WO2018131183A1 - Blower and air conditioning device - Google Patents

Blower and air conditioning device Download PDF

Info

Publication number
WO2018131183A1
WO2018131183A1 PCT/JP2017/018192 JP2017018192W WO2018131183A1 WO 2018131183 A1 WO2018131183 A1 WO 2018131183A1 JP 2017018192 W JP2017018192 W JP 2017018192W WO 2018131183 A1 WO2018131183 A1 WO 2018131183A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blower
motor
impeller
casing
Prior art date
Application number
PCT/JP2017/018192
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 森川
智哉 福井
敬英 田所
健一 迫田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018561786A priority Critical patent/JP6685433B2/en
Publication of WO2018131183A1 publication Critical patent/WO2018131183A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a blower provided with a plurality of stationary blades and an air conditioner equipped with the blower.
  • Patent Document 1 Conventionally, as an air blower provided with a plurality of stationary blades, for example, there is an axial blower disclosed in Patent Document 1.
  • the axial blower of Patent Document 1 is provided with a motor, an impeller having a moving blade fixed to a rotating shaft of the motor, and an impeller so as to surround the impeller, and a flow path of airflow along the axial direction of the rotating shaft is provided.
  • a cylindrical casing to be formed.
  • a motor fixing portion to which the motor is fixed and a plurality of stationary blades that extend from the motor fixing portion in the radial direction of the rotating shaft and are connected to the casing are disposed in the casing.
  • the stationary blade rectifies the component swirling in the circumferential direction of the airflow that has passed through the impeller into an axial flow to increase the axial airflow.
  • the axial-flow fan of Patent Document 1 includes a connection auxiliary blade that connects the stationary blades at the central portion in the radial direction, and increases the strength of the motor fixing portion by connecting the stationary blades to each other to improve the shock resistance of the stationary blade. I try to improve the sex.
  • the velocity component of the airflow that has passed through the impeller includes a velocity component in the radial direction due to centrifugal force in addition to a velocity component parallel to the rotation axis and a velocity component in the rotation direction of the impeller.
  • the blower disclosed in Patent Document 1 has a problem in that an airflow having a velocity component in the radial direction collides with the connecting auxiliary blades to disturb the flow, resulting in deterioration of the blowing performance.
  • This invention is made in view of such a point, and the air blower and air which can suppress the fall of the air blower performance which arises when the airflow which has the radial direction speed component which passed the impeller collides with a connection auxiliary
  • the blower according to the present invention includes a motor, an impeller having a moving blade connected to a rotating shaft of the motor, and a cylindrical portion that is provided so as to surround the impeller and forms a flow path of airflow along the rotating shaft direction.
  • adjacent auxiliary vanes or a connecting auxiliary vane that connects the vane and the casing, and the connecting auxiliary vane has a radial cross section from the rotating shaft as it goes from the upstream side to the downstream side of the airflow. It is inclined to leave.
  • the air conditioner according to the present invention includes the above blower.
  • the airflow having the radial speed component that has passed through the impeller is converted into the airflow of the axial speed component by the collision with the connecting auxiliary blade, the performance of the blower produced by the collision with the connecting auxiliary blade is improved. The decrease can be suppressed.
  • FIG. 1 It is a schematic sectional drawing of the air blower concerning Embodiment 1 of this invention. It is a top view of the state which removed the impeller from the air blower concerning Embodiment 1 of this invention. It is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 1 of this invention from the upstream. It is the figure which expand
  • FIG. 11 It is the perspective view which looked at the stationary blade and connection auxiliary blade of FIG. 11 from the angle different from FIG. It is a top view of the state which removed the impeller from the air blower concerning Embodiment 5 of this invention. It is a schematic longitudinal cross-sectional view which shows an example of the air conditioning apparatus which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a schematic cross-sectional view of a blower according to Embodiment 1 of the present invention.
  • the blower 100 according to the first embodiment is an axial flow fan, a mixed flow blower, or the like, and here, an axial flow blower will be described as an example.
  • the blower 100 takes in air from the upper side of FIG. 1 and sends it out to generate an airflow in the direction of the rotation axis O.
  • “upper” and “lower” are based on FIG.
  • the blower 100 includes an impeller 1 and a casing 10 disposed with a predetermined gap from the impeller 1 provided so as to surround the impeller. That is, the impeller 1 is housed in the casing 10.
  • the impeller 1 includes a cylindrical boss portion 2 whose upper end opening is closed, and a moving blade 3 formed to extend radially outward from the outer peripheral surface of the boss portion 2.
  • a shaft hole 2 a for the motor 20 that rotates the impeller 1 is formed at the center of the boss portion 2.
  • the casing 10 includes a cylindrical portion 10a and a flange portion 10b that protrudes radially outward from the upper end opening of the cylindrical portion 10a.
  • the inside of the cylindrical portion 10a becomes a flow path for airflow generated when the impeller 1 rotates about the rotation axis O.
  • a motor fixing portion 12 is disposed at the center of the cylindrical portion 10a.
  • the casing 10 has a plurality of stationary blades 13 extending from the motor fixing portion 12 in the radial direction of the rotation axis O and coupled to the casing 10, and a plurality of couplings coupling the adjacent stationary blades 13 to each other in the circumferential direction.
  • An auxiliary wing 14 is provided.
  • the stationary blade 13 has a function of converting a circumferential velocity component of the airflow into a static axis velocity component.
  • the adjacent stationary blades 13 are connected to each other by the connection auxiliary blades 14, so that the strength of the motor fixing portion 12 can be improved and damage to the stationary blades 13 due to vibration can be suppressed. .
  • the motor fixing portion 12 has a cylindrical shape with a lower end opening closed, and the bottom surface side of the motor 20 is accommodated in the motor fixing portion 12. Then, the shaft 21 of the motor 20 protrudes through the shaft hole 2a of the boss portion 2 of the impeller 1, and the protruding portion is tightened with a nut (not shown), so that the impeller 1 and the motor 20 are fixed. Yes.
  • the impeller 1 rotates clockwise around the rotation axis O of the shaft 21 as viewed from the upstream side by the rotation of the motor 20.
  • the impeller 1 rotates around the rotation axis O by the driving force of the motor 20, and air is taken in from the upper side and sent out from the lower side by the rotation of the impeller 1.
  • the airflow that passes through the impeller 1 and flows into the stationary blade 13 and the connection auxiliary blade 14 has a circumferential velocity component.
  • This circumferential velocity component is converted into an axial velocity component by the stationary blade 13 so that the blowing performance of the blower 100 is improved.
  • FIG. 2 is a plan view showing a state in which the impeller is removed from the blower according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of the state where the impeller is removed from the blower according to Embodiment 1 of the present invention, as viewed from the upstream side.
  • FIG. 4 is a diagram in which a cylindrical cross section of the blower at a radial position where the connection auxiliary blades of the blower of FIG. 1 are arranged is developed in a plane, and the developed surface is viewed from the outside in the radial direction.
  • the configurations of the stationary blade 13 and the auxiliary connecting blade 14 will be described with reference to FIGS.
  • the stationary blade 13 on the leading end side in the rotational direction of the impeller 1 is replaced with the stationary blade 13 -A as necessary, and the stationary blade 13 on the rear end side in the rotational direction.
  • the blade 13 is distinguished as a stationary blade 13-B.
  • the rotor blade 3 rotates clockwise.
  • a plurality of stationary blades 13 are formed radially around the rotation axis O between the motor fixing portion 12 and the cylindrical portion 10a immediately downstream of the moving blade 3.
  • the stationary blade 13 has a shape that is convexly curved in the rotational direction of the impeller 1. That is, when viewed at a rotation angle about the rotation axis O, the intermediate portion of the stationary blade 13 is a connection portion between the stationary blade 13 and the motor fixing portion 12, and a connection portion between the stationary blade 13 and the cylindrical portion 10a.
  • the rotation angle position advanced in the rotation direction is a position rotated clockwise in FIG.
  • FIG. 4 the moving blade 3 rotates from right to left. Therefore, the left side of FIG. 4 advances at the rotation angle. 4 is the direction of the rotation axis O, and the moving blade 3 and the stationary blade 13 are inclined with respect to the direction of the rotation axis O when viewed from the outside in the radial direction. Specifically, the rotor blade 3 is inclined so that the rotation angle is advanced on the upper side and the rotation angle is delayed on the lower side. For this reason, when the moving blade 3 rotates, wind is generated from the top to the bottom.
  • the stationary blade 13 is inclined so that the upper side has a delayed rotation angle and the lower side has an advanced rotation angle. Further, the stationary blade 13 is disposed to be inclined with respect to the direction of the rotation axis O so that the upper side of the connection surface with the motor fixing portion 12 is on the upstream side in the rotational direction with respect to the lower side. That is, the stationary blade 13 is inclined to the opposite side to the moving blade 3 with respect to the rotation axis O direction.
  • the moving blade 3 not only sends wind from the top to the bottom in FIG. 4, but also generates an airflow in the rotational direction from right to left, that is, in the circumferential velocity component in FIG.
  • the stationary blade 13 on the downstream side of the moving blade 3 is inclined in the direction opposite to that of the moving blade 3, and the shape of the stationary blade 13 approaches parallel to the rotation axis O from the upstream side to the downstream side. It has a shape. For this reason, the circumferential velocity component of the airflow generated by the moving blade 3 is converted into an axial component by the shape of the downstream stationary blade 13 and blown out.
  • the auxiliary connecting blade 14 has a radial center between the stationary blade 13-A and the stationary blade 13-B, the negative pressure surface 13b side of the stationary blade 13-A and the pressure surface 13a side of the stationary blade 13-B. It is connected by part.
  • the pressure surface 13a is a surface that pushes the airflow during rotation
  • the negative pressure surface 13b is a surface on the back side of the pressure surface 13a.
  • Each of the auxiliary connecting blades 14 is formed of a substantially rectangular member, has a shape curved in a convex manner outward in the radial direction in both the longitudinal direction and the lateral direction, and is arranged concentrically around the rotation axis O. Yes.
  • the height of the connection auxiliary blade 14 in the direction of the rotation axis O is set to be the same as the height of the stationary blade 13 in the direction of the rotation axis O.
  • connection auxiliary blade 14 is inclined so as to be separated from the rotation axis O toward the downstream direction of the airflow.
  • the connection auxiliary blade 14 has an angle of attack with respect to the radial velocity component of the airflow. That is, as shown in FIG. 1 which is a cross section in the radial direction, the auxiliary connecting blade 14 is close to the rotation axis O on the upper upstream side in FIG. 1 and farther from the rotation axis O on the lower downstream side in FIG.
  • FIG. 5 is an explanatory diagram of the angle of attack of the connection auxiliary wing of FIG. 1.
  • the connecting auxiliary blade 14 has an angle of attack ⁇ with respect to the total speed component 103 of the radial speed component 101 and the axial speed component 102 of the impeller 1.
  • the connection auxiliary blade 14 has a function as a stationary blade that converts the radial velocity component of the airflow into the axial velocity component.
  • the velocity component of the airflow that has passed through the impeller 1 includes the following components. That is, in addition to the velocity component in the axial direction parallel to the rotation axis O and the velocity component in the circumferential direction of the impeller 1, there is a velocity component in the radial direction toward the radially outer side.
  • the connecting auxiliary blade 14 is disposed between the stationary blade 13-A and the stationary blade 13-B, the velocity component in the radial direction that has passed through the impeller 1 is reduced. The airflow which has collides with the connection auxiliary blade 14.
  • connection auxiliary wing is provided in the prior art, the inclination is opposite to that of the connection auxiliary wing 14 of the first embodiment.
  • the connection auxiliary wing of the prior art the airflow of the axial velocity component is converted into the velocity component inside the radius by the connection auxiliary wing, but since the radial velocity component collides with the connection auxiliary wing, the axial velocity component It cannot be converted into a component and is lost.
