WO2018131142A1 - トランジションピース - Google Patents
トランジションピース Download PDFInfo
- Publication number
- WO2018131142A1 WO2018131142A1 PCT/JP2017/001053 JP2017001053W WO2018131142A1 WO 2018131142 A1 WO2018131142 A1 WO 2018131142A1 JP 2017001053 W JP2017001053 W JP 2017001053W WO 2018131142 A1 WO2018131142 A1 WO 2018131142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liner
- transition piece
- rib
- inner cylinder
- cylinder
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
Definitions
- the embodiment of the present invention relates to a transition piece.
- combustion gas generated by burning fuel in a combustor liner becomes a working fluid.
- This working fluid is then supplied to the turbine via a transition piece connected to the combustor liner.
- the combustion gas supplied to the turbine performs expansion work, and the generator is driven by the rotation of the turbine generated when the expansion work is performed.
- the combustor has a double tube structure including an inner cylinder and an outer cylinder, and the inner cylinder of the combustor is heated to a high temperature by the combustion gas. And in order to suppress the high temperature of an inner cylinder, the air for cooling an inner cylinder is flowing into the space formed between an inner cylinder and an outer cylinder. Furthermore, the protrusion part which divides the flow path of the air which flows through space is provided in the outer peripheral surface of the inner cylinder. Such a protrusion cools the inner cylinder as a whole by defining the flow of air flowing through the space formed between the inner cylinder and the outer cylinder.
- the internal / external differential pressure of the combustor increases, so that a stronger force is applied to the combustor.
- the transition piece since the transition piece has a complicated structure, the rigidity of the transition piece is low. When the transition piece is deformed, it is necessary to replace the transition piece. For this reason, the transition piece is required to have a strength that can withstand the high pressure of the combustion gas.
- the problem to be solved by the present invention is to provide a transition piece that can suppress deformation and can be efficiently cooled even when exposed to combustion gas.
- the transition piece guides combustion gas generated in the liner inner cylinder of the combustor liner having a double pipe structure including the liner inner cylinder and the liner outer cylinder to the turbine.
- the transition piece is connected to an outlet side end of the liner inner cylinder, and is connected to an inner cylinder for guiding the combustion gas discharged from the liner inner cylinder to the turbine, and an outlet side end of the liner outer cylinder.
- An outer cylinder provided so as to cover the outer periphery of the inner cylinder through a gap space, and the outer cylinder protrudes from the outer peripheral surface of the inner cylinder toward the outer cylinder, and the outer surface of the outer cylinder is an inner peripheral surface of the outer cylinder.
- a rib having a through-hole through which the cooling medium discharged from the combustor liner side and flowing through the gap space flows.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
- FIG. 4 is an enlarged view of a region C in FIG. 3.
- FIG. 3 is a cross-sectional view taken along line BB in FIG. 2.
- FIG. 3 is a schematic diagram showing an example of a cross section taken along line DD in FIG. 2.
- FIG. 3 is a schematic diagram showing an example of a cross section taken along line DD in FIG. 2.
- FIG. 3 is a schematic diagram showing an example of a cross section taken along line DD in FIG. 2.
- FIG. 1 is a schematic view schematically showing a cross section of a combustor 1 including a transition piece 30 according to the first embodiment.
- FIG. 2 is a schematic diagram schematically showing the transition piece 30 according to the first embodiment.
- FIG. 3 is a cross-sectional view taken along line AA in FIG.
- FIG. 4 is an enlarged view of region C in FIG.
- FIG. 5 is a sectional view taken along line BB in FIG.
- FIG. 1 is a cross-sectional view of the combustor 1 along the longitudinal direction of the combustor 1 (the left-right direction in FIG. 1).
- FIG. 2 is a perspective view of the transition piece 30 with the outer cylinder 32 removed as viewed from the outside.
- the combustor 1 includes a fuel nozzle portion 2, a combustor liner 3, and a transition piece 30 (tail tube).
- the combustor 1 is accommodated in the combustor casing 9.
- the fuel nozzle portion 2 injects the fuel 4 a supplied from the pipe 4 and the oxidant 5 a supplied from the pipe 5 into the combustion region in the combustor liner 3.
- the fuel nozzle unit 2 ejects fuel from the center and ejects oxidant from the periphery thereof.
- a coal gasification gas fuel containing hydrocarbons such as methane and natural gas, carbon monoxide and hydrogen can be used.
- an oxidizing agent for example, Oxygen separated from the atmosphere by an air separation device (not shown) and air compressed by a compressor (not shown) can be used.
- the combustor liner 3 is a liner inner cylinder in which an inlet side end portion which is an upstream end portion of combustion gas is closed and an outlet end portion which is a downstream end portion is opened. 6 and the liner outer cylinder 7, and has a double pipe structure composed of the liner inner cylinder 6 and the liner outer cylinder 7. Further, an opening 3 a connected to the injection port 2 a of the fuel nozzle portion 2 is formed at the center of the inlet side end portion of the combustor liner 3.
- the liner inner cylinder 6 and the liner outer cylinder 7 are extended in the longitudinal direction of the combustor 1.
- the liner outer cylinder 7 is provided so as to cover the outer periphery of the liner inner cylinder 6 through the gap space 8.
- the liner inner cylinder 6 and the liner outer cylinder 7 are cylinders, and the gap space 8 is formed between the liner inner cylinder 6 and the liner outer cylinder 7 and has an annular shape.
- the combustor casing 9 is provided along the longitudinal direction of the combustor 1 so as to surround the entire combustor 1.
- the combustor casing 9 is formed of a cylindrical body such as a cylinder.
- an opening 9a for inserting the fuel nozzle portion 2 is formed in the center of the upstream end portion of the combustor casing 9. Further, on the upstream side of the combustor casing 9, an opening 9 b for inserting the pipe 12 and an opening 9 c for inserting the pipe 13 are formed.
- the pipe 12 is connected to the combustor casing 9 on the upstream side of the pipe 13.
- One opening 9b and one opening 9c may be provided, and when a plurality of pipes 12 and pipes 13 are provided, a plurality of openings 9b and openings 9c may be provided along the circumferential direction of the combustor 1.
- An opening 9 d is formed on the downstream side of the combustor casing 9. A part of the combustor casing 9 on the downstream side is connected to the inner sidewall 18 and the outer sidewall 19 of the turbine 17 through the opening 9d.
- the pipe 12 is connected to the upstream side of the combustor casing 9 through an opening 9b.
- the pipe 12 communicates with the annular space 15 formed along the longitudinal direction of the combustor 1 between the combustor 1 and the combustor casing 9.
- the first cooling medium 14 flows in the pipe 12, and the first cooling medium 14 discharged from the pipe 12 is introduced into the space 15.
- the first cooling medium 14 introduced from the pipe 12 into the space 15 flows downstream of the space 15 while cooling the combustor 1 and the combustor casing 9.
- the first cooling medium 14 can be entirely cooled from the upstream side to the downstream side of the combustor 1 and the combustor casing 9.
- the pipe 13 passing through the opening 9 c is connected to the upstream side of the liner outer cylinder 7 of the combustor liner 3.
- the pipe 13 communicates with the gap space 8.
- the second cooling medium 16 flows in the pipe 13, and the second cooling medium 16 discharged from the pipe 13 is introduced into the gap space 8.
- the second cooling medium 16 introduced into the gap space 8 from the pipe 13 flows downstream of the gap space 8 while cooling the liner inner cylinder 6 and the liner outer cylinder 7 of the combustor liner 3.
- the second cooling medium 16 can be entirely cooled from the upstream side to the downstream side of the liner inner cylinder 6 and the liner outer cylinder 7.
- Examples of the second cooling medium 16 include carbon dioxide contained in the combustion gas generated from the fuel and the oxidant in the case of a CO 2 turbine, and air in the case of a general gas turbine.
- the second cooling medium 16 introduced into the gap space 8 via the pipe 13 is a liner inner cylinder 6 of the combustor liner 3 heated by the combustion gas 10 or will be described later.
