WO2018131116A1 - Outdoor unit control device - Google Patents

Outdoor unit control device Download PDF

Info

Publication number
WO2018131116A1
WO2018131116A1 PCT/JP2017/000812 JP2017000812W WO2018131116A1 WO 2018131116 A1 WO2018131116 A1 WO 2018131116A1 JP 2017000812 W JP2017000812 W JP 2017000812W WO 2018131116 A1 WO2018131116 A1 WO 2018131116A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
voltage
unit
circuit
output
Prior art date
Application number
PCT/JP2017/000812
Other languages
French (fr)
Japanese (ja)
Inventor
甲斐 昭裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/000812 priority Critical patent/WO2018131116A1/en
Priority to JP2018561155A priority patent/JP6615387B2/en
Publication of WO2018131116A1 publication Critical patent/WO2018131116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an outdoor unit control device mounted on an outdoor unit of an air conditioner.
  • a motor drive device for an outdoor unit disclosed in Patent Document 1 includes a motor winding temperature detector, a motor demagnetization protection threshold setting unit, a motor current reproduction unit, a drive signal generation unit, and a motor demagnetization protection overcurrent determination unit. .
  • the motor winding temperature detector detects the temperature of the motor winding and outputs the detected winding temperature to the motor demagnetization protection threshold setting unit.
  • the motor demagnetization protection threshold setting unit sets a demagnetization protection threshold for preventing demagnetization of the permanent magnet according to the winding temperature detected by the motor winding temperature detector.
  • the motor current reproduction unit reproduces the motor current flowing through the motor based on the detected value of the direct current supplied to the inverter circuit.
  • the drive signal generation unit generates a drive signal for driving the inverter drive circuit.
  • the motor demagnetization protection overcurrent determination unit exceeds the motor demagnetization protection threshold based on the motor current output from the motor current reproduction unit and the demagnetization protection threshold output from the motor demagnetization protection threshold setting unit. It is determined whether or not an overcurrent is flowing. When the motor demagnetization protection overcurrent determination unit determines that an overcurrent exceeding the demagnetization protection threshold flows through the motor, the motor demagnetization protection overcurrent determination unit stops the process of the drive signal generation unit.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an outdoor unit control device capable of continuously operating an air conditioner while ensuring the reliability of a load.
  • an outdoor unit control device includes a plurality of switching elements, an inverter circuit that converts DC power into AC power and supplies the AC power to the compressor, and a plurality of inverter circuits
  • An outdoor unit control device comprising a control unit for controlling the on / off operation of the switching element, a DC voltage detection unit for detecting a DC current supplied to the inverter circuit, and a DC current detected by the DC voltage detection unit Compare the voltage level corresponding to the value and the reference voltage, and when the voltage level is equal to or higher than the reference voltage, stop the operation of the inverter circuit, at least model information of multiple outdoor units, and multiple compression Protection information setting in which machine specification information, demagnetization protection characteristic information of multiple compressors, external temperature information of multiple compressors, and correction values of external temperatures of multiple compressors are associated with each other When the compressor stops due to overcurrent, the control unit uses the model information, specification information, demagnetization protection characteristic information, outer temperature information, and correction value,
  • the outdoor unit control device has an effect that the air conditioner can be continuously operated while ensuring the reliability of the load.
  • Configuration diagram of an outdoor unit provided with an outdoor unit control device according to Embodiment 1 Configuration diagram of an indoor unit connected to the outdoor unit shown in FIG.
  • FIG. FIG. 1 is a configuration diagram of an outdoor unit including an outdoor unit control device according to Embodiment 1
  • FIG. 2 is a configuration diagram of an indoor unit connected to the outdoor unit shown in FIG.
  • the outdoor unit 1 and the indoor unit 2 of the air conditioner are connected by a refrigerant pipe 3 and an indoor / outdoor connection wiring 4.
  • a remote controller 5 is connected to the indoor unit 2 via a remote control wiring 6.
  • the remote controller 5 is a controller for selecting an operation command, an operation mode, and an air-conditioning set temperature.
  • the operation mode includes various operation modes such as cooling operation, heating operation, dehumidifying operation, and air blowing operation.
  • On the display unit 5a provided in the remote controller 5 the state of operation, the indoor suction temperature, and the air-conditioning set temperature are displayed.
  • An outdoor unit 1 shown in FIG. 1 includes an outdoor unit controller 13 that controls the outdoor unit 1, a compressor 7, an outdoor heat exchanger 8, an electronic expansion valve 10, and an outdoor fan 11 that circulates outside air. And an outdoor fan motor 26 for the outdoor fan 11.
  • the outdoor unit control device 13 includes a rectifier circuit 16 that rectifies and outputs AC power supplied from the commercial power supply 15, an inrush current suppression circuit 19 that is connected to the output side of the rectifier circuit 16 and suppresses an inrush current, and an inrush current
  • a power factor improving reactor 18 connected to the suppression circuit 19, a smoothing capacitor 17 for smoothing the voltage rectified by the rectifying circuit 16, and a DC voltage smoothed by the smoothing capacitor 17 is converted into an AC voltage and output.
  • An inverter circuit 54, a current-voltage conversion circuit 23 that is a DC voltage detection unit, an overcurrent comparison circuit 24 that is an operation stop unit, an inverter circuit driving microcomputer 20 that is a control unit, and a microcomputer malfunction monitoring circuit 40b are provided. .
  • the inverter circuit driving microcomputer 20 may be simply referred to as “microcomputer 20”
  • the microcomputer malfunction monitoring circuit 40b may be simply referred to as “monitoring circuit 40b”.
  • the inrush current suppression circuit 19 includes an inrush current suppression relay 19a and an inrush current prevention element 19b connected in parallel to the inrush current suppression relay 19a.
  • the inrush current suppression circuit 19 and the reactor 18 are connected in series between the rectifier circuit 16 and the smoothing capacitor 17.
  • the inverter circuit 54 includes a plurality of switching elements 54a, 54b, 54c, 54d, 54e, 54f, a plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, and an element short-circuit protection unit 54m.
  • the current-voltage conversion circuit 23 is a circuit that detects a bus current Idc flowing in the bus between the rectifier circuit 16 and the inverter circuit 54, converts the detected current into a voltage signal 23a, and outputs the voltage signal 23a.
  • the overcurrent comparison circuit 24 includes a comparison circuit 24a, a voltage stabilization circuit 24b that is a first voltage generation circuit, a fixed voltage generation circuit 24d that is a second voltage generation circuit, and an output switching unit 24e.
  • a reference voltage output from the analog output terminal 20a is applied to the voltage stabilization circuit 24b, and both the output of the voltage stabilization circuit 24b and the output of the fixed voltage generation circuit 24d are input to the output switching unit 24e.
  • the output switching unit 24e outputs either the output of the voltage stabilization circuit 24b or the output of the fixed voltage generation circuit 24d according to the output state of the switching output unit 20b connected to the microcomputer 20.
  • the voltage output from the output switching unit 24e becomes the reference potential of the comparison circuit 24a. More specifically, when the output of the switching output unit 20b is at a low level, the output switching unit 24e outputs the output of the fixed voltage generation circuit 24d to the comparison circuit 24a. When the output of the switching output unit 20b is Hi level, the output switching unit 24e outputs the output of the voltage stabilization circuit 24b to the comparison circuit 24a.
  • the switching output unit 20b is provided with a resistor 20c, and when the microcomputer 20 is inoperative or malfunctions, the output state of the switching output unit 20b is always at a low level.
  • the voltage signal 23a of the bus current Idc converted by the current / voltage conversion circuit 23 is input to the comparison circuit 24a.
  • the comparison circuit 24a compares the voltage level output from the output switching unit 24e with the voltage level of the voltage signal 23a. When the voltage level of the voltage signal 23a is higher than the voltage level output from the output switching unit 24e, the comparison circuit 24a outputs an overcurrent determination signal to the overcurrent output unit 24c.
  • the overcurrent output unit 24c is connected to the output terminal of the overcurrent output unit 24c, the element short circuit protection unit 54m of the inverter circuit 54, and the microcomputer 20.
  • the element short-circuit protection unit 54m stops the operation of the inverter circuit 54 when receiving the overcurrent determination signal transmitted via the overcurrent output unit 24c. Since the output of the AC power supplied to the compressor 7 is stopped, the compressor 7 is stopped. Further, the microcomputer 20 stops the operation of the inverter circuit 54 when receiving the overcurrent determination signal transmitted via the overcurrent output unit 24c. By stopping the operation of the inverter circuit 54, it is possible to prevent an excessive current from flowing through the compressor 7. Therefore, the failure of the compressor 7 is suppressed, and an excessive current can be prevented from flowing through the inverter circuit 54. Deterioration of parts due to failure of the inverter circuit 54 and abnormal heating can be prevented.
  • the microcomputer 20 generates and outputs a pulse width modulation signal for ON / OFF control of each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, and 54f.
  • a pulse width modulation signal generated by the microcomputer 20 is input to each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, and 54l.
  • Each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l is a pulse width modulation signal and a drive signal capable of driving each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, 54f. Convert to and output. As a result, each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, and 54f is on / off controlled.
  • the monitoring circuit 40b is connected to the RESET terminal of the microcomputer 20.
  • the monitoring circuit 40b detects a malfunction of the microcomputer 20, it outputs a reset signal to the RESET terminal of the microcomputer 20 to reset the microcomputer 20 and prevent further malfunction of the microcomputer 20.
  • the outdoor unit control device 13 is output from a relay drive circuit 25 that is a drive circuit for an inrush current suppression relay 19a provided in the inrush current suppression circuit 19, a protection information setting unit 38, and an indoor control microcomputer 43 described later.
  • a nonvolatile memory 37 in which various information is stored, a voltage conversion circuit 53, and a communication circuit 22 are provided.
  • the relay drive circuit 25 is controlled by the control main microcomputer 21.
  • the protection information setting unit 38 an information group for protecting the compressor 7 from overcurrent is set.
  • the model of the outdoor unit 1, the specification of the compressor 7, and the specification of the commercial power source 15 can be illustrated.
  • a specific example of information set in the protection information setting unit 38 will be described later.
  • the voltage conversion circuit 53 detects a bus voltage that is a DC voltage smoothed by the smoothing capacitor 17, converts the bus voltage into a voltage that can be read by the microcomputer 20, and outputs the voltage to the microcomputer 20.
  • the model of the outdoor unit 1 includes information on horsepower indicating the rated capacity of the outdoor unit 1.
  • the outdoor unit control device 13 includes a control main microcomputer 21 that controls a series of controls of the outdoor unit 1, a fan motor drive circuit 27 that drives the outdoor fan motor 26, and an indoor communication circuit that performs communication with the indoor unit 2. 41, a microcomputer malfunction monitoring circuit 40a of the control main microcomputer 21, a display unit 39 for displaying the operating status of the outdoor unit 1 and various types of abnormality information, a plurality of conversion circuits 30, 32, 34, and 36, and electronic expansion And a drive circuit 28 of the valve 10.
  • the control main microcomputer 21 controls the fan motor drive circuit 27, whereby the outdoor fan motor 26 is controlled to a specific rotational speed.
  • the microcomputer malfunction monitoring circuit 40 a is connected to the RESET terminal of the control main microcomputer 21.
  • the microcomputer malfunction monitor circuit 40 a detects malfunction of the control main microcomputer 21, the microcomputer malfunction monitor circuit 40 a outputs a reset signal to the RESET terminal of the control main microcomputer 21 to reset the control main microcomputer 21. Prevent further malfunctions.
  • An indoor unit 2 shown in FIG. 2 includes an indoor unit controller 14 that controls the indoor unit 2, an indoor fan 12 that is provided in the indoor heat exchanger 9 and distributes indoor air, and an indoor fan motor for the indoor fan 12. 44 and the indoor heat exchanger 9.
  • the indoor unit control device 14 includes an outdoor communication circuit 42, a remote control communication circuit 52, a nonvolatile memory 50, a changeover switch 51 for switching various settings, an indoor control microcomputer 43, a conversion circuit 47, and a conversion circuit. 49 and a fan motor drive circuit 45.
  • the indoor control microcomputer 43 controls the fan motor drive circuit 45, the indoor fan motor 44 is controlled to a specific rotational speed.
  • the temperature detected by the room temperature detection thermistor 46 that detects the room temperature is taken into the room control microcomputer 43 via the conversion circuit 47.
  • the temperature detected by the thermistor 48 for detecting the temperature of the indoor piping that detects the temperature of the indoor piping is taken into the indoor control microcomputer 43 via the conversion circuit 49.
  • the indoor control microcomputer 43 and the remote controller 5 mutually transmit and receive various types of information via the remote control communication circuit 52.
  • the compressor 7, the outdoor heat exchanger 8, the indoor heat exchanger 9, and the electronic expansion valve 10 are annularly connected by the refrigerant pipe 3.
  • the compressor 7, the outdoor heat exchanger 8, the indoor heat exchanger 9, the electronic expansion valve 10 and the refrigerant pipe 3 constitute a refrigerant circuit.
  • the electronic expansion valve 10 is controlled to a specific opening degree from the control main microcomputer 21 via the drive circuit 28 of the electronic expansion valve 10.
  • the AC power supplied from the commercial power supply 15 is rectified by the rectifier circuit 16, and the rectified voltage is supplied by the smoothing capacitor 17 through the inrush current suppression circuit 19 and the reactor 18. Smoothed.
  • the smoothed specific DC voltage, that is, the bus voltage is applied to the inverter circuit 54.
  • the control main microcomputer 21 and the microcomputer 20 communicate with each other through the communication circuit 22, and the operating frequency necessary for the compressor 7 calculated by the control main microcomputer 21 is transmitted to the microcomputer 20.
  • the microcomputer 20 generates a pulse width modulation signal in accordance with the operation frequency transmitted from the control main microcomputer 21, and generates the generated pulse width modulation signal as a plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, Output to each of 54l.
  • the pulse width modulation signal generated by the microcomputer 20 is converted into a drive signal by each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, and the plurality of switching elements 54a, 54b, 54c,.
  • Each of 54d, 54e, and 54f performs an on / off operation.
  • the bus voltage smoothed by the smoothing capacitor 17 is converted into a specific AC frequency and AC voltage by each of the plurality of switching elements 54 a, 54 b, 54 c, 54 d, 54 e, 54 f, and applied to the compressor 7. Is done. As a result, the compressor 7 is operated.
  • the element short-circuit protection unit 54m when the element short-circuit protection unit 54m receives a stop signal output from the outside, the element short-circuit protection unit 54m stops the operation of each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, so that the compressor 7 Stop operation.
  • the high pressure switch 29 is a switch that is provided in the refrigerant circuit and operates when the pressure of the refrigerant becomes higher than a certain pressure.
  • the operating state of the high pressure switch 29 is taken into the control main microcomputer 21 via the conversion circuit 30.
  • the low pressure switch 31 is a switch that is provided in the refrigerant circuit and operates when the pressure of the refrigerant becomes lower than a certain pressure.
  • the operating state of the low pressure switch 31 is taken into the control main microcomputer 21 via the conversion circuit 32.
  • the thermistor 33 for detecting the compressor outer temperature is a thermistor that detects the shell temperature that is the outer temperature of the compressor 7. The temperature detected by the thermistor 33 is taken into the control main microcomputer 21 via the conversion circuit 34.
  • the refrigerant temperature thermistor 35 is a thermistor that detects the temperature of the refrigerant. The temperature detected by the refrigerant temperature thermistor 35 is taken into the control main microcomputer 21 via the conversion circuit 36.