  • the connection auxiliary wing 14 of the first embodiment is inclined so as to be separated from the rotation axis O toward the downstream direction of the airflow as described above, and has an angle of attack ⁇ . For this reason, the airflow of the radial direction velocity component colliding with the connection auxiliary wing 14 is converted into the airflow of the axial direction velocity component, thereby increasing the axial direction velocity component and improving the blowing performance of the blower 100. .
  • the stationary blade 13 needs to have strength because it is required to support the heavy motor 20.
  • the strength of the stationary blade 13 is increased. Therefore, it is possible to prevent the stationary blade 13 that supports the motor fixing portion 12 from being damaged by the vibration generated when the impeller 1 is rotationally driven.
  • Embodiment 2 the radius from the rotation axis O of each connecting portion of the connection auxiliary blade 14 with each of the stationary blade 13-A and the stator blade 13-B, in other words, both ends in the longitudinal direction of the connection auxiliary blade 14 is described.
  • the directional positions were the same.
  • the same position is different from each other. In the following, the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 6 is a plan view of a state where the impeller is removed from the blower according to Embodiment 2 of the present invention.
  • FIG. 7 is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 2 of this invention from the upstream.
  • FIG. 8 is a perspective view of the stationary blade and the connecting auxiliary blade of FIG. 6 viewed from an angle different from that of FIG.
  • the connecting auxiliary blade 14A is the end on the leading end side in the rotational direction among both ends connected to the stationary blade 13-A and the stationary blade 13-B.
  • the portion 14Aa is connected to the stationary blade 13-A closer to the rotational axis in the radial direction than the end portion 14Ab on the rear end side in the rotational direction. More specifically, the end portion 14Aa in the rotational direction of the connection auxiliary blade 14A is connected to the center portion in the radial direction of the suction surface 13b of the stationary blade 13-A, and the end portion 14Ab in the rotational direction at the rear end side. Is connected to the radially outer peripheral portion of the pressure surface 13a of the stationary blade 13-B.
  • connection auxiliary blade 14A has a convex shape outward in the radial direction.
  • the connecting auxiliary blade 14 is formed in a concentric circular arc shape with respect to the rotation axis O, and the radial position from the rotation axis O is the same at any position in the circumferential direction. For this reason, the radial velocity component inside the radial position where the connecting auxiliary blade 14 is disposed can be converted into the axial velocity component, but the radial velocity component outside the radial position is outside the axial velocity component. Can not be converted.
  • the positions in the radial direction from the rotation axis O of the both ends in the longitudinal direction of the connection auxiliary blade 14A are different from each other. For this reason, the radial speed component of the impeller 1 can be converted into the axial speed component in a wide radial range. For this reason, compared with Embodiment 1, the ventilation performance of the air blower 100 can be improved.
  • Embodiment 3 FIG.
  • the curved shape of the connection auxiliary wing 14 of the second embodiment is specified.
  • the third embodiment will be described focusing on the differences from the second embodiment.
  • FIG. 9 is a plan view of the state in which the impeller is removed from the blower according to Embodiment 3 of the present invention as viewed from the upstream side.
  • FIG. 10 is a diagram showing the relationship between r and ⁇ in the blower according to Embodiment 3 of the present invention.
  • r is a distance between “a certain position P on the connection auxiliary blade 14 ⁇ / b> B” and “the rotation axis O”.
  • t is “the tangent of the outer surface of the auxiliary connecting blade 14B at the position P”.
  • is an angle formed by “a line connecting the position P and the rotation axis O” and “tangent t”.
  • r0 is the distance between the “connection position of the connection auxiliary blade 14B and the stationary blade 13-A” and the “rotary axis O”.
  • r1 is the distance between the “connection position of the connection auxiliary blade 14B and the stationary blade 13-B” and the “rotary axis O”.
  • connection auxiliary blade 14B of the third embodiment shown in FIG. 9 the angle ⁇ is constant from the connection position with the stationary blade 13-A to the connection position with the stationary blade 13-B as shown by the straight line 104 in FIG. It has a curved shape. Further, as shown by the straight line 105 in FIG. 10, the connection auxiliary blade 14B is curved so that the angle ⁇ decreases from the connection position with the stationary blade 13-A to the connection position with the stationary blade 13-B. Also good.
  • the connecting auxiliary blade 14B has an angle ⁇ formed by “a tangent t at each position P in the longitudinal direction on the outer surface of the connecting auxiliary blade 14B” and “a line connecting the position P and the rotation axis O”. The same or a smaller configuration toward the radially outer side.
  • the same effects as those of the second embodiment can be obtained, and the following effects can be obtained. That is, by making the connecting auxiliary blade 14B have the above-described curved shape, when the rear edge of the impeller 1 passes the upstream side of the connecting auxiliary blade 14, the outer peripheral end 14Ab to the inner peripheral end 14Aa. Gradually interfering with. For this reason, the area where the axial velocity component of the air current collides with the connection auxiliary blade 14 in a single time is reduced, and the time for the rear edge of the impeller 1 to pass through the connection auxiliary blade 14 is also increased. Thereby, quietness and ventilation performance can be improved by reducing the amount of time change and the absolute value of the pressure field received by the impeller 1.
  • Embodiment 4 FIG.
  • the shape of the connection auxiliary wing 14A of the second embodiment is changed.
  • the difference between the fourth embodiment and the second embodiment will be mainly described.
  • FIG. 11 is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 4 of this invention from the upstream.
  • 12 is a perspective view of the stationary blade and the connecting auxiliary blade of FIG. 11 viewed from an angle different from that of FIG.
  • the connection auxiliary wing 14A of the second embodiment is formed in a substantially rectangular shape.
  • the connection auxiliary wing 14C of the fourth embodiment is shortened as the height in the rotation axis direction goes radially outward.
  • the upstream end surface 14a of the connection auxiliary blade 14C in the rotation axis direction is an inclined surface that inclines toward the downstream side toward the outer side in the radial direction.
  • the connecting positions of the both ends of the connecting auxiliary blade 14C in the longitudinal direction with respect to the stationary blade 13-A and the stationary blade 13-B are the same as in the second embodiment. That is, among the both ends in the longitudinal direction of the connection auxiliary wing 14C, the end 14Ca on the tip side in the rotation direction is connected to the center in the radial direction of the negative pressure surface 13b of the stationary blade 13-A. On the other hand, the end 14Cb on the rear end side in the rotational direction of the both ends in the longitudinal direction of the auxiliary connecting blade 14C is the outer peripheral portion in the radial direction of the pressure surface 13a of the stationary blade 13-B (the portion surrounded by the dotted line in FIG. 12). ).
  • connection auxiliary wing 14C has a smaller area than the connection auxiliary wing 14A of the second embodiment, the connection auxiliary wing 14C has a sufficient area for ensuring the strength, and the same strength as that of the first embodiment is ensured. Yes.
  • Embodiment 4 can prevent a reduction in the blowing performance of the blower 100 and improve the blowing performance while ensuring the same strength as that of Embodiment 1.
  • the upstream end surface 14a in the rotational axis direction of the auxiliary connecting blade 14C is an inclined surface that is inclined downstream as it goes outward in the radial direction.
  • the configuration is limited to this configuration. Absent. That is, the end surface on the downstream side in the rotation axis direction of the connection auxiliary blade 14C may be an inclined surface that inclines toward the upstream side toward the outer side in the radial direction.
  • the connection auxiliary wing 14C of the fourth embodiment only needs to be shorter as the height in the direction of the rotation axis goes outward in the radial direction.
  • the curved shape of the connecting auxiliary wing 14C may be a shape that satisfies the relationship of the straight line 104 or the straight line 105 of FIG.
  • Embodiment 5 FIG.
  • the connection point of the connection auxiliary wing 14C of the fourth embodiment is changed.
  • the fifth embodiment will be described with a focus on differences from the fourth embodiment.
  • FIG. 13 is a top view of the state which removed the impeller from the air blower concerning Embodiment 5 of this invention.
  • the connection auxiliary wing 14C of the above-described fourth embodiment connects the middle portions of the two adjacent stationary blades 13 in the radial direction. That is, the connecting auxiliary blade 14C connects two adjacent stationary blades 13 to each other.
  • the connection auxiliary wing 14D of the fifth embodiment the end 14Db on the rear end side in the rotation direction among the both ends of the connection auxiliary wing 14D is connected to the cylindrical portion 10a of the casing 10.
  • the end portion 14Da on the front end side in the rotational direction of the connection auxiliary blade 14D is in the middle of the radial direction of the stationary blade 13-A on the front side in the rotational direction among the two adjacent stationary blades as in the fourth embodiment. Connected.
  • the position where the end portion 14Db is connected to the casing 10 is between two connection points 13c and 13d where the two stationary blades 13 are connected to the casing 10, respectively.
  • the auxiliary connecting blade 14D is connected to the casing 10 at a position closer to the connecting portion 13d of the stationary blade 13-B on the rear side in the rotational direction than the middle of the two connecting portions 13c and 13d. Yes.
  • the casing 10, the stationary blade 13, and the auxiliary connecting blade 14 are integrally manufactured by resin molding using a mold, the end portion 14Cb portion of the auxiliary connecting blade 14C is used in the structure of the fourth embodiment shown in FIG. In this case, the undercut process is performed.
  • the end portion 14Db of the coupling auxiliary wing 14 is fixed to the casing 10, the undercut processing portion is eliminated, which leads to a reduction in manufacturing cost.
  • the fifth embodiment may be combined with the second and third embodiments. That is, when combined with the second embodiment, the connecting auxiliary blade 14D may have a substantially rectangular shape as shown in FIG. Further, when combined with the fourth embodiment, the curved shape of the coupling auxiliary wing 14D may be a shape that satisfies the relationship of the straight line 104 or the straight line 105 of FIG. 10 shown in the third embodiment.
  • Embodiment 6 FIG. The sixth embodiment relates to an air conditioner including the blower 100 of any of the first to fifth embodiments. Below, Embodiment 5 is demonstrated by the example which used the air blower 100 for the indoor unit 200 of an air conditioning apparatus.
  • FIG. 14 is a schematic longitudinal sectional view showing an example of an air-conditioning apparatus according to Embodiment 6 of the present invention.
  • FIG. 14 shows the left side of the figure as the front side of the indoor unit.
  • the indoor unit 200 has a configuration in which the blower 100 and the heat exchanger 204 are arranged in a housing 203.
  • a suction port 201 for sucking room air into the interior is formed in the upper part of the housing 203, and conditioned air is supplied to the air conditioning target area at the lower part of the housing 203, more specifically, below the front surface of the housing 203.
  • a blow-out port 202 is formed for this purpose. Further, the outlet 202 is provided with a mechanism for controlling the direction of air flow, such as a vane 202a.
  • the blower 100 is disposed on the downstream side of the suction port 201 and on the upstream side of the heat exchanger 204.
  • a plurality of blowers 100 are arranged in parallel in the longitudinal direction of the housing 203 (in the direction perpendicular to the paper surface) according to the air volume required for the indoor unit 200.
  • the heat exchanger 204 is disposed in the ventilation path from the blower 100 to the outlet 202, and creates conditioned air by exchanging heat between the refrigerant and the room air.
  • the indoor air is taken into the indoor unit 200 from the suction port 201 at the top of the housing 203 by the blower 100.
  • this indoor air passes through the heat exchanger 204, it exchanges heat with the refrigerant, and is heated or cooled to become conditioned air.
  • the conditioned air is blown out from the outlet 202 at the bottom of the housing 203 to the air-conditioning target area.
  • the indoor unit 200 configured as described above uses the blower 100 according to any one of the first to fifth embodiments, the radial velocity of the airflow can be obtained even when the conditioned air is passed through the indoor unit having a high pressure loss. It is possible to prevent a decrease in blowing performance due to the components. As a result, the power efficiency of the indoor unit 200 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