- the inner cylinder 31 of the transition piece 30 is cooled. Therefore, the temperature T 2 of the second cooling medium 16 introduced into the gap space 8 is lower than the temperature T of the combustion gas 10 generated by the liner inner cylinder 6.
- the temperature T 1 of the first cooling medium 14 introduced into the space 15 via the pipe 12 is lower than the temperature T 2 of the second cooling medium 16.
- the first cooling medium 14 for example, in the case of a CO 2 turbine, carbon dioxide contained in a combustion gas generated from a fuel and an oxidant may be mentioned.
- the component of the 1st cooling medium 14 and the component of the 2nd cooling medium 16 may be the same, and may differ.
- the transition piece 30 connects the combustor liner 3 and the turbine 17. Then, the transition piece 30 guides the combustion gas generated in the liner inner cylinder 6 to the turbine 17.
- the transition piece 30 includes an inner cylinder 31 having an inlet-side end portion and an outlet-side end portion opened, and an outer cylinder 32 having an inlet-side end portion opened and an outlet-side end portion closed. And has a double-pipe structure composed of an inner cylinder 31 and an outer cylinder 32. Furthermore, the transition piece 30 includes a rib 33 provided on the outer peripheral surface of the inner cylinder 31, as shown in FIGS.
- the inner cylinder 31 of the transition piece 30 extends from the combustor liner 3 toward the turbine 17.
- the inlet side end of the inner cylinder 31 is connected to the outlet side end of the liner inner cylinder 6.
- the outlet side end portion of the transition piece 30 is connected to the inner sidewall 18 and the outer sidewall 19 of the turbine 17.
- the inner cylinder 31 guides the combustion gas discharged from the liner inner cylinder 6 to the turbine 17.
- the outer cylinder 32 is provided so as to cover the outer periphery of the inner cylinder 31 through the gap space 34.
- the inlet side end of the outer cylinder 32 is connected to the outlet side end of the liner outer cylinder 7.
- the gap space 34 is formed between the inner cylinder 31 and the outer cylinder 32 and is annular.
- the gap space 34 communicates with the gap space 8 of the combustor liner 3. Then, the second cooling medium 16 that has flowed through the gap space 8 is discharged into the gap space 34.
- the upstream end of the inner cylinder 31 of the transition piece 30 is opened in a circular shape. Further, the downstream end of the inner cylinder 31 is open in an arc shape as shown in FIG. As described above, the shape of the cross section of the transition piece 30 perpendicular to the direction along the center line 30a of the transition piece 30 changes from the circular shape on the upstream side to the arc shape on the downstream side.
- a plurality of cooling holes 35 are formed in the inner cylinder 31 of the transition piece 30.
- the cooling hole 35 penetrates the inner cylinder 31, and the gap space 34 and the inner space of the inner cylinder 31 communicate with each other through the cooling hole 35.
- the second cooling medium 16 flowing through the gap space 34 passes through the cooling hole 35 and is introduced into the inner cylinder 31.
- the second cooling medium 16 flows in the inner space of the inner cylinder 31 toward the turbine 17 while cooling the inner peripheral surface of the inner cylinder 31.
- a cooling hole may be formed in the liner inner cylinder 6 of the combustor liner 3 as well as the inner cylinder 31 of the transition piece 30.
- a part of the second cooling medium 16 flowing through the gap space 8 of the combustor liner 3 passes through the cooling hole (not shown) so as to be within the liner inner cylinder 6.
- the inner space of the liner inner cylinder 6 and the inner cylinder 31 flows toward the turbine 17 while cooling the inner peripheral surfaces of the liner inner cylinder 6 and the inner cylinder 31.
- the rib 33 protrudes from the outer peripheral surface of the inner cylinder 31 toward the outer cylinder 32.
- the surface 33a on the outer surface side of the rib 33 is in contact with the inner peripheral surface of the outer cylinder 32, and the rib 33 supports the outer cylinder 32 from the inside.
- the height of the rib 33 corresponds to the height of the gap space 34, in other words, the length of a straight line connecting the inner cylinder 31 and the outer cylinder 32 in the shortest time.
- the rib 33 is integrated with the inner cylinder 31.
- the rib 33 and the inner cylinder 31 are manufactured by casting.
- the rib 33 extends in a direction intersecting with the plurality of first rib portions 36 extending in the direction along the center line 30 a of the transition piece 30, and the first rib portion 36.
- a plurality of second rib portions 37 are provided.
- a plurality of first rib portions 36 are provided in the circumferential direction of the transition piece 30.
- a plurality of the second rib portions 37 are provided in the direction of the center line 30 a of the transition piece 30.
- the rib 33 has a lattice shape.
- the first rib portion 36 extends along the flow direction of the main flow of the second cooling medium 16 that flows through the gap space 34 from upstream to downstream.
- the second rib portion 37 is formed in an annular shape over the circumferential direction of the transition piece 30.
- the first rib portion 36 and the second rib portion 37 intersect each other and are connected at the intersecting portion.
- the first rib portion 36 is orthogonal to the second rib portion 37.
- first rib portion 36 and the second rib portion 37 are not limited, and the flow direction and flow rate of the second cooling medium 16 flowing through the gap space 34. It is set appropriately according to Here, an example in which the first rib portion 36 and the second rib portion 37 are prismatic is shown.
- the rib 33 has a plurality of through holes 38 through which a part of the second cooling medium 16 that is discharged from the gap space 8 on the combustor liner 3 side and flows through the gap space 34 circulates. 39 is formed.
- the plurality of through holes 38 and 39 penetrate the rib 33 in a direction perpendicular to the extending direction of the rib 33.
- the through hole 38 passes through the first rib portion 36 along a direction perpendicular to the center line 30 a of the transition piece 30, and the through hole 39 extends along the center line 30 a of the transition piece 30.
- Through the second rib portion 37 Through the second rib portion 37.
- the height h 39 of the through hole 39 is a length of a straight line that connects the inner surface 39 a of the through hole 39 and the outer surface 39 b of the through hole 39 in the shortest distance.
- the height h 38 of the through hole 38 is a length of a straight line connecting the inner surface of the through hole 38 and the outer surface of the through hole 38 in the shortest distance.
- the inner surface of the through hole 38 and the inner surface 39 a of the through hole 39 correspond to the outer peripheral surface of the inner cylinder 31.
- the height h 39 of the through-hole 39 and the height h 38 of the through-hole 38 depend on the flow path cross-sectional area of the through-holes 38 and 39 and the cooling hole 35 described later, the ratio (L 1 / L), etc. They are set as appropriate, and may all be the same as shown in FIG. 2 or may be partially different.
- the flow passage cross-sectional areas of the through holes 38 and 39 and the cooling holes 35 are more than the total flow cross-sectional areas of the plurality of cooling holes 35 formed on the downstream side of the through holes 38 and 39.
- the height and width of the through holes 38, 39 in the cross sectional shape of the through holes 38, 39 are appropriately set so that the flow passage cross sectional area of the through holes 38, 39 is increased. Reaches the downstream end of the gap space 34.
- the rib functions as a partition wall in the gap space 34 and blocks the flow of the second cooling medium 16. Therefore, the flow loss of the second cooling medium 16 flowing through the gap space 34 increases, and the second cooling medium 16 having a sufficient flow rate may not reach the downstream end of the gap space 34.
- the cross-sectional area, the installation position, the number of installations, and the like of the through holes 38, 39 are appropriately set according to the cross-sectional area of the cooling hole 35, the flow direction and the flow rate of the second cooling medium 16 flowing through the gap space 34.
- the Further, the flow passage cross-sectional areas of the through holes 38 and 39 may all be the same or may be partially different.
- the cross-sectional shape of the through holes 38 and 39 shows an example in which the corner portion on the outer surface side is a substantially rectangular shape with a curve.
- the rib 33 is provided on the outer peripheral surface of the inner cylinder 31, thereby increasing the strength of the inner cylinder 31. Therefore, the deformation amount of the inner cylinder 31 due to the differential pressure between the inside of the inner cylinder 31 and the gap spaces 8 and 34 is suppressed. Further, as shown in FIGS. 3 and 4, the outer surface 32 a of the rib 33 abuts against the inner peripheral surface of the outer cylinder 32, so that the rib 33 supports the outer cylinder 32.