  • the control main microcomputer 21 and the indoor control microcomputer 43 communicate with each other via an indoor communication circuit 41 provided in the outdoor unit control device 13 and an outdoor communication circuit 42 provided in the indoor unit control device 14. .
  • the indoor communication circuit 41 and the outdoor communication circuit 42 are connected to each other via the indoor / outdoor connection wiring 4.
  • FIG. 3 is a diagram showing an example of the compressor demagnetization characteristics and the compressor overcurrent protection value stored in the nonvolatile memory shown in FIG.
  • the vertical axis in FIG. 3 shows the compressor demagnetization characteristics and the compressor overcurrent protection value.
  • the horizontal axis indicates the outer temperature of the compressor 7.
  • the compressor demagnetization characteristic is indicated by a broken line
  • the compressor overcurrent protection value is indicated by a solid line.
  • the compressor demagnetization characteristic indicates the demagnetization characteristic of a magnet included in a motor (not shown) in the compressor 7 shown in FIG.
  • the magnet included in the motor in the compressor 7 has a demagnetization characteristic that the demagnetization current value decreases as the temperature of the magnet decreases. Since the compressor demagnetization characteristics differ depending on the specifications of the compressor 7, FIG. 3 illustrates the compressor demagnetization characteristics of the four compressors 7a, 7b, 7c, and 7d having different specifications.
  • the compressor overcurrent protection value is a demagnetization protection threshold set based on the demagnetization characteristics of the magnet of the motor in the compressor 7.
  • the temperature characteristic of the compressor overcurrent protection value is set to a value larger than the compressor demagnetization characteristic by a certain value.
  • the compressor overcurrent protection value differs depending on the specifications of the compressor 7, and therefore, in FIG. 3, the compressor overcurrents of the four compressors 7a, 7b, 7c, and 7d having different specifications are shown.
  • the protection value is exemplified.
  • FIG. 4 is a diagram showing an example of protection information set in the protection information setting unit shown in FIG.
  • the protection information setting unit 38 includes “model setting” information regarding the model of the outdoor unit 1, “compressor 7 specification” information regarding the specification of the compressor 7, and a compressor having demagnetization protection characteristics.
  • An overcurrent protection characteristic, a compressor overcurrent protection reference outer temperature VrefTd, and a compressor overcurrent protection variable outer temperature correction value VrefTdh are set.
  • the compressor overcurrent protection characteristic corresponds to a characteristic obtained by connecting the compressor overcurrent protection values shown in FIG. 3 with a solid line.
  • a plurality of models a, b, c, d, g, h, i, j, k outdoor units 1 for the three-phase power supply and each of these outdoor units 1 Compressor 7a, 7b, 7c, 7d, compressor overcurrent protection characteristics 7aa, 7ba, 7ca, 7da, compressor overcurrent protection reference outer temperature VrefTda, VrefTdb, VrefTdc, VrefTdd, compressor overcurrent
  • the protection variable outer temperature correction values VrefTdha, VrefTdhb, VrefTdhc, and VrefTdhd are associated with each other.
  • FIG. 5 is a first flowchart for explaining the operation of the outdoor unit control device for the outdoor unit shown in FIG.
  • FIG. 6 is a second flowchart for explaining the operation of the outdoor unit control device for the outdoor unit shown in FIG.
  • control main microcomputer 21 inputs the information set in the protection information setting unit 38 in step S401.
  • control main microcomputer 21 determines the specification of the commercial power supply 15 from the information of the protection information setting unit 38 input in step S401.
  • step S403 the control main microcomputer 21 determines the model of the outdoor unit 1 from the information of the protection information setting unit 38 input in step S401.
  • step S404 the control main microcomputer 21 determines the specification of the compressor 7 from the information of the protection information setting unit 38 input in step S401.
  • step S405 the control main microcomputer 21 sets the compressor overcurrent protection characteristics 7aa to 7da corresponding to the specifications of the commercial power source 15, the model of the outdoor unit 1, and the specifications of the compressor 7 determined in steps S402 to S404. decide.
  • step S406 the control main microcomputer 21 determines compressor overcurrent protection reference outer temperatures VrefTda to VrefTdd corresponding to the compressor overcurrent protection characteristics obtained in step S405.
  • step S407 the control main microcomputer 21 determines a compressor overcurrent protection variable outer temperature correction value VrefTdh (° C.) corresponding to the compressor overcurrent protection reference outer temperature obtained in step S406.
  • step S408 the control main microcomputer 21 determines the compressor overcurrent protection characteristics obtained in step S405, the compressor overcurrent protection reference outer temperature obtained in step S406, and the compressor overcurrent protection obtained in step S407.
  • the variable outer temperature correction value is transmitted to the microcomputer 20.
  • step S409 the control main microcomputer 21 transmits the temperature value detected by the thermistor 33 for detecting the compressor outer temperature to the microcomputer 20. It is assumed that the temperature value detected by the thermistor 33 is transmitted not only in step S409 but also in steps other than step S409.
  • step S410 shown in FIG. 6 the microcomputer 20 determines whether or not the compressor 7 satisfies a specific operation start condition. When the compressor 7 does not satisfy the operation start condition (No at Step S410), the control main microcomputer 21 executes the process at Step S401 shown in FIG.
  • step S410 when the compressor 7 satisfies the operation start condition (step S410, Yes), in step S411, the microcomputer 20 estimates and outputs an overcurrent cutoff voltage value from the compressor overcurrent protection reference outer temperature. Specifically, the microcomputer 20 estimates an overcurrent cutoff voltage value at which the current flowing through the compressor 7 is 68 [A] when the compressor overcurrent protection reference outer temperature VrefTda is 130 ° C. The estimated overcurrent cutoff voltage value is transmitted from the analog output terminal 20a to the voltage stabilization circuit 24b.
  • step S412 the microcomputer 20 outputs a high level to the output switching unit 24e so that the comparison reference voltage of the comparison circuit 24a of the overcurrent comparison circuit 24 is the voltage stabilization circuit 24b. Thereby, the compressor 7 starts operation at step S413.
  • step S414 the microcomputer 20 determines whether or not an overcurrent has been detected by determining the presence or absence of an overcurrent determination signal from the overcurrent comparison circuit 24 during operation of the compressor 7.
  • step S413 If no overcurrent is detected during operation of the compressor 7 (step S414, No), the process of step S413 is executed.
  • step S414, Yes If an overcurrent is detected during operation of the compressor 7 (step S414, Yes), the microcomputer 20 performs a stop process of the compressor 7 in step S415. In step S416, the microcomputer 20 checks the value of the compressor outer temperature Tdcompstp immediately before the compressor 7 stops.
  • step S417 the microcomputer 20 determines that the compressor outer temperature Tdcompstp immediately before the compressor 7 is stopped is equal to or higher than the compressor overcurrent protection reference outer temperature VrefTd (step S417, Yes), the microcomputer 20 performs step S418.
  • the overcurrent cutoff voltage value remains at the compressor overcurrent protection reference outer temperature VrefTd, and the overcurrent cutoff voltage value is not corrected.
  • step S417 if the value of the compressor outer temperature (Tdcompstp) immediately before the compressor is stopped is lower than the compressor overcurrent protection reference outer temperature VrefTd (step S417, No), the microcomputer 20 determines in step S419 that the previous overcurrent. It is determined whether or not the operation has been continued for a certain time, for example, 30 minutes, after the interruption voltage value correction operation.
  • step S419 if the operation has been continued for a certain period of time since the previous overcurrent cutoff voltage value correction operation (step S419, Yes), the microcomputer 20 sets the overcurrent cutoff voltage value to the compressor in step S418. Reset to overcurrent protection reference outer temperature VrefTd.
  • step S419 if the operation has not been continued for a certain period of time since the previous overcurrent cutoff voltage value correction operation (step S419, No), the microcomputer 20 sets the overcurrent cutoff voltage value to the following value in step S420. Calculate as follows. That is, the microcomputer 20 adds the compressor outer current Tdcompstp to the compressor overcurrent protection variable outer temperature correction value VrefTdh as the overcurrent cutoff voltage value obtained from the compressor overcurrent protection characteristics 7aa to 7da.
  • step S420 the microcomputer 20 repeats the correction of the overcurrent cutoff voltage value if the compressor outer temperature Tdcompstp is within the range of the compressor overcurrent protection characteristics 7aa to 7da.
  • the overcurrent cutoff of the compressor 7 is stopped due to the temporary load fluctuation of the air conditioner and the temporary power supply fluctuation. Even if it occurs, by correcting the overcurrent cutoff value within the demagnetization characteristic range of the compressor, the air conditioner can be continuously operated while ensuring the reliability as the compressor.
  • Embodiment 2 When the microcomputer 20 detects overcurrent detection from the overcurrent comparison circuit 24 during the operation of the compressor 7, the outdoor unit control device 13 of the first embodiment described above is based on the compressor outer temperature immediately before the compressor is stopped. The overcurrent cutoff voltage value is corrected.
  • the third embodiment a configuration example of the outdoor unit control device 13 according to the second embodiment that can suppress a failure due to an overcurrent flowing through the compressor 7 even when the microcomputer 20 malfunctions or does not operate will be described. Since the configuration of the outdoor unit control device 13 according to the second embodiment is the same as that of the first embodiment except for the operation in the outdoor unit control device 13, the description thereof is omitted.
  • the output switching unit 24e applies the output of the voltage stabilization circuit 24b or the output of the fixed voltage generation circuit 24d as the reference potential of the comparison circuit 24a according to the output state of the switching output unit 20b of the microcomputer 20.
  • the output switching unit 24e When the output of the switching output unit 20b is at the low level, the output switching unit 24e outputs the output of the fixed voltage generation circuit 24d to the comparison circuit 24a.
  • the output switching unit 24e When the output of the switching output unit 20b is Hi level, the output switching unit 24e outputs the output of the voltage stabilization circuit 24b to the comparison circuit 24a.
  • the switching output unit 20b is provided with a resistor 20c, and when the microcomputer 20 is inoperative or malfunctions, the output state of the switching output unit 20b is always at a low level.
  • Embodiment 3 In the first embodiment, when the microcomputer 20 detects an overcurrent from the overcurrent comparison circuit 24 during the operation of the compressor 7, the overcurrent cutoff voltage value is corrected based on the compressor outer temperature immediately before the compressor is stopped. It is what I did.
  • the overcurrent cutoff voltage value is corrected based on the compressor outer temperature immediately before the compressor is stopped. It is what I did.
  • the third embodiment even when the motor winding temperature detector is disconnected from the compressor 7 or when the connection of the motor winding temperature detector to the compressor 7 is poor, an overcurrent flows through the compressor 7.
  • a configuration example of the outdoor unit control device 13 according to Embodiment 3 capable of suppressing failure will be described.
  • the configuration of the outdoor unit control device 13 according to the third embodiment is the same as that of the first embodiment except for the operation in the outdoor unit control device 13, and thus the description thereof is omitted.
  • FIG. 7 is a diagram showing an example of the protection information used in the outdoor unit control device according to the third embodiment.
  • the fixed voltage setting values 24da to 24dd are overcurrent cutoff voltage values obtained from the compressor overcurrent protection reference outer temperature VrefTd.
  • the overcurrent setting is the same as the overcurrent cutoff voltage value at which the current flowing through the compressor 7a is 68 [A]. What is preset so as to be a value is the fixed voltage setting value 24da to 24dd.
  • the compressor outer temperature abnormality determination elapsed time ⁇ Tdta to ⁇ Tdtd and the compressor outer temperature abnormality determination temperature difference ⁇ Tda to ⁇ Tdd are associated with the fixed voltage setting values 24da to 24dd. Yes.
  • the compressor outer temperature abnormality determination elapsed time ⁇ Tdta to ⁇ Tdtd is a time when a fixed time has elapsed since the compressor 7 started operation.
  • These pieces of protection information shown in FIG. 7 are set in the protection information setting unit 38.
  • the compressor overcurrent protection characteristic, the compressor overcurrent protection reference outer temperature, and the compressor overcurrent protection variable outer temperature correction value illustrated in FIG. 4 are omitted, but the compressor overcurrent is not illustrated. It is assumed that the protection characteristics, the compressor overcurrent protection reference outer temperature, and the compressor overcurrent protection variable outer temperature correction value are also set in the protection information of FIG.
  • the fixed voltage setting values 24da to 24dd shown in FIG. 7 are set. That is, in the fixed voltage generating circuit 24d, a plurality of fixed voltage setting values 24da to 24dd corresponding to the model of the outdoor unit 1 and the specifications of the compressor 7 are set. As a method for setting the fixed voltage setting values 24da to 24dd in the fixed voltage generation circuit 24d, the control main microcomputer 21 can write to the fixed voltage generation circuit 24d.
  • FIG. 8 is a first flowchart for explaining the operation of the outdoor unit control apparatus according to the third embodiment.
  • FIG. 9 is a second flowchart for explaining the operation of the outdoor unit control device according to the third embodiment.
  • step S601 to step S607 are the same as those from step S401 to step S407 shown in FIG.
  • step S608 the control main microcomputer 21 determines the compressor outer temperature abnormality determination elapsed time ⁇ Tdta to ⁇ Tdtd based on the information obtained in steps S602 to S604.
  • step S609 the control main microcomputer 21 determines the compressor outer temperature abnormality determination temperature difference ⁇ Tda to ⁇ Tdd based on the information obtained in steps S602 to S604.
  • step S610 the control main microcomputer 21 determines the compressor overcurrent protection characteristic obtained in step S605, the compressor overcurrent protection reference outer temperature obtained in step S606, and the compressor overcurrent protection obtained in step S607.
  • the variable outer temperature correction value, the compressor outer temperature abnormality determination elapsed time ⁇ Tdta to ⁇ Tdtd obtained in step S608, and the compressor outer temperature abnormality determination temperature difference ⁇ Tda to ⁇ Tdd obtained in step S609 are transmitted to the microcomputer 20. .
  • step S611 the control main microcomputer 21 transmits the temperature value detected by the thermistor 33 for detecting the compressor outer temperature to the microcomputer 20. It is assumed that the temperature value detected by the thermistor 33 is transmitted not only in step S611 but also in steps other than step S611.
  • step S612 to step S615 shown in FIG. 9 Since the operations from step S612 to step S615 shown in FIG. 9 are the same as those from step S410 to step S413 shown in FIG.
  • step S616 the microcomputer 20 stores the value Tdstart of the thermistor 33 at the start of operation of the compressor 7.
  • step 617 the microcomputer 20 determines whether or not the elapsed time since the compressor 7 started operation is equal to or longer than the compressor outer temperature abnormality determination elapsed time.
  • step S617 When the elapsed time after the compressor 7 starts operation is less than the compressor outer temperature abnormality determination elapsed time (No in step S617), the microcomputer 20 proceeds to step S615.
  • step S617 If the elapsed time since the compressor 7 started operation is equal to or longer than the compressor outer temperature abnormality determination elapsed time (step S617, Yes), the microcomputer 20 stores the current value Tdnow of the thermistor 33 in step S618. .
  • step S619 the microcomputer 20 determines whether or not the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is greater than the compressor outer temperature abnormality determination temperature difference.
  • step S619, Yes When the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is larger than the compressor outer temperature abnormality determination temperature difference (step S619, Yes), the microcomputer 20 proceeds to step S615. The operation of the compressor 7 is continued.
  • step S619 When the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is less than the compressor outer temperature abnormality determination temperature difference (No in step S619), the microcomputer 20 proceeds to step S620.
  • the Low level is output to the output switching unit 24e, and the reference voltage applied to the comparison circuit 24a is switched to the voltage generated by the fixed voltage generation circuit 24d.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

