) for instructing invalidation of sTTI monitoring.
  • the control unit 401 may enable or disable sTTI monitoring according to the instruction information (first 1 embodiment).
  • the slow DCI is transmitted from the radio base station 10 in a predetermined cycle, and the control unit 401 may set the application period of the validation or invalidation to be the same as the cycle of the slow DCI.
  • the control unit 401 may invalidate sTTI monitoring according to the instruction information (second mode).
  • the slow DCI is transmitted from the radio base station 10 in a non-periodic manner, and the control unit 401 controls the invalidation application period by at least one of a fixed rule, higher layer signaling, and the DCI. May be.
  • control unit 401 may control the setting of one or more CCs (cells).
  • the control unit 401 based on the instruction information (for example, SM field value) included in the slow DCI from the radio base station 10, for all CCs, for each CC, Alternatively, sTTI monitoring may be controlled for each CC group.
  • instruction information for example, SM field value
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal (for example, encoding, rate matching, puncturing, modulation, etc.) based on an instruction from the control unit 401, and outputs the UL signal to the mapping unit 403.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, higher layer control information by higher layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401. Note that the channel state measurement may be performed for each CC.
  • a reference signal for example, CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a subframe, a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be referred to as an sTTI, a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, a TTI longer than a short TTI, or a short TTI (eg, a shortened TTI, etc.) It may be read as a TTI having a TTI length less than the TTI length and 1 ms or more.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

sTTIにおけるDL制御チャネル候補の監視を適切に制御すること。本発明のユーザ端末は、下りリンク制御情報(DCI)を受信する受信部と、前記DCIに基づいて、sTTIにおけるDL制御チャネル候補の監視を制御する制御部と、を具備する。前記制御部は、前記DCIが検出されない場合、sTTIにおける前記DL制御チャネル候補の監視が有効化されると想定する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT:New Radio Access Technology)、LTE Rel.14、15~等ともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.13以前)では、1msの伝送時間間隔(TTI:Transmission Time Interval)(サブフレーム等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該1msのTTIは、チャネル符号化された1データ・パケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge)などの処理単位となる。
 また、既存のLTEシステムでは、あるキャリア(コンポーネントキャリア(CC:Component Carrier)、セル)のTTIにおいて、DL制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)用の時間領域と、当該DL制御チャネルで送信される下り制御情報(DCI:Downlink Control Information))によりスケジューリングされるデータチャネル(DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel)及び/又はULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)を含む)用の時間領域が設けられる。DL制御チャネル用の時間領域では、システム帯域全体にわたって、DL制御チャネルが配置される。
 また、既存のLTEシステムでは、あるキャリアのTTIにおいて、システム帯域の両端領域に、上り制御情報(UCI:Uplink Control Information)を伝送するUL制御チャネル(例えば、PUSCH:Physical Uplink Control Channel)が配置され、当該両端領域以外の領域にULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)が配置される。
 将来の無線通信システム(例えば、LTE Rel.14又は15、5G、NRなど)では、既存のLTEシステムにおける1msのTTI(サブフレーム)とは時間長が異なるTTI(例えば、1msのTTIよりも短いTTI(ショートTTI、sTTI等ともいう))を導入することが検討されている。
 sTTIで通信するユーザ端末は、sTTIでDL制御チャネルの候補(DL制御チャネル候補)を監視(ブラインド復号)して、sTTI用のDCIを検出する。しかしながら、sTTI毎にDL制御チャネル候補の監視を継続する場合、1msのTTI毎にDL制御チャネル候補を監視する場合と比較して、ユーザ端末の消費電力が増大する恐れがある。したがって、sTTIにおけるDL制御チャネル候補の監視を適切に制御することが望まれる。
 本発明はかかる点に鑑みてなされたものであり、sTTIにおけるDL制御チャネル候補の監視を適切に制御可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、下りリンク制御情報(DCI)を受信する受信部と、前記DCIに基づいて、第1の伝送時間間隔(TTI)よりも短い第2のTTIにおけるDL制御チャネル候補の監視を制御する制御部と、を具備し、前記制御部は、前記DCIが検出されない場合、前記第2のTTIにおける前記DL制御チャネル候補の監視が有効化されると想定することを特徴とする。
 本発明によれば、sTTIにおけるDL制御チャネル候補の監視を適切に制御できる。