- the force generated by the differential pressure between the inside of the inner cylinder 31 and the gap spaces 8 and 34 is a force that pushes the inner cylinders 6 and 31 from the outside to the inside.
- the force generated by the differential pressure between them is a force that pushes the outer cylinders 7 and 32 from the outside to the inside.
- the outer cylinder 32 of the transition piece 30 is preferably fixed to the rib 33 at one location. That is, one point on the inner peripheral surface of the outer cylinder 32 is preferably fixed to one point on the outer surface side surface 33 a of the rib 33.
- a part of the surface 33a of the rib 33 is connected to a part of the inner peripheral surface of the outer cylinder 32, and the part of the surface 33a other than the part is outside.
- the cylinder 32 is supported while being in contact with the inner peripheral surface. That is, a part of the outer cylinder 32 is restrained by the surface 33a, and the parts of the outer cylinder 32 other than the part are not restrained by the surface 33a.
- the entire inner peripheral surface of the outer cylinder of the transition piece is When fixed to the entire surface of the outer surface side of the rib, in other words, compared to the case where the outer cylinder of the transition piece is coupled to the rib, the temperature of the inner cylinder 31 and the outer cylinder 32 during operation of the combustor 1 In addition, the thermal stress caused by the difference in thermal expansion between the inner cylinder 31 and the outer cylinder 32 due to the difference in thermal expansion can be released. Furthermore, since the outer cylinder 32 can be easily removed from the rib 33, it is excellent in maintainability.
- bolt holes 40 for bolts are provided on the surface 33 a of the rib 33.
- a through hole 32 a for the bolt is provided in the outer cylinder 32.
- the position of the through-hole 32a formed in the outer cylinder 32 matches the position of the bolt hole 40 formed in the surface 33a of the rib 33.
- the outer cylinder 32 is installed on the surface 33 a of the rib 33.
- the outer cylinder 32 is fixed to the rib 33 by passing the bolt 41 from the outer side of the outer cylinder 32 through the through hole 32 a and screwing it into the bolt hole 40 of the rib 33.
- the fixing location of the outer cylinder 32 and the rib 33 is not limited.
- the fuel 4a and the oxidant 5a injected from the fuel nozzle portion 2 into the combustor liner 3 undergo a combustion reaction to generate a combustion gas 10.
- the combustion gas 10 generated in the liner inner cylinder 6 of the combustor liner 3 is introduced into the inner cylinder 31 of the transition piece 30.
- the combustion gas introduced into the inner cylinder 31 flows toward the turbine 17.
- the second cooling medium 16 having a temperature T 2 lower than the temperature T of the combustion gas is introduced into the gap space 8 of the combustor liner 3 through the pipe 13.
- the second cooling medium 16 flows through the gap space 8 while cooling the liner inner cylinder 6 and the liner outer cylinder 7 of the combustor liner 3 heated by the combustion gas. Then, the second cooling medium 16 is discharged into the gap space 34 of the transition piece 30.
- the second cooling medium 16 introduced into the gap space 34 is partially introduced into the cooling hole 35 formed in the inner cylinder 31 of the transition piece 30, while the gap space 34. 34.
- the second cooling medium 16 flowing through the gap space 34 passes through the through holes 38 and 39 of the rib 33 and flows uniformly over the entire gap space 34, while being heated by the combustion gas, the inner cylinder 31 of the transition piece. And the whole outer cylinder 32 is cooled. At this time, the flow rate of the second cooling medium 16 flowing through the gap space 34 decreases from upstream to downstream of the gap space 34.
- all of the second cooling medium 16 is introduced into the inner cylinder 31 through the cooling holes 35. When the second cooling medium 16 is introduced into the inner cylinder 31 through the cooling holes 35, the second cooling medium 16 cools the inner cylinder 31 while passing through the cooling holes 35.
- the second cooling medium 16 introduced into the inner cylinder 31 forms a cooling film on the inner peripheral surface of the inner cylinder 31, for example. This cooling film thermally protects the transition piece 30 from high-temperature combustion gas.
- the second cooling medium 16 introduced into the inner cylinder 31 is introduced into the turbine 17 together with the combustion gas.
- the first cooling medium 14 having a temperature T 1 lower than the temperature T 2 of the second cooling medium 16 is introduced into the space 15 of the combustor casing 9 through the pipe 12. Is done.
- the first cooling medium 14 introduced into the space 15 flows from the upstream to the downstream of the space 15 while cooling the liner outer cylinder 7 of the combustor liner 3 and the outer cylinder 32 of the transition piece 30.
- the first cooling medium 14 is discharged from an opening (not shown) provided on the downstream side of the combustor casing 9 and used for cooling the stationary blades and moving blades of the turbine 17.
- FIG. 6 to 8 are schematic views showing an example of a cross section taken along line DD of FIG. 6 to 8 are cross-sectional views of the second rib portion 37 perpendicular to the center line 30a of the transition piece 30, and the difference in the arrangement position of the through holes 39 formed in the second rib portion 37 is shown. Show. In addition, an example in which the through hole 39 has a rectangular cross-sectional shape will be described.
- the inner surface 39a of the through hole 39 is an arbitrary position between the inner cylinder 31 and the outer cylinder 32 in the second rib portion 37
- the outer surface 39b of the through hole 39 is It is an inner peripheral surface of the outer cylinder 32.
- the inner surface 39 a and the outer surface 39 b of the through hole 39 are arbitrary positions between the inner cylinder 31 and the outer cylinder 32 in the second rib portion 37.
- the inner surface 39 a of the through hole 39 is the outer peripheral surface of the inner cylinder 31, and the outer surface 39 b of the through hole 39 is the inner cylinder 31 and the outer cylinder 32 in the second rib portion 37. Any position between.
- the through-hole 39 is provided between the outer surface of the second rib portion 37 and the inner peripheral surface of the outer cylinder 32. Then, the second cooling medium 16 flows through the through hole 39 while being in contact with the inner peripheral surface of the outer cylinder 32. Therefore, the cooling efficiency of the outer cylinder 32 is superior to the rib configuration shown in FIGS. 7 and 8.
- the through hole 39 penetrates the inside of the second rib portion 37.
- the second cooling medium 16 flows through the through hole 39 without contacting the inner cylinder 31 and the outer cylinder 32.
- the through hole 39 is provided between the outer peripheral surface of the inner cylinder 31 and the inner surface of the second rib portion 37.
- the second cooling medium 16 flows through the through hole 39 while being in contact with the outer peripheral surface of the inner cylinder 31.
- the second cooling medium 16 flows through the gap space 34 along the outer peripheral surface of the inner cylinder 31. Therefore, the cooling efficiency of the inner cylinder 31 is superior to the rib configuration shown in FIGS. 6 and 7.
- the second rib portion 37 having the through hole 39 provided on the inner surface side of the second rib portion 37 has the highest section modulus as compared with the rib configuration shown in FIGS. Is the highest.
- the 2nd rib part 37 which has the through-hole 39 provided in the inner surface side of the 2nd rib part 37 as shown in FIG. 8 has high cooling performance with respect to the inner cylinder 31, and is high. It has rigidity.
- the inner surface 39 a of the through hole 39 is the outer peripheral surface of the inner cylinder 31, and the distance L 1 between the inner surface 39 a and the outer surface 39 b of the through hole 39 and the inside
- the ratio (L 1 / L) between the outer peripheral surface of the cylinder 31 and the distance L between the inner peripheral surface of the outer cylinder 32 is preferably 0.25 or more and 0.75 or less.
- the distance L 1 corresponds to the length of the straight line connecting the inner surface 39a and the outer surface 39b of the through hole 39 in the shortest distance, and the distance L is the shortest distance between the outer peripheral surface of the inner cylinder 31 and the inner peripheral surface of the outer cylinder 32. Corresponds to the length of the straight line connected by.