An outdoor unit control device 13 is characterized by being provided with: an inverter circuit 54 having a plurality of switching elements and converting a DC power to an AC power to supply the AC power to a compressor 7; a current/voltage conversion circuit 23 detecting DC current supplied to the inverter circuit 54; an overcurrent comparison circuit 24 comparing the voltage level corresponding to the value of the DC current detected by the current/voltage conversion circuit 23 with a reference voltage and, when the voltage level is greater than or equal to the reference voltage, stopping the operation of the inverter circuit 54; and a protection information setting unit 38. The outdoor unit control device 13 is also characterized in that, when the compressor 7 stops due to overcurrent, an inverter circuit drive microcomputer 20 repeats to correct an overcurrent interruption voltage value if the shell temperature of the compressor when the compressor 7 stops is within the non-demagnetization region of demagnetization protection characteristics.

Description

室外機制御装置Outdoor unit control device
 本発明は、空気調和機の室外機に搭載される室外機制御装置に関するものである。 The present invention relates to an outdoor unit control device mounted on an outdoor unit of an air conditioner.
 特許文献1に開示される室外機のモータ駆動装置は、モータ巻線温度検出器、モータ減磁保護閾値設定部、モータ電流再現部、駆動信号発生部及びモータ減磁保護過電流判定部を備える。モータ巻線温度検出器は、モータ巻線の温度を検出し、検出された巻線温度をモータ減磁保護閾値設定部に出力する。モータ減磁保護閾値設定部は、モータ巻線温度検出器で検出された巻線温度に応じて、永久磁石の減磁を防止するための減磁保護閾値を設定する。モータ電流再現部は、インバータ回路に供給される直流電流の検出値に基づきモータに流れるモータ電流を再現する。駆動信号発生部は、インバータ駆動回路を駆動するための駆動信号を生成する。 A motor drive device for an outdoor unit disclosed in Patent Document 1 includes a motor winding temperature detector, a motor demagnetization protection threshold setting unit, a motor current reproduction unit, a drive signal generation unit, and a motor demagnetization protection overcurrent determination unit. . The motor winding temperature detector detects the temperature of the motor winding and outputs the detected winding temperature to the motor demagnetization protection threshold setting unit. The motor demagnetization protection threshold setting unit sets a demagnetization protection threshold for preventing demagnetization of the permanent magnet according to the winding temperature detected by the motor winding temperature detector. The motor current reproduction unit reproduces the motor current flowing through the motor based on the detected value of the direct current supplied to the inverter circuit. The drive signal generation unit generates a drive signal for driving the inverter drive circuit.
 モータ減磁保護過電流判定部は、モータ電流再現部から出力されるモータ電流と、モータ減磁保護閾値設定部から出力される減磁保護閾値とに基づいて、モータに減磁保護閾値を超える過電流が流れているか否かを判定する。そしてモータ減磁保護過電流判定部は、モータに減磁保護閾値を超える過電流が流れていると判定した場合、駆動信号発生部の処理を停止させる。 The motor demagnetization protection overcurrent determination unit exceeds the motor demagnetization protection threshold based on the motor current output from the motor current reproduction unit and the demagnetization protection threshold output from the motor demagnetization protection threshold setting unit. It is determined whether or not an overcurrent is flowing. When the motor demagnetization protection overcurrent determination unit determines that an overcurrent exceeding the demagnetization protection threshold flows through the motor, the motor demagnetization protection overcurrent determination unit stops the process of the drive signal generation unit.
特開2013-192416号公報JP 2013-192416 A
 特許文献1に開示されるモータ駆動装置では、一時的な負荷の変動と、一時的な受電電源の変動とにより、圧縮機の過電流遮断停止が生じた場合、空気調和機を継続的に運転させることができないという課題があった。 In the motor drive device disclosed in Patent Document 1, when the compressor overcurrent interruption is stopped due to temporary load fluctuations and temporary power supply fluctuations, the air conditioner is continuously operated. There was a problem that it could not be made.
 本発明は、上記に鑑みてなされたものであって、負荷の信頼性を確保しつつ、空気調和機を継続的に運転させることができる室外機制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an outdoor unit control device capable of continuously operating an air conditioner while ensuring the reliability of a load.
 上述した課題を解決し、目的を達成するために、本発明に係る室外機制御装置は、複数のスイッチング素子を有し直流電力を交流電力に変換して圧縮機に供給するインバータ回路と、複数のスイッチング素子のオンオフ動作を制御する制御部とを備えた室外機制御装置であって、インバータ回路に供給される直流電流を検出する直流電圧検出部と、直流電圧検出部で検出された直流電流の値に対応する電圧レベルと基準電圧とを比較し、電圧レベルが基準電圧以上のとき、インバータ回路の運転を停止させる運転停止部と、少なくとも、複数の室外機の機種情報と、複数の圧縮機の仕様情報と、複数の圧縮機の減磁保護特性情報と、複数の圧縮機の外郭温度情報と、複数の圧縮機の外郭温度の補正値とが対応付けて設定された保護情報設定部とを備え、制御部は、圧縮機が過電流で停止したとき、機種情報、仕様情報、減磁保護特性情報、外郭温度情報及び補正値を用いて、圧縮機が停止した際の圧縮機の外郭温度が、減磁保護特性の非減磁領域の範囲であれば、過電流遮断電圧値の補正を繰り返すことを特徴とする。 In order to solve the above-described problems and achieve the object, an outdoor unit control device according to the present invention includes a plurality of switching elements, an inverter circuit that converts DC power into AC power and supplies the AC power to the compressor, and a plurality of inverter circuits An outdoor unit control device comprising a control unit for controlling the on / off operation of the switching element, a DC voltage detection unit for detecting a DC current supplied to the inverter circuit, and a DC current detected by the DC voltage detection unit Compare the voltage level corresponding to the value and the reference voltage, and when the voltage level is equal to or higher than the reference voltage, stop the operation of the inverter circuit, at least model information of multiple outdoor units, and multiple compression Protection information setting in which machine specification information, demagnetization protection characteristic information of multiple compressors, external temperature information of multiple compressors, and correction values of external temperatures of multiple compressors are associated with each other When the compressor stops due to overcurrent, the control unit uses the model information, specification information, demagnetization protection characteristic information, outer temperature information, and correction value, and uses the compressor information when the compressor stops. If the outer temperature is in the non-demagnetization range of the demagnetization protection characteristic, the overcurrent cutoff voltage value is repeatedly corrected.
 本発明に係る室外機制御装置は、負荷の信頼性を確保しつつ、空気調和機を継続的に運転させることができる、という効果を奏する。 The outdoor unit control device according to the present invention has an effect that the air conditioner can be continuously operated while ensuring the reliability of the load.
実施の形態1に係る室外機制御装置を備えた室外機の構成図Configuration diagram of an outdoor unit provided with an outdoor unit control device according to Embodiment 1 図1に示される室外機に接続される室内機の構成図Configuration diagram of an indoor unit connected to the outdoor unit shown in FIG. 図1に示す不揮発性メモリに格納される圧縮機減磁特性と圧縮機過電流保護値との一例を示す図The figure which shows an example of the compressor demagnetization characteristic and compressor overcurrent protection value which are stored in the non-volatile memory shown in FIG. 図1に示す保護情報設定部に設定される保護情報の一例を示す図The figure which shows an example of the protection information set to the protection information setting part shown in FIG. 図1に示す室外機の室外機制御装置の動作を説明するための第1のフローチャートFirst flowchart for explaining the operation of the outdoor unit control device of the outdoor unit shown in FIG. 図1に示す室外機の室外機制御装置の動作を説明するための第2のフローチャート2nd flowchart for demonstrating operation | movement of the outdoor unit control apparatus of the outdoor unit shown in FIG. 実施の形態3に係る室外機制御装置で用いられる保護情報の一例を示す図The figure which shows an example of the protection information used with the outdoor unit control apparatus which concerns on Embodiment 3. 実施の形態3に係る室外機制御装置の動作を説明するための第1のフローチャートFirst flowchart for explaining the operation of the outdoor unit control device according to the third embodiment. 実施の形態3に係る室外機制御装置の動作を説明するための第2のフローチャートSecond flowchart for explaining the operation of the outdoor unit control device according to the third embodiment.
 以下に、本発明の実施の形態に係る室外機制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an outdoor unit control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は実施の形態1に係る室外機制御装置を備えた室外機の構成図であり、図2は図1に示される室外機に接続される室内機の構成図である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an outdoor unit including an outdoor unit control device according to Embodiment 1, and FIG. 2 is a configuration diagram of an indoor unit connected to the outdoor unit shown in FIG.
 空気調和機の室外機1及び室内機2は、冷媒配管3と室内室外接続用配線4とによって接続される。室内機2には、リモコン用配線6を介してリモコン5が接続される。リモコン5は、運転指令と、運転モードと、被空調設定温度とを選択するためのコントローラである。運転モードには、冷房運転、暖房運転、除湿運転又は送風運転といった各種の動作モードが含まれる。リモコン5に設けられた表示部5aには、運転の状態と、室内吸い込み温度と、被空調設定温度とが表示される。 The outdoor unit 1 and the indoor unit 2 of the air conditioner are connected by a refrigerant pipe 3 and an indoor / outdoor connection wiring 4. A remote controller 5 is connected to the indoor unit 2 via a remote control wiring 6. The remote controller 5 is a controller for selecting an operation command, an operation mode, and an air-conditioning set temperature. The operation mode includes various operation modes such as cooling operation, heating operation, dehumidifying operation, and air blowing operation. On the display unit 5a provided in the remote controller 5, the state of operation, the indoor suction temperature, and the air-conditioning set temperature are displayed.
 図1に示される室外機1は、室外機1の制御を司る室外機制御装置13と、圧縮機7と、室外熱交換器8と、電子膨張弁10と、外気を流通させる室外ファン11と、室外ファン11用の室外ファンモータ26とを備える。 An outdoor unit 1 shown in FIG. 1 includes an outdoor unit controller 13 that controls the outdoor unit 1, a compressor 7, an outdoor heat exchanger 8, an electronic expansion valve 10, and an outdoor fan 11 that circulates outside air. And an outdoor fan motor 26 for the outdoor fan 11.
 室外機制御装置13は、商用電源15から供給される交流電力を整流して出力する整流回路16と、整流回路16の出力側に接続され突入電流を抑制する突入電流抑制回路19と、突入電流抑制回路19に接続された力率改善用のリアクタ18と、整流回路16で整流された電圧を平滑する平滑コンデンサ17と、平滑コンデンサ17で平滑された直流電圧を交流電圧に変換して出力するインバータ回路54と、直流電圧検出部である電流電圧変換回路23と、運転停止部である過電流比較回路24と、制御部であるインバータ回路駆動用マイコン20と、マイコン誤動作監視回路40bとを備える。以下では説明を簡単化するため、インバータ回路駆動用マイコン20を単に「マイコン20」と称し、マイコン誤動作監視回路40bを単に「監視回路40b」と称する場合がある。 The outdoor unit control device 13 includes a rectifier circuit 16 that rectifies and outputs AC power supplied from the commercial power supply 15, an inrush current suppression circuit 19 that is connected to the output side of the rectifier circuit 16 and suppresses an inrush current, and an inrush current A power factor improving reactor 18 connected to the suppression circuit 19, a smoothing capacitor 17 for smoothing the voltage rectified by the rectifying circuit 16, and a DC voltage smoothed by the smoothing capacitor 17 is converted into an AC voltage and output. An inverter circuit 54, a current-voltage conversion circuit 23 that is a DC voltage detection unit, an overcurrent comparison circuit 24 that is an operation stop unit, an inverter circuit driving microcomputer 20 that is a control unit, and a microcomputer malfunction monitoring circuit 40b are provided. . Hereinafter, in order to simplify the description, the inverter circuit driving microcomputer 20 may be simply referred to as “microcomputer 20”, and the microcomputer malfunction monitoring circuit 40b may be simply referred to as “monitoring circuit 40b”.
 突入電流抑制回路19は、突入電流抑制用リレー19aと、突入電流抑制用リレー19aに並列接続された突入電流防止素子19bとを備える。突入電流抑制回路19及びリアクタ18は、整流回路16と平滑コンデンサ17との間に直列に接続されている。 The inrush current suppression circuit 19 includes an inrush current suppression relay 19a and an inrush current prevention element 19b connected in parallel to the inrush current suppression relay 19a. The inrush current suppression circuit 19 and the reactor 18 are connected in series between the rectifier circuit 16 and the smoothing capacitor 17.
 インバータ回路54は、複数のスイッチング素子54a,54b,54c,54d,54e,54fと、複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lと、素子短絡保護部54mとを備える。 The inverter circuit 54 includes a plurality of switching elements 54a, 54b, 54c, 54d, 54e, 54f, a plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, and an element short-circuit protection unit 54m.
 電流電圧変換回路23は、整流回路16とインバータ回路54との間の母線に流れる母線電流Idcを検出し、検出した電流を電圧信号23aに変換して出力する回路である。 The current-voltage conversion circuit 23 is a circuit that detects a bus current Idc flowing in the bus between the rectifier circuit 16 and the inverter circuit 54, converts the detected current into a voltage signal 23a, and outputs the voltage signal 23a.
 過電流比較回路24は、比較回路24aと、第1の電圧発生回路である電圧安定化回路24bと、第2の電圧発生回路である固定電圧発生回路24dと、出力切替部24eとを備える。電圧安定化回路24bには、アナログ出力端子20aから出力される基準電圧が印加され、出力切替部24eには電圧安定化回路24bの出力と、固定電圧発生回路24dの出力との双方が入力される。 The overcurrent comparison circuit 24 includes a comparison circuit 24a, a voltage stabilization circuit 24b that is a first voltage generation circuit, a fixed voltage generation circuit 24d that is a second voltage generation circuit, and an output switching unit 24e. A reference voltage output from the analog output terminal 20a is applied to the voltage stabilization circuit 24b, and both the output of the voltage stabilization circuit 24b and the output of the fixed voltage generation circuit 24d are input to the output switching unit 24e. The
 出力切替部24eは、マイコン20に接続された切替出力部20bの出力状態に応じて、電圧安定化回路24bの出力と固定電圧発生回路24dの出力との何れかを出力する。出力切替部24eから出力される電圧は、比較回路24aの基準電位となる。具体的に説明すると、切替出力部20bの出力がLowレベルの場合、出力切替部24eは、固定電圧発生回路24dの出力を比較回路24aに出力する。切替出力部20bの出力がHiレベルの場合、出力切替部24eは、電圧安定化回路24bの出力を比較回路24aに出力する。ここで、切替出力部20bには抵抗20cが設けられており、マイコン20の不作動及び誤動作が生じた場合、切替出力部20bの出力状態は必ずLowレベルとなる。 The output switching unit 24e outputs either the output of the voltage stabilization circuit 24b or the output of the fixed voltage generation circuit 24d according to the output state of the switching output unit 20b connected to the microcomputer 20. The voltage output from the output switching unit 24e becomes the reference potential of the comparison circuit 24a. More specifically, when the output of the switching output unit 20b is at a low level, the output switching unit 24e outputs the output of the fixed voltage generation circuit 24d to the comparison circuit 24a. When the output of the switching output unit 20b is Hi level, the output switching unit 24e outputs the output of the voltage stabilization circuit 24b to the comparison circuit 24a. Here, the switching output unit 20b is provided with a resistor 20c, and when the microcomputer 20 is inoperative or malfunctions, the output state of the switching output unit 20b is always at a low level.
 電流電圧変換回路23で変換された母線電流Idcの電圧信号23aは、比較回路24aに入力される。比較回路24aは、出力切替部24eから出力された電圧レベルと電圧信号23aの電圧レベルとを比較する。電圧信号23aの電圧レベルが出力切替部24eから出力された電圧レベルより大きい場合、比較回路24aは、過電流判定信号を過電流出力部24cに出力する。 The voltage signal 23a of the bus current Idc converted by the current / voltage conversion circuit 23 is input to the comparison circuit 24a. The comparison circuit 24a compares the voltage level output from the output switching unit 24e with the voltage level of the voltage signal 23a. When the voltage level of the voltage signal 23a is higher than the voltage level output from the output switching unit 24e, the comparison circuit 24a outputs an overcurrent determination signal to the overcurrent output unit 24c.
