WO2018131307A1 - アーク抑制装置 - Google Patents

アーク抑制装置 Download PDF

Info

Publication number
WO2018131307A1
WO2018131307A1 PCT/JP2017/042932 JP2017042932W WO2018131307A1 WO 2018131307 A1 WO2018131307 A1 WO 2018131307A1 JP 2017042932 W JP2017042932 W JP 2017042932W WO 2018131307 A1 WO2018131307 A1 WO 2018131307A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
current
supply
current limiting
Prior art date
Application number
PCT/JP2017/042932
Other languages
English (en)
French (fr)
Inventor
直 森田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018561841A priority Critical patent/JP7036033B2/ja
Priority to CN201780082545.3A priority patent/CN110168691B/zh
Priority to US16/475,706 priority patent/US20190348237A1/en
Priority to EP17891373.7A priority patent/EP3570309A4/en
Publication of WO2018131307A1 publication Critical patent/WO2018131307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/026Current limitation using PTC resistors, i.e. resistors with a large positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current

Definitions

  • the present disclosure relates to an arc suppression device.
  • a new and improved arc suppression device capable of extending the life of a circuit breaker that switches between supply and interruption of AC power from an AC power source in an arc suppression device that interrupts AC power. suggest.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from an AC power source is provided in parallel corresponding to a bidirectional current from the AC power source, and each of the currents
  • the limiting circuit cuts off the current from the AC power supply when AC power from the AC power supply is supplied to the load, and when the supply of AC power from the AC power supply to the load is cut off
  • An arc suppression device is provided that cuts off the current from the AC power supply after flowing a current caused by a potential difference generated at the time of interruption.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from an AC power supply is provided in parallel corresponding to a bidirectional current from the AC power supply,
  • the current limiting circuit is turned off when AC power from the AC power supply is supplied to the load, and a potential difference generated at the time of interruption when supply of AC power from the AC power supply to the load is interrupted.
  • a switching element that is turned off after flowing a current caused by the potential difference, and a gate voltage of the switching element when the supply of AC power from the AC power supply to the load is interrupted
  • An arc suppression device is provided, comprising a capacitive element that raises.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from an AC power supply is provided in series corresponding to bidirectional current from the AC power supply, When the AC power from the AC power supply is supplied to the load, the current limiting circuit cuts off the current from the AC power supply, and when the supply of AC power from the AC power supply to the load is interrupted An arc suppression device is provided that cuts off the current from the AC power supply after flowing a current generated by a potential difference generated at the time of interruption.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from an AC power supply is provided in series corresponding to bidirectional current from the AC power supply, The current limiting circuit is turned off when AC power from the AC power supply is supplied to the load, and a potential difference generated at the time of interruption when supply of AC power from the AC power supply to the load is interrupted.
  • a switching element that is turned off after flowing a current caused by the potential difference, and a gate voltage of the switching element when the supply of AC power from the AC power supply to the load is interrupted
  • An arc suppression device is provided, comprising a capacitive element that raises.
  • a new and improved circuit breaker that switches between supply and cut-off of AC power from an AC power source can be achieved.
  • An arc suppression device can be provided.
  • the present disclosure relates to an arc suppression device capable of extending the life by suppressing the generation of an arc at the time of contact detachment and preventing deterioration of the contact when interrupting AC.
  • an intensive study As a result, as will be described below, the present disclosure, when interrupting the alternating current, suppresses the generation of arcs at the time of contact detachment and prevents the deterioration of the contacts, thereby increasing the life of the arc. I came up with a suppression device.
  • FIG. 1 is an explanatory diagram illustrating a circuit configuration example of an arc suppression device according to an embodiment of the present disclosure.
  • the arc suppression device shown in FIG. 1 is a device that suppresses an arc that may occur when AC power is interrupted.
  • a circuit configuration example of the arc suppression device according to an embodiment of the present disclosure will be described with reference to FIG.
  • the arc suppression device 100 shown in FIG. 1 is a device that suppresses generation of an arc in the relay RY1 when AC power supplied from the AC power supply V1 is interrupted by the relay RY1.
  • the AC power source V1 is a power source that supplies AC power of 100 V, for example.
  • the relay RY1 is switched on and off by power from the DC power supply V2.
  • the arc suppression device 100 is provided in parallel with the relay RY1.
  • Arc suppression device 100 has current limiting circuits AF1 and AF2 provided in parallel.
  • the current limiting circuit AF1 includes a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) M2, a Zener diode D3, a diode D4, resistors R3 and R5, and a capacitor C4.
  • the current limiting circuit AF2 includes a MOSFET M1, a Zener diode D1, a diode D2, resistors R1 and R2, and a capacitor C4.
  • the current limiting circuit AF1 is a circuit that suppresses the occurrence of an arc in the relay RY1 when the current is interrupted by the relay RY1 while the AC power supply V1 is in a negative voltage state.
  • the current limiting circuit AF2 is a circuit that suppresses the occurrence of an arc in the relay RY1 when the current is interrupted by the relay RY1 while the AC power supply V1 is in a positive voltage state.
  • the MOSFET M2 is an n-type MOSFET in this embodiment.
  • MOSFET M2 is provided on a path through which current flows from AC power supply V1.
  • the capacitor C4 is provided between the drain terminal and the gate terminal of the MOSFET M2.
  • the resistor R3 is provided between the gate terminal and the source terminal of the MOSFET M2.
  • the resistor R3 is provided to set a time for applying a voltage to the gate terminal of the MOSFET M2 together with the capacitor C4.
  • the capacitor C4 and the resistor R3 are connected in series. Zener diode D3 is provided to discharge the charge stored in capacitor C4 when the contact of relay RY1 is connected.
  • the Zener diode D3 is provided to protect the gate terminal of the MOSFET M2.
  • the diode D4 suppresses the current due to the parasitic reverse diode of the MOSFET M2.
  • the current limiting circuit AF1 is reverse-biased by the diode D4 and disconnected from the arc suppression device 100 when the current is interrupted by the relay RY1 while the AC power supply V1 is in a positive voltage state.
  • the MOSFET M1 is an n-type MOSFET in this embodiment.
  • MOSFET M1 is provided on a path through which current flows from AC power supply V1.
  • the capacitor C1 is provided between the drain terminal and the gate terminal of the MOSFET M1.
  • the resistor R1 is provided between the gate terminal and the source terminal of the MOSFET M1.
  • the resistor R1 is provided to set a time for applying a voltage to the gate terminal of the MOSFET M1 together with the capacitor C1.
  • the capacitor C1 and the resistor R1 are connected in series. Zener diode D1 is provided to discharge the electric charge stored in capacitor C1 when the contact of relay RY1 is connected.
  • the Zener diode D1 is provided to protect the gate terminal of the MOSFET M1.
  • the diode D2 suppresses the current due to the parasitic reverse diode of the MOSFET M2.
  • the current limiting circuit AF2 is reverse-biased by the diode D2 and disconnected from the arc suppression device 100 when the current is interrupted by the relay RY1 when the AC power supply V1 is in a negative voltage state.
  • a predetermined potential difference is generated between the terminals of the relay RY1. This potential difference corresponds to the voltage value of the AC power supply V1 at the time of interruption.
  • the potential difference generated between the terminals of the relay RY1 induces the gate voltage of the MOSFET M2 through the capacitor C4, and turns on the MOSFET M2.
  • the MOSFET M2 is turned on, a current flows in a direction that reduces the potential difference between the terminals of the relay RY1. That is, when the MOSFET M2 is turned on, a current flows from the node N5 to the node N1.
  • the voltage between the drain terminal and the source terminal of the MOSFET M2 falls within the voltage along the transfer function of the FET gate voltage.
  • the gate voltage of the MOSFET M2 decreases.
  • the MOSFET M2 will eventually be turned off.
  • a predetermined potential difference is generated between the terminals of the relay RY1. This potential difference corresponds to the voltage value of the AC power supply V1 at the time of interruption.
  • the potential difference generated between the terminals of the relay RY1 induces the gate voltage of the MOSFET M1 through the capacitor C1, and turns on the MOSFET M1.
  • MOSFET M1 is turned on, a current flows in a direction that reduces the potential difference between the terminals of relay RY1. That is, when the MOSFET M1 is turned on, a current flows from the node N1 to the node N5.
  • the voltage between the drain terminal and the source terminal of the MOSFET M1 falls within the voltage along the transfer function of the FET gate voltage.
  • the gate voltage of the MOSFET M1 decreases.
  • the MOSFET M1 will eventually be turned off.
  • FIG. 2 shows currents flowing through MOSFETs M1 and M2 in arc suppression device 100, voltage of AC power supply V1 (voltage of node N1 in FIG. 1) and output voltage Vout (voltage of node N5 in FIG. 1), relay RY1 being turned on, It is explanatory drawing which shows the time transition of an OFF state.
  • the on / off state of the relay RY1 is replaced with the time transition of the voltage of the DC power supply V2.
  • the relay RY1 is turned on.
  • reference numeral 111 denotes a current flowing through the MOSFET M2
  • reference numeral 112 denotes a current flowing through the MOSFET M1
  • reference numeral 121 denotes a voltage at the node N1 in FIG. 1
  • reference numeral 122 denotes a voltage at the node N5 in FIG. 1
  • reference numeral 131 denotes a DC power supply V2. The time transition of the voltage of each is shown, respectively.
  • the relay RY1 When the relay RY1 is in the off state, the current from the AC power supply V1 is interrupted by the relay RY1 and the arc suppression device 100, and the output voltage Vout is 0V. When relay RY1 is turned on, current from AC power supply V1 flows through relay RY1. The voltage of the output voltage Vout changes according to the change of the voltage of the AC power supply V1.
  • the relay RY1 When the relay RY1 is switched from the on state to the off state at the time t1 (for example, 40 ms in FIG. 2) when the voltage of the AC power supply V1 is a negative voltage, the output voltage Vout becomes 0V again.
  • the relay RY1 When the relay RY1 is switched from the on state to the off state, the MOSFET M2 is turned on due to the potential difference between the terminals of the relay RY1, and a current flows in a short time. As described above, the gate voltage of the MOSFET M2 is lowered, and the MOSFET M2 is eventually turned off. As described above, the MOSFET M2 is turned on by the potential difference between the terminals of the relay RY1, so that an arc between the terminals of the relay RY1 can be suppressed.
  • the relay RY1 when the relay RY1 is switched from the on state to the off state at the time point t2 (for example, 110 ms in FIG. 2) when the voltage of the AC power supply V1 is a positive voltage, the output voltage Vout becomes 0V again.
  • the relay RY1 When the relay RY1 is switched from the on state to the off state, the MOSFET M1 is turned on due to the potential difference between the terminals of the relay RY1, and a current flows in a short time. As described above, the gate voltage of the MOSFET M1 is lowered, and the MOSFET M1 is eventually turned off. As described above, the MOSFET M1 is turned on by the potential difference between the terminals of the relay RY1, so that an arc between the terminals of the relay RY1 can be suppressed.
  • the arc suppression device 100 can suppress the generation of an arc when the power supply from the AC power supply V1 is interrupted using the relay RY1.
  • the arc suppression device 100 can extend the life of the relay RY1 by suppressing the occurrence of an arc between the contacts of the relay RY1.
  • FIG. 3 is an explanatory diagram illustrating a circuit configuration example of the arc suppression device according to an embodiment of the present disclosure.
  • the arc suppression device shown in FIG. 3 is a device that suppresses an arc that may occur when AC power is interrupted.
  • the arc suppression apparatus 100 shown in FIG. 3 is the arc suppression apparatus shown in FIG. 1 except that the diodes D4 and D2 are provided on the drain terminal side of the MOSFETs M2 and M1 in the current limiting circuits AF1 and AF2. 100 has the same circuit configuration. In this way, even when the diodes D4 and D2 are provided on the drain terminal side of the MOSFETs M2 and M1, similarly, the generation of an arc when the power supply from the AC power supply V1 is cut off using the relay RY1 can be suppressed. it can.
  • FIG. 4 is an explanatory diagram illustrating a circuit configuration example of the arc suppression device according to an embodiment of the present disclosure.