- the through hole 39 formed in the second rib portion 37 has been described, but the same applies to the through hole 38 formed in the first rib portion 36. That is, with respect to the through hole 38 formed in the first rib portion 36, the inner surface of the through hole 38 is the outer peripheral surface of the inner cylinder 31, and the distance L between the inner surface of the through hole 38 and the outer surface of the through hole 38.
- the ratio of the distance L of the inner peripheral surface of the outer peripheral surface and the outer tube 32 2 and the inner cylinder 31 (L 2 / L) is preferably 0.25 to 0.75.
- the rib 33 is provided on the outer peripheral surface of the inner cylinder 31 of the transition piece 30 and supports the outer cylinder 32 of the transition piece 30 from the inside. Therefore, even if a differential pressure is generated in the transition piece 30, deformation of the inner cylinder 31 and the outer cylinder 32 of the transition piece 30 can be suppressed.
- the transition piece 30 includes through holes 38 and 39 through which the second cooling medium 16 in the gap space 34 formed between the inner cylinder 31 and the outer cylinder 32 is circulated. Since the transition piece 30 includes the through holes 38 and 39, the second cooling medium 16 flows through the entire gap space 34. Therefore, the transition piece 30 heated by the combustion gas can be effectively cooled.
- the transition piece 130 of the second embodiment is basically the same as the configuration of the transition piece 30 of the first embodiment except that the configuration of the rib 133 is different. Therefore, here, the different configuration will be mainly described. In the following embodiment, the description overlapping with the configuration of the transition piece 30 of the first embodiment is omitted or simplified.
- FIG. 9 is a schematic diagram schematically showing the transition piece 130 of the second embodiment.
- FIG. 9 is a perspective view of the transition piece 130 with the outer cylinder 32 removed as viewed from the outside.
- the transition piece 130 includes a rib 133.
- the rib 133 has a plurality of first rib portions 36 extending in a direction along the center line of the transition piece. That is, the configuration of the rib 133 corresponds to a configuration in which the second rib portion 37 is removed from the rib 33.
- the rib 133 does not include the second rib portion 37 extending in the direction intersecting the first rib portion 36. That is, the second rib portion 37 is not provided on the outer peripheral surface of the inner cylinder 31.
- the second cooling medium 16 flowing between the plurality of first rib portions 36 is not blocked by the second rib portions 37. Therefore, compared with the transition piece 30 of the first embodiment, the flow rate balance of the second cooling medium 16 flowing through the gap space 34 can be easily controlled, and the flow loss of the second cooling medium 16 is reduced.
- the cooling efficiency of the inner cylinder 31 is further improved.
- the differential pressure generated in the combustor including the transition piece 130 according to the second embodiment is lower than the combustor 1 including the transition piece 30 according to the first embodiment, compared with the rib 33. Even if the rib 133 that causes the strength reduction of the inner cylinder 31 and the outer cylinder 32 is installed in the transition piece 130, the deformation of the inner cylinder 31 and the outer cylinder 32 due to the differential pressure is suppressed.
- a transition piece 130 having ribs 133 is installed in a gas turbine obtained by increasing the pressure of a normal gas turbine, and a transition piece 30 having ribs 33 is installed in an ultrahigh pressure gas turbine such as a CO 2 turbine. .
- the first rib is provided with the plurality of first rib portions 36 extending in the direction along the center line of the transition piece.
- the rib 133 which does not comprise the 2nd rib part 37 extended in the direction which cross
- the second cooling medium 16 flows between the plurality of first rib portions 36 without being blocked by the second rib portions 37. Therefore, the flow rate balance of the second cooling medium 16 flowing through the gap space 34 can be easily controlled, and the flow loss of the second cooling medium 16 is reduced, so that the transition piece 130 heated by the combustion gas is more effective. Can be cooled to.