図1A及び1Bは、sTTIモニタリングの有効化又は無効化の制御例を示す図である。 スロウDCIの検出ミスの一例を示す図である。 第1の態様に係るスロウDCIの周期及び/又は開始位置の決定例を示す図である。 第1の態様に係る有効化/無効化の適用期間の一例を示す図である。 第1の態様に係るユーザ端末共通のスロウDCIの第1の例を示す図である。 第1の態様に係るユーザ端末共通のスロウDCIの第2の例を示す図である。 第1の態様に係るユーザ端末共通のスロウDCIの第3の例を示す図である。 第1の態様に係るユーザ端末固有のスロウDCIの第1の例を示す図である。 第1の態様に係るユーザ端末固有のスロウDCIの第2の例を示す図である。 第1の態様に係るユーザ端末固有のスロウDCIの第3の例を示す図である。 第2の態様に係る適用期間フィールドの一例を示す図である。 第2の態様に係る無効化の適用期間の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 既存のLTEシステム(例えば、LTE Rel.13以前)では、1msのTTIの最初の所定数のシンボル(最大3シンボル)において、あるキャリア(CC、セル)の全体の周波数帯域(システム帯域)に渡り、DL制御チャネル(PDCCH、レガシーPDCCH等ともいう)が配置される。
 当該1msのTTIにおいて、DL制御チャネルの配置シンボルより後のシンボルでは、DL制御チャネルを介して送信されるDCIにより割り当てられた周波数リソース(例えば、物理リソースブロック(PRB:Physical Resource Block)、リソースブロック(RB)等ともいう)、所定数のPRBで構成されるリソースブロックグループ(RBG:Resource Block Group))において、データチャネル(PDSCH及び/又はPUSCHを含む)が配置される。このように、既存のLTEシステムでは、1msのTTI内において、DL制御チャネル用の時間領域と、データチャネル用の時間領域とが設けられ、DL制御チャネルとデータチャネルとが時間分割多重(TDM:Time Division Multiplexing)される。
 一方、将来の無線通信システム(例えば、LTE Rel.14又は15、5G、NRなど)では、低遅延(Latency Reduction)かつ高効率な制御などを実現するため、既存のLTEシステムの1msのTTI(サブフレーム)とは異なる時間長(TTI長)のTTIをサポートすることが検討されている。例えば、サブフレームよりも短いTTI(sTTI、ショートTTI等ともいう)を導入することが検討されている。
 sTTIで通信するユーザ端末は、sTTI用のDL制御チャネル(以下、sPDCCHともいう)の一以上の候補(以下、sPDCCH候補ともいう)を監視(ブラインド復号)して、sTTI用のユーザ端末固有のDCI(ファースト(fast)DCI、sDCI、sDCI1、第1のsDCI等ともいう)を検出する。当該ファーストDCIにより、sTTI用のDLデータチャネル(sPDSCH等ともいう)及び/又はULデータチャネル(sPUSCH等ともいう)がスケジューリングされる。このようなファーストDCIを検出するためのsPDCCH候補の監視は、sTTIモニタリングとも呼ばれる。
 一方、ユーザ端末が、各サブフレーム内のsTTI毎にsTTIモニタリングを行う場合、サブフレームあたりのブラインド復号回数が増加する、またはブラインド復号を短い時間区間ごとに継続的に行うようになるため(例えば、2~7シンボル毎にブラインド復号を行うことになるため)、ユーザ端末の消費電力が増大する恐れがある。そこで、sTTIモニタリングの制御用のDCI(スロウ(slow)DCI、第2のsDCI、sDCI2等ともいう)により、sTTIモニタリングの有効化(activation)又は無効化(deactivation)を制御することが検討されている。
 図1は、sTTIモニタリングの有効化又は無効化の制御例を示す図である。図1A及び1Bでは、一例として、1サブフレーム(1msのTTI)内にsTTI#0~#5が設けられ、sTTI#0、#5は3シンボルで構成され、sTTI#1~#4は、2シンボルで構成されるものとする。なお、1サブフレーム内のsTTI数、sTTIあたりのシンボル数は、図1A及び1Bに示すものに限られない。また、図1A及び1Bでは、レガシーPDCCHの割り当て領域が3シンボルであるものとするが、これに限られない。また、図1A及び1Bでは、スロウDCIがレガシーPDCCHで送信されるものとするが、これに限られない。
 図1Aでは、スロウDCIによりsTTIモニタリングが有効化される場合が示される。図1Aに示すように、ユーザ端末は、レガシーPDCCHの割り当て領域内のレガシーPDCCHの候補(レガシーPDCCH候補)の監視(ブラインド復号)により、sTTIモニタリングを有効化するスロウDCIを検出する。この場合、ユーザ端末は、検出したスロウDCIに基づいて、sTTI#1~#5のそれぞれでsTTIモニタリングを行う。ユーザ端末は、当該ユーザ端末に対するファーストDCIを検出するsTTIにおいて、検出したファーストDCIに基づいてsPDSCHの受信又はsPUSCHの送信を行う。
 一方、図1Bでは、スロウDCIによりsTTIモニタリングが無効化される場合が示される。ユーザ端末は、レガシーPDCCH候補の監視(ブラインド復号)により、sTTIモニタリングを無効化するスロウDCIを検出する。この場合、ユーザ端末は、sTTI#1~#5全てにおけるsTTIモニタリングを中止することができる。
 このように、スロウDCIによりsTTIモニタリングの有効化又は無効化が制御される場合、sPDSCH又はsPUSCHのユーザ端末に対するスケジューリングに応じてsTTIモニタリングを無効化でき、当該ユーザ端末の消費電力の増大を防止できる。しかしながら、ユーザ端末が、sTTIモニタリングを有効化するスロウDCIの検出に失敗すると、性能(performance)が大きく劣化する恐れがある。
 図2は、スロウDCIの検出ミスの一例を示す図である。なお、図2に示すサブフレームの構成は、図1A及び1Bと同様である。図2に示すように、ユーザ端末がsTTIモニタリングを有効化するスロウDCIの検出に失敗する場合、ユーザ端末は、sTTI#1~#5において当該ユーザ端末に対してsPDSCHがスケジューリングされていても、sTTI#1~#5におけるsTTIモニタリングを行わない。したがって、sPDSCHの受信に失敗し、性能が大きく劣化する恐れがある。
 このように、スロウDCIに基づいてsTTIモニタリングが制御される場合、ユーザ端末が当該スロウDCIの検出に失敗すると、性能が大きく劣化する恐れがある。そこで、本発明者らは、フェールセーフにsTTIモニタリングを制御すること(すなわち、スロウDCIが検出されない場合、sTTIモニタリングが有効化されると想定すること)で、性能の劣化を防止することを着想した。
 具体的には、本発明者らは、スロウDCIがsTTIモニタリングの有効化又は無効化を示し、ユーザ端末が、当該スロウDCIが検出されない場合(特に、sTTIモニタリングの有効化を示すスロウDCIの検出に失敗する場合)、sTTIモニタリングが有効であると想定すること(第1の態様)、或いは、sTTIモニタリングの有効化をユーザ端末のデフォルト動作として、当該sTTIモニタリングの無効化を示すスロウDCIが検出されない限り、sTTIモニタリングが有効化されると想定すること(第2の態様)を着想した。
 以下、本実施の形態について詳細に説明する。本実施の形態では、サブフレーム(1msのTTI)を構成するシンボルの時間長(シンボル長)とsTTIを構成するシンボル長とは等しい(すなわち、サブキャリア間隔が等しい)ものとするが、これに限られない。例えば、sTTIのシンボル長は、サブフレームのシンボル長よりも短くともよい。また、以下において、サブフレーム(1msのTTI)は、sTTIよりも長い時間長のTTIで構成されればよく、1msでなくともよい。
(第1の態様)
 第1の態様では、スロウDCIがsTTIモニタリングの有効化又は無効化(以下、有効化/無効化ともいう)を指示(indicate)する指示情報を含む。当該スロウDCIが正常に検出される場合、ユーザ端末は、当該スロウDCIに含まれる指示情報に従って、sTTIモニタリングを有効化又は無効化する。一方、当該スロウDCIが検出されない場合(当該スロウDCIの検出に失敗する場合)、ユーザ端末は、sTTIモニタリングが有効化されると想定する。
 上記指示情報を含むスロウDCIは、レガシーPDCCH(レガシーPDCCHの割り当て領域内)で送信されてもよいし、或いは、特定のsTTI(例えば、サブフレーム内の最初のsTTI)のsPDCCH(所定のsPDCCH領域内)で送信されてもよい。スロウDCIがレガシーPDCCHで送信される場合、ユーザ端末は、一以上のレガシーPDCCH候補を監視して、スロウDCIを検出する。一方、スロウDCIが特定のsTTIのsPDCCHで送信される場合、ユーザ端末は、当該特定のsTTIにおける一以上のsPDCCH候補を監視して、スロウDCIを検出する。
<スロウDCIの周期及び/又は開始位置>
 第1の態様において、上記指示情報を含むスロウDCIは、所定周期で送信される。当該スロウDCIの周期(Periodicity)及び/又は開始位置(Start position)は、スロウDCIに関するパラメータに基づいて設定される。当該スロウDCIに関するパラメータは、上位レイヤシグナリング及び/又は物理レイヤシグナリングにより無線基地局からユーザ端末に通知される。
 また、当該スロウDCIに関するパラメータは、例えば、スロウDCIの構成(configuration)の識別子(構成識別子、構成インデックス、IsDCI2等とも呼ばれる)を含んでもよい。なお、ユーザ端末は、当該スロウDCIに関するパラメータ(例えば、周期及び/又は開始位置を示す構成識別子(IsDCI2))が得られない(設定されない)場合、上記指示情報を含むスロウDCIはレガシーPDCCHで送信され、さらに当該スロウDCIの周期及び/又は開始位置は、レガシーPDCCHの値(例えば、サブフレーム毎)となるものとしてもよい。
 当該スロウDCIの構成識別子(IsDCI2)は、スロウDCIがレガシーPDCCHで送信される場合、上位レイヤシグナリングにより無線基地局からユーザ端末に通知され、スロウDCIが特定のsTTIのsPDCCHで送信される場合、上位レイヤシグナリング又はレガシーPDCCHにより無線基地局からユーザ端末に通知されてもよい。
 ユーザ端末は、当該構成識別子(IsDCI2)に基づいて、スロウDCIの周期(sDCI2PERIODICITY)及び/又は開始位置を決定する。なお、当該周期及び/又は開始位置は、スロウDCIがレガシーPDCCHで送信される場合、サブフレーム(TTI、例えば、1ms)を単位として定められ、スロウDCIが特定のsTTIのsPDCCHで送信される場合、sTTIを単位として定められてもよい。
 図3は、第1の態様に係るスロウDCIの周期及び/又は開始位置の決定例を示す図である。図3に示すように、スロウDCIの構成識別子(IsDCI2)は、スロウDCIの周期(送信周期、sDCI2PERIODICITYなどとも呼ばれる)及び/又はスロウDCIの開始オフセット(サブフレームオフセット、オフセット、NOFFSET,sDCI2などとも呼ばれる)と関連付けられてもよい。
 図3において、ユーザ端末は、無線基地局からの構成識別子(IsDCI2)に関連付けられる値に、スロウDCIの周期(sDCI2PERIODICITY)を決定してもよい。例えば、図3では、ユーザ端末は、構成識別子(IsDCI2)の値が0-4、5-14、15である場合、それぞれ、スロウDCIの周期(sDCI2PERIODICITY)を5、10、1[TTI又はsTTI]に決定する。
 また、ユーザ端末は、無線基地局からの構成識別子(IsDCI2)に関連付けられる値に、スロウDCIの開始オフセット(NOFFSET,sDCI2)を決定し、当該開始オフセット(NOFFSET,sDCI2)に基づいてスロウDCIの開始位置を決定してもよい。例えば、図3では、ユーザ端末は、構成識別子(IsDCI2)の値が0-4、5-14、15である場合、それぞれ、スロウDCIの開始オフセット(NOFFSET,sDCI2)をIsDCI2(=0-4)、IsDCI2-5(=0-9)、IsDCI2-15(=0)[TTI又はsTTI]に決定する。
 ユーザ端末は、当該開始オフセット(NOFFSET,sDCI2)に基づいて、スロウDCIの開始位置を決定する。例えば、ユーザ端末は、下記式(1)を満たすTTI又はsTTIをスロウDCIの開始位置(送信サブフレーム、送信インスタンス等ともいう)として決定してもよい。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、nはシステムフレーム番号(SFN:System Frame Number)、iは無線フレーム内のTTI番号又はsTTI番号、NOFFSET,sDCI2は、上記開始オフセット、sDCI2PERIODICITYは、上記スロウDCIの周期である。
<有効化又は無効化の適用期間>
 第1の態様において、ユーザ端末が、スロウDCIに含まれる指示情報に基づくsTTIモニタリングの有効化/無効化の適用期間(effective time)は、スロウDCIの周期(sDCI2PERIODICITY)と同一であってもよい。
 図4は、第1の態様に係る有効化/無効化の適用期間の一例を示す図である。なお、図4では、スロウDCIがレガシーPDCCHで送信されるものとするが、上述のように、スロウDCIは特定のsTTIのsPDCCHで送信されてもよい。また、図4では、スロウDCIの周期(sDCI2PERIODICITY)が5サブフレームであり、スロウDCIの開始位置がサブフレーム#0である場合を説明するが、図4は例示にすぎず、これに限られるものではない。
 例えば、図4では、無線フレーム#0のサブフレーム#0においてsTTIモニタリングを有効化する指示情報を含むスロウDCIが検出されるので、ユーザ端末は、次のスロウDCIの送信タイミングまでの5サブフレーム(#0~#4)において、sTTIモニタリングを有効化する。
 また、無線フレーム#0のサブフレーム#5においてsTTIモニタリングを無効化する指示情報を含むスロウDCIが検出されるので、ユーザ端末は、次のスロウDCIの送信タイミングまでの5サブフレーム(#5~#9)において、sTTIモニタリングを無効化する。
 無線フレーム#1のサブフレーム#0は、sTTIモニタリングの有効化/無効化する指示情報を含むスロウDCIの送信タイミングであるが、ユーザ端末は、当該サブフレーム#0における上記スロウDCIの検出に失敗する。この場合、ユーザ端末は、次のスロウDCIの送信タイミングまでの5サブフレーム(#0~#4)において、sTTIモニタリングを有効化する。
 図4に示すように、第1の態様では、sTTIモニタリングの有効化/無効化する指示情報を含むスロウDCIの検出に失敗する場合、ユーザ端末は、sTTIモニタリングが有効化されると想定する。したがって、スロウDCIの検出に失敗する場合に、sPDSCHの受信失敗に起因して性能が劣化するのを防止できる。
 なお、スロウDCIには、sTTIモニタリングの有効化/無効化を指示する指示情報以外にも、例えばsTTIの長さ(またはシンボル数)やsTTIモニタリングを行う周波数リソースの情報などを含むものとしてもよい。
 また、当該ユーザ端末に対し、利用され得るsTTIのパラメータセット(sTTIの長さやシンボル数、sTTIモニタリングを行う周波数リソースなど)が2以上、上位レイヤシグナリングで設定されていて、スロウDCIを検出でき、かつ当該スロウDCIがsTTIモニタリングの有効化を指示している場合には、当該スロウDCIに含まれるいずれか1つのパラメータセットに基づいてsTTIモニタリングを行い、スロウDCIを検出できなかった場合には、前記パラメータセットのいずれか所定の1つのパラメータセットに基づいてsTTIモニタリングを行うものとしてもよい。この場合、前述までの効果に加え、スロウDCIの検出に成功した場合に、より柔軟にsTTIのスケジューリングを行うことが可能となる。
<シグナリング>
 次に、sTTIモニタリングの有効化/無効化の指示情報を含むスロウDCIのシグナリングについて詳細に説明する。当該指示情報を含むスロウDCIは、複数のユーザ端末に共通であってもよいし、又は、ユーザ端末に固有であってもよい。
≪ユーザ端末共通のスロウDCI≫
 図5-7を参照し、第1の態様に係るユーザ端末共通のスロウDCIについて説明する。当該ユーザ端末共通のスロウDCIには、一以上のユーザ端末のsTTIモニタリングの有効化/無効化を示す指示情報が含まれてもよい。当該指示情報は、当該スロウDCI内の所定フィールド(例えば、sTTIモニタリング(SM)フィールド)の値であってもよい。
 具体的には、各ユーザ端末に一以上のコンポーネントキャリア(CC:Component Carrier、セル等ともいう)が設定される場合、ユーザ端末共通のスロウDCI内の指示情報は、ユーザ端末毎(第1の例)、各ユーザ端末のCC毎(第2の例)、各ユーザ端末の一以上のCCを含むグループ(CCグループ)毎(第3の例)のいずれかで、sTTIモニタリングの有効化/無効化を示してもよい。
・第1の例
 図5は、第1の態様に係るユーザ端末共通のスロウDCIの第1の例を示す図である。例えば、図5では、スロウDCI内のSMフィールドが、所定のインデックス(sTTIモニタリング(SM)インデックス等ともいう)で識別される所定数のビットで構成される。例えば、図5では、SMフィールドは、SMインデックス1~nで識別されるnビットと所定数のパディングビットを含んで構成される。なお、以下の図6、7、9及び10でもSMフィールドの構成は同様である。
 第1の例では、ユーザ端末に一以上のCCが設定される場合であっても、SMインデックスは、ユーザ端末毎に割り当てられる。SMインデックスi(図5では、1≦i≦n)に対応するビット値が、当該SMインデックスiが割り当てられるユーザ端末で設定される全CCにおけるsTTIモニタリングの有効化/無効化を示す。例えば、当該ビット値が「0」である場合、当該ユーザ端末で設定された全CCにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該ユーザ端末で設定された全CCIにおけるsTTIモニタリングの有効化を示してもよい。
 例えば、図6では、SMインデックス1にユーザ端末1が割り当てられ、SBインデックス1に対応する最上位ビット(MSB:Most Significant bit)の値により、ユーザ端末1に設定された全CCにおけるsTTIモニタリングの有効化/無効化が示される。また、SMインデックス2にユーザ端末2が割り当てられ、SMインデックス2に対応する左から2番目のビットの値により、ユーザ端末2に設定された全CCにおけるsTTIモニタリングに有効化/無効化が示される。
 第1の例では、ユーザ端末毎に割り当てられるSMインデックスは、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。
 また、SMフィールドを含むスロウDCIの検出用情報(例えば、無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier、sTTIモニタリング(SM)-RNTI等ともいう)が、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。例えば、ユーザ端末は、SM-RNTIを用いた巡回冗長検査(CRC:Cyclic Redundancy Check)により、上記スロウDCIを検出してもよい。
 図5に示す第1の例では、SMインデックスに対応するビット値により、当該SMインデックスが割り当てられるユーザ端末の全CCにおけるsTTIモニタリングの有効化/無効化が示される。このため、各ユーザ端末のCC毎又はCCグループ毎にsTTIモニタリングの有効化/無効化を指示する場合と比較して、SMフィールドのビット数を軽減でき、オーバヘッドを削減できる。
・第2の例
 図6は、第1の態様に係るユーザ端末共通のスロウDCIの第2の例を示す図である。第2の例では、ユーザ端末に一以上のCCが設定される場合、SMインデックスは、CC毎に割り当てられる(すなわち、ユーザ端末毎かつCC毎に割り当てられる)。当該SMインデックスは、sTTIモニタリング(SM)-CCインデックスとも呼ばれる。
 SM-CCインデックスi(図6では、1≦i≦n)に対応するビット値が、当該SM-CCインデックスiが割り当てられるユーザ端末のあるCCにおけるsTTIモニタリングの有効化/無効化を示す。例えば、当該ビット値が「0」である場合、当該あるCCにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該あるCCにおけるsTTIモニタリングの有効化を示してもよい。
 例えば、ユーザ端末に5CCが設定され、当該5CCのうちの3CCでsTTI動作が適用される場合、当該ユーザ端末には5つのSM-CCインデックスが割り当てられる。このように、第2の例では、ユーザ端末に設定されたCC数と等しい数のSM-CCインデックスがユーザ端末に割り当てられる。
 例えば、図6では、SM-CCインデックス1にユーザ端末1のCC1が割り当てられ、SM-CCインデックス1に対応する最上位ビットの値により、ユーザ端末1のCC1におけるsTTIモニタリングの有効化/無効化が示される。また、SM-CCインデックス2にユーザ端末1のCC2が割り当てられ、SM-CCインデックス2に対応する左から2番目のビットの値により、ユーザ端末1のCC2におけるsTTIモニタリングの有効化/無効化が示される。同様に、SM-CCインデックス3、4がそれぞれユーザ端末2のCC1、2に割り当てられる。
 第2の例では、ユーザ端末に設定されたCC数と等しい数のSM-CCインデックスが、当該ユーザ端末に通知される。当該SM-CCインデックスは、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。
 また、SMフィールドを含むスロウDCIの検出用情報(例えば、SM-RNTI等ともいう)が、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。例えば、ユーザ端末は、SM-RNTIを用いたCRCにより、上記スロウDCIを検出してもよい。
 図6に示す第2の例では、SM-CCインデックスに対応するビット値により、ユーザ端末のsTTIモニタリングの有効化/無効化がCC毎に制御されるので、sTTIモニタリングの柔軟な制御が可能となる。
・第3の例
 図7は、第1の態様に係るユーザ端末共通のスロウDCIの第3の例を示す図である。第3の例では、ユーザ端末に一以上のCCが設定される場合、SMインデックスは、一以上のCCを含むグループ(CCグループ)毎に割り当てられる(すなわち、ユーザ端末毎かつCCグループ毎に割り当てられる)。当該SMインデックスは、sTTIモニタリング(SM)-CCグループインデックスとも呼ばれる。
 SM-CCグループインデックスi(図7では、1≦i≦n)に対応するビット値が、当該SM-CCグループインデックスiが割り当てられるユーザ端末のあるCCグループにおけるsTTIモニタリングの有効化/無効化を示す。例えば、当該ビット値が「0」である場合、当該あるCCグループにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該あるCCグループにおけるsTTIモニタリングの有効化を示してもよい。
 例えば、図7では、SM-CCグループインデックス1にユーザ端末1のCCグループ1が割り当てられ、SM-CCグループインデックス1に対応する最上位ビットの値により、ユーザ端末1のCCグループ1におけるsTTIモニタリングの有効化/無効化が示される。また、SM-CCグループインデックス2にユーザ端末1のCCグループ2が割り当てられ、SM-CCグループインデックス2に対応する左から2番目のビットの値により、ユーザ端末1のCCグループ2におけるsTTIモニタリングの有効化/無効化が示される。同様に、SM-CCインデックス3、4がそれぞれユーザ端末2のCCグループ1、2に割り当てられる。
 図7に示す第3の例では、ユーザ端末に設定されたCCグループ数と等しい数のSM-CCグループインデックスが、当該ユーザ端末に通知される。当該SM-CCグループインデックスは、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。
 また、SMフィールドを含むスロウDCIの検出用情報(例えば、SM-RNTI等ともいう)が、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。例えば、ユーザ端末は、SM-RNTIを用いたCRCにより、上記スロウDCIを検出してもよい。
 第3の例では、SM-CCグループインデックスに対応するビット値により、ユーザ端末のsTTIモニタリングの有効化/無効化がCCグループ毎に制御されるので、sTTIモニタリングを柔軟に制御しながら、SMフィールドによるオーバヘッドの増加を軽減できる。
≪ユーザ端末固有のスロウDCI≫
 図8-10を参照し、第1の態様に係るユーザ端末固有のスロウDCIについて説明する。当該ユーザ端末固有のスロウDCIには、当該ユーザ端末のsTTIモニタリングの有効化/無効化を示す指示情報が含まれてもよい。当該指示情報は、当該スロウDCI内の所定フィールド(例えば、SMフィールド)の値であってもよい。
 具体的には、当該ユーザ端末に一以上のCCが設定される場合、ユーザ端末固有のスロウDCI内の指示情報は、全CC共通(第1の例)、CC毎(第2の例)、CCグループ毎(第3の例)のいずれかで、sTTIモニタリングの有効化/無効化を示してもよい。
・第1の例
 図8は、第1の態様に係るユーザ端末固有のスロウDCIの第1の例を示す図である。第1の例では、ユーザ端末固有のスロウDCI内のSMフィールド値により、当該ユーザ端末におけるsTTIモニタリングの有効化/無効化が全CC共通に制御される。