 過電流出力部24cは、過電流出力部24cの出力端と、インバータ回路54の素子短絡保護部54mと、マイコン20とに接続される。素子短絡保護部54mは、過電流出力部24cを介して伝送された過電流判定信号を受信したとき、インバータ回路54の動作を停止させる。圧縮機7へ供給される交流電力の出力が停止されるため圧縮機7が停止する。またマイコン20は、過電流出力部24cを介して伝送された過電流判定信号を受信したとき、インバータ回路54の動作を停止させる。インバータ回路54の動作が停止することにより、圧縮機7に過大な電流が流れることを防止できるため、圧縮機7の故障が抑制され、インバータ回路54に過大な電流が流れることを防止できるため、インバータ回路54の故障と異常加熱とによる、部品の劣化を防止できる。 The overcurrent output unit 24c is connected to the output terminal of the overcurrent output unit 24c, the element short circuit protection unit 54m of the inverter circuit 54, and the microcomputer 20. The element short-circuit protection unit 54m stops the operation of the inverter circuit 54 when receiving the overcurrent determination signal transmitted via the overcurrent output unit 24c. Since the output of the AC power supplied to the compressor 7 is stopped, the compressor 7 is stopped. Further, the microcomputer 20 stops the operation of the inverter circuit 54 when receiving the overcurrent determination signal transmitted via the overcurrent output unit 24c. By stopping the operation of the inverter circuit 54, it is possible to prevent an excessive current from flowing through the compressor 7. Therefore, the failure of the compressor 7 is suppressed, and an excessive current can be prevented from flowing through the inverter circuit 54. Deterioration of parts due to failure of the inverter circuit 54 and abnormal heating can be prevented.
 マイコン20は、複数のスイッチング素子54a,54b,54c,54d,54e,54fのそれぞれをオンオフ制御するためのパルス幅変調信号を生成して出力する。複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lのそれぞれには、マイコン20で生成されたパルス幅変調信号が入力される。複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lのそれぞれは、パルス幅変調信号を、複数のスイッチング素子54a,54b,54c,54d,54e,54fのそれぞれを駆動可能な駆動信号に変換して出力する。これにより複数のスイッチング素子54a,54b,54c,54d,54e,54fのそれぞれがオンオフ制御される。 The microcomputer 20 generates and outputs a pulse width modulation signal for ON / OFF control of each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, and 54f. A pulse width modulation signal generated by the microcomputer 20 is input to each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, and 54l. Each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l is a pulse width modulation signal and a drive signal capable of driving each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, 54f. Convert to and output. As a result, each of the plurality of switching elements 54a, 54b, 54c, 54d, 54e, and 54f is on / off controlled.
 監視回路40bはマイコン20のRESET端子に接続されている。監視回路40bは、マイコン20の誤動作を検出した場合、マイコン20のRESET端子にリセット用の信号を出力することにより、マイコン20をリセットさせて、マイコン20の更なる誤動作を防止する。 The monitoring circuit 40b is connected to the RESET terminal of the microcomputer 20. When the monitoring circuit 40b detects a malfunction of the microcomputer 20, it outputs a reset signal to the RESET terminal of the microcomputer 20 to reset the microcomputer 20 and prevent further malfunction of the microcomputer 20.
 また室外機制御装置13は、突入電流抑制回路19に設けられる突入電流抑制用リレー19aの駆動回路であるリレー駆動回路25と、保護情報設定部38と、後述する室内制御マイコン43から出力される各種の情報が格納される不揮発性メモリ37と、電圧変換回路53と、通信回路22とを備える。 The outdoor unit control device 13 is output from a relay drive circuit 25 that is a drive circuit for an inrush current suppression relay 19a provided in the inrush current suppression circuit 19, a protection information setting unit 38, and an indoor control microcomputer 43 described later. A nonvolatile memory 37 in which various information is stored, a voltage conversion circuit 53, and a communication circuit 22 are provided.
 リレー駆動回路25は制御メインマイコン21によって制御される。保護情報設定部38には、圧縮機7を過電流から保護するための情報群が設定される。情報群としては、室外機1の機種と、圧縮機7の仕様と、商用電源15の仕様とを例示できる。保護情報設定部38に設定された情報の具体例は後述する。電圧変換回路53は、平滑コンデンサ17で平滑された直流電圧である母線電圧を検出し、母線電圧をマイコン20が読み込み可能な電圧に変換してマイコン20に出力する。なお室外機1の機種には室外機1の定格能力を示す馬力に関する情報が含まれる。 The relay drive circuit 25 is controlled by the control main microcomputer 21. In the protection information setting unit 38, an information group for protecting the compressor 7 from overcurrent is set. As an information group, the model of the outdoor unit 1, the specification of the compressor 7, and the specification of the commercial power source 15 can be illustrated. A specific example of information set in the protection information setting unit 38 will be described later. The voltage conversion circuit 53 detects a bus voltage that is a DC voltage smoothed by the smoothing capacitor 17, converts the bus voltage into a voltage that can be read by the microcomputer 20, and outputs the voltage to the microcomputer 20. The model of the outdoor unit 1 includes information on horsepower indicating the rated capacity of the outdoor unit 1.
 また室外機制御装置13は、室外機1の一連の制御を司る制御メインマイコン21と、室外ファンモータ26を駆動するファンモータ駆動回路27と、室内機2との通信を行うための室内通信回路41と、制御メインマイコン21のマイコン誤動作監視回路40aと、室外機1の運転状況と各種の異常情報とを表示する表示部39と、複数の変換回路30,32,34,36と、電子膨張弁10の駆動回路28とを備える。 The outdoor unit control device 13 includes a control main microcomputer 21 that controls a series of controls of the outdoor unit 1, a fan motor drive circuit 27 that drives the outdoor fan motor 26, and an indoor communication circuit that performs communication with the indoor unit 2. 41, a microcomputer malfunction monitoring circuit 40a of the control main microcomputer 21, a display unit 39 for displaying the operating status of the outdoor unit 1 and various types of abnormality information, a plurality of conversion circuits 30, 32, 34, and 36, and electronic expansion And a drive circuit 28 of the valve 10.
 制御メインマイコン21がファンモータ駆動回路27を制御することにより、室外ファンモータ26は特定の回転数に制御される。 The control main microcomputer 21 controls the fan motor drive circuit 27, whereby the outdoor fan motor 26 is controlled to a specific rotational speed.
 マイコン誤動作監視回路40aは、制御メインマイコン21のRESET端子に接続されている。マイコン誤動作監視回路40aは、制御メインマイコン21の誤動作を検出した場合、制御メインマイコン21のRESET端子にリセット用の信号を出力することにより、制御メインマイコン21をリセットさせて、制御メインマイコン21の更なる誤動作を防止する。 The microcomputer malfunction monitoring circuit 40 a is connected to the RESET terminal of the control main microcomputer 21. When the microcomputer malfunction monitoring circuit 40 a detects malfunction of the control main microcomputer 21, the microcomputer malfunction monitor circuit 40 a outputs a reset signal to the RESET terminal of the control main microcomputer 21 to reset the control main microcomputer 21. Prevent further malfunctions.
 図2に示される室内機2は、室内機2の制御を司る室内機制御装置14と、室内熱交換器9に設けられ室内空気を流通させる室内ファン12と、室内ファン12用の室内ファンモータ44と、室内熱交換器9とを備える。 An indoor unit 2 shown in FIG. 2 includes an indoor unit controller 14 that controls the indoor unit 2, an indoor fan 12 that is provided in the indoor heat exchanger 9 and distributes indoor air, and an indoor fan motor for the indoor fan 12. 44 and the indoor heat exchanger 9.
 室内機制御装置14は、室外通信回路42と、リモコン通信回路52と、不揮発性メモリ50と、各種の設定を切替えるための切替スイッチ51と、室内制御マイコン43と、変換回路47と、変換回路49と、ファンモータ駆動回路45とを備える。 The indoor unit control device 14 includes an outdoor communication circuit 42, a remote control communication circuit 52, a nonvolatile memory 50, a changeover switch 51 for switching various settings, an indoor control microcomputer 43, a conversion circuit 47, and a conversion circuit. 49 and a fan motor drive circuit 45.
 室内制御マイコン43がファンモータ駆動回路45を制御することにより、室内ファンモータ44は特定の回転数に制御される。 When the indoor control microcomputer 43 controls the fan motor drive circuit 45, the indoor fan motor 44 is controlled to a specific rotational speed.
 室内温度を検出する室内温度検出用のサーミスタ46で検出された温度は、変換回路47を介して室内制御マイコン43に取り込まれる。室内配管の温度を検出する冷室内配管温度検出用のサーミスタ48で検出された温度は、変換回路49を介して室内制御マイコン43に取り込まれる。室内制御マイコン43とリモコン5は、リモコン通信回路52を介して各種の情報を相互に送受信する。 The temperature detected by the room temperature detection thermistor 46 that detects the room temperature is taken into the room control microcomputer 43 via the conversion circuit 47. The temperature detected by the thermistor 48 for detecting the temperature of the indoor piping that detects the temperature of the indoor piping is taken into the indoor control microcomputer 43 via the conversion circuit 49. The indoor control microcomputer 43 and the remote controller 5 mutually transmit and receive various types of information via the remote control communication circuit 52.
 圧縮機7、室外熱交換器8、室内熱交換器9及び電子膨張弁10は、冷媒配管3により環状に接続される。圧縮機7、室外熱交換器8、室内熱交換器9、電子膨張弁10及び冷媒配管3は、冷媒回路を構成する。電子膨張弁10は、制御メインマイコン21から電子膨張弁10の駆動回路28を介して特定の開度に制御される。 The compressor 7, the outdoor heat exchanger 8, the indoor heat exchanger 9, and the electronic expansion valve 10 are annularly connected by the refrigerant pipe 3. The compressor 7, the outdoor heat exchanger 8, the indoor heat exchanger 9, the electronic expansion valve 10 and the refrigerant pipe 3 constitute a refrigerant circuit. The electronic expansion valve 10 is controlled to a specific opening degree from the control main microcomputer 21 via the drive circuit 28 of the electronic expansion valve 10.
 図1に示される室外機1では、商用電源15から供給される交流電力が整流回路16によって整流され、整流された電圧は、突入電流抑制回路19とリアクタ18とを介して、平滑コンデンサ17によって平滑される。平滑された特定の直流電圧、すなわち母線電圧は、インバータ回路54に印加される。 In the outdoor unit 1 shown in FIG. 1, the AC power supplied from the commercial power supply 15 is rectified by the rectifier circuit 16, and the rectified voltage is supplied by the smoothing capacitor 17 through the inrush current suppression circuit 19 and the reactor 18. Smoothed. The smoothed specific DC voltage, that is, the bus voltage is applied to the inverter circuit 54.
 制御メインマイコン21とマイコン20とは通信回路22で相互に通信を行い、制御メインマイコン21で算出された、圧縮機7に必要な運転周波数は、マイコン20へ伝送される。マイコン20は、制御メインマイコン21から伝送された運転周波数に応じてパルス幅変調信号を生成を生成し、生成したパルス幅変調信号を複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lのそれぞれに対して出力する。 The control main microcomputer 21 and the microcomputer 20 communicate with each other through the communication circuit 22, and the operating frequency necessary for the compressor 7 calculated by the control main microcomputer 21 is transmitted to the microcomputer 20. The microcomputer 20 generates a pulse width modulation signal in accordance with the operation frequency transmitted from the control main microcomputer 21, and generates the generated pulse width modulation signal as a plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, Output to each of 54l.
 マイコン20で生成されたパルス幅変調信号が複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lのそれぞれで駆動信号に変換され、駆動信号により複数のスイッチング素子54a,54b,54c,54d,54e,54fのそれぞれがオンオフ動作する。平滑コンデンサ17で平滑された母線電圧は、複数のスイッチング素子54a,54b,54c,54d,54e,54fのそれぞれがオンオフ動作によって、特定の交流周波数及び交流電圧に変換されて、圧縮機7に印加される。これにより圧縮機7が運転される。また素子短絡保護部54mは、外部から出力された停止信号を受信したとき、複数のスイッチング素子駆動回路54g,54h,54i,54j,54k,54lのそれぞれの動作を停止させることで、圧縮機7の運転を停止させる。 The pulse width modulation signal generated by the microcomputer 20 is converted into a drive signal by each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, and the plurality of switching elements 54a, 54b, 54c,. Each of 54d, 54e, and 54f performs an on / off operation. The bus voltage smoothed by the smoothing capacitor 17 is converted into a specific AC frequency and AC voltage by each of the plurality of switching elements 54 a, 54 b, 54 c, 54 d, 54 e, 54 f, and applied to the compressor 7. Is done. As a result, the compressor 7 is operated. Further, when the element short-circuit protection unit 54m receives a stop signal output from the outside, the element short-circuit protection unit 54m stops the operation of each of the plurality of switching element drive circuits 54g, 54h, 54i, 54j, 54k, 54l, so that the compressor 7 Stop operation.
 高圧圧力スイッチ29は、冷媒回路内に設けられ、冷媒の圧力がある一定の圧力より高くなった際に動作するスイッチである。高圧圧力スイッチ29の作動状態は、変換回路30を介して制御メインマイコン21に取り込まれる。 The high pressure switch 29 is a switch that is provided in the refrigerant circuit and operates when the pressure of the refrigerant becomes higher than a certain pressure. The operating state of the high pressure switch 29 is taken into the control main microcomputer 21 via the conversion circuit 30.
 低圧圧力スイッチ31は、冷媒回路内に設けられ、冷媒の圧力がある一定の圧力より低くなった際に動作するスイッチである。低圧圧力スイッチ31の作動状態は変換回路32を介して制御メインマイコン21に取り込まれる。 The low pressure switch 31 is a switch that is provided in the refrigerant circuit and operates when the pressure of the refrigerant becomes lower than a certain pressure. The operating state of the low pressure switch 31 is taken into the control main microcomputer 21 via the conversion circuit 32.
 圧縮機外郭温度検出用のサーミスタ33は、圧縮機7の外郭温度であるシェル温度を検出するサーミスタである。サーミスタ33で検出された温度は、変換回路34を介して制御メインマイコン21に取り込まれる。 The thermistor 33 for detecting the compressor outer temperature is a thermistor that detects the shell temperature that is the outer temperature of the compressor 7. The temperature detected by the thermistor 33 is taken into the control main microcomputer 21 via the conversion circuit 34.
 冷媒温度サーミスタ35は冷媒の温度を検出するサーミスタである。冷媒温度サーミスタ35で検出された温度は、変換回路36を介して制御メインマイコン21に取り込まれる。 The refrigerant temperature thermistor 35 is a thermistor that detects the temperature of the refrigerant. The temperature detected by the refrigerant temperature thermistor 35 is taken into the control main microcomputer 21 via the conversion circuit 36.
 制御メインマイコン21と室内制御マイコン43とは、室外機制御装置13に設けられた室内通信回路41と、室内機制御装置14に設けられた室外通信回路42とを介して、相互に通信を行う。室内通信回路41と室外通信回路42とは、室内室外接続用配線4を介して相互に接続されている。 The control main microcomputer 21 and the indoor control microcomputer 43 communicate with each other via an indoor communication circuit 41 provided in the outdoor unit control device 13 and an outdoor communication circuit 42 provided in the indoor unit control device 14. . The indoor communication circuit 41 and the outdoor communication circuit 42 are connected to each other via the indoor / outdoor connection wiring 4.
 図3は図1に示す不揮発性メモリに格納される圧縮機減磁特性と圧縮機過電流保護値との一例を示す図である。図3の縦軸は圧縮機減磁特性と圧縮機過電流保護値とを示す。横軸は圧縮機7の外郭温度を示す。圧縮機減磁特性は破線で示され、圧縮機過電流保護値は実線で示される。 FIG. 3 is a diagram showing an example of the compressor demagnetization characteristics and the compressor overcurrent protection value stored in the nonvolatile memory shown in FIG. The vertical axis in FIG. 3 shows the compressor demagnetization characteristics and the compressor overcurrent protection value. The horizontal axis indicates the outer temperature of the compressor 7. The compressor demagnetization characteristic is indicated by a broken line, and the compressor overcurrent protection value is indicated by a solid line.
 圧縮機減磁特性は、図1に示す圧縮機7内の不図示のモータが有する磁石の減磁特性を示す。圧縮機7内のモータが有する磁石は、当該磁石の温度が低下するほど減磁電流値が小さくなる減磁特性を有する。圧縮機7の仕様により圧縮機減磁特性は異なるため、図3には仕様が異なる4つの圧縮機7a,7b,7c,7dのそれぞれの圧縮機減磁特性が例示される。 The compressor demagnetization characteristic indicates the demagnetization characteristic of a magnet included in a motor (not shown) in the compressor 7 shown in FIG. The magnet included in the motor in the compressor 7 has a demagnetization characteristic that the demagnetization current value decreases as the temperature of the magnet decreases. Since the compressor demagnetization characteristics differ depending on the specifications of the compressor 7, FIG. 3 illustrates the compressor demagnetization characteristics of the four compressors 7a, 7b, 7c, and 7d having different specifications.
 圧縮機過電流保護値は、圧縮機7内のモータが有する磁石の減磁特性に基づいて設定される減磁保護閾値である。圧縮機過電流保護値の温度特性は、圧縮機減磁特性よりも一定値大きい値に設定される。モータ電流が圧縮機過電流保護値を超える場合、スイッチング素子の駆動が停止される。圧縮機減磁特性と同様に、圧縮機7の仕様により圧縮機過電流保護値は異なるため、図3には仕様が異なる4つの圧縮機7a,7b,7c,7dのそれぞれの圧縮機過電流保護値が例示される。 The compressor overcurrent protection value is a demagnetization protection threshold set based on the demagnetization characteristics of the magnet of the motor in the compressor 7. The temperature characteristic of the compressor overcurrent protection value is set to a value larger than the compressor demagnetization characteristic by a certain value. When the motor current exceeds the compressor overcurrent protection value, the driving of the switching element is stopped. Similarly to the compressor demagnetization characteristics, the compressor overcurrent protection value differs depending on the specifications of the compressor 7, and therefore, in FIG. 3, the compressor overcurrents of the four compressors 7a, 7b, 7c, and 7d having different specifications are shown. The protection value is exemplified.
 図4は図1に示す保護情報設定部に設定される保護情報の一例を示す図である。図4に示すように保護情報設定部38には、室外機1の機種に関する「機種設定」情報と、圧縮機7の仕様に関する「圧縮機7仕様」情報と、減磁保護特性である圧縮機過電流保護特性と、圧縮機過電流保護基準外郭温度VrefTdと、圧縮機過電流保護可変外郭温度補正値VrefTdhとが設定されている。圧縮機過電流保護特性は、図3に示される圧縮機過電流保護値を実線で結んだ特性に対応する。 FIG. 4 is a diagram showing an example of protection information set in the protection information setting unit shown in FIG. As shown in FIG. 4, the protection information setting unit 38 includes “model setting” information regarding the model of the outdoor unit 1, “compressor 7 specification” information regarding the specification of the compressor 7, and a compressor having demagnetization protection characteristics. An overcurrent protection characteristic, a compressor overcurrent protection reference outer temperature VrefTd, and a compressor overcurrent protection variable outer temperature correction value VrefTdh are set. The compressor overcurrent protection characteristic corresponds to a characteristic obtained by connecting the compressor overcurrent protection values shown in FIG. 3 with a solid line.
 図4の上段に示されるこれらの情報は、商用電源15の種類に対応付けられている。単相の商用電源15の場合、単相電源用の複数の機種a,b,c,d,e,fの室外機1と、これらの室外機1のそれぞれに用いられる圧縮機7a,7b,7cと、圧縮機過電流保護特性7aa,7ba,7caと、圧縮機過電流保護基準外郭温度VrefTda,VrefTdb,VrefTdcと、圧縮機過電流保護可変外郭温度補正値VrefTdha,VrefTdhb,VrefTdhcとが対応付けられている。 The information shown in the upper part of FIG. In the case of a single-phase commercial power supply 15, a plurality of models a, b, c, d, e, and f outdoor units 1 for single-phase power supplies, and compressors 7a, 7b, 7c, compressor overcurrent protection characteristics 7aa, 7ba, 7ca, compressor overcurrent protection reference outer temperature VrefTda, VrefTdb, VrefTdc and compressor overcurrent protection variable outer temperature correction values VrefTdha, VrefTdhb, VrefTdhc It has been.
 三相の商用電源15の場合も同様に、三相電源用の複数の機種a,b,c,d,g,h,i,j,kの室外機1と、これらの室外機1のそれぞれに用いられる圧縮機7a,7b,7c,7dと、圧縮機過電流保護特性7aa,7ba,7ca,7daと、圧縮機過電流保護基準外郭温度VrefTda,VrefTdb,VrefTdc,VrefTddと、圧縮機過電流保護可変外郭温度補正値VrefTdha,VrefTdhb,VrefTdhc,VrefTdhdとが対応付けられている。 Similarly, in the case of the three-phase commercial power supply 15, a plurality of models a, b, c, d, g, h, i, j, k outdoor units 1 for the three-phase power supply, and each of these outdoor units 1 Compressor 7a, 7b, 7c, 7d, compressor overcurrent protection characteristics 7aa, 7ba, 7ca, 7da, compressor overcurrent protection reference outer temperature VrefTda, VrefTdb, VrefTdc, VrefTdd, compressor overcurrent The protection variable outer temperature correction values VrefTdha, VrefTdhb, VrefTdhc, and VrefTdhd are associated with each other.
 次に室外機1の動作を図5及び図6のフローチャートを用いて説明する。図5は図1に示す室外機の室外機制御装置の動作を説明するための第1のフローチャートである。図6は図1に示す室外機の室外機制御装置の動作を説明するための第2のフローチャートである。 Next, the operation of the outdoor unit 1 will be described with reference to the flowcharts of FIGS. FIG. 5 is a first flowchart for explaining the operation of the outdoor unit control device for the outdoor unit shown in FIG. FIG. 6 is a second flowchart for explaining the operation of the outdoor unit control device for the outdoor unit shown in FIG.
 図5において、電源投入後、ステップS401で制御メインマイコン21は保護情報設定部38に設定された情報を入力する。ステップS402で制御メインマイコン21は、ステップS401で入力した保護情報設定部38の情報より、商用電源15の仕様の判定を行う。 In FIG. 5, after the power is turned on, the control main microcomputer 21 inputs the information set in the protection information setting unit 38 in step S401. In step S402, the control main microcomputer 21 determines the specification of the commercial power supply 15 from the information of the protection information setting unit 38 input in step S401.
 ステップS403で制御メインマイコン21は、ステップS401で入力した保護情報設定部38の情報より、室外機1の機種の判定を行う。 In step S403, the control main microcomputer 21 determines the model of the outdoor unit 1 from the information of the protection information setting unit 38 input in step S401.
 ステップS404で制御メインマイコン21は、ステップS401で入力した保護情報設定部38の情報より、圧縮機7の仕様の判定を行う。 In step S404, the control main microcomputer 21 determines the specification of the compressor 7 from the information of the protection information setting unit 38 input in step S401.
 ステップS405で制御メインマイコン21は、ステップS402からステップS404で判定された、商用電源15の仕様と室外機1の機種と圧縮機7の仕様とに対応する圧縮機過電流保護特性7aa~7daを決定する。 In step S405, the control main microcomputer 21 sets the compressor overcurrent protection characteristics 7aa to 7da corresponding to the specifications of the commercial power source 15, the model of the outdoor unit 1, and the specifications of the compressor 7 determined in steps S402 to S404. decide.
 ステップS406で制御メインマイコン21は、ステップS405で得られた圧縮機過電流保護特性に対応する圧縮機過電流保護基準外郭温度VrefTda~VrefTddを決定する。 In step S406, the control main microcomputer 21 determines compressor overcurrent protection reference outer temperatures VrefTda to VrefTdd corresponding to the compressor overcurrent protection characteristics obtained in step S405.
 ステップS407で制御メインマイコン21は、ステップS406で得られた圧縮機過電流保護基準外郭温度に対応する圧縮機過電流保護可変外郭温度補正値VrefTdh(℃)を決定する。 In step S407, the control main microcomputer 21 determines a compressor overcurrent protection variable outer temperature correction value VrefTdh (° C.) corresponding to the compressor overcurrent protection reference outer temperature obtained in step S406.
 ステップS408で制御メインマイコン21は、ステップS405で得られた圧縮機過電流保護特性と、ステップS406で得られた圧縮機過電流保護基準外郭温度と、ステップS407で得られた圧縮機過電流保護可変外郭温度補正値とを、マイコン20に送信する。 In step S408, the control main microcomputer 21 determines the compressor overcurrent protection characteristics obtained in step S405, the compressor overcurrent protection reference outer temperature obtained in step S406, and the compressor overcurrent protection obtained in step S407. The variable outer temperature correction value is transmitted to the microcomputer 20.
 ステップS409で、制御メインマイコン21は、圧縮機外郭温度検出用のサーミスタ33で検出された温度の値をマイコン20に送信する。なお、サーミスタ33で検出された温度の値は、ステップS409で送信されるだけでなく、ステップS409以外のステップでも送信されているものとする。 In step S409, the control main microcomputer 21 transmits the temperature value detected by the thermistor 33 for detecting the compressor outer temperature to the microcomputer 20. It is assumed that the temperature value detected by the thermistor 33 is transmitted not only in step S409 but also in steps other than step S409.
 図6に示すステップS410で、マイコン20は、圧縮機7が特定の運転開始条件を満たすか否かを判断する。圧縮機7が運転開始条件を満たさない場合(ステップS410,No)、制御メインマイコン21では図5に示すステップS401の処理が実行される。 In step S410 shown in FIG. 6, the microcomputer 20 determines whether or not the compressor 7 satisfies a specific operation start condition. When the compressor 7 does not satisfy the operation start condition (No at Step S410), the control main microcomputer 21 executes the process at Step S401 shown in FIG.
 ステップS410で、圧縮機7が運転開始条件を満たす場合(ステップS410,Yes)、ステップS411で、マイコン20は、圧縮機過電流保護基準外郭温度から過電流遮断電圧値を推定して出力する。具体的には、マイコン20は、圧縮機過電流保護基準外郭温度VrefTdaを130℃とした場合に、圧縮機7に流れる電流が68[A]となる過電流遮断電圧値を推定する。推定された過電流遮断電圧値は、アナログ出力端子20aより電圧安定化回路24bに送信される。 In step S410, when the compressor 7 satisfies the operation start condition (step S410, Yes), in step S411, the microcomputer 20 estimates and outputs an overcurrent cutoff voltage value from the compressor overcurrent protection reference outer temperature. Specifically, the microcomputer 20 estimates an overcurrent cutoff voltage value at which the current flowing through the compressor 7 is 68 [A] when the compressor overcurrent protection reference outer temperature VrefTda is 130 ° C. The estimated overcurrent cutoff voltage value is transmitted from the analog output terminal 20a to the voltage stabilization circuit 24b.
 ステップS412で、マイコン20は、過電流比較回路24の比較回路24aの比較基準電圧を、電圧安定化回路24bとすべく、出力切替部24eに対してHiレベルを出力する。これによりステップS413で圧縮機7が運転を開始する。 In step S412, the microcomputer 20 outputs a high level to the output switching unit 24e so that the comparison reference voltage of the comparison circuit 24a of the overcurrent comparison circuit 24 is the voltage stabilization circuit 24b. Thereby, the compressor 7 starts operation at step S413.
 ステップS414で、マイコン20は、圧縮機7の運転中に過電流比較回路24からの過電流判定信号の有無を判定することによって、過電流を検出したか否かを判定する。 In step S414, the microcomputer 20 determines whether or not an overcurrent has been detected by determining the presence or absence of an overcurrent determination signal from the overcurrent comparison circuit 24 during operation of the compressor 7.
 圧縮機7の運転中に過電流が検出されない場合(ステップS414,No)、ステップS413の処理が実行される。 If no overcurrent is detected during operation of the compressor 7 (step S414, No), the process of step S413 is executed.
 圧縮機7の運転中に過電流が検出された場合(ステップS414,Yes)、ステップS415でマイコン20は、圧縮機7の停止処理を行う。ステップS416で、マイコン20は、圧縮機7が停止する直前の圧縮機外郭温度Tdcompstpの値を確認する。 If an overcurrent is detected during operation of the compressor 7 (step S414, Yes), the microcomputer 20 performs a stop process of the compressor 7 in step S415. In step S416, the microcomputer 20 checks the value of the compressor outer temperature Tdcompstp immediately before the compressor 7 stops.
 ステップS417で、マイコン20は、圧縮機7が停止する直前の圧縮機外郭温度Tdcompstpの値が圧縮機過電流保護基準外郭温度VrefTd以上の場合(ステップS417,Yes)、マイコン20は、ステップS418で、過電流遮断電圧値を圧縮機過電流保護基準外郭温度VrefTdのままとし、過電流遮断電圧値の補正は行わない。 In step S417, the microcomputer 20 determines that the compressor outer temperature Tdcompstp immediately before the compressor 7 is stopped is equal to or higher than the compressor overcurrent protection reference outer temperature VrefTd (step S417, Yes), the microcomputer 20 performs step S418. The overcurrent cutoff voltage value remains at the compressor overcurrent protection reference outer temperature VrefTd, and the overcurrent cutoff voltage value is not corrected.
 ステップS417で、圧縮機停止直前の圧縮機外郭温度(Tdcompstp)の値が圧縮機過電流保護基準外郭温度VrefTd未満の場合(ステップS417,No)、ステップS419で、マイコン20は、前回の過電流遮断電圧値の補正操作から一定の時間、例えば30分間連続して運転が継続されたか否かを判定する。 In step S417, if the value of the compressor outer temperature (Tdcompstp) immediately before the compressor is stopped is lower than the compressor overcurrent protection reference outer temperature VrefTd (step S417, No), the microcomputer 20 determines in step S419 that the previous overcurrent. It is determined whether or not the operation has been continued for a certain time, for example, 30 minutes, after the interruption voltage value correction operation.
 ステップS419で、前回の過電流遮断電圧値の補正操作から一定の時間連続して運転が継続された場合(ステップS419,Yes)、マイコン20は、ステップS418で、過電流遮断電圧値を圧縮機過電流保護基準外郭温度VrefTdにリセットする。 In step S419, if the operation has been continued for a certain period of time since the previous overcurrent cutoff voltage value correction operation (step S419, Yes), the microcomputer 20 sets the overcurrent cutoff voltage value to the compressor in step S418. Reset to overcurrent protection reference outer temperature VrefTd.
 ステップS419で、前回の過電流遮断電圧値の補正操作から一定の時間連続して運転が継続されていない場合(ステップS419,No)、ステップS420で、マイコン20は、過電流遮断電圧値を以下のように演算する。すなわち、マイコン20は、圧縮機外郭温度Tdcompstpに圧縮機過電流保護可変外郭温度補正値VrefTdhを加えたものを、圧縮機過電流保護特性7aa~7daから得られる過電流遮断電圧値とする。 In step S419, if the operation has not been continued for a certain period of time since the previous overcurrent cutoff voltage value correction operation (step S419, No), the microcomputer 20 sets the overcurrent cutoff voltage value to the following value in step S420. Calculate as follows. That is, the microcomputer 20 adds the compressor outer current Tdcompstp to the compressor overcurrent protection variable outer temperature correction value VrefTdh as the overcurrent cutoff voltage value obtained from the compressor overcurrent protection characteristics 7aa to 7da.
 ステップS420の後、マイコン20は、圧縮機外郭温度Tdcompstpが圧縮機過電流保護特性7aa~7daの範囲内であれば、過電流遮断電圧値の補正を繰り返す。 After step S420, the microcomputer 20 repeats the correction of the overcurrent cutoff voltage value if the compressor outer temperature Tdcompstp is within the range of the compressor overcurrent protection characteristics 7aa to 7da.
 以上のように実施の形態1に係る室外機制御装置13によれば、空気調和機の一時的な負荷の変動と、一時的な受電電源の変動とにより、圧縮機7の過電流遮断停止が生じた場合でも、圧縮機の減磁特性範囲内で過電流遮断値の補正を行うことにより、圧縮機としての信頼性を確保しつつ、空気調和機を継続的に運転させることができる。 As described above, according to the outdoor unit control device 13 according to the first embodiment, the overcurrent cutoff of the compressor 7 is stopped due to the temporary load fluctuation of the air conditioner and the temporary power supply fluctuation. Even if it occurs, by correcting the overcurrent cutoff value within the demagnetization characteristic range of the compressor, the air conditioner can be continuously operated while ensuring the reliability as the compressor.
 なお特許文献1に開示されるモータ駆動装置では、負荷に過大な電流が流れることを防止する過電流保護回路を、負荷の種類及び負荷の仕様ごとに切替える必要があり、制御回路部が共通化できないという課題があった。実施の形態1に係る室外機制御装置13によれば保護情報設定部38に設定された情報を用いることにより、複数の過電流保護回路を用いることなく、制御回路部を共通化でき、空気調和機の製造コストの低減が可能である。 In addition, in the motor drive device disclosed in Patent Document 1, it is necessary to switch overcurrent protection circuits that prevent excessive current from flowing to the load for each type of load and load specifications, and the control circuit unit is shared. There was a problem that it was not possible. According to the outdoor unit control device 13 according to the first embodiment, by using the information set in the protection information setting unit 38, the control circuit unit can be shared without using a plurality of overcurrent protection circuits, and the air conditioning The manufacturing cost of the machine can be reduced.
実施の形態2.
 以上の実施の形態1の室外機制御装置13は、マイコン20が、圧縮機7の運転中に過電流比較回路24からの過電流検出を検出した際、圧縮機停止直前の圧縮機外郭温度により、過電流遮断電圧値を補正するようにしたものである。実施の形態3では、マイコン20に誤動作又は不作動が生じた場合でも圧縮機7に過電流が流れることによる故障を抑制できる実施の形態2に係る室外機制御装置13の構成例を説明する。実施の形態2に係る室外機制御装置13の構成は、室外機制御装置13における動作を除き、実施の形態1と同様であるため説明を省略する。
Embodiment 2. FIG.
When the microcomputer 20 detects overcurrent detection from the overcurrent comparison circuit 24 during the operation of the compressor 7, the outdoor unit control device 13 of the first embodiment described above is based on the compressor outer temperature immediately before the compressor is stopped. The overcurrent cutoff voltage value is corrected. In the third embodiment, a configuration example of the outdoor unit control device 13 according to the second embodiment that can suppress a failure due to an overcurrent flowing through the compressor 7 even when the microcomputer 20 malfunctions or does not operate will be described. Since the configuration of the outdoor unit control device 13 according to the second embodiment is the same as that of the first embodiment except for the operation in the outdoor unit control device 13, the description thereof is omitted.
 次に実施の形態2に係る室外機制御装置13の動作を説明する。出力切替部24eは、マイコン20の切替出力部20bの出力状態に応じて、電圧安定化回路24bの出力又は固定電圧発生回路24dの出力を、比較回路24aの基準電位として印加する。切替出力部20bの出力がLowレベルの場合、出力切替部24eは、固定電圧発生回路24dの出力を比較回路24aに出力する。切替出力部20bの出力がHiレベルの場合、出力切替部24eは、電圧安定化回路24bの出力を比較回路24aに出力する。ここで、切替出力部20bには抵抗20cが設けられており、マイコン20の不作動及び誤動作が生じた場合、切替出力部20bの出力状態は必ずLowレベルとなる。 Next, the operation of the outdoor unit control device 13 according to the second embodiment will be described. The output switching unit 24e applies the output of the voltage stabilization circuit 24b or the output of the fixed voltage generation circuit 24d as the reference potential of the comparison circuit 24a according to the output state of the switching output unit 20b of the microcomputer 20. When the output of the switching output unit 20b is at the low level, the output switching unit 24e outputs the output of the fixed voltage generation circuit 24d to the comparison circuit 24a. When the output of the switching output unit 20b is Hi level, the output switching unit 24e outputs the output of the voltage stabilization circuit 24b to the comparison circuit 24a. Here, the switching output unit 20b is provided with a resistor 20c, and when the microcomputer 20 is inoperative or malfunctions, the output state of the switching output unit 20b is always at a low level.
 特許文献1に開示されるモータ駆動装置では、モータの減磁保護に関する一連の保護動作が、マイコンのプログラムで構成されているため、仮にマイコンの不作動や誤動作が生じた場合、モータの減磁保護の処理が実行されず、モータを減磁させてしまう可能性があった。実施の形態2に係る室外機制御装置13では、マイコン20の不作動及び誤動作が生じた場合、過電流比較回路24が固定電圧発生回路24dに切り替わることにより、圧縮機7に過電流が流れることによる故障を抑制できる。 In the motor drive device disclosed in Patent Document 1, since a series of protection operations related to motor demagnetization protection is configured by a microcomputer program, if a malfunction or malfunction of the microcomputer occurs, the motor demagnetization is performed. There was a possibility that the protection process was not executed and the motor was demagnetized. In the outdoor unit control device 13 according to the second embodiment, when the microcomputer 20 malfunctions and malfunctions, the overcurrent comparison circuit 24 is switched to the fixed voltage generation circuit 24d, so that overcurrent flows through the compressor 7. Failure due to can be suppressed.
実施の形態3.
 実施の形態1は、マイコン20が、圧縮機7の運転中に過電流比較回路24からの過電流を検出した際、圧縮機停止直前の圧縮機外郭温度により、過電流遮断電圧値を補正するようにしたものである。実施の形態3は、モータ巻線温度検出器が圧縮機7から外れ、又は圧縮機7へのモータ巻線温度検出器の接続不良が生じた場合でも、圧縮機7に過電流が流れることによる故障を抑制できる実施の形態3に係る室外機制御装置13の構成例を説明する。実施の形態3に係る室外機制御装置13の構成は、室外機制御装置13における動作を除き、実施の形態1と同様であるため説明を省略する。
Embodiment 3 FIG.
In the first embodiment, when the microcomputer 20 detects an overcurrent from the overcurrent comparison circuit 24 during the operation of the compressor 7, the overcurrent cutoff voltage value is corrected based on the compressor outer temperature immediately before the compressor is stopped. It is what I did. In the third embodiment, even when the motor winding temperature detector is disconnected from the compressor 7 or when the connection of the motor winding temperature detector to the compressor 7 is poor, an overcurrent flows through the compressor 7. A configuration example of the outdoor unit control device 13 according to Embodiment 3 capable of suppressing failure will be described. The configuration of the outdoor unit control device 13 according to the third embodiment is the same as that of the first embodiment except for the operation in the outdoor unit control device 13, and thus the description thereof is omitted.
 図7は実施の形態3に係る室外機制御装置で用いられる保護情報の一例を示す図である。固定電圧設定値24daから24ddの値は、圧縮機過電流保護基準外郭温度VrefTdから得られる過電流遮断電圧値である。例えば、圧縮機仕様7aに対応する圧縮機過電流保護基準外郭温度VrefTdaを130℃とした場合に、圧縮機7aに流れる電流が68[A]となる過電流遮断電圧値と同一の過電流設定値となるように予め設定されたものが、固定電圧設定値24daから24ddである。 FIG. 7 is a diagram showing an example of the protection information used in the outdoor unit control device according to the third embodiment. The fixed voltage setting values 24da to 24dd are overcurrent cutoff voltage values obtained from the compressor overcurrent protection reference outer temperature VrefTd. For example, when the compressor overcurrent protection reference outer temperature VrefTda corresponding to the compressor specification 7a is 130 ° C., the overcurrent setting is the same as the overcurrent cutoff voltage value at which the current flowing through the compressor 7a is 68 [A]. What is preset so as to be a value is the fixed voltage setting value 24da to 24dd.
 また図7に示される保護情報には、圧縮機外郭温度異常判定経過時間ΔTdta~ΔTdtdと、圧縮機外郭温度異常判定温度差ΔTda~ΔTddとが、固定電圧設定値24daから24ddと対応付けられている。圧縮機外郭温度異常判定経過時間ΔTdta~ΔTdtdは、圧縮機7が運転を開始してから一定時間経過したときの時間である。図7に示されるこれらの保護情報は、保護情報設定部38に設定されているものとする。なお図7では、図4に示される圧縮機過電流保護特性、圧縮機過電流保護基準外郭温度、及び圧縮機過電流保護可変外郭温度補正値の図示が省略されているが、圧縮機過電流保護特性、圧縮機過電流保護基準外郭温度、及び圧縮機過電流保護可変外郭温度補正値は、図7の保護情報にも設定されているものとする。 In the protection information shown in FIG. 7, the compressor outer temperature abnormality determination elapsed time ΔTdta to ΔTdtd and the compressor outer temperature abnormality determination temperature difference ΔTda to ΔTdd are associated with the fixed voltage setting values 24da to 24dd. Yes. The compressor outer temperature abnormality determination elapsed time ΔTdta to ΔTdtd is a time when a fixed time has elapsed since the compressor 7 started operation. These pieces of protection information shown in FIG. 7 are set in the protection information setting unit 38. In FIG. 7, the compressor overcurrent protection characteristic, the compressor overcurrent protection reference outer temperature, and the compressor overcurrent protection variable outer temperature correction value illustrated in FIG. 4 are omitted, but the compressor overcurrent is not illustrated. It is assumed that the protection characteristics, the compressor overcurrent protection reference outer temperature, and the compressor overcurrent protection variable outer temperature correction value are also set in the protection information of FIG.
 固定電圧発生回路24dには、図7に示される固定電圧設定値24daから24ddの値が設定される。すなわち固定電圧発生回路24dには、室外機1の機種と圧縮機7の仕様とに対応した複数の固定電圧設定値24daから24ddの値が設定される。固定電圧発生回路24dに固定電圧設定値24daから24ddの値を設定する方法としては、制御メインマイコン21が固定電圧発生回路24dに書き込むことを例示できる。 In the fixed voltage generation circuit 24d, the fixed voltage setting values 24da to 24dd shown in FIG. 7 are set. That is, in the fixed voltage generating circuit 24d, a plurality of fixed voltage setting values 24da to 24dd corresponding to the model of the outdoor unit 1 and the specifications of the compressor 7 are set. As a method for setting the fixed voltage setting values 24da to 24dd in the fixed voltage generation circuit 24d, the control main microcomputer 21 can write to the fixed voltage generation circuit 24d.
 次に実施の形態3に係る室外機制御装置13の動作を図8及び図9を用いて説明する。図8は実施の形態3に係る室外機制御装置の動作を説明するための第1のフローチャートである。図9は実施の形態3に係る室外機制御装置の動作を説明するための第2のフローチャートである。 Next, the operation of the outdoor unit control device 13 according to the third embodiment will be described with reference to FIGS. FIG. 8 is a first flowchart for explaining the operation of the outdoor unit control apparatus according to the third embodiment. FIG. 9 is a second flowchart for explaining the operation of the outdoor unit control device according to the third embodiment.
 ステップS601~ステップS607の動作は、図5に示すステップS401~ステップS407と同様であるため説明を割愛する。 Since the operations from step S601 to step S607 are the same as those from step S401 to step S407 shown in FIG.
 ステップS608で制御メインマイコン21は、ステップS602からステップS604で得られた情報を基に、圧縮機外郭温度異常判定経過時間ΔTdta~ΔTdtdを決定する。 In step S608, the control main microcomputer 21 determines the compressor outer temperature abnormality determination elapsed time ΔTdta to ΔTdtd based on the information obtained in steps S602 to S604.
 ステップS609で制御メインマイコン21は、ステップS602からステップS604で得られた情報を基に、圧縮機外郭温度異常判定温度差ΔTda~ΔTddを決定する。 In step S609, the control main microcomputer 21 determines the compressor outer temperature abnormality determination temperature difference ΔTda to ΔTdd based on the information obtained in steps S602 to S604.
 ステップS610で制御メインマイコン21は、ステップS605で得られた圧縮機過電流保護特性と、ステップS606で得られた圧縮機過電流保護基準外郭温度と、ステップS607で得られた圧縮機過電流保護可変外郭温度補正値と、ステップS608で得られた圧縮機外郭温度異常判定経過時間ΔTdta~ΔTdtdと、ステップS609で得られた圧縮機外郭温度異常判定温度差ΔTda~ΔTddとをマイコン20に送信する。 In step S610, the control main microcomputer 21 determines the compressor overcurrent protection characteristic obtained in step S605, the compressor overcurrent protection reference outer temperature obtained in step S606, and the compressor overcurrent protection obtained in step S607. The variable outer temperature correction value, the compressor outer temperature abnormality determination elapsed time ΔTdta to ΔTdtd obtained in step S608, and the compressor outer temperature abnormality determination temperature difference ΔTda to ΔTdd obtained in step S609 are transmitted to the microcomputer 20. .
 ステップS611で、制御メインマイコン21は、圧縮機外郭温度検出用のサーミスタ33で検出された温度の値をマイコン20に送信する。なお、サーミスタ33で検出された温度の値は、ステップS611で送信されるだけでなく、ステップS611以外のステップでも送信されているものとする。 In step S611, the control main microcomputer 21 transmits the temperature value detected by the thermistor 33 for detecting the compressor outer temperature to the microcomputer 20. It is assumed that the temperature value detected by the thermistor 33 is transmitted not only in step S611 but also in steps other than step S611.
 図9に示すステップS612~ステップS615の動作は、図5に示すステップS410~ステップS413と同様であるため説明を割愛する。 Since the operations from step S612 to step S615 shown in FIG. 9 are the same as those from step S410 to step S413 shown in FIG.
 ステップS616で、マイコン20は、圧縮機7の運転開始時のサーミスタ33の値Tdstartを記憶する。 In step S616, the microcomputer 20 stores the value Tdstart of the thermistor 33 at the start of operation of the compressor 7.
 ステップ617で、マイコン20は、圧縮機7が運転を開始してからの経過時間が、圧縮機外郭温度異常判定経過時間以上であるか否かを判定する。 In step 617, the microcomputer 20 determines whether or not the elapsed time since the compressor 7 started operation is equal to or longer than the compressor outer temperature abnormality determination elapsed time.
 圧縮機7が運転を開始してからの経過時間が、圧縮機外郭温度異常判定経過時間未満の場合(ステップS617,No)、マイコン20は、ステップS615に移行する。 When the elapsed time after the compressor 7 starts operation is less than the compressor outer temperature abnormality determination elapsed time (No in step S617), the microcomputer 20 proceeds to step S615.
 圧縮機7が運転を開始してからの経過時間が圧縮機外郭温度異常判定経過時間以上の場合(ステップS617,Yes)、マイコン20は、ステップS618で、現在のサーミスタ33の値Tdnowを格納する。 If the elapsed time since the compressor 7 started operation is equal to or longer than the compressor outer temperature abnormality determination elapsed time (step S617, Yes), the microcomputer 20 stores the current value Tdnow of the thermistor 33 in step S618. .
 次に、ステップS619で、マイコン20は、現在のサーミスタ33の値Tdnowと、運転開始時のサーミスタ33の値Tdstartとの差が、圧縮機外郭温度異常判定温度差より大きいか否かを判定する。 Next, in step S619, the microcomputer 20 determines whether or not the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is greater than the compressor outer temperature abnormality determination temperature difference. .
 現在のサーミスタ33の値Tdnowと、運転開始時のサーミスタ33の値Tdstartの差が、圧縮機外郭温度異常判定温度差より大きい場合(ステップS619,Yes)、マイコン20は、ステップS615に移行し、圧縮機7の運転を継続する。 When the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is larger than the compressor outer temperature abnormality determination temperature difference (step S619, Yes), the microcomputer 20 proceeds to step S615. The operation of the compressor 7 is continued.
 現在のサーミスタ33の値Tdnowと、運転開始時のサーミスタ33の値Tdstartの差が、圧縮機外郭温度異常判定温度差未満の場合(ステップS619,No)、マイコン20は、ステップS620に移行し、出力切替部24eにLowレベルを出力し、比較回路の24aに印加される基準電圧を、固定電圧発生回路24dで生成される電圧に切替える。 When the difference between the current value Tdnow of the thermistor 33 and the value Tdstart of the thermistor 33 at the start of operation is less than the compressor outer temperature abnormality determination temperature difference (No in step S619), the microcomputer 20 proceeds to step S620. The Low level is output to the output switching unit 24e, and the reference voltage applied to the comparison circuit 24a is switched to the voltage generated by the fixed voltage generation circuit 24d.
 特許文献1に開示されるモータ駆動装置では、モータ巻線温度検出器が圧縮機7から外れ、又は圧縮機7へのモータ巻線温度検出器の接続不良が生じた場合、モータ部の温度を正常に検出することが不可能であり、かつモータ巻線温度は、モータ巻線温度検出器が外れた後の箇所で検出される温度、又は接続不良の状態で検出される温度となり、モータを減磁させてしまう課題があった。実施の形態3に係る室外機制御装置13によれば、モータ巻線温度検出器が圧縮機7から外れ、又は圧縮機7へのモータ巻線温度検出器の接続不良が生じた場合、過電流比較回路24の出力が、固定電圧発生回路24dの出力電圧に切り替わることにより、圧縮機7過電流から確実に保護することができる。 In the motor driving device disclosed in Patent Document 1, when the motor winding temperature detector is disconnected from the compressor 7 or when the connection of the motor winding temperature detector to the compressor 7 is poor, the temperature of the motor unit is set. It is impossible to detect normally, and the motor winding temperature becomes the temperature detected at the place after the motor winding temperature detector is disconnected or the temperature detected in the state of poor connection. There was a problem of demagnetizing. According to the outdoor unit control device 13 according to the third embodiment, when the motor winding temperature detector is disconnected from the compressor 7 or the connection failure of the motor winding temperature detector to the compressor 7 occurs, an overcurrent is generated. By switching the output of the comparison circuit 24 to the output voltage of the fixed voltage generation circuit 24d, the compressor 7 can be reliably protected from overcurrent.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 室外機、2 室内機、3 冷媒配管、4 室内室外接続用配線、5 リモコン、5a 表示部、6 リモコン用配線、7 圧縮機、8 室外熱交換器、9 室内熱交換器、10 電子膨張弁、11 室外ファン、12 室内ファン、13 室外機制御装置、14 室内機制御装置、15 商用電源、16 整流回路、17 平滑コンデンサ、18 リアクタ、19 突入電流抑制回路、19a 突入電流抑制用リレー、19b 突入電流防止素子、20 インバータ回路駆動用マイコン、20a アナログ出力端子、20b 切替出力部、20c 抵抗、21 制御メインマイコン、22 通信回路、23 電流電圧変換回路、23a 電圧信号、24 過電流比較回路、24a 比較回路、24b 電圧安定化回路、24c 過電流出力部、24d 固定電圧発生回路、24da 固定電圧設定値、24e 出力切替部、25 リレー駆動回路、26 室外ファンモータ、28 駆動回路、29 高圧圧力スイッチ、31 低圧圧力スイッチ、33 サーミスタ、35 冷媒温度サーミスタ、37 不揮発性メモリ、38 保護情報設定部、39 表示部、41 室内通信回路、42 室外通信回路、43 室内制御マイコン、44 室内ファンモータ、46 サーミスタ、47 変換回路、48 冷室内配管度サーミスタ、50 不揮発性メモリ、51 切替スイッチ、52 リモコン通信回路、53 電圧変換回路、54 インバータ回路。 1 outdoor unit, 2 indoor unit, 3 refrigerant piping, 4 indoor / outdoor connection wiring, 5 remote control, 5a display unit, 6 remote control wiring, 7 compressor, 8 outdoor heat exchanger, 9 indoor heat exchanger, 10 electronic expansion Valve, 11 outdoor fan, 12 indoor fan, 13 outdoor unit controller, 14 indoor unit controller, 15 commercial power supply, 16 rectifier circuit, 17 smoothing capacitor, 18 reactor, 19 inrush current suppression circuit, 19a inrush current suppression relay, 19b Inrush current prevention element, 20 Inverter circuit driving microcomputer, 20a analog output terminal, 20b switching output unit, 20c resistance, 21 control main microcomputer, 22 communication circuit, 23 current voltage conversion circuit, 23a voltage signal, 24 overcurrent comparison circuit 24a comparison circuit, 24b voltage stabilization circuit, 24c overcurrent Power unit, 24d fixed voltage generation circuit, 24da fixed voltage set value, 24e output switching unit, 25 relay drive circuit, 26 outdoor fan motor, 28 drive circuit, 29 high pressure switch, 31 low pressure switch, 33 thermistor, 35 refrigerant temperature Thermistor, 37 Non-volatile memory, 38 Protection information setting unit, 39 Display unit, 41 Indoor communication circuit, 42 Outdoor communication circuit, 43 Indoor control microcomputer, 44 Indoor fan motor, 46 Thermistor, 47 Conversion circuit, 48 Cold room piping degree thermistor , 50 non-volatile memory, 51 changeover switch, 52 remote control communication circuit, 53 voltage conversion circuit, 54 inverter circuit.

Claims (6)

  1.  複数のスイッチング素子を有し直流電力を交流電力に変換して圧縮機に供給するインバータ回路と、前記複数のスイッチング素子のオンオフ動作を制御する制御部とを備えた室外機制御装置であって、
     前記インバータ回路に供給される直流電流を検出する直流電圧検出部と、
     前記直流電圧検出部で検出された直流電流の値に対応する電圧レベルと基準電圧とを比較し、前記電圧レベルが前記基準電圧以上のとき、前記インバータ回路の運転を停止させる運転停止部と、
     少なくとも、複数の室外機の機種情報と、複数の前記圧縮機の仕様情報と、複数の前記圧縮機の減磁保護特性情報と、複数の前記圧縮機の外郭温度情報と、複数の前記圧縮機の外郭温度の補正値とが対応付けて設定された保護情報設定部とを備え、
     前記制御部は、
     前記圧縮機が過電流で停止したとき、前記機種情報、前記仕様情報、前記減磁保護特性情報、前記外郭温度情報及び前記補正値を用いて、前記圧縮機が停止した際の前記圧縮機の外郭温度が、減磁保護特性の非減磁領域の範囲であれば、過電流遮断電圧値の補正を繰り返すことを特徴とする室外機制御装置。
    An outdoor unit control device comprising an inverter circuit that has a plurality of switching elements and converts DC power into AC power and supplies the compressor, and a control unit that controls on / off operations of the plurality of switching elements,
    A DC voltage detector for detecting a DC current supplied to the inverter circuit;
    A voltage level corresponding to the value of the DC current detected by the DC voltage detection unit is compared with a reference voltage, and when the voltage level is equal to or higher than the reference voltage, an operation stop unit that stops the operation of the inverter circuit;
    At least model information of a plurality of outdoor units, specification information of the plurality of compressors, demagnetization protection characteristic information of the plurality of compressors, outer temperature information of the plurality of compressors, and a plurality of the compressors A protection information setting unit set in association with the correction value of the outer temperature of
    The controller is
    When the compressor is stopped due to overcurrent, the model information, the specification information, the demagnetization protection characteristic information, the outer temperature information, and the correction value are used to determine the compressor when the compressor is stopped. An outdoor unit control device that repeats correction of an overcurrent cutoff voltage value when the outer temperature is in a non-demagnetization range of the demagnetization protection characteristic.
  2.  前記運転停止部は、前記制御部のアナログ出力電圧によって前記基準電圧を変化させることを特徴とする請求項1に記載の室外機制御装置。 The outdoor unit control device according to claim 1, wherein the operation stop unit changes the reference voltage according to an analog output voltage of the control unit.
  3.  前記制御部は、前記過電流遮断電圧値の補正を実施した後の一定時間、前記圧縮機が連続して運転した場合、前記減磁保護特性情報の値を、前記外郭温度を初期の値にリセットすることを特徴とする請求項1又は請求項2に記載の室外機制御装置。 When the compressor is continuously operated for a certain time after the correction of the overcurrent cutoff voltage value, the control unit sets the value of the demagnetization protection characteristic information to the initial value of the outer temperature. It resets, The outdoor unit control apparatus of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記運転停止部は、第1の電圧発生回路と、複数の異なる電圧値が設定された第2の電圧発生回路と、前記第1の電圧発生回路又は前記第2の電圧発生回路から出力される電圧を切り替えて前記基準電圧として出力する出力切替部とを備えることを特徴とする請求項1から請求項3の何れか一項に記載の室外機制御装置。 The operation stop unit is output from the first voltage generation circuit, the second voltage generation circuit in which a plurality of different voltage values are set, and the first voltage generation circuit or the second voltage generation circuit. The outdoor unit control device according to any one of claims 1 to 3, further comprising an output switching unit that switches a voltage and outputs the reference voltage.
  5.  前記出力切替部は、前記制御部から出力される電圧のレベルがLowレベルの場合、前記第2の電圧発生回路から出力される電圧を選択して出力することを特徴とする請求項4に記載の室外機制御装置。 The output switching unit selects and outputs a voltage output from the second voltage generation circuit when the level of the voltage output from the control unit is a low level. Outdoor unit control device.
  6.  前記圧縮機が運転を開始してから一定期間が経過するまで前記圧縮機の外郭温度に変化が生じない場合、前記出力切替部は、前記第1の電圧発生回路から出力される電圧の代わりに前記第2の電圧発生回路から出力される電圧を選択して出力することを特徴とする請求項4に記載の室外機制御装置。 When the external temperature of the compressor does not change until a certain period of time has elapsed since the compressor started operation, the output switching unit replaces the voltage output from the first voltage generation circuit. The outdoor unit control device according to claim 4, wherein a voltage output from the second voltage generation circuit is selected and output.
PCT/JP2017/000812 2017-01-12 2017-01-12 Outdoor unit control device WO2018131116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/000812 WO2018131116A1 (en) 2017-01-12 2017-01-12 Outdoor unit control device
JP2018561155A JP6615387B2 (en) 2017-01-12 2017-01-12 Outdoor unit control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000812 WO2018131116A1 (en) 2017-01-12 2017-01-12 Outdoor unit control device

Publications (1)

Publication Number Publication Date
WO2018131116A1 true WO2018131116A1 (en) 2018-07-19

Family

ID=62840572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000812 WO2018131116A1 (en) 2017-01-12 2017-01-12 Outdoor unit control device

Country Status (2)

Country Link
JP (1) JP6615387B2 (en)
WO (1) WO2018131116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (en) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Protecting device for magnet motor
JPH11103589A (en) * 1997-09-29 1999-04-13 Matsushita Refrig Co Ltd Operation controller for refrigerator
JP2012070531A (en) * 2010-09-24 2012-04-05 Hitachi Appliances Inc Inverter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (en) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Protecting device for magnet motor
JPH11103589A (en) * 1997-09-29 1999-04-13 Matsushita Refrig Co Ltd Operation controller for refrigerator
JP2012070531A (en) * 2010-09-24 2012-04-05 Hitachi Appliances Inc Inverter device

Also Published As

Publication number Publication date
JP6615387B2 (en) 2019-12-04
JPWO2018131116A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP4842855B2 (en) Air conditioner
JP6401658B2 (en) Air conditioner
KR20120115404A (en) Speed-defined torque control
EP4030615B1 (en) Motor driving device
KR102024091B1 (en) Air conditioner
JP6615387B2 (en) Outdoor unit control device
WO2019053815A1 (en) Air conditioning device
JP6080633B2 (en) Air conditioner control device
KR20100033803A (en) Air conditioner and controling method thereof
KR101611310B1 (en) Air-conditioner and method
JP7056251B2 (en) Air conditioner
JP2008025911A (en) Heating device
JPH11237097A (en) Multiroom air conditioner
JP4578092B2 (en) Air conditioner
KR102478881B1 (en) Motor driving apparatus and air conditioner including the same
JP6312930B2 (en) Air conditioner
WO2005039037A1 (en) Fan controller, refrigeration cycle system and method for estimating rotation speed of fan
WO2024214240A1 (en) Motor drive device, motor drive method, and refrigeration cycle device
KR20080064019A (en) Air conditioner
KR102110536B1 (en) Compressor driving device and air conditioner including the same
JP4229541B2 (en) Air conditioner control device
JP2013194969A (en) Air conditioner
JP6887560B2 (en) Air conditioner
WO2024127599A1 (en) Air-conditioning device, outdoor unit, indoor unit, and air-conditioning system
WO2021166124A1 (en) Electric motor drive device and air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891354

Country of ref document: EP

Kind code of ref document: A1