- the CO 2 turbine described above is a turbine driven by a working fluid composed of combustion gas generated by burning a fuel such as natural gas with oxygen and CO 2 .
- a part of the CO 2 contained in the working fluid that has driven the CO 2 turbine is recovered by extraction, and the unrecovered CO 2 is circulated to the combustor. Further, when CO 2 turbine operation, CO 2 within the turbine is a supercritical state.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
実施の形態のトランジションピースは、ライナ内筒およびライナ外筒で構成される二重管構造を有する燃焼器ライナの前記ライナ内筒内で生成した燃焼ガスをタービンに導く。前記トランジションピースは、前記ライナ内筒の出口側端部に接続され、前記ライナ内筒から排出された前記燃焼ガスを前記タービンに導く内筒と、前記ライナ外筒の出口側端部に接続され、間隙空間を介して前記内筒の外周を覆うように設けられる外筒と、前記内筒の外周面から前記外筒側に突出すると共に、その外面側の表面が前記外筒の内周面に当接し、前記燃焼器ライナ側から排出されて前記間隙空間を流れる冷却媒体を流通させる貫通孔を有するリブとを備える。
Description
本発明の実施の形態は、トランジションピースに関する。
発電プラントの高効率化は、排出される二酸化炭素の削減や省資源などの要求から進められている。具体的には、ガスタービンや蒸気タービンの作動流体の高温化、コンバインドサイクル化などが進められている。
例えば、ガスタービンでは、燃焼器ライナ内で燃料を燃焼させて生成した燃焼ガスが作動流体となる。そして、この作動流体は、燃焼器ライナと連結しているトランジションピースを介して、タービンに供給される。タービンに供給された燃焼ガスは膨張仕事をして、膨張仕事を行った際に発生するタービンの回動によって、発電機が駆動される。
ガスタービンでは、燃焼ガスの高温化に伴い、燃焼器ライナおよびトランジションピースを備える燃焼器も高温化される。燃焼器は、内筒および外筒からなる二重管構造を有しており、燃焼器の内筒は、燃焼ガスによって高温に加熱される。そして、内筒の高温化を抑制するために、内筒と外筒との間に形成される空間には、内筒を冷却するための空気が流れている。さらに、空間を流れる空気の流路を区画する突出部が内筒の外周面に設けられている。このような突出部は、内筒と外筒との間に形成される空間を流れる空気の流れを規定することによって、内筒を全体的に冷却させる。
また、近年では、さらなるガスタービンの効率化から、燃焼ガスの高圧化が進められている。このような燃焼ガスの高圧化によって、燃焼器の内部と外部との間の差圧により燃焼器に加わる力は増加する。
このように、燃焼ガスの高圧化が進むにつれて、燃焼器の内外差圧が増加するので、より強い力が燃焼器にかかる。しかしながら、現状の燃焼器では、このような差圧に起因した力に対して、その構造を維持することが困難になることがある。特に、トランジションピースは複雑な構造を有するので、トランジションピースの剛性は低い。トランジションピースが変形した場合には、トランジションピースの交換が必要になる。そのため、トランジションピースには、燃焼ガスの高圧化に耐えることのできる強度が求められている。
本発明が解決しようとする課題は、変形を抑制することができると共に、燃焼ガスに曝されても効率的に冷却されることができるトランジションピースを提供することである。
実施の形態のトランジションピースは、ライナ内筒およびライナ外筒で構成される二重管構造を有する燃焼器ライナの前記ライナ内筒内で生成した燃焼ガスをタービンに導く。前記トランジションピースは、前記ライナ内筒の出口側端部に接続され、前記ライナ内筒から排出された前記燃焼ガスを前記タービンに導く内筒と、前記ライナ外筒の出口側端部に接続され、間隙空間を介して前記内筒の外周を覆うように設けられる外筒と、前記内筒の外周面から前記外筒側に突出すると共に、その外面側の表面が前記外筒の内周面に当接し、前記燃焼器ライナ側から排出されて前記間隙空間を流れる冷却媒体を流通させる貫通孔を有するリブとを備える。
以下、実施の形態について図面を参照して説明する。
(第1の実施の形態)
図1は、第1の実施の形態のトランジションピース30を備える燃焼器1の断面を模式的に示す概略図である。図2は、第1の実施の形態のトランジションピース30を模式的に示す概略図である。図3は、図2のA-A線に沿った断面図である。図4は、図3のC領域の拡大図である。図5は、図2のB-B線に沿った断面図である。なお、図1は、燃焼器1の長手方向(図1では左右方向)に沿った燃焼器1の断面図である。また、図2は、外筒32を取り外したトランジションピース30を外側から見た斜視図である。
図1は、第1の実施の形態のトランジションピース30を備える燃焼器1の断面を模式的に示す概略図である。図2は、第1の実施の形態のトランジションピース30を模式的に示す概略図である。図3は、図2のA-A線に沿った断面図である。図4は、図3のC領域の拡大図である。図5は、図2のB-B線に沿った断面図である。なお、図1は、燃焼器1の長手方向(図1では左右方向)に沿った燃焼器1の断面図である。また、図2は、外筒32を取り外したトランジションピース30を外側から見た斜視図である。
図1に示すように、燃焼器1は、燃料ノズル部2、燃焼器ライナ3、およびトランジションピース30(尾筒)を備える。また、燃焼器1は、燃焼器ケーシング9の内部に収容されている。
図1に示すように、燃料ノズル部2は、配管4から供給された燃料4aと配管5から供給された酸化剤5aとを、燃焼器ライナ3内の燃焼領域に噴出する。燃料ノズル部2は、例えば、中央から燃料を噴出し、その周囲から酸化剤を噴出する。
燃料としては、例えば、メタン、天然ガスなどの炭化水素、一酸化炭素および水素などを含む石炭ガス化ガス燃料を使用することができる。また、酸化剤としては、例えば、
不図示の空気分離装置によって大気から分離された酸素、不図示の圧縮機によって圧縮された空気を使用することができる。
不図示の空気分離装置によって大気から分離された酸素、不図示の圧縮機によって圧縮された空気を使用することができる。
図1に示すように、燃焼器ライナ3は、燃焼ガスの上流側の端部である入口側端部が閉塞されると共に下流側の端部である出口側端部が開口されたライナ内筒6およびライナ外筒7を備えており、ライナ内筒6とライナ外筒7とで構成される二重管構造を有する。また、燃焼器ライナ3の入口側端部の中央には、燃料ノズル部2の噴射口2aと連結する開口3aが形成されている。
ライナ内筒6およびライナ外筒7は、燃焼器1の長手方向に延設される。ライナ外筒7は、間隙空間8を介して、ライナ内筒6の外周を覆うように設けられている。例えば、ライナ内筒6およびライナ外筒7は円筒であり、間隙空間8は、ライナ内筒6とライナ外筒7との間に形成され、円環状である。
また、図1に示すように、燃焼器ケーシング9は、燃焼器1の全体を囲むように、燃焼器1の長手方向に沿って設けられている。燃焼器ケーシング9は、例えば円筒などの筒体で構成されている。
燃焼器ケーシング9の上流側端部の中央には、燃料ノズル部2を挿入する開口9aが形成されている。また、燃焼器ケーシング9の上流側には、配管12を挿入する開口9bおよび配管13を挿入する開口9cが形成されている。配管12は、例えば、配管13よりも上流側で、燃焼器ケーシング9に連結される。なお、開口9bおよび開口9cはそれぞれ1つであってもよく、配管12および配管13が複数設けられる場合、開口9bおよび開口9cは燃焼器1の周方向に沿ってそれぞれ複数あってもよい。
燃焼器ケーシング9の下流側には、開口9dが形成されている。そして、燃焼器ケーシング9の下流側の一部は、開口9dを介して、タービン17のインナーサイドウォール18およびアウターサイドウォール19に接続されている。
図1に示すように、配管12は、開口9bを介して、燃焼器ケーシング9の上流側に接続されている。そして、配管12は、燃焼器1と燃焼器ケーシング9との間であって、燃焼器1の長手方向に沿って形成された環状の空間15と連通している。配管12内には、第1の冷却媒体14が流れており、配管12を排出した第1の冷却媒体14は、空間15に導入される。
配管12から空間15に導入された第1の冷却媒体14は、燃焼器1および燃焼器ケーシング9を冷却しながら、空間15の下流側に流れる。配管12が燃焼器ケーシング9の上流側に接続されると、第1の冷却媒体14は燃焼器1および燃焼器ケーシング9の上流側から下流側に亘って全体的に冷却することができる。
また、図1に示すように、開口9cを貫通している配管13は、燃焼器ライナ3のライナ外筒7の上流側に接続されている。そして、配管13は、間隙空間8と連通している。配管13内には、第2の冷却媒体16が流れており、配管13を排出した第2の冷却媒体16は、間隙空間8に導入される。
配管13から間隙空間8に導入された第2の冷却媒体16は、燃焼器ライナ3のライナ内筒6とライナ外筒7とを冷却しながら、間隙空間8の下流側に流れる。配管13がライナ外筒7の上流側に接続されると、第2の冷却媒体16はライナ内筒6およびライナ外筒7の上流側から下流側に亘って全体的に冷却することができる。
第2の冷却媒体16として、例えば、CO2タービンであれば燃料および酸化剤から生成した燃焼ガスに含まれる二酸化炭素、一般的なガスタービンであれば空気などが挙げられる。