 例えば、図8では、スロウDCI内のSMフィールドが、1ビットで構成される。当該SMフィールドのビット値が「0」である場合、ユーザ端末で設定された全CCにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該ユーザ端末で設定された全CCIにおけるsTTIモニタリングの有効化を示してもよい。
 図8において、SMフィールドを含むユーザ端末固有のスロウDCIは、ユーザ端末固有のRNTIを用いたCRCにより検出されてもよい。
 図8に示す第1の例では、ユーザ端末固有のスロウDCI内のSMフィールドのビット値により、全CCにおけるsTTIモニタリングの有効化/無効化が示される。このため、CC毎又はCCグループ毎にsTTIモニタリングの有効化/無効化を指示する場合と比較して、SMフィールドのビット数を軽減でき、オーバヘッドを削減できる。
・第2の例
 図9は、第1の態様に係るユーザ端末固有のスロウDCIの第2の例を示す図である。第1の例では、ユーザ端末固有のスロウDCI内のSMフィールド値により、当該ユーザ端末におけるsTTIモニタリングの有効化/無効化がCC毎に制御される。
 図9では、各ユーザ端末のスロウDCI内のSMフィールドは、SMインデックス1~nで識別されるnビットと所定数のパディングビットを含んで構成される。各ユーザ端末に一以上のCCが設定される場合、SMインデックスは、CC毎に割り当てられる。当該SMインデックスは、SM-CCインデックスとも呼ばれる。
 SM-CCインデックスi(図9では、1≦i≦n)に対応するビット値が、当該SM-CCインデックスiが割り当てられるCCにおけるsTTIモニタリングの有効化/無効化を示す。例えば、当該ビット値が「0」である場合、当該あるCCにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該あるCCにおけるsTTIモニタリングの有効化を示してもよい。
 例えば、図9では、ユーザ端末1に対するスロウDCI内のSMフィールドのSM-CCインデックス1にCC1が割り当てられ、SM-CCインデックス2にCC2が割り当てられる。当該SM-CCインデックス1、2に対応するビット値(ここでは、最上位ビット、左から2番目のビットの値)により、ユーザ端末1のCC1、2におけるsTTIモニタリングの有効化/無効化がそれぞれ示される。ユーザ端末2に対するスロウDCI内のSMフィールドについても同様である。
 第2の例では、ユーザ端末に設定されたCC数と等しい数のSM-CCインデックスが、当該ユーザ端末に通知される。当該SM-CCインデックスは、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。
 また、SMフィールドを含むユーザ端末固有のスロウDCIは、ユーザ端末固有のRNTIを用いたCRCにより検出されてもよい。
 図9に示す第2の例では、SM-CCインデックスに対応するビット値により、ユーザ端末のsTTIモニタリングの有効化/無効化がCC毎に制御されるので、sTTIモニタリングの柔軟な制御が可能となる。
・第3の例
 図10は、第1の態様に係るユーザ端末固有のスロウDCIの第3の例を示す図である。第3の例では、ユーザ端末固有のスロウDCI内のSMフィールド値により、当該ユーザ端末におけるsTTIモニタリングの有効化/無効化がCCグループ毎に制御される。
 図10では、各ユーザ端末のスロウDCI内のSMフィールドは、SMインデックス1~nで識別されるnビットと所定数のパディングビットを含んで構成される。各ユーザ端末に一以上のCCが設定される場合、SMインデックスは、CCグループ毎に割り当てられる。当該SMインデックスは、SM-CCグループインデックスとも呼ばれる。
 SM-CCグループインデックスi(図9では、1≦i≦n)に対応するビット値が、当該SM-CCグループインデックスiが割り当てられるCCグループにおけるsTTIモニタリングの有効化/無効化を示す。例えば、当該ビット値が「0」である場合、当該あるCCグループにおけるsTTIモニタリングの無効化を示し、当該ビット値が「1」である場合、当該あるCCグループにおけるsTTIモニタリングの有効化を示してもよい。
 例えば、図10では、ユーザ端末1に対するスロウDCI内のSMフィールドのSM-CCグループインデックス1にCCグループ1が割り当てられ、SM-CCグループインデックス2にCCグループ2が割り当てられる。当該SM-CCグループインデックス1、2に対応するビット値(ここでは、最上位ビット、左から2番目のビットの値)により、ユーザ端末1のCCグループ1、2におけるsTTIモニタリングの有効化/無効化がそれぞれ示される。ユーザ端末2に対するスロウDCI内のSMフィールドについても同様である。
 第3の例では、ユーザ端末に設定されたCCグループ数と等しい数のSM-CCグループインデックスが、当該ユーザ端末に通知される。当該SM-CCグループインデックスは、上位レイヤシグナリング及び/又は物理レイヤシグナリング(例えば、レガシーPDCCH)により、無線基地局からユーザ端末に通知されてもよい。
 また、SMフィールドを含むユーザ端末固有のスロウDCIは、ユーザ端末固有のRNTIを用いたCRCにより検出されてもよい。
 図10に示す第3の例では、SM-CCグループインデックスに対応するビット値により、ユーザ端末のsTTIモニタリングの有効化/無効化がCCグループ毎に制御されるので、sTTIモニタリングの柔軟な制御が可能となる。
 以上のように、第1の態様では、全CC共通、CC毎又はCCグループ毎のいずれかで、sTTIモニタリングの有効化/無効化を示す指示情報(例えば、SMフィールド)がスロウDCI内に含まれるので、ユーザ端末に一以上のCCが設定される場合にも各CCのsTTIモニタリングを適切に制御できる。
(第2の態様)
 第2の態様では、スロウDCIは、sTTIモニタリングの無効化を指示する指示情報を含む。当該スロウDCIが正常に検出される場合、ユーザ端末は、当該スロウDCIに含まれる指示情報に従って、sTTIモニタリングを無効化する。一方、当該スロウDCIが検出されない場合、ユーザ端末は、sTTIモニタリングが有効化されると想定する。
 上記指示情報を含むスロウDCIは、レガシーPDCCHで送信されてもよいし、或いは、特定のsTTI(例えば、サブフレーム内の最初のsTTI)のsPDCCHで送信されてもよい。スロウDCIがレガシーPDCCHで送信される場合、ユーザ端末は、一以上のレガシーPDCCH候補を監視して、スロウDCIを検出する。一方、スロウDCIが特定のsTTIのsPDCCHで送信される場合、ユーザ端末は、当該特定のsTTIにおける一以上のsPDCCH候補を監視して、スロウDCIを検出する。
 第2の態様では、ユーザ端末は、デフォルト動作として、sTTIモニタリングを有効化している。このため、上記指示情報を含むスロウDCIは、第1の態様のように所定周期ではなく、非周期に送信されてもよい。
<無効化の適用期間>
 第2の態様において、ユーザ端末が、スロウDCIに含まれる指示情報に基づくsTTIモニタリングの無効化の適用期間(effective time)は、仕様で定められたルールにより(すなわち、固定的に定められたルールにより)定められてもよいし、或いは、上位レイヤシグナリングにより設定されてよいし、或いは、物理レイヤシグナリング(例えば、スロウDCI)により指定されてもよい。また、当該適用期間は、1msのTTI(サブフレーム)又はsTTIのいずれを単位(granularity)として定められてもよい。
 スロウDCIにより適用期間が指定される場合、当該スロウDCIは、sTTIモニタリングの無効化の適用期間に関する情報(適用期間情報)を含んでもよい。当該適用期間情報は、スロウDCI内の所定フィールド(以下、適用期間フィールドともいう)の値であってもよい。適用期間フィールドは、例えば、適用期間の単位を示す所定数のビット(単位ビット)と、単位ビットによって示される単位(例えば、1msのTTI、sTTI)での適用期間を示す所定数のビット(適用期間ビット)とを含んで構成されてもよい。
 図11は、第2の態様に係る適用期間フィールドの一例を示す図である。図11では、適用期間フィールドは、3ビットで構成され、最上位ビットが単位ビットであり、残りの2ビットが適用期間ビットである場合が示される。
 図11に示すように、単位ビットの値が「0」である場合、sTTIモニタリングの無効化の適用期間が1msのTTI(サブフレーム)を単位とすることが示されてもよい。この場合、2ビットの適用期間ビットの値により、4種類の適用期間(ここでは、1、2、5、10[TTI])のいずれかが示されてもよい。
 一方、単位ビットの値が「1」である場合、当該適用期間がsTTIを単位とすることが示されてもよい。この場合、2ビットの適用期間ビットの値により、sTTI長(ここでは、1スロット又は2シンボル)毎に4種類の適用期間が示されてもよい。例えば、図11では、sTTI長が1スロットの場合、1、3、5、15[sTTI]のいずれかが示され、sTTI長が2シンボルの場合、1、2、3、4[sTTI]のいずれかが示される。
 なお、図11では、sTTI長が1スロット又は2シンボルのいずれであるかは、上位レイヤシグナリングにより予め設定されるものとするが、これに限られない。例えば、2ビット以上の単位ビットを用いることで、単位ビットによりsTTI長が示されてもよい。
 図12は、第2の態様に係る無効化の適用期間の一例を示す図である。なお、図12では、スロウDCIがレガシーPDCCHで送信されるものとするが、上述のように、スロウDCIは特定のsTTIのsPDCCHで送信されてもよい。また、図12では、スロウDCIが、図11で説明した適用期間フィールド値を含むものとするが、無効化の適用期間は、仕様で定められてもよいし、上位レイヤシグナリングにより設定されてもよい。
 図12では、ユーザ端末は、無線フレーム#0のサブフレーム#5において、適用期間フィールド値「001」を含むスロウDCIを検出し、最上位ビットの単位ビットの値「0」により適用期間の単位がTTIであることを認識し、残り2ビットの適用期間ビットの値「01」により適用期間が2TTI(サブフレーム)であることを認識する(図11参照)。
 この場合、図12に示すように、ユーザ端末は、当該適用期間フィールド値が示す2サブフレーム(すなわち、スロウDCIを検出したサブフレーム#5及び次のサブフレーム#6)において、sTTIモニタリングを無効化する。また、ユーザ端末は、適用期間が過ぎたサブフレーム#7以降では、sTTIモニタリングを有効化する。
 図12では、sTTIモニタリングの無効化を指示する指示情報を含むスロウDCIが送信されない場合(又は、送信されてもユーザ端末における検出に失敗する場合)、ユーザ端末は、デフォルト動作として、sTTIモニタリングを有効化する。一方、当該指示情報を含むスロウDCIが送信され、ユーザ端末において正常に検出される場合、ユーザ端末は、当該指示情報に従って、sTTIモニタリングを無効化する。
 図12に示すように、第2の態様では、sTTIモニタリングの無効化する指示情報を含むスロウDCIが検出されない場合、ユーザ端末は、sTTIモニタリングが有効化されると想定する。したがって、sPDSCHの受信失敗に起因して性能が劣化するのを防止できる。
<シグナリング>
 次に、sTTIモニタリングの無効化の指示情報を含むスロウDCIのシグナリングについて詳細に説明する。当該指示情報を含むスロウDCIは、複数のユーザ端末に共通であってもよいし、又は、ユーザ端末に固有であってもよい。
≪ユーザ端末共通のスロウDCI≫
 第2の態様に係るユーザ端末共通のスロウDCIには、一以上のユーザ端末のsTTIモニタリングの無効化を示す指示情報が含まれてもよい。当該指示情報は、当該スロウDCI内の所定フィールド(例えば、SMフィールド)の値であってもよい。
 具体的には、各ユーザ端末に一以上のCCが設定される場合、ユーザ端末共通のスロウDCI内の指示情報は、ユーザ端末毎(第1の例)、各ユーザ端末のCC毎(第2の例)、各ユーザ端末の一以上のCCを含むグループ(CCグループ)毎(第3の例)のいずれかで、sTTIモニタリングの無効化を示してもよい。
 なお、当該ユーザ端末共通のスロウDCI内のSMフィールドでは、SMインデックスiに対応するビット値により、有効化/無効化の代わりに、当該SMインデックスiが割り当てられるsTTIモニタリングの無効化が示される点を除いて、第1の態様のユーザ端末共通のスロウDCIの第1~第3の例(図5-7)と同様であるため、説明を省略する。
 また、図5-7に例示するSMフィールドを第2の態様のユーザ端末共通のスロウDCIの第1~第3の例に適用する場合、SMインデックスiに対応するビット値が「1」又は「0」のいずれであるかに関係なく、当該SMインデックスiに割り当てられるsTTIモニタリングの無効化を示してもよい。
≪ユーザ端末固有のスロウDCI≫
 第2の態様に係るユーザ端末固有のスロウDCIには、当該ユーザ端末のsTTIモニタリングの無効化を示す指示情報が含まれてもよい。当該指示情報は、当該スロウDCI内の所定フィールド(例えば、SMフィールド)の値であってもよい。
 具体的には、当該ユーザ端末に一以上のCCが設定される場合、各ユーザ端末のスロウDCI内の指示情報は、全CC共通(第1の例)、CC毎(第2の例)、CCグループ毎(第3の例)のいずれかで、sTTIモニタリングの無効化を示してもよい。
 なお、当該ユーザ端末共通のスロウDCI内のSMフィールドでは、SMインデックスiに対応するビット値により、有効化/無効化の代わりに、当該SMインデックスiが割り当てられるsTTIモニタリングの無効化が示される点を除いて、第1の態様のユーザ端末固有のスロウDCIの第1~第3の例(図8-10)と同様であるため、説明を省略する。
 また、図8-10に例示するSMフィールドを第2の態様のユーザ端末固有のスロウDCIの第1~第3の例に適用する場合、SMインデックスiに対応するビット値が「1」又は「0」のいずれであるかに関係なく、ユーザ端末は、当該SMインデックスiに割り当てられるsTTIモニタリングを無効化してもよい。
 以上のように、第2の態様では、全CC共通、CC毎又はCCグループ毎のいずれかで、sTTIモニタリングの無効化を示す指示情報(例えば、SMフィールド)がスロウDCI内に含まれるので、ユーザ端末に一以上のCCが設定される場合にも各CCのsTTIモニタリングを適切に制御できる。
(その他の態様)
 以上、本実施の形態では、sTTIモニタリングの有効化又は無効化(有効化/無効化)を指示する指示情報(第1の態様)、sTTIモニタリングの無効化を指示する指示情報(第2の態様)は、レガシーPDCCH又はsPDCCHで送信されるスロウDCIに含まれるものとしたが、MACシグナリングにより送信されるMAC制御要素に含まれる場合にも、適宜適用可能である。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図13は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Rat)などと呼ばれても良い。
 図13に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
 また、各セル(キャリア)では、ロングTTI又はショートTTIのいずれか一方が適用されてもよいし、ロングTTI又はショートTTIの双方が適用されてもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHに対するHARQの再送指示情報(ACK/NACK)を伝送できる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。再送指示情報(ACK/NACK)やチャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
 図14は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、サブフレーム(第1のTTI、1msのTTI、sTTIよりも長いTTI)及び/又はsTTI(第2のTTI)において、DL信号(例えば、PDSCH、sPDSCH、DCI(ファーストDCI、スロウDCIを含む)の少なくとも一つ)を送信し、UL信号(例えば、PUSCH、sPUSCH、UCIの少なくとも一つ)を受信する。また、送受信部103は、スロウDCIに関するパラメータ、適用期間情報を送信してもよい。
 図15は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図15は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成や、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)、測定部305による測定を制御する。
 制御部301は、ユーザ端末20に対するDLデータチャネル(PDSCH、sPDSCHを含む)及びULデータチャネル(PUSCH、sPUSCHを含む)のスケジューリングを行う。
 また、制御部301は、DLデータチャネルのスケジューリング情報を含むDCI(DLアサインメント及び/又はULデータチャネルのスケジューリング情報を含むDCI(ULグラント)を、DL制御チャネル(レガシーPDCCH、sPDSCHを含む)の候補リソース(レガシーPDCCH候補、sPDCCH候補を含む)にマッピングして、送信するように制御する。
 また、制御部301は、ユーザ端末20におけるsTTIモニタリングを制御してもよい。具体的には、制御部301は、sTTIモニタリングの有効化/無効化を指示する指示情報を含むDCIの生成及び送信を制御してもよい(第1の態様)。或いは、制御部301は、sTTIモニタリングの無効化を指示する指示情報を含むDCIの生成及び送信を制御してもよい(第2の態様)。例えば、制御部301は、ユーザ端末20に対するsPDSCH及び/又はsPUSCHのスケジューリング結果に基づいて、上記指示情報を生成してもよい。
 また、制御部301は、ユーザ端末20に対する一以上のCC(セル)の設定を制御してもよい。ユーザ端末20に一以上のCCが設定される場合、制御部301は、ユーザ端末毎、CC毎又はCCグループ毎に上記指示情報(例えば、SMフィールド)を生成し、上記指示情報を含むDCIを送信するよう制御してもよい。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータチャネル、DL制御チャネル、DL参照信号を含む)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータチャネル、UL制御チャネル、UL制御信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図16は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、ブロードキャスト情報もアプリケーション部205に転送される。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCI(例えば、DLの再送制御情報、チャネル状態情報など)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理などが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、サブフレーム(第1のTTI、1msのTTI、sTTIよりも長いTTI)及び/又はsTTI(第2のTTI)において、DL信号(例えば、PDSCH、sPDSCH、DCI(ファーストDCI、スロウDCIを含む)の少なくとも一つ)を受信し、UL信号(例えば、PUSCH、sPUSCH、UCIの少なくとも一つ)を送信する。また、送受信部203は、スロウDCIに関するパラメータ、適用期間情報を受信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図17は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図17においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図17に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成や、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理、測定部405による測定を制御する。
 制御部401は、ユーザ端末20に対するDCI(DLアサインメント及び/又はULグラント)に基づいて、DLデータチャネル(PDSCH、sPDSCHを含む)の受信及びULデータチャネル(PUSCH、sPUSCHを含む)の送信を制御する。
 制御部401は、サブフレームにおけるレガシーPDCCH候補の監視及び/又はsTTIにおけるsPDCCH候補の監視(sTTIモニタリング)を制御する。具体的には、制御部401は、レガシーPDCCH又は特定のsTTIで送信されるDCI(スロウDCI)に基づいて、sTTIモニタリングを制御する。制御部401は、当該スロウDCIが検出されない場合、sTTIモニタリングが有効化されると想定してもよい。
 当該スロウDCIは、sTTIモニタリングの有効化又は無効化を指示する指示情報(第1の態様)、又は、sTTIモニタリングの無効化を指示する指示情報(第2の態様)を含んでもよい。
 例えば、制御部401は、sTTIモニタリングの有効化又は無効化を指示する指示情報を含むスロウDCIが正常に検出される場合、前記指示情報に従って、sTTIモニタリングを有効化又は無効化してもよい(第1の態様)。当該スロウDCIは、所定周期で無線基地局10から送信され、制御部401は、当該有効化又は無効化の適用期間を、当該スロウDCIの周期と同一としてもよい。
 また、制御部401は、sTTIモニタリングの無効化を指示する指示情報を含むスロウDCIが正常に検出される場合、前記指示情報に従って、sTTIモニタリングを無効化してもよい(第2の態様)。当該スロウDCIは、非周期で無線基地局10から送信され、制御部401は、当該無効化の適用期間を、固定的に定められたルール、上位レイヤシグナリング、前記DCIの少なくとも一つにより制御してもよい。
 また、制御部401は、一以上のCC(セル)の設定を制御してもよい。ユーザ端末20に一以上のCCが設定される場合、制御部401は、無線基地局10からのスロウDCIに含まれる上記指示情報(例えば、SMフィールド値)に基づいて、全CC、CC毎、又はCCグループ毎にsTTIモニタリングを制御してもよい。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、物理レイヤ制御情報(L1/L2制御情報)などを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、サブフレーム、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、sTTI、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTI、ショートTTIよりも長いTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2017年1月12日出願の特願2017-003666に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  下りリンク制御情報(DCI)を受信する受信部と、
     前記DCIに基づいて、第1の伝送時間間隔(TTI)よりも短い第2のTTIにおけるDL制御チャネル候補の監視を制御する制御部と、を具備し、
     前記制御部は、前記DCIが検出されない場合、前記第2のTTIにおける前記DL制御チャネル候補の監視が有効化されると想定することを特徴とするユーザ端末。
  2.  前記DCIは、前記第2のTTIにおける前記DL制御チャネル候補の監視の有効化又は無効化を指示する指示情報を含み、
     前記制御部は、前記DCIが正常に検出される場合、前記指示情報に従って、前記第2のTTIにおける前記DL制御チャネル候補の監視を有効化又は無効化することを特徴とする請求項1に記載のユーザ端末。
  3.  前記DCIは、所定周期で無線基地局から送信され、
     前記制御部は、前記有効化又は前記無効化の適用期間を、前記DCIが送信される前記所定周期と同一とすることを特徴とする請求項2に記載のユーザ端末。
  4.  前記DCIは、前記第2のTTIにおける前記DL制御チャネル候補の監視の無効化を指示する指示情報を含み、
     前記制御部は、前記DCIが正常に検出される場合、前記指示情報に従って、前記第2のTTIにおける前記DL制御チャネル候補の監視を無効化することを特徴とする請求項1に記載のユーザ端末。
  5.  前記DCIは、非周期で無線基地局から送信され、
     前記制御部は、前記無効化の適用期間を、固定的に定められたルール、上位レイヤシグナリング、前記DCIの少なくとも一つにより制御することを特徴とする請求項4に記載のユーザ端末。
  6.  ユーザ端末において、
     下りリンク制御情報(DCI)を受信する工程と、
     前記DCIに基づいて、第1の伝送時間間隔(TTI)よりも短い第2のTTIにおけるDL制御チャネル候補の監視を制御する工程と、を有し、
     前記ユーザ端末は、前記DCIが検出されない場合、前記第2のTTIにおける前記DL制御チャネル候補の監視が有効化されると想定することを特徴とする無線通信方法。
PCT/JP2018/000623 2017-01-12 2018-01-12 ユーザ端末及び無線通信方法 WO2018131676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18739384.8A EP3570609A4 (en) 2017-01-12 2018-01-12 USER TERMINAL AND RADIO COMMUNICATION PROCESS
JP2018561428A JP7197367B2 (ja) 2017-01-12 2018-01-12 端末、無線通信方法、基地局及びシステム
AU2018208325A AU2018208325B2 (en) 2017-01-12 2018-01-12 User terminal and radio communication method
CN201880016237.5A CN110383921B (zh) 2017-01-12 2018-01-12 终端、无线通信方法、基站以及系统
US16/477,335 US20190372743A1 (en) 2017-01-12 2018-01-12 User terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-003666 2017-01-12
JP2017003666 2017-01-12

Publications (1)

Publication Number Publication Date
WO2018131676A1 true WO2018131676A1 (ja) 2018-07-19

Family

ID=62840061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000623 WO2018131676A1 (ja) 2017-01-12 2018-01-12 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20190372743A1 (ja)
EP (1) EP3570609A4 (ja)
JP (1) JP7197367B2 (ja)
CN (1) CN110383921B (ja)
AU (1) AU2018208325B2 (ja)
WO (1) WO2018131676A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351774B (zh) * 2018-04-04 2022-07-15 中兴通讯股份有限公司 通信方法、装置、终端、基站及存储介质
EP3911056A1 (en) * 2019-01-10 2021-11-17 Ntt Docomo, Inc. User device and communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003666A (ja) 2015-06-05 2017-01-05 株式会社リコー 駆動装置及び画像形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262627A (zh) * 2011-01-07 2013-08-21 富士通株式会社 探测参考信号的发送方法、基站和用户设备
WO2014027810A1 (ko) * 2012-08-11 2014-02-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
US9538515B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Downlink signaling for adaptation of an uplink-downlink configuration in TDD communication systems
CN106664136B (zh) * 2014-06-27 2020-07-28 苹果公司 用于具有窄带部署的MTC的UE和eNB的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003666A (ja) 2015-06-05 2017-01-05 株式会社リコー 駆動装置及び画像形成装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS36.300, April 2010 (2010-04-01)
CATT: "On sDCI design", 3GPP TSG RAN WG1 MEETING #87, R1-1611351, 18 November 2016 (2016-11-18), XP051175332 *
NOKIA ET AL.: "On two-level DL control channel design and subframe structure for shorter TTI", 3GPP TSG-RAN WGL#86BIS, R1-1609323, 14 October 2016 (2016-10-14), XP051149368, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1609323.zip> *
PANASONIC: "Discussion on Single level DCI and two-level", 3GPP TSG RAN WG1 MEETING #87, R1-1612109, 18 November 2016 (2016-11-18), XP051176064, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1612109.zip> *

Also Published As

Publication number Publication date
AU2018208325A1 (en) 2019-08-29
CN110383921A (zh) 2019-10-25
JP7197367B2 (ja) 2022-12-27
US20190372743A1 (en) 2019-12-05
CN110383921B (zh) 2023-08-22
EP3570609A1 (en) 2019-11-20
EP3570609A4 (en) 2020-09-02
AU2018208325B2 (en) 2022-08-04
JPWO2018131676A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7074766B2 (ja) 端末、無線通信方法及びシステム
JP7121053B2 (ja) 端末、無線通信方法、基地局及びシステム
EP3661283B1 (en) User terminal and radio communication method
CN111133780B (zh) 用户终端、基站装置以及无线通信方法
WO2019030929A1 (ja) ユーザ端末及び無線通信方法
WO2018110618A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
WO2019224875A1 (ja) ユーザ端末
WO2018193594A1 (ja) ユーザ端末及び無線通信方法
JP6928007B2 (ja) 端末、無線通信方法及び基地局
JP7251983B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018158923A1 (ja) ユーザ端末及び無線通信方法
WO2018056338A1 (ja) ユーザ端末及び無線通信方法
WO2019215794A1 (ja) ユーザ端末及び無線通信方法
WO2018143398A1 (ja) ユーザ端末及び無線通信方法
WO2017195748A1 (ja) ユーザ端末及び無線通信方法
JPWO2018128183A1 (ja) ユーザ端末及び無線通信方法
WO2019142272A1 (ja) ユーザ端末及び無線通信方法
JP7163320B2 (ja) 端末、無線通信方法、基地局およびシステム
WO2018173236A1 (ja) ユーザ端末及び無線通信方法
WO2019030930A1 (ja) ユーザ端末及び無線通信方法
JP6917376B2 (ja) 端末及び無線通信方法
JP7115981B2 (ja) 端末、無線通信方法及び基地局
WO2018110619A1 (ja) ユーザ端末及び無線通信方法
WO2019215889A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018739384

Country of ref document: EP

Effective date: 20190812

ENP Entry into the national phase

Ref document number: 2018208325

Country of ref document: AU

Date of ref document: 20180112

Kind code of ref document: A