  • the arc suppression device shown in FIG. 4 is a device that suppresses an arc that may occur when AC power is interrupted.
  • the arc suppression device 200 shown in FIG. 4 is a device that suppresses the generation of arcs in the relays RY11 and 12 when AC power supplied from the AC power supply V1 is interrupted by the relays RY11 and RY12.
  • the AC power source V1 is a power source that supplies AC power of 100 V, for example. Relays RY11 and RY12 are switched on and off by the power from DC power supply V2.
  • the arc suppression device 100 is provided in parallel with the relays RY11 and RY12.
  • the arc suppression apparatus 100 has current limiting circuits AF11 and 12 provided in series.
  • the current limiting circuit AF11 has the same circuit configuration as AF1 of the arc suppression device 100 shown in FIG. 1 except that the diode D4 is provided between the source terminal and the drain terminal of the MOSFET M2.
  • the current limiting circuit AF12 has the same circuit configuration as AF1 of the arc suppression device 100 shown in FIG. 1 except that the diode D2 is provided between the source terminal and the drain terminal of the MOSFET M1.
  • the resistor R3 and the capacitor C4 of the current limiting circuit AF11 and the capacitor C1 and the resistor R1 of the current limiting circuit AF12 are connected in series. It becomes. That is, since the arc suppression device 200 shown in FIG. 4 has an increased impedance connected to the load (resistor R4), the leakage current when the relays RY11 and RY12 are turned off can be reduced.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from the AC power supply is provided in parallel corresponding to the bidirectional current from the AC power supply,
  • Each of the current limiting circuits cuts off the current from the AC power supply when AC power from the AC power supply is supplied to the load, and the supply of AC power from the AC power supply to the load is cut off.
  • An arc suppression device that cuts off the current from the AC power supply after flowing a current caused by a potential difference generated at the time of interruption.
  • the current limiting circuit is turned off when AC power from the AC power source is supplied to the load, and is generated when the supply of AC power from the AC power source to the load is shut off.
  • the arc suppression device further including a switching element that is turned off after flowing a current generated by the potential difference after being turned on by the potential difference.
  • the said current limiting circuit is an arc suppression apparatus as described in said (2) provided with the capacitive element which raises the gate voltage of the said switching element, when supply to the said load of the alternating current power from the said alternating current power supply is interrupted
  • the said current limiting circuit is an arc suppression apparatus as described in said (3) provided with the resistive element which sets the time which applies a voltage to the gate terminal of the said switching element with the said capacitive element.
  • the arc suppression device according to (3) or (4), wherein the current limiting circuit includes a Zener diode between a source terminal and a gate terminal of the switching element.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from the AC power supply is provided in parallel corresponding to the bidirectional current from the AC power supply, Each said current limiting circuit is When the AC power from the AC power supply is supplied to the load, the power supply is turned off. When the supply of the AC power from the AC power supply to the load is cut off, the power supply is turned on due to a potential difference generated when the power supply is cut off.
  • a switching element that is turned off after passing a current generated by the potential difference;
  • a capacitive element that raises the gate voltage of the switching element when the supply of AC power from the AC power supply to the load is interrupted;
  • An arc suppression device comprising: (7)
  • the said current limiting circuit is an arc suppression apparatus as described in said (6) provided with the resistive element which sets the time which applies a voltage to the gate terminal of the said switching element with the said capacitive element.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from the AC power supply is provided in series corresponding to the bidirectional current from the AC power supply, Each of the current limiting circuits cuts off the current from the AC power supply when AC power from the AC power supply is supplied to the load, and the supply of AC power from the AC power supply to the load is cut off.
  • An arc suppression device that cuts off the current from the AC power supply after flowing a current caused by a potential difference generated at the time of interruption.
  • the current limiting circuit is turned off when AC power from the AC power supply is supplied to the load, and generated when the supply of AC power from the AC power supply to the load is interrupted.
  • the arc suppression device further including a switching element that is turned on after flowing a current generated by the potential difference after being turned on by the potential difference.
  • the said current limiting circuit is an arc suppression apparatus as described in said (10) provided with the capacitive element which raises the gate voltage of the said switching element, when supply to the said load of the alternating current power from the said alternating current power supply is interrupted
  • the said current limiting circuit is an arc suppression apparatus as described in said (11) provided with the resistive element which sets the time which applies a voltage to the gate terminal of the said switching element with the said capacitive element.
  • the arc suppression device according to (11) or (12), wherein the current limiting circuit includes a Zener diode between a source terminal and a gate terminal of the switching element.
  • a current limiting circuit provided in parallel with a circuit breaker that switches between supply and interruption of AC power from the AC power supply is provided in series corresponding to the bidirectional current from the AC power supply, Each said current limiting circuit is When the AC power from the AC power supply is supplied to the load, the power supply is turned off. When the supply of the AC power from the AC power supply to the load is cut off, the power supply is turned on due to a potential difference generated when the power supply is cut off.
  • An arc suppression device comprising: (15) The said current limiting circuit is an arc suppression apparatus as described in said (14) provided with the resistive element which sets the time which applies a voltage to the gate terminal of the said switching element with the said capacitive element. (16) The arc suppression device according to (15), wherein the current limiting circuit includes a Zener diode between a source terminal and a gate terminal of the switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

【課題】交流電力を遮断するアーク抑制装置において、交流電源からの交流電力の供給と遮断とを切り替える遮断器の長寿命化を図ることが可能な、アーク抑制装置を提供する。 【解決手段】交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置。

Description

アーク抑制装置
 本開示は、アーク抑制装置に関する。
 直流給電でも交流給電でも、電力の切断時にはアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。しかし、交流給電の場合でもアーク放電を発生させないことが望ましく、交流電力の遮断時にアークの発生を抑制するための技術が開示されている(例えば特許文献1参照)。
特開2013-008607号公報
 交流の遮断に用いられる遮断回路の接点の乖離時に、その瞬間の接点電圧と電流がある一定の値以上であるとアークが発生するが、そのアークにより接点が劣化してしまい、遮断回路の寿命を短縮させることに繋がっていた。
 そこで本開示では、交流電力を遮断するアーク抑制装置において、交流電源からの交流電力の供給と遮断とを切り替える遮断器の長寿命化を図ることが可能な、新規かつ改良されたアーク抑制装置を提案する。
 本開示によれば、交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置が提供される。
 また本開示によれば、交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、を備える、アーク抑制装置が提供される。
 また本開示によれば、交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置が提供される。
 また本開示によれば、交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、を備える、アーク抑制装置が提供される。
 以上説明したように本開示によれば、交流電力を遮断するアーク抑制装置において、交流電源からの交流電力の供給と遮断とを切り替える遮断器の長寿命化を図ることが可能な、新規かつ改良されたアーク抑制装置を提供することが出来る。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係るアーク抑制装置の回路構成例を示す説明図である。 アーク抑制装置100における電流及び電圧の時間的推移を示す説明図である。 同実施形態に係るアーク抑制装置の回路構成例を示す説明図である。 同実施形態に係るアーク抑制装置の回路構成例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.背景
  1.2.構成例
 2.まとめ
 <1.本開示の一実施形態>
 [1.1.背景]
 本開示の一実施形態について詳細に説明する前に、まず本開示の一実施形態の背景について説明する。
 直流給電でも交流給電でも、電力の切断時には、電圧と電流がある所定の値以上になると、電極間の電位差によるスパークやアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。
 しかし、交流の遮断に用いられる遮断回路の接点の乖離時に、その瞬間の接点電圧と電流がある一定の値以上であるとアークが発生するが、そのアークにより接点が劣化してしまい、遮断回路の寿命を短縮させることに繋がっていた。半導体のサイリスタ等を用いて、交流電のゼロクロス点で遮断する方式もあるが、電流を導通させている間、半導体の内部抵抗による発熱があり、小型化が出来ず、遮断は交流のゼロクロス点を利用するため、ゼロクロス点になるまで遮断できない。
 そこで本件開示者は、上述した点に鑑み、交流を遮断する際に、接点の乖離時のアークの発生を抑え、接点の劣化を防ぐことで長寿命化を図ることが可能なアーク抑制装置について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、交流を遮断する際に、接点の乖離時のアークの発生を抑え、接点の劣化を防ぐことで長寿命化を図ることが可能なアーク抑制装置を考案するに至った。
 以上、本開示の一実施形態の背景について説明した。続いて、本開示の一実施形態について詳細に説明する。
 [1.2.構成例]
 図1は、本開示の一実施形態に係るアーク抑制装置の回路構成例を示す説明図である。図1に示したアーク抑制装置は、交流電力の遮断時に発生しうるアークを抑制する装置である。以下、図1を用いて本開示の一実施形態に係るアーク抑制装置の回路構成例について説明する。
 図1に示したアーク抑制装置100は、交流電源V1から供給される交流電力をリレーRY1で遮断する際に、リレーRY1でのアークの発生を抑制する装置である。交流電源V1は、例えば100Vの交流電力を供給する電源である。またリレーRY1は、直流電源V2からの電力によりオンとオフとが切り替わる。図1に示したように、アーク抑制装置100はリレーRY1と並列に設けられる。またアーク抑制装置100は、並列に設けられた電流制限回路AF1、AF2を有する。
 電流制限回路AF1は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor) M2と、ツェナーダイオードD3と、ダイオードD4と、抵抗R3、R5と、コンデンサC4と、を有する。電流制限回路AF2は、MOSFET M1と、ツェナーダイオードD1と、ダイオードD2と、抵抗R1、R2と、コンデンサC4と、を有する。
 電流制限回路AF1は、交流電源V1が負の電圧の状態でリレーRY1により電流の遮断がなされた際に、リレーRY1でのアークの発生を抑制する回路である。電流制限回路AF2は、交流電源V1が正の電圧の状態でリレーRY1により電流の遮断がなされた際に、リレーRY1でのアークの発生を抑制する回路である。
 まず電流制限回路AF1を構成する各素子について説明する。MOSFET M2は、本実施形態ではn型のMOSFETを用いている。MOSFET M2は交流電源V1から電流が流れる経路上に設けられる。コンデンサC4は、MOSFET M2のドレイン端子とゲート端子との間に設けられる。また抵抗R3は、MOSFET M2のゲート端子とソース端子との間に設けられる。抵抗R3は、MOSFET M2のゲート端子に電圧を印加する時間を、コンデンサC4と共に設定するために設けられる。そしてコンデンサC4と抵抗R3とは直列に接続されている。ツェナーダイオードD3は、リレーRY1の接点が接続された際に、コンデンサC4に蓄えられている電荷を放電するために設けられる。またツェナーダイオードD3は、MOSFET M2のゲート端子の保護のために設けられる。ダイオードD4は、MOSFET M2の寄生逆ダイオードによる電流を抑制する。電流制限回路AF1は、交流電源V1が正の電圧の状態でリレーRY1により電流の遮断がなされた際に、ダイオードD4によって逆バイアスとなっており、アーク抑制装置100から切り離される。
 次に電流制限回路AF2を構成する各素子について説明する。MOSFET M1は、本実施形態ではn型のMOSFETを用いている。MOSFET M1は交流電源V1から電流が流れる経路上に設けられる。コンデンサC1は、MOSFET M1のドレイン端子とゲート端子との間に設けられる。また抵抗R1は、MOSFET M1のゲート端子とソース端子との間に設けられる。抵抗R1は、MOSFET M1のゲート端子に電圧を印加する時間を、コンデンサC1と共に設定するために設けられる。そしてコンデンサC1と抵抗R1とは直列に接続されている。ツェナーダイオードD1は、リレーRY1の接点が接続された際に、コンデンサC1に蓄えられている電荷を放電するために設けられる。またツェナーダイオードD1は、MOSFET M1のゲート端子の保護のために設けられる。ダイオードD2は、MOSFET M2の寄生逆ダイオードによる電流を抑制する。電流制限回路AF2は、交流電源V1が負の電圧の状態でリレーRY1により電流の遮断がなされた際に、ダイオードD2によって逆バイアスとなっており、アーク抑制装置100から切り離される。
 続いてアーク抑制装置100の機能について説明する。リレーRY1がオン状態にある際は、MOSFET M1、M2はいずれもオフ状態となっている。従ってアーク抑制装置100には電流が流れない。
 交流電源V1が負の電圧の状態でリレーRY1により電流の遮断がなされると、リレーRY1の端子間に所定の電位差が発生する。この電位差は、遮断時の交流電源V1の電圧値に対応する。リレーRY1の端子間に発生した電位差は、コンデンサC4を介してMOSFET M2のゲート電圧を誘起させて、MOSFET M2をオン状態にする。MOSFET M2がオン状態となると、リレーRY1の端子間の電位差を低下させる方向に電流が流れる。すなわちMOSFET M2がオン状態となると、ノードN5からノードN1の方向に電流が流れる。
 MOSFET M2がオン状態となると、リレーRY1の端子間の電位差を低下させる方向に電流が流れることにより、リレーRY1の端子間の電位差が低減される。従って、交流電源V1が負の電圧の状態でリレーRY1により電流の遮断がなされた際に、仮にアークの発生条件を満たしていた場合であっても、リレーRY1においてアークの発生に至ることは無い。
 MOSFET M2のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。リレーRY1の端子間に発生した電位差によってコンデンサC4の充電が進むと、MOSFET M2のゲート電圧が低下する。MOSFET M2のゲート電圧が低下するとやがてMOSFET M2はオフ状態に移行する。MOSFET M2がオフ状態に移行することでMOSFET M2に電流が流れなくなる。
 交流電源V1が正の電圧の状態でリレーRY1により電流の遮断がなされると、リレーRY1の端子間に所定の電位差が発生する。この電位差は、遮断時の交流電源V1の電圧値に対応する。リレーRY1の端子間に発生した電位差は、コンデンサC1を介してMOSFET M1のゲート電圧を誘起させて、MOSFET M1をオン状態にする。MOSFET M1がオン状態となると、リレーRY1の端子間の電位差を低下させる方向に電流が流れる。すなわちMOSFET M1がオン状態となると、ノードN1からノードN5の方向に電流が流れる。
 MOSFET M1がオン状態となると、リレーRY1の端子間の電位差を低下させる方向に電流が流れることにより、リレーRY1の端子間の電位差が低減される。従って、交流電源V1が正の電圧の状態でリレーRY1により電流の遮断がなされた際に、仮にアークの発生条件を満たしていた場合であっても、リレーRY1においてアークの発生に至ることは無い。
 MOSFET M1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。リレーRY1の端子間に発生した電位差によってコンデンサC1の充電が進むと、MOSFET M1のゲート電圧が低下する。MOSFET M1のゲート電圧が低下するとやがてMOSFET M1はオフ状態に移行する。MOSFET M1がオフ状態に移行することでMOSFET M1に電流が流れなくなる。
 図2は、アーク抑制装置100におけるMOSFET M1、M2を流れる電流、交流電源V1の電圧(図1のノードN1の電圧)及び出力電圧Vout(図1のノードN5の電圧)、リレーRY1のオン、オフ状態の時間的推移を示す説明図である。図2ではリレーRY1のオン・オフ状態を直流電源V2の電圧の時間的推移に置き換えて示す。本実施形態では5Vの電圧がリレーRY1に印加されるとリレーRY1がオン状態となる。図2では、符号111がMOSFET M2を流れる電流、符号112がMOSFET M1を流れる電流、符号121が図1のノードN1の電圧、符号122が図1のノードN5の電圧、符号131が直流電源V2の電圧の時間的推移をそれぞれ示すものである。
 リレーRY1がオフ状態にある場合は、交流電源V1からの電流はリレーRY1及びアーク抑制装置100により遮断されており、出力電圧Voutは0Vである。リレーRY1がオン状態となると、交流電源V1からの電流はリレーRY1を通って流れる。出力電圧Voutの電圧は交流電源V1の電圧の変化に応じて変化する。
 交流電源V1の電圧が負の電圧となっている時点t1(例えば図2における40ms)でリレーRY1がオン状態からオフ状態に切り替わると、出力電圧Voutは再び0Vとなる。またリレーRY1がオン状態からオフ状態に切り替わると、リレーRY1の端子間の電位差によってMOSFET M2がオン状態になり、短時間の間に電流が流れる。そして上述したようにMOSFET M2のゲート電圧が低下し、やがてMOSFET M2はオフ状態に移行する。このようにリレーRY1の端子間の電位差によってMOSFET M2がオン状態になることで、リレーRY1の端子間のアークの発生を抑えることができる。
 一方、交流電源V1の電圧が正の電圧となっている時点t2(例えば図2における110ms)でリレーRY1がオン状態からオフ状態に切り替わると、出力電圧Voutは再び0Vとなる。またリレーRY1がオン状態からオフ状態に切り替わると、リレーRY1の端子間の電位差によってMOSFET M1がオン状態になり、短時間の間に電流が流れる。そして上述したようにMOSFET M1のゲート電圧が低下し、やがてMOSFET M1はオフ状態に移行する。このようにリレーRY1の端子間の電位差によってMOSFET M1がオン状態になることで、リレーRY1の端子間のアークの発生を抑えることができる。
 このように、本開示の一実施形態に係るアーク抑制装置100は、リレーRY1を用いて交流電源V1からの電力供給を遮断する際のアークの発生を抑えることができる。アーク抑制装置100は、リレーRY1の接点間のアークの発生を抑制することで、リレーRY1の長寿命化を図ることが可能となる。
 (変形例)
 図1に示したアーク抑制装置100の電流制限回路AF1、AF2にそれぞれ設けられているダイオードD4、D2は、MOSFET M2、M1のドレイン端子側に設けられていても良い。図3は、本開示の一実施形態に係るアーク抑制装置の回路構成例を示す説明図である。図3に示したアーク抑制装置は、交流電力の遮断時に発生しうるアークを抑制する装置である。
 図3に示したアーク抑制装置100は、電流制限回路AF1、AF2において、ダイオードD4、D2がMOSFET M2、M1のドレイン端子側に設けられている点を除けば、図1に示したアーク抑制装置100と同一の回路構成を有する。このようにダイオードD4、D2がMOSFET M2、M1のドレイン端子側に設けられていても、同様に、リレーRY1を用いて交流電源V1からの電力供給を遮断する際のアークの発生を抑えることができる。
 また図1に示したアーク抑制装置100は、電流制限回路AF1、AF2が並列に設けられていたが、電流制限回路AF1、AF2は直列に設けられていても良い。図4は、本開示の一実施形態に係るアーク抑制装置の回路構成例を示す説明図である。図4に示したアーク抑制装置は、交流電力の遮断時に発生しうるアークを抑制する装置である。
 図4に示したアーク抑制装置200は、交流電源V1から供給される交流電力をリレーRY11、RY12で遮断する際に、リレーRY11、12でのアークの発生を抑制する装置である。交流電源V1は、例えば100Vの交流電力を供給する電源である。またリレーRY11、RY12は、直流電源V2からの電力によりオンとオフとが切り替わる。図4に示したように、アーク抑制装置100はリレーRY11、RY12と並列に設けられる。またアーク抑制装置100は、直列に設けられる電流制限回路AF11、12を有する。
 電流制限回路AF11は、ダイオードD4がMOSFET M2のソース端子とドレイン端子との間に設けられる点を除けば、図1に示したアーク抑制装置100のAF1と同一の回路構成を有する。また電流制限回路AF12は、ダイオードD2がMOSFET M1のソース端子とドレイン端子との間に設けられる点を除けば、図1に示したアーク抑制装置100のAF1と同一の回路構成を有する。
 図4に示したアーク抑制装置200では、リレーRY11、RY12がオフになると、電流制限回路AF11の抵抗R3、コンデンサC4と、電流制限回路AF12のコンデンサC1、抵抗R1とが直列に接続される状態となる。すなわち、図4に示したアーク抑制装置200は、負荷(抵抗R4)に繋がるインピーダンスが大きくなるので、リレーRY11、RY12がオフになった際の漏れ電流を少なくすることができる。
 <2.まとめ>
 以上説明したように本開示の一実施形態によれば、交流を遮断する際に、交流電源からの交流電力の供給と遮断とを切り替える遮断器の接点の乖離時のアークの発生を抑え、接点の劣化を防ぐことで長寿命化を図ることが可能なアーク抑制装置を提供することが出来る。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、
 各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置。
(2)
 前記電流制限回路は、前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子を備える、前記(1)に記載のアーク抑制装置。
(3)
 前記電流制限回路は、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子を備える、前記(2)に記載のアーク抑制装置。
(4)
 前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、前記(3)に記載のアーク抑制装置。
(5)
 前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、前記(3)または(4)に記載のアーク抑制装置。
(6)
 交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、
 各前記電流制限回路は、
 前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、
 前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
を備える、アーク抑制装置。
(7)
 前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、前記(6)に記載のアーク抑制装置。
(8)
 前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、前記(6)または(7)に記載のアーク抑制装置。
(9)
 交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、
 各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置。
(10)
 前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子を備える、前記(9)に記載のアーク抑制装置。
(11)
 前記電流制限回路は、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子を備える、前記(10)に記載のアーク抑制装置。
(12)
 前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、前記(11)に記載のアーク抑制装置。
(13)
 前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、前記(11)または(12)に記載のアーク抑制装置。
(14)
 交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、
 各前記電流制限回路は、
 前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、
 前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
を備える、アーク抑制装置。
(15)
 前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、前記(14)に記載のアーク抑制装置。
(16)
 前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、前記(15)に記載のアーク抑制装置。
 100、200  アーク抑制装置
 AF1、AF2、AF11、AF12  電流制限回路

Claims (16)

  1.  交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、
     各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置。
  2.  前記電流制限回路は、前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子を備える、請求項1に記載のアーク抑制装置。
  3.  前記電流制限回路は、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子を備える、請求項2に記載のアーク抑制装置。
  4.  前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、請求項3に記載のアーク抑制装置。
  5.  前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、請求項3に記載のアーク抑制装置。
  6.  交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して並列に備え、
     各前記電流制限回路は、
     前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、
     前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
    を備える、アーク抑制装置。
  7.  前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、請求項6に記載のアーク抑制装置。
  8.  前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、請求項6に記載のアーク抑制装置。
  9.  交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、
     各前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際には前記交流電源からの電流を遮断し、前記交流電源からの交流電力の前記負荷への供給が遮断された際には遮断時に発生する電位差により生じる電流を流した後に前記交流電源からの電流を遮断する、アーク抑制装置。
  10.  前記電流制限回路は、前記交流電源からの交流電力が負荷に供給される際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子を備える、請求項9に記載のアーク抑制装置。
  11.  前記電流制限回路は、前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子を備える、請求項10に記載のアーク抑制装置。
  12.  前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、請求項11に記載のアーク抑制装置。
  13.  前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、請求項11に記載のアーク抑制装置。
  14.  交流電源からの交流電力の供給と遮断とを切り替える遮断器と並列に設けられる電流制限回路を前記交流電源からの双方向の電流に対応して直列に備え、
     各前記電流制限回路は、
     前記交流電源からの交流電力が負荷に供給された際にはオフ状態となり、前記交流電源からの交流電力の前記負荷への供給が遮断される際には遮断時に発生する電位差によりオン状態となった後、該電位差により生じる電流を流した後にオフ状態となるスイッチング素子と、
     前記交流電源からの交流電力の前記負荷への供給が遮断された際に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
    を備える、アーク抑制装置。
  15.  前記電流制限回路は、前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子を備える、請求項14に記載のアーク抑制装置。
  16.  前記電流制限回路は、前記スイッチング素子のソース端子とゲート端子との間にツェナーダイオードを備える、請求項15に記載のアーク抑制装置。
PCT/JP2017/042932 2017-01-13 2017-11-30 アーク抑制装置 WO2018131307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018561841A JP7036033B2 (ja) 2017-01-13 2017-11-30 アーク抑制装置
CN201780082545.3A CN110168691B (zh) 2017-01-13 2017-11-30 消弧装置
US16/475,706 US20190348237A1 (en) 2017-01-13 2017-11-30 Arc suppression device
EP17891373.7A EP3570309A4 (en) 2017-01-13 2017-11-30 ARC SUPPRESSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-003765 2017-01-13
JP2017003765 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131307A1 true WO2018131307A1 (ja) 2018-07-19

Family

ID=62840053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042932 WO2018131307A1 (ja) 2017-01-13 2017-11-30 アーク抑制装置

Country Status (5)

Country Link
US (1) US20190348237A1 (ja)
EP (1) EP3570309A4 (ja)
JP (1) JP7036033B2 (ja)
CN (1) CN110168691B (ja)
WO (1) WO2018131307A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637892A (zh) * 2018-12-11 2019-04-16 北京动力源科技股份有限公司 一种直流继电切换电路
CN109660233A (zh) * 2018-12-11 2019-04-19 北京动力源科技股份有限公司 一种直流继电切换电路
JP2022519252A (ja) * 2019-01-29 2022-03-22 アーク サプレッション テクノロジーズ 多相ac電源接点アーク抑制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114257B2 (en) * 2018-04-06 2021-09-07 Yazaki North America, Inc. Methods and apparatus for DC arc detection/suppression

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49745A (ja) * 1972-04-18 1974-01-07
JP2013008607A (ja) 2011-06-27 2013-01-10 Ntt Data Intellilink Corp 電流開閉器及び直流電流開閉器
JP2014216056A (ja) * 2013-04-22 2014-11-17 富士電機株式会社 直流回路遮断装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389301A (en) * 1965-10-21 1968-06-18 Fenwal Inc Arc suppressing circuit
DE3431581A1 (de) * 1984-08-28 1986-03-20 Friedrich Dipl.-Ing. 8033 Krailling Lauerer Elektrischer Schalter
US4658320A (en) * 1985-03-08 1987-04-14 Elecspec Corporation Switch contact arc suppressor
US5703743A (en) * 1996-04-29 1997-12-30 Schweitzer Engineering Laboratories, Inc. Two terminal active arc suppressor
US6621668B1 (en) * 2000-06-26 2003-09-16 Zytron Control Products, Inc. Relay circuit means for controlling the application of AC power to a load using a relay with arc suppression circuitry
ATE342575T1 (de) * 2001-03-01 2006-11-15 Tyco Electronics Amp Gmbh Elektrische schaltung zur vermeidung eines lichtbogens über einem elektrischen kontakt
US7145758B2 (en) * 2002-05-17 2006-12-05 International Rectifier Corporation Arc suppression circuit for electrical contacts
US8619395B2 (en) * 2010-03-12 2013-12-31 Arc Suppression Technologies, Llc Two terminal arc suppressor
CN204991598U (zh) * 2015-10-22 2016-01-20 国网山东昌乐县供电公司 交流接触器驱动电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49745A (ja) * 1972-04-18 1974-01-07
JP2013008607A (ja) 2011-06-27 2013-01-10 Ntt Data Intellilink Corp 電流開閉器及び直流電流開閉器
JP2014216056A (ja) * 2013-04-22 2014-11-17 富士電機株式会社 直流回路遮断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570309A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637892A (zh) * 2018-12-11 2019-04-16 北京动力源科技股份有限公司 一种直流继电切换电路
CN109660233A (zh) * 2018-12-11 2019-04-19 北京动力源科技股份有限公司 一种直流继电切换电路
JP2022519252A (ja) * 2019-01-29 2022-03-22 アーク サプレッション テクノロジーズ 多相ac電源接点アーク抑制装置
JP7111407B2 (ja) 2019-01-29 2022-08-02 アーク サプレッション テクノロジーズ 多相ac電源接点アーク抑制装置
US11798750B2 (en) 2019-01-29 2023-10-24 Arc Suppression Technologies High power, multi-phase, AC power contact arc suppressor

Also Published As

Publication number Publication date
EP3570309A1 (en) 2019-11-20
EP3570309A4 (en) 2020-01-01
US20190348237A1 (en) 2019-11-14
JPWO2018131307A1 (ja) 2019-11-07
CN110168691B (zh) 2021-09-14
JP7036033B2 (ja) 2022-03-15
CN110168691A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US10170903B2 (en) High voltage DC circuit breaker
WO2018131307A1 (ja) アーク抑制装置
KR101521545B1 (ko) 고압 직류 전류 차단 장치 및 방법
KR101522412B1 (ko) 양방향 직류 차단장치
US10476255B2 (en) DC circuit breaker
GB2540008A (en) DC circuit breaker and method of use
US9178348B2 (en) DC voltage line circuit breaker
JP6042035B2 (ja) 直流遮断装置
WO2016194584A1 (ja) 直流回路、直流電力供給装置、移動体及び電力供給システム
US10418210B2 (en) DC circuit breaker
EP3046131A1 (en) Systems and methods for freewheel contactor circuits
JP2017126544A (ja) 無アーク電流開閉装置
JP2019036405A (ja) 電源装置および遮断スイッチ回路
KR20050044542A (ko) 전기 회로의 신뢰성있는 스위칭을 위한 회로 장치
JP2012178292A (ja) Led点灯回路
JPH0956058A (ja) 突入電流防止機能を有する回路装置
WO2018146942A1 (ja) アーク抑制装置
JP7226307B2 (ja) アーク抑制装置、移動体及び電力供給システム
JP2006260925A (ja) 直流高速真空遮断装置
CN104283190A (zh) 用于防止漏电流的装置和方法
CN117060911A (zh) 一种开关电路
JP2024012743A (ja) 直流電流遮断装置
JP6399848B2 (ja) 開閉器
CN115485801A (zh) 混合开关和控制装置
KR20180062662A (ko) Dc 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891373

Country of ref document: EP

Effective date: 20190813