CO2タービンや一般的なガスタービンにおいて、配管13を介して間隙空間8に導入される第2の冷却媒体16は、燃焼ガス10によって加熱された燃焼器ライナ3のライナ内筒6や後述するトランジションピース30の内筒31を冷却する。そのため、間隙空間8に導入される第2の冷却媒体16の温度T2は、ライナ内筒6によって生成される燃焼ガス10の温度Tよりも低い。
また、CO2タービンにおいて、配管12を介して空間15に導入される第1の冷却媒体14の温度T1は、第2の冷却媒体16の温度T2よりも低い。第1の冷却媒体14として、例えば、CO2タービンであれば燃料および酸化剤から生成した燃焼ガスに含まれる二酸化炭素が挙げられる。また、第1の冷却媒体14の成分と第2の冷却媒体16の成分とは、同じであってもよいし、異なっていてもよい。
図1に示すように、トランジションピース30は、燃焼器ライナ3とタービン17とを接続する。そして、トランジションピース30は、ライナ内筒6内で生成した燃焼ガスをタービン17に導く。
トランジションピース30は、図1に示すように、入口側端部および出口側端部が開口された内筒31と入口側端部が開口されると共に出口側端部が閉塞された外筒32とを備えており、内筒31と外筒32とで構成される二重管構造を有する。さらに、トランジションピース30は、図1~図4に示すように、内筒31の外周面に設けられるリブ33を備える。
図1に示すように、トランジションピース30の内筒31は、燃焼器ライナ3からタービン17の方向に向かって延設される。内筒31の入口側端部は、ライナ内筒6の出口側端部に接続される。また、トランジションピース30の出口側端部は、タービン17のインナーサイドウォール18およびアウターサイドウォール19に接続される。そして、内筒31は、ライナ内筒6から排出された燃焼ガスをタービン17に導く。
外筒32は、間隙空間34を介して、内筒31の外周を覆うように設けられている。外筒32の入口側端部は、ライナ外筒7の出口側端部に接続される。間隙空間34は、内筒31と外筒32との間に形成され、環状である。また、間隙空間34は、燃焼器ライナ3の間隙空間8と連通している。そして、間隙空間34には、間隙空間8を流れた第2の冷却媒体16が排出される。
ここで、トランジションピース30の内筒31の上流端は、円形に開口している。また、内筒31の下流端は、図5に示すように、弧形に開口している。このように、トランジションピース30の中心線30aに沿った方向に垂直なトランジションピース30の断面の形状は、上流側の円形から下流側の弧形に遷移する。
また、図2および図3に示すように、トランジションピース30の内筒31には、複数の冷却孔35が形成されている。冷却孔35は、内筒31を貫通しており、間隙空間34と内筒31の内部空間とは、冷却孔35を介して連通する。間隙空間34を流れる第2の冷却媒体16は、冷却孔35を通過して、内筒31内に導入される。そして、第2の冷却媒体16は、内筒31の内周面を冷却しながら、内筒31の内部空間をタービン17に向かって流れる。
なお、トランジションピース30の内筒31と同様に、燃焼器ライナ3のライナ内筒6にも、不図示の冷却孔が形成されてもよい。ライナ内筒6が不図示の冷却孔を備える場合、燃焼器ライナ3の間隙空間8を流れる第2の冷却媒体16の一部は、不図示の冷却孔を通過して、ライナ内筒6内に導入され、ライナ内筒6および内筒31の内周面を冷却しながら、ライナ内筒6および内筒31の内部空間をタービン17に向かって流れる。
図1~図4に示すように、リブ33は、内筒31の外周面から外筒32側に突出している。リブ33の外面側の表面33aは、外筒32の内周面に当接しており、リブ33は、外筒32を内側から支持する。リブ33の高さは、間隙空間34の高さ、換言すると、内筒31と外筒32とを最短で結ぶ直線の長さに相当する。リブ33は内筒31と一体化されており、例えばリブ33および内筒31は鋳造によって製造される。
図1および図2に示すように、リブ33は、トランジションピース30の中心線30aに沿った方向に延設される複数の第1のリブ部36、および第1のリブ部36に交わる方向に延設される複数の第2のリブ部37を有する。第1のリブ部36は、トランジションピース30の周方向に複数設けられる。第2のリブ部37は、トランジションピース30の中心線30aの方向に複数設けられる。例えば、リブ33は、格子状である。
図2に示すように、第1のリブ部36は、間隙空間34を上流から下流に流れる第2の冷却媒体16の主流の流れ方向に沿って延設される。また、第2のリブ部37は、トランジションピース30の周方向に亘って環状に形成されている。第1のリブ部36と第2のリブ部37とは、互いに、交差しており、交差部において連結している。例えば、第1のリブ部36は第2のリブ部37と直交する。
ここで、第1のリブ部36および第2のリブ部37の形状、設置位置、設置数などは、限定されるものではなく、間隙空間34を流れる第2の冷却媒体16の流れ方向および流量に応じて適宜設定される。ここでは、第1のリブ部36および第2のリブ部37が角柱状である一例を示している。
また、図2に示すように、リブ33には、燃焼器ライナ3側の間隙空間8から排出されて間隙空間34を流れる第2の冷却媒体16の一部を流通させる複数の貫通孔38,39が形成されている。複数の貫通孔38,39は、リブ33の延設方向に対して垂直な方向に、リブ33を貫通している。具体的には、貫通孔38は、トランジションピース30の中心線30aに対して垂直な方向に沿って第1のリブ部36を貫通し、貫通孔39は、トランジションピース30の中心線30aに沿って第2のリブ部37を貫通している。
貫通孔39の高さh39は、図4に示すように、貫通孔39の内面39aと貫通孔39の外面39bとを最短で結ぶ直線の長さである。同様に、貫通孔38の高さh38は、貫通孔38の内面と貫通孔38の外面とを最短で結ぶ直線の長さである。なお、ここでは、貫通孔38の内面および貫通孔39の内面39aは、内筒31の外周面に相当する。また、貫通孔39の高さh39および貫通孔38の高さh38は、後述する貫通孔38,39および冷却孔35の流路断面積や、比(L1/L)などに応じて適宜設定され、図2に示すように全て同じであってもよいし、一部異なっていてもよい。
また、貫通孔38,39および冷却孔35の流路断面積について、各貫通孔38,39の下流側に形成されている複数の冷却孔35の合計の流路断面積よりも各貫通孔38,39の流路断面積が大きくなるように、貫通孔38,39の断面形状における各貫通孔38,39の高さおよび幅が適宜設定されると、十分な流量の第2の冷却媒体16が間隙空間34の下流端まで到達する。
なお、貫通孔38,39がリブ33に設けられないと、リブは、間隙空間34における隔壁として働き、第2の冷却媒体16の流れを遮る。そのため、間隙空間34を流れる第2の冷却媒体16の流動損失が増加し、十分な流量の第2の冷却媒体16が間隙空間34の下流端まで到達しないことがある。
貫通孔38,39の流路断面積、設置位置、設置数などは、冷却孔35の流路断面積、間隙空間34を流れる第2の冷却媒体16の流れ方向および流量に応じて適宜設定される。また、貫通孔38,39の流路断面積は、全て同じであってもよいし、一部異なっていてもよい。ここでは、貫通孔38,39の断面形状について、図2に示すように、外面側の角部分が曲線状の略矩形である一例を示している。
ここで、燃焼器1の作動時には、内筒31の内部には高圧の燃焼ガスが流れており、間隙空間8,34および空間15は高圧環境下となる。図2に示すように、リブ33が内筒31の外周面に設けられることによって、内筒31の強度が増加する。そのため、内筒31の内部と間隙空間8,34との間の差圧に起因する内筒31の変形量は抑制される。また、図3および図4に示すように、リブ33の外面側の表面33aが外筒32の内周面に当接することによって、リブ33は外筒32を支持しているので、間隙空間8,34と空間15との間の差圧に起因する外筒32の変形量は抑制される。ここで、内筒31の内部と間隙空間8,34との間の差圧によって生じる力は、内筒6,31を外側から内側に押す力であり、間隙空間8,34と空間15との間の差圧によって生じる力は、外筒7,32を外側から内側に押す力である。
また、図3および図4に示すように、トランジションピース30の外筒32は、リブ33に一箇所で固定されることが好ましい。つまり、外筒32の内周面の一点は、リブ33の外面側の表面33aの一点に固定されることが好ましい。外筒32とリブ33とが一箇所で固定されている場合、リブ33の表面33aの一部分が外筒32の内周面の一部分と連結されており、当該一部分以外の表面33aの部分は外筒32の内周面に当接しながら支持している。すなわち、外筒32の一部分は表面33aによって拘束され、当該一部分以外の外筒32の部分は表面33aによって拘束されていない。
このような、外筒32とリブ33とが一箇所で固定されている構成、すなわち、外筒32とリブ33とが結合されていない構成は、トランジションピースの外筒における内周面の全面がリブにおける外面側の表面の全面に固定される場合、換言すると、トランジションピースの外筒がリブと結合されている場合と比較すると、燃焼器1の作動時における内筒31および外筒32の温度や熱膨張の違いによる内筒31と外筒32との熱伸び差に起因した熱応力を逃がすことができる。さらには、外筒32をリブ33から容易に取り外すことができるので、メンテナンス性に優れている。
例えば、図2および図4に示すように、ボルト用のボルト穴40がリブ33の表面33aに設けられている。また、ボルト用の貫通孔32aが外筒32に設けられている。そして、外筒32の内周面が内筒31の外周面に対向すると共に、外筒32に形成される貫通孔32aの位置がリブ33の表面33aに形成されるボルト穴40の位置に合うように、外筒32をリブ33の表面33a上に設置する。続いて、ボルト41を、外筒32の外側から貫通孔32aに貫通させて、リブ33のボルト穴40にねじ込むことによって、外筒32がリブ33に固定される。なお、外筒32とリブ33との固定箇所は、限定されるものではない。