This blower is provided with: a motor; an impeller connected to the rotating shaft of the motor and having rotating blades; a casing provided surrounding the impeller and having a circular cylinder section which forms a passage for an air flow in the direction in which the rotating shaft extends; a motor affixation section disposed within the casing at a position downstream of the impeller and supporting the motor; a plurality of stator blades extending in the radial direction of the rotating shaft from the motor affixation section and connected to the circular cylinder section of the casing; and connecting auxiliary blades for either connecting adjacent stator blades, or connecting the stator blades and the casing. The connecting auxiliary blades have a radial cross-section formed such that the connecting auxiliary blades tilt away from the rotating shaft as the connecting auxiliary blades extends from the upstream side toward the downstream side of the air flow.

Description

送風機及び空気調和装置Blower and air conditioner
 本発明は、複数の静翼を備える送風機及びこの送風機を搭載した空気調和装置に関するものである。 The present invention relates to a blower provided with a plurality of stationary blades and an air conditioner equipped with the blower.
 従来より、複数の静翼を備える送風機として、例えば特許文献1の軸流送風機がある。特許文献1の軸流送風機は、モーターと、モーターの回転軸に固定された動翼を有する羽根車と、羽根車を取り囲むように設けられ、回転軸の軸方向に沿った気流の流路が形成される円筒状のケーシングとを有する。ケーシング内には、モーターが固定されるモーター固定部と、モーター固定部から回転軸の半径方向に延びてケーシングに連結された複数の静翼とが配置されている。静翼は、羽根車を通過した気流の周方向に旋回する成分を、軸方向の流れに整流し、軸方向の気流の増大を図っている。また、特許文献1の軸流送風機は、静翼同士を径方向の中心部で連結する連結補助翼を備え、静翼同士を連結することでモーター固定部の強度を高めて静翼の耐衝撃性を向上するようにしている。 Conventionally, as an air blower provided with a plurality of stationary blades, for example, there is an axial blower disclosed in Patent Document 1. The axial blower of Patent Document 1 is provided with a motor, an impeller having a moving blade fixed to a rotating shaft of the motor, and an impeller so as to surround the impeller, and a flow path of airflow along the axial direction of the rotating shaft is provided. A cylindrical casing to be formed. A motor fixing portion to which the motor is fixed and a plurality of stationary blades that extend from the motor fixing portion in the radial direction of the rotating shaft and are connected to the casing are disposed in the casing. The stationary blade rectifies the component swirling in the circumferential direction of the airflow that has passed through the impeller into an axial flow to increase the axial airflow. Moreover, the axial-flow fan of Patent Document 1 includes a connection auxiliary blade that connects the stationary blades at the central portion in the radial direction, and increases the strength of the motor fixing portion by connecting the stationary blades to each other to improve the shock resistance of the stationary blade. I try to improve the sex.
特開2008-261280号公報JP 2008-261280 A
 羽根車を通過した気流の速度成分には、回転軸に平行な速度成分と羽根車の回転方向の速度成分との他に、遠心力による半径方向の速度成分がある。特許文献1の送風機では、半径方向の速度成分を有する気流が連結補助翼に衝突して流れが乱れ、送風性能の悪化を招くといった問題点が有った。 The velocity component of the airflow that has passed through the impeller includes a velocity component in the radial direction due to centrifugal force in addition to a velocity component parallel to the rotation axis and a velocity component in the rotation direction of the impeller. The blower disclosed in Patent Document 1 has a problem in that an airflow having a velocity component in the radial direction collides with the connecting auxiliary blades to disturb the flow, resulting in deterioration of the blowing performance.
 本発明はこのような点を鑑みなされたもので、羽根車を通過した半径方向速度成分を有する気流が連結補助翼に衝突することで生じる送風機性能の低下を抑制することが可能な送風機及び空気調和装置を提供することを目的とする。 This invention is made in view of such a point, and the air blower and air which can suppress the fall of the air blower performance which arises when the airflow which has the radial direction speed component which passed the impeller collides with a connection auxiliary | assistant wing | blade. It aims at providing a harmony device.
 本発明に係る送風機は、モーターと、モーターの回転軸に連結された動翼を有する羽根車と、 羽根車を取り囲むように設けられ、回転軸方向に沿った気流の流路を形成する円筒部を有するケーシングと、ケーシング内において羽根車の下流側に配置され、モーターを支持するモーター固定部と、モーター固定部から回転軸の半径方向に延びてケーシングの円筒部に連結された複数の静翼と、隣接する静翼同士、又は、静翼とケーシングとを連結する連結補助翼とを備え、連結補助翼は、径方向の断面が、気流の上流側から下流方向に向かうにしたがって回転軸から離れるように傾斜しているものである。 The blower according to the present invention includes a motor, an impeller having a moving blade connected to a rotating shaft of the motor, and a cylindrical portion that is provided so as to surround the impeller and forms a flow path of airflow along the rotating shaft direction. A casing, a motor fixing portion disposed downstream of the impeller in the casing and supporting the motor, and a plurality of stationary blades extending from the motor fixing portion in the radial direction of the rotating shaft and coupled to the cylindrical portion of the casing And adjacent auxiliary vanes or a connecting auxiliary vane that connects the vane and the casing, and the connecting auxiliary vane has a radial cross section from the rotating shaft as it goes from the upstream side to the downstream side of the airflow. It is inclined to leave.
 本発明に係る空気調和装置は、上記の送風機を備えたものである。 The air conditioner according to the present invention includes the above blower.
 本発明によれば、羽根車を通過した半径方向速度成分を有する気流が連結補助翼との衝突によって軸方向速度成分の気流に変換されるため、連結補助翼に衝突することで生じる送風機性能の低下を抑制することができる。 According to the present invention, since the airflow having the radial speed component that has passed through the impeller is converted into the airflow of the axial speed component by the collision with the connecting auxiliary blade, the performance of the blower produced by the collision with the connecting auxiliary blade is improved. The decrease can be suppressed.
本発明の実施の形態1に係る送風機の概略断面図である。It is a schematic sectional drawing of the air blower concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る送風機から羽根車を取り外した状態の平面図である。It is a top view of the state which removed the impeller from the air blower concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。It is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 1 of this invention from the upstream. 図1の送風機の連結補助翼が配設される半径位置での送風機の円筒断面を平面展開し、展開面を半径方向外側から見た図である。It is the figure which expand | deployed planarly the cylindrical cross section of the air blower in the radial position where the connection auxiliary blade of the air blower of FIG. 1 is arrange | positioned, and looked at the expansion | deployment surface from the radial direction outer side. 図1の連結補助翼の迎角の説明図である。It is explanatory drawing of the angle of attack of the connection auxiliary | assistant wing | blade of FIG. 本発明の実施の形態2に係る送風機から羽根車を取り外した状態の平面図である。It is a top view of the state which removed the impeller from the air blower concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。It is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 2 of this invention from the upstream. 図6の静翼及び連結補助翼を図7とは別角度から見た斜視図である。It is the perspective view which looked at the stationary blade and connection auxiliary blade of FIG. 6 from the angle different from FIG. 本発明の実施の形態3に係る送風機から羽根車を取り外した状態を上流側から見た平面図である。It is the top view which looked at the state which removed the impeller from the air blower concerning Embodiment 3 of this invention from the upstream. 本発明の実施の形態3に係る送風機におけるrとαとの関係を示す図である。It is a figure which shows the relationship between r and (alpha) in the air blower concerning Embodiment 3 of this invention. 本発明の実施の形態4に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。It is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 4 of this invention from the upstream. 図11の静翼及び連結補助翼を図11とは別角度から見た斜視図である。It is the perspective view which looked at the stationary blade and connection auxiliary blade of FIG. 11 from the angle different from FIG. 本発明の実施の形態5に係る送風機から羽根車を取り外した状態の平面図である。It is a top view of the state which removed the impeller from the air blower concerning Embodiment 5 of this invention. 本発明の実施の形態6に係る空気調和装置の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the air conditioning apparatus which concerns on Embodiment 6 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る送風機の概略断面図である。
 本実施の形態1にかかる送風機100は、軸流送風機又は斜流送風機等であり、ここでは軸流送風機を例に説明する。送風機100は、図1の上側から空気を取り込み、下側へ送出して回転軸O方向の気流を発生させる。以下の説明における「上」「下」は、図1を基準としている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a blower according to Embodiment 1 of the present invention.
The blower 100 according to the first embodiment is an axial flow fan, a mixed flow blower, or the like, and here, an axial flow blower will be described as an example. The blower 100 takes in air from the upper side of FIG. 1 and sends it out to generate an airflow in the direction of the rotation axis O. In the following description, “upper” and “lower” are based on FIG.
 送風機100は、羽根車1と、羽根車を取り囲むように設けられた羽根車1から所定の間隙を持って配設されるケーシング10と備えている。つまり、羽根車1はケーシング10に収められている。羽根車1は、上端開口が閉塞された円筒形状のボス部2と、ボス部2の外周面から、半径方向外側に向かって延びて形成された動翼3とを備えている。ボス部2の中心部には、羽根車1を回転駆動させるモーター20用の軸穴2aが形成されている。 The blower 100 includes an impeller 1 and a casing 10 disposed with a predetermined gap from the impeller 1 provided so as to surround the impeller. That is, the impeller 1 is housed in the casing 10. The impeller 1 includes a cylindrical boss portion 2 whose upper end opening is closed, and a moving blade 3 formed to extend radially outward from the outer peripheral surface of the boss portion 2. A shaft hole 2 a for the motor 20 that rotates the impeller 1 is formed at the center of the boss portion 2.
 ケーシング10は、円筒部10aと、円筒部10aの上端開口から半径方向外側に向けて突出するフランジ部10bとを有する。円筒部10a内は、羽根車1が回転軸Oを中心に回転することによって発生する気流の流路となる。円筒部10aの中央部にはモーター固定部12が配置されている。そして、ケーシング10には、モーター固定部12から回転軸Oの半径方向に延びてケーシング10に連結された複数の静翼13と、隣接する各静翼13同士を周方向に連結する複数の連結補助翼14とが設けられている。 The casing 10 includes a cylindrical portion 10a and a flange portion 10b that protrudes radially outward from the upper end opening of the cylindrical portion 10a. The inside of the cylindrical portion 10a becomes a flow path for airflow generated when the impeller 1 rotates about the rotation axis O. A motor fixing portion 12 is disposed at the center of the cylindrical portion 10a. The casing 10 has a plurality of stationary blades 13 extending from the motor fixing portion 12 in the radial direction of the rotation axis O and coupled to the casing 10, and a plurality of couplings coupling the adjacent stationary blades 13 to each other in the circumferential direction. An auxiliary wing 14 is provided.
 静翼13は、気流の周方向速度成分を静軸方向速度成分に変換する機能を有している。そして、隣接する各静翼13同士が連結補助翼14で連結されることで、モーター固定部12の強度を向上することができ、振動による静翼13の破損を抑えることが可能となっている。 The stationary blade 13 has a function of converting a circumferential velocity component of the airflow into a static axis velocity component. The adjacent stationary blades 13 are connected to each other by the connection auxiliary blades 14, so that the strength of the motor fixing portion 12 can be improved and damage to the stationary blades 13 due to vibration can be suppressed. .
 モーター固定部12は、下端開口が閉じられた円筒形状を有し、モーター固定部12内にモーター20の底面側が収納される。そして、モーター20の軸21が羽根車1のボス部2の軸穴2aを貫通して突出し、突出部分がナット(図示せず)で締められて、羽根車1とモーター20とが固定されている。羽根車1は、モーター20の回転により、上流側から見て、軸21の回転軸Oを中心として時計回りに回転する。 The motor fixing portion 12 has a cylindrical shape with a lower end opening closed, and the bottom surface side of the motor 20 is accommodated in the motor fixing portion 12. Then, the shaft 21 of the motor 20 protrudes through the shaft hole 2a of the boss portion 2 of the impeller 1, and the protruding portion is tightened with a nut (not shown), so that the impeller 1 and the motor 20 are fixed. Yes. The impeller 1 rotates clockwise around the rotation axis O of the shaft 21 as viewed from the upstream side by the rotation of the motor 20.
 そして、送風機100は、モーター20の駆動力によって羽根車1が回転軸O周りに回転し、羽根車1の回転により空気が上側から取り込まれて下側から送出される。この際、羽根車1を通過して静翼13及び連結補助翼14に流入する気流は、周方向速度成分を有している。この周方向速度成分は静翼13により軸方向速度成分に変換され、送風機100の送風性能が向上するようになっている。 In the blower 100, the impeller 1 rotates around the rotation axis O by the driving force of the motor 20, and air is taken in from the upper side and sent out from the lower side by the rotation of the impeller 1. At this time, the airflow that passes through the impeller 1 and flows into the stationary blade 13 and the connection auxiliary blade 14 has a circumferential velocity component. This circumferential velocity component is converted into an axial velocity component by the stationary blade 13 so that the blowing performance of the blower 100 is improved.
 図2は、本発明の実施の形態1に係る送風機から羽根車を取り外した状態の平面図である。図3は、本発明の実施の形態1に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。図4は、図1の送風機の連結補助翼が配設される半径位置での送風機の円筒断面を平面展開し、展開面を半径方向外側から見た図である。以下、図2~図4を用いて、静翼13及び連結補助翼14の形態について説明する。ここでは説明の便宜上、隣接する2枚の静翼13のうち、羽根車1の回転方向の先端側の静翼13を、必要に応じて静翼13-A、回転方向の後端側の静翼13を静翼13-Bとして区別する。 FIG. 2 is a plan view showing a state in which the impeller is removed from the blower according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of the state where the impeller is removed from the blower according to Embodiment 1 of the present invention, as viewed from the upstream side. FIG. 4 is a diagram in which a cylindrical cross section of the blower at a radial position where the connection auxiliary blades of the blower of FIG. 1 are arranged is developed in a plane, and the developed surface is viewed from the outside in the radial direction. Hereinafter, the configurations of the stationary blade 13 and the auxiliary connecting blade 14 will be described with reference to FIGS. Here, for convenience of explanation, of the two adjacent stationary blades 13, the stationary blade 13 on the leading end side in the rotational direction of the impeller 1 is replaced with the stationary blade 13 -A as necessary, and the stationary blade 13 on the rear end side in the rotational direction. The blade 13 is distinguished as a stationary blade 13-B.
 図2において動翼3は右回りに回転する。静翼13は、動翼3のすぐ下流側において、モーター固定部12と円筒部10aとの間に、回転軸Oを中心とした放射状に複数形成されている。そして、図2のようにケーシング10を平面的に見た場合、静翼13は、羽根車1の回転方向に凸に湾曲した形状を有している。つまり、回転軸Oを中心とした回転角度で見たときに、静翼13の中間部が、静翼13とモーター固定部12との接続部と、静翼13と円筒部10aとの接続部との両方と比較して、回転方向に進んだ回転角度位置にある。回転方向に進んだ回転角度位置とはつまり、図2では、時計周りに回転した位置である。 In FIG. 2, the rotor blade 3 rotates clockwise. A plurality of stationary blades 13 are formed radially around the rotation axis O between the motor fixing portion 12 and the cylindrical portion 10a immediately downstream of the moving blade 3. When the casing 10 is viewed in plan as shown in FIG. 2, the stationary blade 13 has a shape that is convexly curved in the rotational direction of the impeller 1. That is, when viewed at a rotation angle about the rotation axis O, the intermediate portion of the stationary blade 13 is a connection portion between the stationary blade 13 and the motor fixing portion 12, and a connection portion between the stationary blade 13 and the cylindrical portion 10a. Compared with both, it exists in the rotation angle position advanced in the rotation direction. That is, the rotation angle position advanced in the rotation direction is a position rotated clockwise in FIG.
 また、図4において、動翼3は右から左へと回転する。従って、図4の左側が回転角度で進んでいる。図4の上下方向が回転軸O方向であり、動翼3及び静翼13は、回転軸O方向に対し、半径方向外側から見て傾斜する。具体的には、動翼3は、上部側が進んだ回転角度、下部側が遅れた回転角度となるように傾斜する。このため、動翼3が回転すると、上から下に風を生じる。 Further, in FIG. 4, the moving blade 3 rotates from right to left. Therefore, the left side of FIG. 4 advances at the rotation angle. 4 is the direction of the rotation axis O, and the moving blade 3 and the stationary blade 13 are inclined with respect to the direction of the rotation axis O when viewed from the outside in the radial direction. Specifically, the rotor blade 3 is inclined so that the rotation angle is advanced on the upper side and the rotation angle is delayed on the lower side. For this reason, when the moving blade 3 rotates, wind is generated from the top to the bottom.
 一方、静翼13は、上部側が遅れた回転角度、下部側が進んだ回転角度となるように傾斜している。また、静翼13は、モーター固定部12との接続面の上部側が下部側よりも回転方向上流側となるように、回転軸O方向に対して傾斜して配置されている。つまり、静翼13は、回転軸O方向に対して動翼3とは反対側に傾斜している。動翼3は、図4において上から下に風を送るだけでなく、図4では右から左の回転方向、つまり、周方向速度成分の気流を発生させる。動翼3よりも下流側にある静翼13は、傾きが動翼3と反対方向であり、静翼13の形状は、上流側から下流側になるにつれて、回転軸Oに対して平行に近づく形状を有している。このため、動翼3で発生した気流の周方向速度成分は、下流側の静翼13の上記形状によって軸方向成分に変換されて吹き出される。 On the other hand, the stationary blade 13 is inclined so that the upper side has a delayed rotation angle and the lower side has an advanced rotation angle. Further, the stationary blade 13 is disposed to be inclined with respect to the direction of the rotation axis O so that the upper side of the connection surface with the motor fixing portion 12 is on the upstream side in the rotational direction with respect to the lower side. That is, the stationary blade 13 is inclined to the opposite side to the moving blade 3 with respect to the rotation axis O direction. The moving blade 3 not only sends wind from the top to the bottom in FIG. 4, but also generates an airflow in the rotational direction from right to left, that is, in the circumferential velocity component in FIG. The stationary blade 13 on the downstream side of the moving blade 3 is inclined in the direction opposite to that of the moving blade 3, and the shape of the stationary blade 13 approaches parallel to the rotation axis O from the upstream side to the downstream side. It has a shape. For this reason, the circumferential velocity component of the airflow generated by the moving blade 3 is converted into an axial component by the shape of the downstream stationary blade 13 and blown out.
 連結補助翼14は、静翼13-Aと静翼13-Bとの間において、静翼13-Aの負圧面13b側と静翼13-Bの圧力面13a側とを、半径方向の中心部で連結している。ここで、圧力面13aとは回転時に気流を押す側の面であり、負圧面13bは圧力面13aの裏側の面である。各連結補助翼14は、略長方形状の部材で構成され、長手方向及び短手方向共に、半径方向外側に凸に湾曲した形状を有し、回転軸Oを中心とした同心円状に配置されている。また、連結補助翼14の回転軸O方向の高さは、静翼13の回転軸O方向の高さと同じに設定されている。 The auxiliary connecting blade 14 has a radial center between the stationary blade 13-A and the stationary blade 13-B, the negative pressure surface 13b side of the stationary blade 13-A and the pressure surface 13a side of the stationary blade 13-B. It is connected by part. Here, the pressure surface 13a is a surface that pushes the airflow during rotation, and the negative pressure surface 13b is a surface on the back side of the pressure surface 13a. Each of the auxiliary connecting blades 14 is formed of a substantially rectangular member, has a shape curved in a convex manner outward in the radial direction in both the longitudinal direction and the lateral direction, and is arranged concentrically around the rotation axis O. Yes. Further, the height of the connection auxiliary blade 14 in the direction of the rotation axis O is set to be the same as the height of the stationary blade 13 in the direction of the rotation axis O.
 ここで、本実施の形態1の特徴的な構成として、連結補助翼14が、気流の下流方向に向かうにしたがって回転軸Oから離れるように傾斜していることにある。言い換えれば、連結補助翼14は、気流の半径方向速度成分に対して迎角を有している。つまり、径方向の断面である図1で示すように、連結補助翼14が図1の上方の上流側で回転軸Oに近く、図1の下方の下流側で回転軸Oより遠ざかっている。 Here, as a characteristic configuration of the first embodiment, the connection auxiliary blade 14 is inclined so as to be separated from the rotation axis O toward the downstream direction of the airflow. In other words, the connection auxiliary blade 14 has an angle of attack with respect to the radial velocity component of the airflow. That is, as shown in FIG. 1 which is a cross section in the radial direction, the auxiliary connecting blade 14 is close to the rotation axis O on the upper upstream side in FIG. 1 and farther from the rotation axis O on the lower downstream side in FIG.
 図5は、図1の連結補助翼の迎角の説明図である。
 図5に示すように、連結補助翼14は、羽根車1の半径方向速度成分101と軸方向速度成分102との合計速度成分103に対して迎角θを有している。このため、連結補助翼14は、気流の半径方向速度成分を軸方向速度成分に変換する静翼としての機能を備えている。
FIG. 5 is an explanatory diagram of the angle of attack of the connection auxiliary wing of FIG. 1.
As shown in FIG. 5, the connecting auxiliary blade 14 has an angle of attack θ with respect to the total speed component 103 of the radial speed component 101 and the axial speed component 102 of the impeller 1. For this reason, the connection auxiliary blade 14 has a function as a stationary blade that converts the radial velocity component of the airflow into the axial velocity component.
 羽根車1を通過した気流の速度成分には、以下の成分がある。すなわち、回転軸Oに平行な軸流方向の速度成分と羽根車1の周方向の速度成分との他に、半径方向外側に向かう半径方向の速度成分がある。本実施の形態1のケーシング10の構造では、静翼13-Aと静翼13-Bとの間に連結補助翼14が配置されているため、羽根車1を通過した半径方向の速度成分を有する気流は連結補助翼14に衝突する。 The velocity component of the airflow that has passed through the impeller 1 includes the following components. That is, in addition to the velocity component in the axial direction parallel to the rotation axis O and the velocity component in the circumferential direction of the impeller 1, there is a velocity component in the radial direction toward the radially outer side. In the structure of the casing 10 according to the first embodiment, since the connecting auxiliary blade 14 is disposed between the stationary blade 13-A and the stationary blade 13-B, the velocity component in the radial direction that has passed through the impeller 1 is reduced. The airflow which has collides with the connection auxiliary blade 14.
 ここで、先行技術においても連結補助翼が設けられているが、本実施の形態1の連結補助翼14とは傾斜が逆である。このため、先行技術の連結補助翼では、軸方向速度成分の気流が連結補助翼により半径内側の速度成分に変換されるが、半径方向の速度成分は連結補助翼に衝突するため、軸方向速度成分に変換することはできず損失となる。これに対し、本実施の形態1の連結補助翼14は、上述したように気流の下流方向に向かうにしたがって回転軸Oから離れるように傾斜しており、迎角θを有している。このため、連結補助翼14に衝突した半径方向速度成分の気流は、軸方向速度成分の気流に変換され、これにより、軸方向速度成分を増加して送風機100の送風性能を向上させことができる。 Here, although the connection auxiliary wing is provided in the prior art, the inclination is opposite to that of the connection auxiliary wing 14 of the first embodiment. For this reason, in the connection auxiliary wing of the prior art, the airflow of the axial velocity component is converted into the velocity component inside the radius by the connection auxiliary wing, but since the radial velocity component collides with the connection auxiliary wing, the axial velocity component It cannot be converted into a component and is lost. On the other hand, the connection auxiliary wing 14 of the first embodiment is inclined so as to be separated from the rotation axis O toward the downstream direction of the airflow as described above, and has an angle of attack θ. For this reason, the airflow of the radial direction velocity component colliding with the connection auxiliary wing 14 is converted into the airflow of the axial direction velocity component, thereby increasing the axial direction velocity component and improving the blowing performance of the blower 100. .
 また、静翼13には、重量物であるモーター20を支える役割が求められることから強度が必要である。ここでは、連結補助翼14で静翼13-Aと静翼13-Bを連結することで、静翼13の強度が高められる。よって、羽根車1を回転駆動させた際に発生する振動により、モーター固定部12を支持する静翼13が破損することを防止することができる。 Further, the stationary blade 13 needs to have strength because it is required to support the heavy motor 20. Here, by connecting the stationary blade 13-A and the stationary blade 13-B with the coupling auxiliary blade 14, the strength of the stationary blade 13 is increased. Therefore, it is possible to prevent the stationary blade 13 that supports the motor fixing portion 12 from being damaged by the vibration generated when the impeller 1 is rotationally driven.
実施の形態2.
 実施の形態1では、連結補助翼14の静翼13-A及び静翼13-Bのそれぞれとの各連結部分、言い換えれば連結補助翼14の長手方向の両端部、の回転軸Oからの半径方向の位置が互いに同じであった。これに対し、実施の形態2では、同位置が互いに異なる構成としたものである。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
In the first embodiment, the radius from the rotation axis O of each connecting portion of the connection auxiliary blade 14 with each of the stationary blade 13-A and the stator blade 13-B, in other words, both ends in the longitudinal direction of the connection auxiliary blade 14 is described. The directional positions were the same. On the other hand, in the second embodiment, the same position is different from each other. In the following, the second embodiment will be described focusing on the differences from the first embodiment.
 図6は、本発明の実施の形態2に係る送風機から羽根車を取り外した状態の平面図である。図7は、本発明の実施の形態2に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。図8は、図6の静翼及び連結補助翼を図7とは別角度から見た斜視図である。 FIG. 6 is a plan view of a state where the impeller is removed from the blower according to Embodiment 2 of the present invention. FIG. 7: is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 2 of this invention from the upstream. FIG. 8 is a perspective view of the stationary blade and the connecting auxiliary blade of FIG. 6 viewed from an angle different from that of FIG.
 図6~図8に示すように、実施の形態2の連結補助翼14Aは、静翼13-A及び静翼13-Bのそれぞれと連結される両端部のうち、回転方向の先端側の端部14Aaが、回転方向の後端側の端部14Abよりも半径方向に回転軸寄りで静翼13-Aに連結している。更に具体的には、連結補助翼14Aの回転方向の先端側の端部14Aaが静翼13-Aの負圧面13bの半径方向の中心部に連結し、回転方向の後端側の端部14Abが静翼13-Bの圧力面13aの半径方向の外周部に連結している。そして、連結補助翼14Aの長手方向の両端部14Aa、14Abの回転軸O方向の高さは、連結位置における静翼13-A及び静翼13-Bのそれぞれの高さと同じとなっている。また、連結補助翼14Aは半径方向外側に凸の形状となっている。 As shown in FIGS. 6 to 8, the connecting auxiliary blade 14A according to the second embodiment is the end on the leading end side in the rotational direction among both ends connected to the stationary blade 13-A and the stationary blade 13-B. The portion 14Aa is connected to the stationary blade 13-A closer to the rotational axis in the radial direction than the end portion 14Ab on the rear end side in the rotational direction. More specifically, the end portion 14Aa in the rotational direction of the connection auxiliary blade 14A is connected to the center portion in the radial direction of the suction surface 13b of the stationary blade 13-A, and the end portion 14Ab in the rotational direction at the rear end side. Is connected to the radially outer peripheral portion of the pressure surface 13a of the stationary blade 13-B. The heights of both ends 14Aa and 14Ab in the longitudinal direction of the connection auxiliary blade 14A in the direction of the rotation axis O are the same as the heights of the stationary blade 13-A and the stationary blade 13-B at the connection position. Further, the connecting auxiliary blade 14A has a convex shape outward in the radial direction.
 上記実施の形態1では、連結補助翼14が、回転軸Oに同心円の円弧状に形成され、回転軸Oからの半径方向の位置が周方向の何れの位置でも同じであった。このため、連結補助翼14が配置された半径方向の位置より内側の半径方向速度成分については軸方向速度成分に変換することができるが、それより外側の半径方向速度成分については軸方向速度成分に変換することができない。これに対し、実施の形態2では、連結補助翼14Aの長手方向の両端部の、回転軸Oからの半径方向の位置が互いに異なっている。このため、半径方向の広い範囲において羽根車1の半径方向速度成分を軸方向速度成分に変換することができる。このため、実施の形態1に比べて送風機100の送風性能を向上することができる。 In the first embodiment, the connecting auxiliary blade 14 is formed in a concentric circular arc shape with respect to the rotation axis O, and the radial position from the rotation axis O is the same at any position in the circumferential direction. For this reason, the radial velocity component inside the radial position where the connecting auxiliary blade 14 is disposed can be converted into the axial velocity component, but the radial velocity component outside the radial position is outside the axial velocity component. Can not be converted. On the other hand, in the second embodiment, the positions in the radial direction from the rotation axis O of the both ends in the longitudinal direction of the connection auxiliary blade 14A are different from each other. For this reason, the radial speed component of the impeller 1 can be converted into the axial speed component in a wide radial range. For this reason, compared with Embodiment 1, the ventilation performance of the air blower 100 can be improved.
実施の形態3.
 実施の形態3は、実施の形態2の連結補助翼14の湾曲形状を特定したものである。以下、実施の形態3が実施の形態2と異なる部分を中心に説明する。
Embodiment 3 FIG.
In the third embodiment, the curved shape of the connection auxiliary wing 14 of the second embodiment is specified. In the following, the third embodiment will be described focusing on the differences from the second embodiment.
 図9は、本発明の実施の形態3に係る送風機から羽根車を取り外した状態を上流側から見た平面図である。図10は、本発明の実施の形態3に係る送風機におけるrとαとの関係を示す図である。図9及び図10において、rは、「連結補助翼14B上のある位置P」と「回転軸O」との距離である。tは、「位置Pにおける連結補助翼14Bの外面の接線」である。αは、「位置Pと回転軸Oとを結ぶ線」と「接線t」とが成す角度である。r0は、「連結補助翼14Bと静翼13-Aとの連結位置」と「回転軸O」との距離である。r1は、「連結補助翼14Bと静翼13-Bとの連結位置」と「回転軸O」との距離である。 FIG. 9 is a plan view of the state in which the impeller is removed from the blower according to Embodiment 3 of the present invention as viewed from the upstream side. FIG. 10 is a diagram showing the relationship between r and α in the blower according to Embodiment 3 of the present invention. 9 and 10, r is a distance between “a certain position P on the connection auxiliary blade 14 </ b> B” and “the rotation axis O”. t is “the tangent of the outer surface of the auxiliary connecting blade 14B at the position P”. α is an angle formed by “a line connecting the position P and the rotation axis O” and “tangent t”. r0 is the distance between the “connection position of the connection auxiliary blade 14B and the stationary blade 13-A” and the “rotary axis O”. r1 is the distance between the “connection position of the connection auxiliary blade 14B and the stationary blade 13-B” and the “rotary axis O”.
 図9に示す実施の形態3の連結補助翼14Bは、図10の直線104に示すように、静翼13-Aとの連結位置から静翼13-Bとの連結位置にかけて、角度αが一定で湾曲した形状を有する。また、連結補助翼14Bは、図10の直線105に示すように、静翼13-Aとの連結位置から静翼13-Bとの連結位置にかけて、角度αが小さくなるように湾曲していてもよい。言い換えれば、連結補助翼14Bは、「連結補助翼14Bの外面において長手方向の各位置Pにおける接線t」と、「位置Pと回転軸Oとを結ぶ線」とが成す角度αが、各位置で同じ、又は、半径方向外側に向かうにつれて小さい構成を有する。 In the connection auxiliary blade 14B of the third embodiment shown in FIG. 9, the angle α is constant from the connection position with the stationary blade 13-A to the connection position with the stationary blade 13-B as shown by the straight line 104 in FIG. It has a curved shape. Further, as shown by the straight line 105 in FIG. 10, the connection auxiliary blade 14B is curved so that the angle α decreases from the connection position with the stationary blade 13-A to the connection position with the stationary blade 13-B. Also good. In other words, the connecting auxiliary blade 14B has an angle α formed by “a tangent t at each position P in the longitudinal direction on the outer surface of the connecting auxiliary blade 14B” and “a line connecting the position P and the rotation axis O”. The same or a smaller configuration toward the radially outer side.
 このように構成したことにより、実施の形態2と同様の効果が得られると共に、以下の効果が得られる。すなわち、連結補助翼14Bを上記の湾曲形状とすることで、羽根車1後縁部が連結補助翼14の上流側を通過する際に、外周側の端部14Abから内周側の
端部14Aaに向かい徐々に干渉する。このため、単一時間において気流の軸方向速度成分が連結補助翼14に衝突する面積は小さくなり、羽根車1の後縁部が連結補助翼14を通過する時間も長くなる。これにより、羽根車1が受ける圧力場の時間変化量及び絶対値
を小さくすることにより、静音性及び送風性能を向上することができる。
With this configuration, the same effects as those of the second embodiment can be obtained, and the following effects can be obtained. That is, by making the connecting auxiliary blade 14B have the above-described curved shape, when the rear edge of the impeller 1 passes the upstream side of the connecting auxiliary blade 14, the outer peripheral end 14Ab to the inner peripheral end 14Aa. Gradually interfering with. For this reason, the area where the axial velocity component of the air current collides with the connection auxiliary blade 14 in a single time is reduced, and the time for the rear edge of the impeller 1 to pass through the connection auxiliary blade 14 is also increased. Thereby, quietness and ventilation performance can be improved by reducing the amount of time change and the absolute value of the pressure field received by the impeller 1.
実施の形態4.
 実施の形態4は、実施の形態2の連結補助翼14Aの形状を変更したものである。以下、実施の形態4が実施の形態2と異なる部分を中心に説明する。
Embodiment 4 FIG.
In the fourth embodiment, the shape of the connection auxiliary wing 14A of the second embodiment is changed. Hereinafter, the difference between the fourth embodiment and the second embodiment will be mainly described.
 図11は、本発明の実施の形態4に係る送風機から羽根車を取り外した状態を上流側から見た斜視図である。図12は、図11の静翼及び連結補助翼を図11とは別角度から見た斜視図である。
 上記実施の形態2の連結補助翼14Aは略長方形状に形成されていたが、実施の形態4の連結補助翼14Cは、回転軸方向の高さが半径方向外側に向かうにしたがって短くなっている。そして、連結補助翼14Cの回転軸方向の上流側の端面14aが、半径方向外側に向かうにしたがって下流側に傾斜する傾斜面となっている。
FIG. 11: is the perspective view which looked at the state which removed the impeller from the air blower concerning Embodiment 4 of this invention from the upstream. 12 is a perspective view of the stationary blade and the connecting auxiliary blade of FIG. 11 viewed from an angle different from that of FIG.
The connection auxiliary wing 14A of the second embodiment is formed in a substantially rectangular shape. However, the connection auxiliary wing 14C of the fourth embodiment is shortened as the height in the rotation axis direction goes radially outward. . And the upstream end surface 14a of the connection auxiliary blade 14C in the rotation axis direction is an inclined surface that inclines toward the downstream side toward the outer side in the radial direction.
 連結補助翼14Cの長手方向の両端部の静翼13-A及び静翼13-Bに対する連結位置は実施の形態2と同様である。すなわち、連結補助翼14Cの長手方向の両端部のうち、回転方向の先端側の端部14Caが静翼13-Aの負圧面13bの半径方向の中心部に連結している。一方、連結補助翼14Cの長手方向の両端部のうち、回転方向の後端側の端部14Cbが静翼13-Bの圧力面13aの半径方向の外周部(図12において点線で囲った部分)に連結している。また、連結補助翼14Cは、実施の形態2の連結補助翼14Aに比べて面積が減るものの、強度確保には十分な面積を有しており、実施の形態1と同等の強度が確保されている。 The connecting positions of the both ends of the connecting auxiliary blade 14C in the longitudinal direction with respect to the stationary blade 13-A and the stationary blade 13-B are the same as in the second embodiment. That is, among the both ends in the longitudinal direction of the connection auxiliary wing 14C, the end 14Ca on the tip side in the rotation direction is connected to the center in the radial direction of the negative pressure surface 13b of the stationary blade 13-A. On the other hand, the end 14Cb on the rear end side in the rotational direction of the both ends in the longitudinal direction of the auxiliary connecting blade 14C is the outer peripheral portion in the radial direction of the pressure surface 13a of the stationary blade 13-B (the portion surrounded by the dotted line in FIG. 12). ). Further, although the connection auxiliary wing 14C has a smaller area than the connection auxiliary wing 14A of the second embodiment, the connection auxiliary wing 14C has a sufficient area for ensuring the strength, and the same strength as that of the first embodiment is ensured. Yes.
 このように構成することにより、実施の形態2と同様の効果が得られると共に、実施の形態2に比べて連結補助翼14Cの半径方向外側の面積が小さくなった分、連結補助翼14Cに衝突する気流が少なくなる。よって、実施の形態4は、実施の形態1と同等の強度を確保しながら、送風機100の送風性能の低下を防ぎ、送風性能を向上することができる。 With this configuration, the same effect as in the second embodiment can be obtained, and the area of the outer side in the radial direction of the auxiliary connecting blade 14C can be reduced by colliding with the auxiliary connecting blade 14C as compared with the second embodiment. Less airflow. Therefore, Embodiment 4 can prevent a reduction in the blowing performance of the blower 100 and improve the blowing performance while ensuring the same strength as that of Embodiment 1.
 なお、図11及び図12では、連結補助翼14Cの回転軸方向の上流側の端面14aが、半径方向外側に向かうにしたがって下流側に傾斜する傾斜面となっているが、この構成に限られない。すなわち、連結補助翼14Cの回転軸方向の下流側の端面が、半径方向外側に向かうにしたがって上流側に傾斜する傾斜面となっていてもよい。要するに、実施の形態4の連結補助翼14Cは、回転軸方向の高さが半径方向外側に向かうにしたがって短くなっていればよい。 11 and 12, the upstream end surface 14a in the rotational axis direction of the auxiliary connecting blade 14C is an inclined surface that is inclined downstream as it goes outward in the radial direction. However, the configuration is limited to this configuration. Absent. That is, the end surface on the downstream side in the rotation axis direction of the connection auxiliary blade 14C may be an inclined surface that inclines toward the upstream side toward the outer side in the radial direction. In short, the connection auxiliary wing 14C of the fourth embodiment only needs to be shorter as the height in the direction of the rotation axis goes outward in the radial direction.
 また、本実施の形態4に実施の形態3を組み合わせた構成としてもよい。すなわち連結補助翼14Cの湾曲形状を、実施の形態3に示した図10の直線104又は直線105の関係を満たす形状としてもよい。 Also, a configuration in which the fourth embodiment is combined with the fourth embodiment may be adopted. In other words, the curved shape of the connecting auxiliary wing 14C may be a shape that satisfies the relationship of the straight line 104 or the straight line 105 of FIG.
実施の形態5.
 実施の形態5は、実施の形態4の連結補助翼14Cの接続点を変更したものである。以下、実施の形態5が、実施の形態4と異なる部分を中心に説明する。
Embodiment 5 FIG.
In the fifth embodiment, the connection point of the connection auxiliary wing 14C of the fourth embodiment is changed. Hereinafter, the fifth embodiment will be described with a focus on differences from the fourth embodiment.
 図13は、本発明の実施の形態5に係る送風機から羽根車を取り外した状態の平面図である。
 上記実施の形態4の連結補助翼14Cは、隣接する2つの静翼13のそれぞれの径方向の途中の間を連結していた。つまり、連結補助翼14Cは、隣接する2つの静翼13同士を連結していた。これに対し、実施の形態5の連結補助翼14Dは、連結補助翼14Dの両端部のうち、回転方向の後端側の端部14Dbが、ケーシング10の円筒部10aと連結している。連結補助翼14Dの回転方向の前端側の端部14Daは、隣接する2つの静翼のうち、実施の形態4と同様に、回転方向の前側にある静翼13―Aの径方向の途中に接続される。
FIG. 13: is a top view of the state which removed the impeller from the air blower concerning Embodiment 5 of this invention.
The connection auxiliary wing 14C of the above-described fourth embodiment connects the middle portions of the two adjacent stationary blades 13 in the radial direction. That is, the connecting auxiliary blade 14C connects two adjacent stationary blades 13 to each other. On the other hand, in the connection auxiliary wing 14D of the fifth embodiment, the end 14Db on the rear end side in the rotation direction among the both ends of the connection auxiliary wing 14D is connected to the cylindrical portion 10a of the casing 10. The end portion 14Da on the front end side in the rotational direction of the connection auxiliary blade 14D is in the middle of the radial direction of the stationary blade 13-A on the front side in the rotational direction among the two adjacent stationary blades as in the fourth embodiment. Connected.
 端部14Dbがケーシング10と連結される位置は、2つの静翼13がそれぞれケーシング10と連結される2つの連結個所13c、13dの間にある。特に、2つの連結個所13c、13dの中間よりも、回転方向の後側にある静翼13―Bのケーシング10との連結個所13dに接近する位置で連結補助翼14Dをケーシング10と連結している。 The position where the end portion 14Db is connected to the casing 10 is between two connection points 13c and 13d where the two stationary blades 13 are connected to the casing 10, respectively. In particular, the auxiliary connecting blade 14D is connected to the casing 10 at a position closer to the connecting portion 13d of the stationary blade 13-B on the rear side in the rotational direction than the middle of the two connecting portions 13c and 13d. Yes.
 このようにすると、上記の実施の形態4と同様に、連結補助翼14Dが、ほぼ2つの静翼13間を周方向にまたがって存在するので、径方向の成分の多くを軸方向に変換する効果がある。また、連結補助翼14bをケーシング10と連結しているので、静翼13を補強する効果が大きい。 In this way, as in the fourth embodiment, since the auxiliary connecting blade 14D exists between the two stationary blades 13 in the circumferential direction, most of the radial components are converted into the axial direction. effective. Moreover, since the connection auxiliary blade 14b is connected to the casing 10, the effect of reinforcing the stationary blade 13 is great.
 また、金型を用いた樹脂成型によってケーシング10、静翼13、連結補助翼14を一体に作製する場合、図11に示した実施の形態4の構造では、連結補助翼14Cの端部14Cb部分においてアンダーカット処理となる。これに対し、本実施の形態5では、連結補助翼14の端部14Dbがケーシング10に固定されるので、アンダーカット処理の箇所が解消されるため、製造上のコスト低減につながる。 Further, when the casing 10, the stationary blade 13, and the auxiliary connecting blade 14 are integrally manufactured by resin molding using a mold, the end portion 14Cb portion of the auxiliary connecting blade 14C is used in the structure of the fourth embodiment shown in FIG. In this case, the undercut process is performed. On the other hand, in the fifth embodiment, since the end portion 14Db of the coupling auxiliary wing 14 is fixed to the casing 10, the undercut processing portion is eliminated, which leads to a reduction in manufacturing cost.
 本実施の形態5は、実施の形態2及び実施の形態3と組み合わせた構成としてもよい。すなわち実施の形態2と組み合わせた場合には、連結補助翼14Dを、図11に示したように略長方形状としてもよい。また、実施の形態4と組み合わせた場合には、連結補助翼14Dの湾曲形状を、実施の形態3に示した図10の直線104又は直線105の関係を満たす形状としてもよい。 The fifth embodiment may be combined with the second and third embodiments. That is, when combined with the second embodiment, the connecting auxiliary blade 14D may have a substantially rectangular shape as shown in FIG. Further, when combined with the fourth embodiment, the curved shape of the coupling auxiliary wing 14D may be a shape that satisfies the relationship of the straight line 104 or the straight line 105 of FIG. 10 shown in the third embodiment.
実施の形態6.
 実施の形態6は、上記実施の形態1~5の何れかの送風機100を備えた空気調和装置に関する。以下では、送風機100を空気調和装置の室内機200に用いた例で実施の形態5を説明する。
Embodiment 6 FIG.
The sixth embodiment relates to an air conditioner including the blower 100 of any of the first to fifth embodiments. Below, Embodiment 5 is demonstrated by the example which used the air blower 100 for the indoor unit 200 of an air conditioning apparatus.
 図14は、本発明の実施の形態6に係る空気調和装置の一例を示す概略縦断面図である。図14は図の左側を室内機の前面側として示している。 FIG. 14 is a schematic longitudinal sectional view showing an example of an air-conditioning apparatus according to Embodiment 6 of the present invention. FIG. 14 shows the left side of the figure as the front side of the indoor unit.
 室内機200は、筐体203内に送風機100及び熱交換器204が配置された構成を有する。筐体203の上部には、室内空気を内部に吸込むための吸込み口201が形成され、筐体203の下部、より詳しくは筐体203の前面部下側には、空調空気を空調対象域に供給するための吹出し口202が形成されている。また、吹出し口202には、気流の吹出し方向を制御する機構、例えばベーン202a等が設けられている。 The indoor unit 200 has a configuration in which the blower 100 and the heat exchanger 204 are arranged in a housing 203. A suction port 201 for sucking room air into the interior is formed in the upper part of the housing 203, and conditioned air is supplied to the air conditioning target area at the lower part of the housing 203, more specifically, below the front surface of the housing 203. A blow-out port 202 is formed for this purpose. Further, the outlet 202 is provided with a mechanism for controlling the direction of air flow, such as a vane 202a.
 送風機100は、吸込み口201の下流側でかつ、熱交換器204の上流側に配設されている。送風機100は、室内機200に要求される風量等に応じて、筐体203の長手方向(紙面垂直方向)に複数個、並列配置される。 The blower 100 is disposed on the downstream side of the suction port 201 and on the upstream side of the heat exchanger 204. A plurality of blowers 100 are arranged in parallel in the longitudinal direction of the housing 203 (in the direction perpendicular to the paper surface) according to the air volume required for the indoor unit 200.
 熱交換器204は、送風機100から吹出し口202までの通風路に配設され、冷媒と室内空気との間で熱交換させることで空調空気を作り出すものである。 The heat exchanger 204 is disposed in the ventilation path from the blower 100 to the outlet 202, and creates conditioned air by exchanging heat between the refrigerant and the room air.
 室内空気は、送風機100によって筐体203の上部の吸込み口201から室内機200内に取り込まれる。この室内空気は熱交換器204を通過する際、冷媒との間で熱交換し、加熱又は冷却され、空調空気となる。空調空気は筐体203の下部の吹出し口202から空調対象域に吹出されるようになっている。 The indoor air is taken into the indoor unit 200 from the suction port 201 at the top of the housing 203 by the blower 100. When this indoor air passes through the heat exchanger 204, it exchanges heat with the refrigerant, and is heated or cooled to become conditioned air. The conditioned air is blown out from the outlet 202 at the bottom of the housing 203 to the air-conditioning target area.
 このように構成された室内機200においては、実施の形態1~5の何れかの送風機100を用いているため、圧力損失の高い室内機に空調空気を通風させる場合においても、気流の半径速度成分に起因する送風性能の低下を防止することがでる。その結果、室内機200の電力効率を向上させることができる。 Since the indoor unit 200 configured as described above uses the blower 100 according to any one of the first to fifth embodiments, the radial velocity of the airflow can be obtained even when the conditioned air is passed through the indoor unit having a high pressure loss. It is possible to prevent a decrease in blowing performance due to the components. As a result, the power efficiency of the indoor unit 200 can be improved.
 1 羽根車、2 ボス部、2a 軸穴、3 動翼、10 ケーシング、10a 円筒部、10b フランジ部、12 モーター固定部、13 静翼、13-A 静翼、13-B 静翼、13a 圧力面、13b 負圧面、13c 連結個所、13d 連結箇所、14 連結補助翼、14A 連結補助翼、14Aa 端部、14Ab 端部、14B 連結補助翼、14C 連結補助翼、14Ca 端部、14Cb 端部、14a 端面、20 モーター、21 軸、100 送風機、101 半径方向速度成分、102 軸方向速度成分、103 合計速度成分、104 直線、105 直線、200 室内機、201 吸込み口、202 吹出し口、202a ベーン、203 筐体、204 熱交換器、O 回転軸、t 接線、α 角度、θ 迎角 14D 連結補助翼、14Da 端部、14Db 端部。 1 impeller, 2 boss part, 2a shaft hole, 3 moving blade, 10 casing, 10a cylindrical part, 10b flange part, 12 motor fixing part, 13 stationary blade, 13-A stationary blade, 13-B stationary blade, 13a pressure Surface, 13b suction surface, 13c connection location, 13d connection location, 14 connection auxiliary wing, 14A connection auxiliary wing, 14Aa end, 14Ab end, 14B connection auxiliary wing, 14C connection auxiliary wing, 14Ca end, 14Cb end, 14a end face, 20 motor, 21 shaft, 100 blower, 101 radial speed component, 102 axial speed component, 103 total speed component, 104 straight line, 105 straight line, 200 indoor unit, 201 suction port, 202 outlet, 202a vane, 203 housing, 204 heat exchanger, O rotation axis, t tangent, α angle θ angle of attack 14D connecting aileron, 14 Da end, 14 dB end.

Claims (9)

  1.  モーターと、
     前記モーターの回転軸に連結された動翼を有する羽根車と、
     前記羽根車を取り囲むように設けられ、回転軸方向に沿った気流の流路を形成する円筒部を有するケーシングと、
     前記ケーシング内において前記羽根車の下流側に配置され、前記モーターを支持するモーター固定部と、
     前記モーター固定部から前記回転軸の半径方向に延びて前記ケーシングの前記円筒部に連結された複数の静翼と、
     隣接する前記静翼同士、又は、前記静翼と前記ケーシングとを連結する連結補助翼とを備え、
     前記連結補助翼は、径方向の断面が、前記気流の上流側から下流方向に向かうにしたがって前記回転軸から離れるように傾斜している送風機。
    A motor,
    An impeller having a moving blade connected to a rotating shaft of the motor;
    A casing having a cylindrical portion that is provided so as to surround the impeller and forms a flow path of an airflow along a rotation axis direction;
    A motor fixing portion disposed on the downstream side of the impeller in the casing and supporting the motor;
    A plurality of stationary blades extending in a radial direction of the rotating shaft from the motor fixing portion and coupled to the cylindrical portion of the casing;
    The adjacent stationary blades, or a connecting auxiliary blade that connects the stationary blade and the casing,
    The connecting auxiliary wing is a blower in which a cross section in a radial direction is inclined so as to be separated from the rotation shaft from the upstream side to the downstream side of the airflow.
  2.  前記連結補助翼を複数有し、前記複数の連結補助翼は、前記回転軸を中心とした同心円状に配置されている請求項1記載の送風機。 The blower according to claim 1, comprising a plurality of the connecting auxiliary blades, wherein the plurality of connecting auxiliary blades are arranged concentrically around the rotation axis.
  3.  前記静翼と連結される前記連結補助翼の両端部のうち、前記モーターの回転方向の先端側の端部が、前記回転方向の後端側の端部よりも、前記半径方向に前記回転軸寄りで前記静翼に連結されている請求項1記載の送風機。 Of the both ends of the connection auxiliary blade connected to the stationary blade, the end on the front end side in the rotation direction of the motor is more in the radial direction than the end on the rear end side in the rotation direction. The blower according to claim 1, wherein the blower is connected to the stationary blade at a side.
  4.  前記静翼と連結される前記連結補助翼の両端部のうち、前記モーターの回転方向の先端側の端部が、前記静翼の前記半径方向の中心部に連結し、前記回転方向の後端側の端部が、前記静翼の前記半径方向の外周部に連結している請求項3記載の送風機。 Of both end portions of the connection auxiliary blade connected to the stationary blade, an end portion on a front end side in the rotation direction of the motor is connected to a center portion in the radial direction of the stationary blade, and a rear end in the rotation direction. The blower according to claim 3, wherein a side end portion is connected to the outer peripheral portion of the stationary blade in the radial direction.
  5.  「前記連結補助翼の外面において長手方向の各位置における接線」と、「前記位置と前記回転軸とを結ぶ線」とが成す角度が、各位置で同じ、又は、半径方向外側に向かうにつれて小さくなる請求項3又は請求項4記載の送風機。 The angle formed by “the tangent at each position in the longitudinal direction on the outer surface of the connecting auxiliary wing” and “the line connecting the position and the rotation axis” is the same at each position, or decreases toward the outside in the radial direction. The blower of Claim 3 or Claim 4 which becomes.
  6.  前記連結補助翼は、前記回転軸方向の高さが半径方向外側に向かうにしたがって短くなっている請求項3~請求項5の何れか一項に記載の送風機。 The blower according to any one of claims 3 to 5, wherein the connection auxiliary wings are shortened as the height in the direction of the rotation axis goes outward in the radial direction.
  7.  前記連結補助翼の両端部の前記回転軸方向の高さは、前記静翼との連結位置における前記静翼の高さと同じである請求項1~請求項5の何れか一項に記載の送風機。 The blower according to any one of claims 1 to 5, wherein heights of both end portions of the connection auxiliary blade in the rotation axis direction are the same as heights of the stator blades at a connection position with the stator blades. .
  8.  前記連結補助翼の両端部のうち、前記モーターの回転方向の後端側の端部が、前記ケーシングの前記円筒部に連結している請求項3~請求項7の何れか一項に記載の送風機。 The end portion on the rear end side in the rotation direction of the motor among both end portions of the connection auxiliary wing is connected to the cylindrical portion of the casing. Blower.
  9.  請求項1~請求項8の何れか一項に記載の送風機を備えた空気調和装置。 An air conditioner comprising the blower according to any one of claims 1 to 8.
PCT/JP2017/018192 2017-01-10 2017-05-15 Blower and air conditioning device WO2018131183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018561786A JP6685433B2 (en) 2017-01-10 2017-05-15 Blower and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-001932 2017-01-10
JP2017001932 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131183A1 true WO2018131183A1 (en) 2018-07-19

Family

ID=62840010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018192 WO2018131183A1 (en) 2017-01-10 2017-05-15 Blower and air conditioning device

Country Status (2)

Country Link
JP (1) JP6685433B2 (en)
WO (1) WO2018131183A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
JP2002228192A (en) * 2001-01-29 2002-08-14 Daikin Ind Ltd Fan guard for air supply unit
JP2004183649A (en) * 2002-11-22 2004-07-02 Nippon Densan Corp Fan motor, casing of electronic or electric appliance, and electronic or electric appliance
US20050042084A1 (en) * 2003-07-31 2005-02-24 Sunonwealth Electric Machine Industry Co., Ltd. Heat dissipating fan with air-guiding structure
JP2005076590A (en) * 2003-09-03 2005-03-24 Jianzhun Electric Mach Ind Co Ltd Air current guide structure for air discharge port in heat radiation fan
US20050191955A1 (en) * 2003-08-19 2005-09-01 Sunonwealth Electric Machine Industry Co., Ltd. Airflow guiding structure varying in inclinations of air-guiding rings for a heat-dissipating fan
US20050271529A1 (en) * 2004-04-26 2005-12-08 Behr Gmbh & Co.Kg Fan housing for a heat exchanger, particular for motor vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883264A (en) * 1971-04-08 1975-05-13 Gadicherla V R Rao Quiet fan with non-radial elements
JP2002228192A (en) * 2001-01-29 2002-08-14 Daikin Ind Ltd Fan guard for air supply unit
JP2004183649A (en) * 2002-11-22 2004-07-02 Nippon Densan Corp Fan motor, casing of electronic or electric appliance, and electronic or electric appliance
US20050042084A1 (en) * 2003-07-31 2005-02-24 Sunonwealth Electric Machine Industry Co., Ltd. Heat dissipating fan with air-guiding structure
US20050191955A1 (en) * 2003-08-19 2005-09-01 Sunonwealth Electric Machine Industry Co., Ltd. Airflow guiding structure varying in inclinations of air-guiding rings for a heat-dissipating fan
JP2005076590A (en) * 2003-09-03 2005-03-24 Jianzhun Electric Mach Ind Co Ltd Air current guide structure for air discharge port in heat radiation fan
US20050271529A1 (en) * 2004-04-26 2005-12-08 Behr Gmbh & Co.Kg Fan housing for a heat exchanger, particular for motor vehicles

Also Published As

Publication number Publication date
JP6685433B2 (en) 2020-04-22
JPWO2018131183A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US8075262B2 (en) Centrifugal type blower
CN107923410B (en) Propeller fan, propeller fan device, and outdoor unit for air conditioning device
JP6381811B2 (en) Blower and air conditioner
WO2009139422A1 (en) Centrifugal fan
JP6415741B2 (en) Blower and air conditioner equipped with the same
EP3626974B1 (en) Outdoor unit for an air conditioner
WO2012056990A1 (en) Multi-blade centrifugal fan and air conditioner using same
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
WO2014125710A1 (en) Outdoor cooling unit for air conditioning device for vehicle
WO2013069397A1 (en) External cooling unit of vehicular air-conditioning device
JP3516909B2 (en) Centrifugal blower
WO2020008519A1 (en) Multi-blade blower and air conditioning device
WO2014147952A1 (en) Single suction centrifugal blower
JP6611676B2 (en) Outdoor unit for blower and refrigeration cycle equipment
JP2004218450A (en) Centrifugal blower
CN110914553B (en) Impeller, blower and air conditioner
CN110506164B (en) Propeller fan and outdoor unit for air conditioner
JP5008386B2 (en) Centrifugal multiblade blower
WO2004088210A1 (en) Outdoor unit for air conditioner
WO2018131183A1 (en) Blower and air conditioning device
WO2022195717A1 (en) Scroll casing, and air-blowing device and air-conditioning device provided with said scroll casing
WO2022209551A1 (en) Blower and indoor unit
WO2020136750A1 (en) Impeller, blower, and air-conditioning device
JP2023008054A (en) Ventilator and air conditioning system comprising the same
JP2001123990A (en) Impeller of centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892001

Country of ref document: EP

Kind code of ref document: A1