次に、第1の実施の形態のトランジションピース30を備える燃焼器1で生成される燃焼ガス、燃焼器1に導入される第1の冷却媒体14および第2の冷却媒体16の流れについて説明する。
図1に示すように、燃焼器1の作動時には、燃料ノズル部2から燃焼器ライナ3の内部に噴射された燃料4aおよび酸化剤5aは、燃焼反応して燃焼ガス10を生成する。燃焼器ライナ3のライナ内筒6内で生成した燃焼ガス10は、トランジションピース30の内筒31内に導入される。内筒31に導入された燃焼ガスは、タービン17に向かって流れる。
一方、燃焼ガスの温度Tよりも低い温度T2を有する第2の冷却媒体16は、配管13を介して、燃焼器ライナ3の間隙空間8に導入される。第2の冷却媒体16は、燃焼ガスによって加熱された燃焼器ライナ3のライナ内筒6およびライナ外筒7を冷却しながら、間隙空間8を流れる。そして、第2の冷却媒体16は、トランジションピース30の間隙空間34に排出される。
間隙空間34に導入された第2の冷却媒体16は、図2および図3に示すように、その一部がトランジションピース30の内筒31に形成される冷却孔35に導入されながら、間隙空間34を流れる。間隙空間34を流れる第2の冷却媒体16は、リブ33の貫通孔38,39を通過し、間隙空間34の全体に亘って均一に流れながら、燃焼ガスによって加熱されたトランジションピースの内筒31および外筒32の全体を冷却する。このとき、間隙空間34を流れる第2の冷却媒体16の流量は、間隙空間34の上流から下流にかけて減少する。そして、最終的には、第2の冷却媒体16の全てが、冷却孔35を介して、内筒31の内部に導入される。第2の冷却媒体16が冷却孔35を介して内筒31内に導入されるとき、第2の冷却媒体16は冷却孔35を通過しながら内筒31を冷却する。
内筒31の内部に導入された第2の冷却媒体16は、例えば内筒31の内周面に冷却膜を形成する。この冷却膜は、高温の燃焼ガスからトランジションピース30を熱的に保護する。内筒31に導入された第2の冷却媒体16は、燃焼ガスと共に、タービン17に導入される。
また、図1に示すように、第2の冷却媒体16の温度T2よりも低い温度T1を有する第1の冷却媒体14は、配管12を介して、燃焼器ケーシング9の空間15に導入される。空間15に導入された第1の冷却媒体14は、燃焼器ライナ3のライナ外筒7やトランジションピース30の外筒32を冷却しながら、空間15の上流から下流に向かって流れる。そして、第1の冷却媒体14は、燃焼器ケーシング9の下流側に設けられている不図示の開口から排出し、タービン17の静翼や動翼の冷却に用いられる。
図6~図8は、図2のD-D線に沿った断面の一例を示す概略図である。なお、図6~図8は、トランジションピース30の中心線30aに垂直な第2のリブ部37の断面図であり、第2のリブ部37に形成される貫通孔39の配置位置の違いを示す。また、貫通孔39の断面形状が矩形である一例について示す。
図6に示す貫通孔39については、貫通孔39の内面39aは、第2のリブ部37における内筒31と外筒32との間の任意の位置であり、貫通孔39の外面39bは、外筒32の内周面である。図7に示す貫通孔39については、貫通孔39の内面39aおよび外面39bは、第2のリブ部37における内筒31と外筒32との間の任意の位置である。図8に示す貫通孔39については、貫通孔39の内面39aは、内筒31の外周面であり、貫通孔39の外面39bは、第2のリブ部37における内筒31と外筒32との間の任意の位置である。
図6に示す第2のリブ部37では、貫通孔39は、第2のリブ部37の外面と外筒32の内周面との間に設けられている。そして、第2の冷却媒体16は、外筒32の内周面と接触しながら、貫通孔39を流れる。そのため、図7および図8に示すリブの構成に比べて、外筒32の冷却効率は優れている。
図7に示す第2のリブ部37では、貫通孔39は、第2のリブ部37の内部を貫通している。そして、第2の冷却媒体16は、内筒31および外筒32と接触せずに、貫通孔39を流れる。
図8に示す第2のリブ部37では、貫通孔39は、内筒31の外周面と第2のリブ部37の内面との間に設けられている。そして、第2の冷却媒体16は、内筒31の外周面と接触しながら、貫通孔39を流れる。このように、第2の冷却媒体16は、内筒31の外周面に沿って、間隙空間34を流れる。そのため、図6および図7に示すリブの構成に比べて、内筒31の冷却効率は優れている。さらに、第2のリブ部37の内面側に設けられた貫通孔39を有する第2のリブ部37は、図6および図7に示すリブの構成に比べて、断面係数が最も高いので、剛性が最も高い。
このように、図8に示すような第2のリブ部37の内面側に設けられた貫通孔39を有する第2のリブ部37は、内筒31に対して優れた冷却性能を有すると共に高い剛性を有する。このような第2のリブ部37に形成される貫通孔39について、貫通孔39の内面39aは、内筒31の外周面であり、貫通孔39の内面39aおよび外面39bの距離L1と内筒31の外周面および外筒32の内周面の距離Lとの比(L1/L)は、0.25以上0.75以下であることが好ましい。なお、距離L1は、貫通孔39の内面39aと外面39bとを最短で結ぶ直線の長さに相当し、距離Lは、内筒31の外周面と外筒32の内周面とを最短で結ぶ直線の長さに相当する。
距離L1と距離Lとの比(L1/L)が0.25以上であると、間隙空間34を流れる第2の冷却媒体16の流量が増加し、十分な流量の第2の冷却媒体16が間隙空間34の下流端まで到達するので、内筒31の冷却効率が向上する。一方、比(L1/L)が0.75以下であると、第2のリブ部37の断面係数が増加するので、第2のリブ部37の剛性が向上する。
なお、上記では、第2のリブ部37に形成される貫通孔39について説明したが、第1のリブ部36に形成される貫通孔38についても同様である。すなわち、このような第1のリブ部36に形成される貫通孔38について、貫通孔38の内面は、内筒31の外周面であり、貫通孔38の内面および貫通孔38の外面の距離L2と内筒31の外周面および外筒32の内周面の距離Lとの比(L2/L)は、0.25以上0.75以下であることが好ましい。
上記したように、第1の実施の形態のトランジションピース30によれば、トランジションピース30の内筒31の外周面に設けられると共にトランジションピース30の外筒32を内側から支持するリブ33を備える。そのため、トランジションピース30に差圧が生じても、トランジションピース30の内筒31や外筒32の変形を抑制することができる。
また、トランジションピース30は、内筒31と外筒32との間に形成される間隙空間34内の第2の冷却媒体16を流通させる貫通孔38,39を備える。トランジションピース30が貫通孔38,39を備えることによって、第2の冷却媒体16は間隙空間34の全体に亘って流通する。そのため、燃焼ガスによって加熱したトランジションピース30を効果的に冷却することができる。
(第2の実施の形態)
第2の実施の形態のトランジションピース130において、リブ133の構成が異なる以外は、第1の実施の形態のトランジションピース30の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。なお、以下に示す実施の形態において、第1の実施の形態のトランジションピース30の構成と重複する説明を省略または簡略する。
第2の実施の形態のトランジションピース130において、リブ133の構成が異なる以外は、第1の実施の形態のトランジションピース30の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。なお、以下に示す実施の形態において、第1の実施の形態のトランジションピース30の構成と重複する説明を省略または簡略する。
図9は、第2の実施の形態のトランジションピース130を模式的に示す概略図である。なお、図9は、外筒32を取り外したトランジションピース130を外側から見た斜視図である。
図9に示すように、トランジションピース130はリブ133を備える。リブ133は、トランジションピースの中心線に沿った方向に延設される複数の第1のリブ部36を有する。すなわち、リブ133の構成は、リブ33から第2のリブ部37を除いた構成に相当する。
リブ133は、第1のリブ部36に交わる方向に延設される第2のリブ部37を具備しない。すなわち、第2のリブ部37は、内筒31の外周面に設けられない。複数の第1のリブ部36の間を流れる第2の冷却媒体16は、第2のリブ部37によって妨げられない。そのため、第1の実施の形態のトランジションピース30に比べて、間隙空間34を流れる第2の冷却媒体16の流量バランスの制御が容易になり、第2の冷却媒体16の流動損失が低下するので、内筒31の冷却効率はさらに向上する。
また、例えば、第1の実施の形態のトランジションピース30を備える燃焼器1に比べて、第2の実施の形態のトランジションピース130を備える燃焼器内に生じる差圧が低い場合、リブ33に比べて、内筒31および外筒32の強度低下を引き起こすリブ133がトランジションピース130に設置されても、差圧による内筒31および外筒32の変形は抑制される。
したがって、燃焼器内に生じる差圧の大きさに応じて、リブ133またはリブ33を適宜選択することが好ましい。例えば、通常のガスタービンを高圧化したガスタービンには、リブ133を備えるトランジションピース130を設置し、CO2タービンのような超高圧のガスタービンには、リブ33を備えるトランジションピース30を設置する。
上記したように、第2の実施の形態のトランジションピース130によれば、トランジションピースの中心線に沿った方向に延設される複数の第1のリブ部36を具備すると共に、第1のリブ部36に交わる方向に延設される第2のリブ部37を具備しないリブ133を備える。第2の冷却媒体16は、第2のリブ部37によって妨げられずに、複数の第1のリブ部36の間を流れる。そのため、間隙空間34を流れる第2の冷却媒体16の流量バランスの制御が容易になると共に、第2の冷却媒体16の流動損失が低下するので、燃焼ガスによって加熱したトランジションピース130をさらに効果的に冷却することができる。
なお、上記したCO2タービンとは、天然ガスなどの燃料を酸素で燃焼させて発生する燃焼ガスおよびCO2などから構成される作動流体によって駆動するタービンである。CO2タービンを駆動させた作動流体に含まれるCO2の一部は、抽気によって回収され、回収されなかったCO2は燃焼器へ循環される。また、CO2タービンの稼働時には、タービン内のCO2は超臨界状態である。
以上説明した実施の形態によれば、変形を抑制することができると共に、燃焼ガスに曝されても効率的に冷却されることができるトランジションピースを提供することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…燃焼器、2…燃料ノズル部、2a…噴射口、3…燃焼器ライナ、3a…開口、4,5…配管、4a…燃料、5a…酸化剤、6…ライナ内筒、7…ライナ外筒、8,34…間隙空間、9…燃焼器ケーシング、9a,9b,9c,9d…開口、10…燃焼ガス、12,13…配管、14…第1の冷却媒体、15…空間、16…第2の冷却媒体、17…タービン、18…インナーサイドウォール、19…アウターサイドウォール、30,130…トランジションピース、30a…中心線、31…内筒、32…外筒、32a…貫通孔、33,133…リブ、33a…表面、35…冷却孔、36…第1のリブ部、37…第2のリブ部、38,39…貫通孔、39a…内面、39b…外面、40…ボルト穴、41…ボルト。
Claims (5)
- ライナ内筒およびライナ外筒で構成される二重管構造を有する燃焼器ライナの前記ライナ内筒内で生成した燃焼ガスをタービンに導くトランジションピースであって、
前記ライナ内筒の出口側端部に接続され、前記ライナ内筒から排出された前記燃焼ガスを前記タービンに導く内筒と、
前記ライナ外筒の出口側端部に接続され、間隙空間を介して前記内筒の外周を覆うように設けられる外筒と、
前記内筒の外周面から前記外筒側に突出すると共に、その外面側の表面が前記外筒の内周面に当接し、前記燃焼器ライナ側から排出されて前記間隙空間を流れる冷却媒体を流通させる貫通孔を有するリブと
を備えることを特徴とするトランジションピース。 - 前記外筒は、前記リブに一箇所で固定されることを特徴とする請求項1に記載のトランジションピース。
- 前記貫通孔の内面は、前記内筒の外周面であり、
前記貫通孔の内面および前記貫通孔の外面の距離(L1)と、前記内筒の外周面および前記外筒の内周面の距離(L)との比(L1/L)は、0.25以上0.75以下であることを特徴とする請求項1または2に記載のトランジションピース。 - 前記リブは、前記トランジションピースの中心線に沿った方向に延設される複数の第1のリブ部を有することを特徴とする請求項1乃至3のいずれか1項に記載のトランジションピース。
- 前記リブは、前記トランジションピースの中心線に沿った方向に延設される複数の第1のリブ部、および前記第1のリブ部に交わる方向に延設される複数の第2のリブ部を有することを特徴とする請求項1乃至3のいずれか1項に記載のトランジションピース。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001053 WO2018131142A1 (ja) | 2017-01-13 | 2017-01-13 | トランジションピース |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001053 WO2018131142A1 (ja) | 2017-01-13 | 2017-01-13 | トランジションピース |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018131142A1 true WO2018131142A1 (ja) | 2018-07-19 |
Family
ID=62840305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001053 WO2018131142A1 (ja) | 2017-01-13 | 2017-01-13 | トランジションピース |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018131142A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110566999A (zh) * | 2019-09-20 | 2019-12-13 | 清华大学 | 利用燃油自抽吸发汗冷却的燃烧室热防护壁面结构 |
CN111503660A (zh) * | 2020-04-29 | 2020-08-07 | 中国航发湖南动力机械研究所 | 排气弯管和回流燃烧室 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1082527A (ja) * | 1996-09-05 | 1998-03-31 | Toshiba Corp | ガスタービン燃焼器 |
JP2000265856A (ja) * | 1999-03-11 | 2000-09-26 | Mitsubishi Heavy Ind Ltd | ハイブリッド燃焼器 |
JP2012017666A (ja) * | 2010-07-06 | 2012-01-26 | Ihi Corp | 二重壁冷却構造および燃焼器 |
-
2017
- 2017-01-13 WO PCT/JP2017/001053 patent/WO2018131142A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1082527A (ja) * | 1996-09-05 | 1998-03-31 | Toshiba Corp | ガスタービン燃焼器 |
JP2000265856A (ja) * | 1999-03-11 | 2000-09-26 | Mitsubishi Heavy Ind Ltd | ハイブリッド燃焼器 |
JP2012017666A (ja) * | 2010-07-06 | 2012-01-26 | Ihi Corp | 二重壁冷却構造および燃焼器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110566999A (zh) * | 2019-09-20 | 2019-12-13 | 清华大学 | 利用燃油自抽吸发汗冷却的燃烧室热防护壁面结构 |
CN110566999B (zh) * | 2019-09-20 | 2020-07-28 | 清华大学 | 利用燃油自抽吸发汗冷却的燃烧室热防护壁面结构 |
CN111503660A (zh) * | 2020-04-29 | 2020-08-07 | 中国航发湖南动力机械研究所 | 排气弯管和回流燃烧室 |
CN111503660B (zh) * | 2020-04-29 | 2021-07-16 | 中国航发湖南动力机械研究所 | 排气弯管和回流燃烧室 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8813502B2 (en) | Cooling structure of gas turbine combustor | |
JP5865798B2 (ja) | タービンのシール装置および火力発電システム | |
JP5631686B2 (ja) | 間隙流れ制御のための渦チャンバ | |
JP6334817B2 (ja) | ガスタービン設備 | |
JP2007132640A (ja) | ガスタービン燃焼器 | |
EP3348814B1 (en) | Seal member assembly structure and assembly method, seal member, and gas turbine | |
JP5034847B2 (ja) | 2つのタービン段の間の移行チャネル | |
JP2014020509A (ja) | シール装置、軸流タービン、および発電プラント | |
WO2018131142A1 (ja) | トランジションピース | |
JP2015059486A (ja) | タービン静翼 | |
JP6271352B2 (ja) | ガスタービン設備 | |
GB2564969A (en) | Gas turbine engine | |
JP5364561B2 (ja) | フランジ締結部及びフランジ締結部の冷却システム | |
US10648667B2 (en) | Combustion chamber with double wall | |
EP3879178B1 (en) | Gas turbine combustor system | |
JP4831835B2 (ja) | ガスタービン燃焼器 | |
JP2010276022A (ja) | ターボ機械圧縮機ホイール部材 | |
JPWO2017158637A1 (ja) | タービン及びタービン静翼 | |
JP2006220350A (ja) | ガスタービン設備及びその運転方法 | |
JP6033476B2 (ja) | 軸流式エキスパンダ | |
JP6813669B2 (ja) | タービン静翼列及びタービン | |
JP2007327448A (ja) | 車室構造 | |
JP4909113B2 (ja) | 蒸気タービン車室構造 | |
US20020154992A1 (en) | Shaped part for forming a guide ring | |
US11174745B2 (en) | Turbine stator blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17891037 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17891037 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |