WO2021166124A1 - Electric motor drive device and air conditioner - Google Patents

Electric motor drive device and air conditioner Download PDF

Info

Publication number
WO2021166124A1
WO2021166124A1 PCT/JP2020/006551 JP2020006551W WO2021166124A1 WO 2021166124 A1 WO2021166124 A1 WO 2021166124A1 JP 2020006551 W JP2020006551 W JP 2020006551W WO 2021166124 A1 WO2021166124 A1 WO 2021166124A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
unit
drive device
motor drive
control unit
Prior art date
Application number
PCT/JP2020/006551
Other languages
French (fr)
Japanese (ja)
Inventor
裕卓 ▲徳▼田
貴彦 小林
惇 川島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/006551 priority Critical patent/WO2021166124A1/en
Publication of WO2021166124A1 publication Critical patent/WO2021166124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to an electric motor drive device for driving an electric motor by switching the connection state of the stator winding between a star connection and a delta connection, and an air conditioner equipped with the electric motor drive device.
  • the air conditioner equipped with an electric motor for the compressor that compresses the refrigerant adjusts the cooling capacity and heating capacity according to the rotation speed of the electric motor. Therefore, it is desired that the electric motor used in the air conditioner has high efficiency in a wide rotation speed range.
  • An air conditioner equipped with an electric motor for a compressor has air conditioning efficiency at both low load and high load by switching the connection state of the electric motor between star connection and delta connection with the electric motor drive device. Can be enhanced.
  • a mechanical relay or an electromagnetic contactor when switching the connection of a motor, a semiconductor switch, a mechanical relay or an electromagnetic contactor is used, but since the semiconductor switch may cause a short mode failure, a mechanical relay or an electromagnetic contactor should be used.
  • mechanical relays are widely used in consumer products because inexpensive ones are widely used. Therefore, there is a need for control that suppresses the risk of failure such as contact welding of mechanical relays.
  • Patent Document 1 in case the contact plate itself of the mechanical relay breaks down, all three relays connected to the stator winding of the compressor are controlled so that the connection state is the same. A technique for improving the reliability of compressor operation is disclosed.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor drive device that suppresses a failure of a mechanical relay that switches the connection state of the windings of the electric motor.
  • the motor drive device is a plurality of mechanical relays that switch the connection state of the stator windings of the motor to either star connection or delta connection. It has a switching unit provided with the above, an inverter for applying driving power to the motor, and a control unit for controlling the switching unit.
  • the cumulative number of switching times which indicates the number of times the connection state has been switched by the switching unit, is equal to or greater than the number of switching life times, which is the number of times that the electrical opening / closing operation of the mechanical relay is not guaranteed to be performed normally. Then, stop the switching of the connection state at the switching part.
  • the motor drive device has the effect of suppressing the failure of the mechanical relay that switches the connection state of the windings of the motor.
  • the figure which shows the state which the electric motor drive device which concerns on Embodiment 2 drive an electric motor by a star connection.
  • FIG. 1 is a diagram showing a state in which the motor drive device according to the first embodiment drives the motor with a star connection.
  • FIG. 2 is a diagram showing a state in which the motor drive device according to the first embodiment drives the motor with a delta connection.
  • the electric motor drive device 150 according to the first embodiment includes a reactor 20 that suppresses harmonics contained in an AC voltage supplied from an AC power supply 10, a rectifying unit 30 that rectifies an AC voltage in which harmonics are suppressed, and a rectifier. It has a capacitor 40 that smoothes the DC voltage output by the unit 30.
  • the motor drive device 150 includes an inverter 50 that converts a DC voltage into a three-phase AC voltage by a switching operation, a switching unit 60 that switches the connection state of the motor 70 to a star connection or a delta connection, and an inverter 50 and a switching unit 60.
  • a control unit 90 for controlling is provided.
  • the control unit 90 controls the inverter 50 by sending an inverter drive signal to the inverter 50. Further, the control unit 90 sends a switching signal to the switching unit 60 to control the switching unit 60.
  • a storage unit 100 that stores information used for controlling the inverter 50 and the switching unit 60 is connected to the control unit 90.
  • the number of storage units 100 connected to the control unit 90 may be one or a plurality.
  • Information used for controlling the inverter 50 and the switching unit 60 may be stored in the storage unit 91 included in the control unit 90. Further, the information used for controlling the inverter 50 and the switching unit 60 may be stored separately in the storage unit 91 and the storage unit 100.
  • the rectifying unit 30 has rectifying elements 31, 32, 33, 34.
  • the inverter 50 has switching elements 51, 52, 53, 54, 55, 56, each of which has a rectifying element connected in parallel.
  • the inverter 50 converts a DC voltage into an AC voltage by the switching operation of the switching elements 51, 52, 53, 54, 55, 56.
  • the switching unit 60 has mechanical relays 61, 62, 63.
  • the control unit 90 applies a voltage to the motor 70 to drive the motor 70 by controlling the inverter 50 and the switching unit 60 according to the target value of the voltage or current stored in the storage unit 91.
  • the motor drive device 150 has a detection unit 80 including a voltage detection unit 81 that detects the voltage of the inverter 50 and a current detection unit 82 that detects the current of the inverter 50.
  • the control unit 90 controls the switching unit 60 based on at least one of the voltage and the current detected by the detection unit 80.
  • the motor drive device 150 has a storage unit 100 that stores the cumulative number of times of switching, the number of times of switching life, the number of times of switching upper limit, and the switching permission flag used for determining whether or not switching is possible.
  • the cumulative number of times of switching is the total number of times of transmission indicating how many times the switching signal is transmitted for contact switching of the mechanical relays 61, 62, 63.
  • the cumulative number of switchings is incremented by the control unit 90 each time the mechanical relays 61, 62, and 63 are switched.
  • the number of switching life is the number of switchings from which it is no longer guaranteed that the mechanical relays 61, 62, 63 are normally opened and closed.
  • the upper limit of switching indicates the worst design value assumed in product design. That is, the upper limit of switching needs to be less than the number of switching lifespans. It is desirable that the cumulative number of switchings is less than the number of switching lifespans and less than or equal to the upper limit of switchings.
  • the initial value of the switching permission flag is "valid".
  • the control unit 90 determines whether or not switching is possible.
  • the switching permission flag is "invalid”
  • the control unit 90 continues the steady operation without determining whether or not switching is possible.
  • FIG. 3 is a flowchart showing the flow of switching control of the mechanical relay based on the cumulative number of switchings of the motor drive device according to the first embodiment.
  • step S13 the control unit 90 determines whether or not the cumulative number of switchings is less than the number of switching lifespans and equal to or less than the upper limit of switchings. If the cumulative number of switching times is equal to or greater than the number of switching lifespans, or if the cumulative number of switchings exceeds the upper limit of switchings, the result is No in step S13, and the process proceeds to step S16. If the cumulative number of switchings is less than the number of switching lifespans and equal to or less than the upper limit of switchings, the result is Yes in step S13, and the process proceeds to step S14.
  • step S14 the control unit 90 sends a command to the switching unit 60 to switch the mechanical relays 61, 62, 63.
  • step S15 the control unit 90 determines whether or not the switching of the mechanical relays 61, 62, 63 is successful. If the switching of the mechanical relays 61, 62, and 63 is successful, the result is Yes in step S15, and the process ends. If the switching of the mechanical relays 61, 62, 63 is not successful, the result is No in step S15, and the process of step S15 is repeated until the switching of the mechanical relays 61, 62, 63 is completed.
  • step S16 the control unit 90 determines whether or not the cumulative number of switching times is equal to or greater than the number of switching lifespans. If the cumulative number of switching times is equal to or greater than the number of switching lifespans, the result is Yes in step S16, and the process proceeds to step S17. If the cumulative number of switching times is less than the number of switching life times, No in step S16, and the process ends.
  • step S17 the control unit 90 sets the switching permission flag to "invalid".
  • the control unit 90 invalidates the switching permission flag, and thereafter, the mechanical relays 61, 62, 63 are switched. Continue steady operation without. Since the motor drive device 150 according to the first embodiment suppresses the number of switchings of the mechanical relays 61, 62, 63 by the cumulative number of switchings, it is possible to prevent the mechanical relays 61, 62, 63 from failing. ..
  • the initial value of the switching permission flag may be "invalid”. Further, it may be determined whether the switching permission flag is "valid” or "invalid" after the switching permission flag is set.
  • At least one storage location of the cumulative number of times of switching, the number of times of switching life, the number of times of switching upper limit, and the switching permission flag may be the storage unit 91 in the control unit 90.
  • the storage unit 100 does not have to be in the motor drive device 150 as long as it is connected to the control unit 90.
  • a product is produced by a one-to-one combination of an indoor unit and an outdoor unit, but when the outdoor unit has an electric motor drive device 150, even if the storage unit 100 is in the indoor unit. good.
  • the number of times of switching life and the number of times of switching upper limit may be set with a margin.
  • the cumulative number of switching times is not normally less than the number of switching lifespans, but cumulative switching is caused by a disturbance factor. It is desirable to set the number of switching lifespans and the maximum number of switchings to be small in case the number of times is counted incorrectly.
  • the electric motor drive device 150 determines whether or not the mechanical relays 61, 62, 63 can be switched by using the cumulative number of times the mechanical relays 61, 62, 63 are switched, thereby determining the mechanical relay 61. , 62, 63 electrical contact switching is suppressed, and failure of mechanical relays 61, 62, 63 is suppressed.
  • the motor drive device 150 since it is not necessary to switch all the mechanical relays 61, 62, 63 at the same time, overcurrent and overvoltage are generated by switching the mechanical relays 61, 62, 63 at the same time. Can be prevented. Therefore, the motor drive device 150 according to the first embodiment does not need to increase the component ratings of the mechanical relays 61, 62, 63 or add elements or circuits for noise suppression, and can reduce the component cost. ..
  • FIG. 4 is a diagram showing a state in which the motor drive device according to the second embodiment drives the motor with a star connection.
  • the difference from the motor drive device 150 according to the first embodiment is that it has a clock unit 140.
  • the clock unit 140 counts the elapsed time from the first startup.
  • the control unit 90 stores the cumulative elapsed time acquired from the clock unit 140 in the storage unit 91. Therefore, the control unit 90 can acquire the cumulative elapsed time from the storage unit 91 at an arbitrary timing. Further, the storage unit 100 stores in advance the design upper limit time estimated from the product life assumed in the design.
  • FIG. 5 is a flowchart showing the flow of switching control using the cumulative elapsed time of the motor drive device according to the second embodiment.
  • step S22 If the switching permission flag is "invalid”, the result is No in step S22, and the process ends.
  • Yes is set in step S22, and the process proceeds to step S23.
  • step S23 the control unit 90 determines whether or not the cumulative elapsed time is less than the design upper limit time. If the cumulative elapsed time is equal to or longer than the design upper limit time, the result is No in step S23, and the process proceeds to step S26. If the cumulative elapsed time is less than the design upper limit time, the result is Yes in step S23, and the process proceeds to step S24.
  • steps S24 and S25 is the same as the processing of steps S14 and S15 shown in FIG.
  • step S26 the control unit 90 sets the switching permission flag to "invalid".
  • the switching permission flag is "invalid" in step S22 at the next processing.
  • the motor drive device 150 determines whether or not the cumulative elapsed time is less than the design upper limit time, and if the cumulative elapsed time is equal to or more than the design upper limit time, the mechanical relays 61, 62, 63 are switched. Continue steady operation without performing. That is, since the motor drive device 150 according to the second embodiment suppresses the number of times the mechanical relays 61, 62, 63 are switched depending on the cumulative elapsed time, it is possible to suppress the failure of the mechanical relays 61, 62, 63. ..
  • FIG. 6 is a diagram showing a state in which the motor drive device according to the third embodiment drives the motor with a star connection.
  • the motor drive device 150 according to the third embodiment is different from the motor drive device 150 according to the first embodiment in that the input unit 110 and the sensor unit 120 are connected to each other.
  • the input unit 110 accepts an input operation of the target set value.
  • the input unit 110 includes a display unit 111 and an operation unit 112.
  • the set target value input through the operation unit 112 is displayed on the display unit 111.
  • the user confirms the set target value displayed on the display unit 111, and then stores the target set value in the storage unit 91.
  • the sensor unit 120 includes a sensor that detects the state of air.
  • a case where the measured temperature acquired by the temperature sensor 121 is transmitted to the control unit 90 will be described as an example. Therefore, the target set value input through the operation unit 112 is the target set temperature.
  • the control unit 90 stores the actually measured temperature received from the sensor unit 120 in the storage unit 91.
  • the motor drive device 150 uses the temperature width upper limit value and the temperature width lower limit value set in advance in the storage unit 91 and the target set temperature set by the user, and the measured temperature acquired from the sensor unit 120. Whether or not switching is possible is determined based on.
  • the upper limit of the temperature range used for the determination is the sum of the target set temperature and the upper limit of the temperature width, and the lower limit is the value obtained by subtracting the lower limit of the temperature width from the target set temperature.
  • the upper limit value of the temperature width and the lower limit value of the temperature width may be the same value.
  • FIG. 7 is a flowchart showing the flow of switching control using the measured temperature of the motor drive device according to the third embodiment.
  • the control unit 90 After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 performs the process of FIG. 7 in addition to the process shown in FIG. I do.
  • step S31 the control unit 90 reads out the target set temperature, the temperature width upper limit value, the temperature width lower limit value, and the measured temperature stored in the storage unit 91.
  • step S32 the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
  • step S33 the control unit 90 determines whether the measured temperature exceeds the "target set temperature + temperature range upper limit value" or the measured temperature is less than the "target set temperature-temperature width lower limit value". If the measured temperature is equal to or less than "target set temperature + upper limit of temperature width” or equal to or higher than “target set temperature-lower limit of temperature width", No is obtained in step S33, and the process proceeds to step S36. If the measured temperature exceeds the "target set temperature + temperature range upper limit value" or the measured temperature is less than the "target set temperature-temperature width lower limit value", the result is Yes in step S33, and the process proceeds to step S34.
  • steps S34 and S35 is the same as the processing of steps S14 and S15 shown in FIG.
  • step S36 the control unit 90 sets the switching permission flag to "invalid".
  • the motor drive device 150 according to the third embodiment has mechanical relays 61, 62, when the measured temperature is equal to or less than "target set temperature + upper limit of temperature width" or more than or lower to "target set temperature-lower limit of temperature width". The measured temperature reaches the target set temperature without switching 63. Therefore, the motor drive device 150 according to the third embodiment can suppress the number of times the mechanical relays 61, 62, 63 are switched, and can suppress the failure of the mechanical relays 61, 62, 63.
  • the input unit 110 may be arranged outside the motor drive device 150.
  • the motor drive device 150 can be operated via communication between the indoor unit and the outdoor unit by operating the controller of the indoor unit.
  • the target value may be set in.
  • the connection between the control unit 90 and the input unit 110 is not limited to the wired connection, and may be a wireless connection using infrared communication or wireless communication.
  • Known wireless communication standards such as Wi-Fi (registered trademark), Wi-SUN (Wireless Smart Utility Network), Bluetooth (registered trademark) and NFC (Near Field Communication) can be applied to wireless communication.
  • the switching of the mechanical relays 61, 62, 63 is suppressed based on the measured temperature measured by the temperature sensor 121, but the temperature distribution in the room is measured by using the infrared sensor, and the temperature distribution is measured in a mesh shape.
  • the mechanical relays 61, 62, 63 are occupied based on the ratio of the area equal to or less than "target set temperature + temperature range upper limit” or “target set temperature-temperature range lower limit” or more. Switching may be controlled. Further, the determination of switching of the mechanical relays 61, 62, 63 may be controlled based on the humidity measured by the humidity sensor.
  • FIG. 8 is a diagram showing a state in which the motor drive device according to the fourth embodiment drives the motor with a star connection.
  • the motor drive device 150 according to the fourth embodiment is different from the motor drive device 150 according to the first embodiment in that it includes a current detection unit 130.
  • the current detection unit 130 measures the currents of the three phases of the U-phase, V-phase, and W-phase of the motor 70, and stores the current value in the storage unit 91.
  • FIG. 9 is a flowchart showing the flow of switching control using the current detection value of the motor drive device according to the fourth embodiment.
  • the control unit 90 After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 performs the process of FIG. 9 in addition to the process shown in FIG. I do.
  • the control unit 90 reads out the switching target current value, the switching current upper limit value, the switching current lower limit value, and the detected current value stored in the storage unit 91.
  • step S42 the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
  • step S43 the control unit 90 determines whether the detected current value exceeds the "switching target current value + switching current upper limit value" or the detected current value is less than the "switching target current value-switching current lower limit value". to decide. If the detected current value is equal to or less than "switching target current value + switching current upper limit value” or the detected current value is equal to or greater than "switching target current value-switching current lower limit value", No is obtained in step S43, and the process is performed in step S46. Proceed to.
  • step S43 If the detected current value exceeds the "switching target current value + switching current upper limit value" or the detected current value is less than the "switching target current value-switching current lower limit value", Yes in step S43, and the process proceeds to step S44. move on.
  • steps S44 and S45 is the same as the processing of steps S14 and S15 shown in FIG.
  • step S46 the control unit 90 sets the switching permission flag to "invalid".
  • the motor drive device 150 according to the fourth embodiment is a mechanical relay 61 when the detected current value is "switching target current value + switching current upper limit value" or less or “switching target current value-switching current lower limit value” or more. , 62, 63 are not switched. Therefore, the motor drive device 150 according to the fourth embodiment can suppress the number of times the mechanical relays 61, 62, 63 are switched, and can suppress the failure of the mechanical relays 61, 62, 63.
  • the current detection unit 130 may detect the two-phase current values and switch the switching unit 60 at the zero crossing point where the load current becomes almost zero, or detect only the one-phase current value and switch the switching unit. You may switch by estimating the time point when the current flowing through 60 is small.
  • FIG. 10 is a diagram showing the configuration of the air conditioner according to the fifth embodiment.
  • the air conditioner 200 according to the fifth embodiment includes the motor drive device 150 according to any one of the first to fourth embodiments.
  • the air conditioner 200 of the fifth embodiment is a refrigerating machine in which a compressor 101 having a built-in electric motor 70, a four-way valve 102, an outdoor heat exchanger 103, an expansion valve 104, and an indoor heat exchanger 105 are attached via a refrigerant pipe 106. It has a cycle and constitutes a separate type air conditioner.
  • a compression mechanism 107 for compressing the refrigerant and an electric motor 70 for operating the compression mechanism 107 are provided inside the compressor 101, and the refrigerant circulates from the compressor 101 between the outdoor heat exchanger 103 and the indoor heat exchanger 105.
  • a refrigeration cycle is configured to perform heating and cooling.
  • the configuration shown in FIG. 10 can be applied not only to an air conditioner but also to a refrigerating cycle device including a refrigerating cycle such as a refrigerator and a freezer.
  • the function of the control unit 90 of the motor drive device 150 according to the first to fourth embodiments is realized by the processing circuit.
  • the processing circuit may be dedicated hardware or a processing device that executes a program stored in the storage device.
  • a microcontroller can be applied to the control device, but the controller is not limited to this.
  • FIG. 11 is a diagram showing a configuration in which the function of the control unit of the motor drive device according to any one of the first to fourth embodiments is realized by hardware.
  • the processing circuit 39 incorporates a logic circuit 39a that realizes the function of the control unit 90.
  • the function of the control unit 90 is realized by software, firmware, or a combination of software and firmware.
  • FIG. 12 is a diagram showing a configuration in which the control unit of the motor drive device according to any one of the first to fourth embodiments is realized by software.
  • the processing circuit 39 includes a processor 391 that executes the program 39b, a random access memory 392 that the processor 391 uses for the work area, and a storage device 393 that stores the program 39b.
  • the function of the control unit 90 is realized by the processor 391 expanding and executing the program 39b stored in the storage device 393 on the random access memory 392.
  • the software or firmware is written in a programming language and stored in a storage device 393.
  • Processor 391 can exemplify a central processing unit, but is not limited thereto.
  • the storage device 393 applies a semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
  • the semiconductor memory may be a non-volatile memory or a volatile memory.
  • the storage device 393 can be applied with a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the processor 391 may output data such as a calculation result to the storage device 393 and store the data, or may store the data in an auxiliary storage device (not shown) via the random access memory 392.
  • the processing circuit 39 realizes the function of the control unit 90 by reading and executing the program 39b stored in the storage device 393. It can be said that the program 39b causes the computer to execute the procedure and the method for realizing the function of the control unit 90.
  • processing circuit 39 may realize a part of the functions of the control unit 90 with dedicated hardware and a part of the functions of the control unit 90 with software or firmware.
  • the processing circuit 39 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the configuration shown in the above embodiment is an example of the content, can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

An electric motor drive device (150) has: a switching unit (60) provided with a plurality of mechanical relays (61, 62, 63) that switch the connection state of a stator winding of an electric motor (70) to a star connection or a delta connection; an inverter (50) that applies electric power to the electric motor (70); and a control unit (90) that controls the switching unit (60), the control unit (90) causing the switching unit (60) to stop the switching of the connection state when the cumulative number of switchings, indicating the number of times the connection state was switched by the switching unit (60), is greater than or equal to a switching life number, which is a number of switchings at which it can no longer be guaranteed that the electrical opening/closing operation of the mechanical relays (61, 62, 63) is correctly performed.

Description

電動機駆動装置及び空気調和機Motor drive and air conditioner
 本開示は、固定子巻線の結線状態をスター結線とデルタ結線とで切り替えて電動機を駆動する電動機駆動装置及びこれを備えた空気調和機に関する。 The present disclosure relates to an electric motor drive device for driving an electric motor by switching the connection state of the stator winding between a star connection and a delta connection, and an air conditioner equipped with the electric motor drive device.
 冷媒を圧縮する圧縮機用の電動機を搭載した空気調和機は、冷房能力及び暖房能力を電動機の回転速度によって調整している。したがって、空気調和機に用いられる電動機は、幅広い回転速度領域での高効率化が望まれている。圧縮機用の電動機を搭載した空気調和機は、電動機の結線状態をスター結線にするかデルタ結線にするかを電動機駆動装置で切り替えることにより、低負荷時及び高負荷時のどちらにおいても空調効率を高めることができる。 The air conditioner equipped with an electric motor for the compressor that compresses the refrigerant adjusts the cooling capacity and heating capacity according to the rotation speed of the electric motor. Therefore, it is desired that the electric motor used in the air conditioner has high efficiency in a wide rotation speed range. An air conditioner equipped with an electric motor for a compressor has air conditioning efficiency at both low load and high load by switching the connection state of the electric motor between star connection and delta connection with the electric motor drive device. Can be enhanced.
 一般に、電動機の結線を切り替える場合には、半導体スイッチ、機械式リレー又は電磁接触器が用いられるが、半導体スイッチはショートモード故障となる場合があるため、機械式リレー又は電磁接触器が用いられることが多い。特に、機械式リレーは安価な物が普及しているため、民生製品に幅広く用いられている。このため、機械式リレーの接点溶着といった故障に対するリスクを抑制する制御が求められている。 Generally, when switching the connection of a motor, a semiconductor switch, a mechanical relay or an electromagnetic contactor is used, but since the semiconductor switch may cause a short mode failure, a mechanical relay or an electromagnetic contactor should be used. There are many. In particular, mechanical relays are widely used in consumer products because inexpensive ones are widely used. Therefore, there is a need for control that suppresses the risk of failure such as contact welding of mechanical relays.
 特許文献1には、機械式リレーの接点板自体が故障した場合に備えて、圧縮機の固定子巻線に接続された三つのリレーを全て接続状態が同じになるように制御することで、圧縮機動作の信頼性を高める技術が開示されている。 In Patent Document 1, in case the contact plate itself of the mechanical relay breaks down, all three relays connected to the stator winding of the compressor are controlled so that the connection state is the same. A technique for improving the reliability of compressor operation is disclosed.
国際公開第2019/021398号International Publication No. 2019/021398
 機械式リレーは、機械的な切替回数寿命又は遮断電流による電気的な切替回数寿命を超過することで故障が生じる場合がある。しかしながら、上記特許文献1に記載の技術では、リレーが故障した場合に三つのリレー全ての接続状態が同じになるだけで、リレーの故障自体を抑制していない。 Mechanical relays may fail if they exceed the mechanical switching life or the electrical switching life due to the breaking current. However, in the technique described in Patent Document 1, when a relay fails, all three relays have the same connection state, and the relay failure itself is not suppressed.
 本開示は、上記に鑑みてなされたものであって、電動機の巻線の結線状態を切り替える機械式リレーの故障を抑制する電動機駆動装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor drive device that suppresses a failure of a mechanical relay that switches the connection state of the windings of the electric motor.
 上述した課題を解決し、目的を達成するために、本開示に係る電動機駆動装置は、電動機の固定子巻線の結線状態をスター結線及びデルタ結線のいずれにするかを切り替える複数の機械式リレーを備える切替部と、電動機に駆動電力を印加するインバータと、切替部を制御する制御部とを有する。制御部は、切替部によって結線状態が切り替えられた回数を示す累積切替回数が、機械式リレーの電気的な開閉動作が正常に行われることが保証されなくなる切替回数である切替寿命回数以上となったら、切替部に、結線状態の切替を停止させる。 In order to solve the above-mentioned problems and achieve the object, the motor drive device according to the present disclosure is a plurality of mechanical relays that switch the connection state of the stator windings of the motor to either star connection or delta connection. It has a switching unit provided with the above, an inverter for applying driving power to the motor, and a control unit for controlling the switching unit. In the control unit, the cumulative number of switching times, which indicates the number of times the connection state has been switched by the switching unit, is equal to or greater than the number of switching life times, which is the number of times that the electrical opening / closing operation of the mechanical relay is not guaranteed to be performed normally. Then, stop the switching of the connection state at the switching part.
 本開示に係る電動機駆動装置は、電動機の巻線の結線状態を切り替える機械式リレーの故障を抑制できるという効果を奏する。 The motor drive device according to the present disclosure has the effect of suppressing the failure of the mechanical relay that switches the connection state of the windings of the motor.
実施の形態1に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図The figure which shows the state which the electric motor drive device which concerns on Embodiment 1 drive an electric motor by a star connection. 実施の形態1に係る電動機駆動装置が電動機をデルタ結線で駆動している状態を示す図The figure which shows the state which the electric motor drive device which concerns on Embodiment 1 drive an electric motor by a delta connection. 実施の形態1に係る電動機駆動装置の累積切替回数に基づいた機械式リレーの切替制御の流れを示すフローチャートA flowchart showing a flow of switching control of a mechanical relay based on the cumulative number of switchings of the motor driving device according to the first embodiment. 実施の形態2に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図The figure which shows the state which the electric motor drive device which concerns on Embodiment 2 drive an electric motor by a star connection. 実施の形態2に係る電動機駆動装置の累積経過時間を用いた切替制御の流れを示すフローチャートA flowchart showing a flow of switching control using the cumulative elapsed time of the motor drive device according to the second embodiment. 実施の形態3に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図The figure which shows the state which the electric motor drive device which concerns on Embodiment 3 drive an electric motor by a star connection. 実施の形態3に係る電動機駆動装置の実測温度を用いた切替制御の流れを示すフローチャートA flowchart showing the flow of switching control using the measured temperature of the motor drive device according to the third embodiment. 実施の形態4に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図The figure which shows the state which the electric motor drive device which concerns on Embodiment 4 drive an electric motor by a star connection. 実施の形態4に係る電動機駆動装置の電流検出値を用いた切替制御の流れを示すフローチャートA flowchart showing the flow of switching control using the current detection value of the motor drive device according to the fourth embodiment. 実施の形態5に係る空気調和機の構成を示す図The figure which shows the structure of the air conditioner which concerns on Embodiment 5. 実施の形態1から実施の形態4のいずれかに係る電動機駆動装置の制御部の機能をハードウェアで実現した構成を示す図The figure which shows the structure which realized the function of the control part of the motor drive device which concerns on one of Embodiment 1 to Embodiment 4 by hardware. 実施の形態1から実施の形態4のいずれかに係る電動機駆動装置の制御部をソフトウェアで実現した構成を示す図The figure which shows the structure which realized the control part of the motor drive device which concerns on one of Embodiment 1 to Embodiment 4 by software.
 以下に、実施の形態に係る電動機駆動装置及び空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの開示が限定されるものではない。 The motor drive device and the air conditioner according to the embodiment will be described in detail below based on the drawings. It should be noted that this embodiment does not limit this disclosure.
実施の形態1.
 図1は、実施の形態1に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図である。図2は、実施の形態1に係る電動機駆動装置が電動機をデルタ結線で駆動している状態を示す図である。実施の形態1に係る電動機駆動装置150は、交流電源10から供給される交流電圧に含まれる高調波を抑制するリアクトル20と、高調波が抑制された交流電圧を整流する整流部30と、整流部30が出力する直流電圧を平滑化するコンデンサ40とを有する。また、電動機駆動装置150は、スイッチング動作により直流電圧を三相交流電圧に変換するインバータ50と、電動機70の結線状態をスター結線又はデルタ結線に切り替える切替部60と、インバータ50及び切替部60を制御する制御部90とを備える。制御部90は、インバータ50にインバータ駆動信号を送ることによりインバータ50を制御する。また、制御部90は、切替部60に切替信号を送って切替部60を制御する。制御部90には、インバータ50及び切替部60の制御に用いる情報を記憶する記憶部100が接続されている。制御部90に接続される記憶部100は、一つでも複数でもよい。なお、インバータ50及び切替部60の制御に用いる情報は、制御部90が備える記憶部91に記憶されてもよい。また、インバータ50及び切替部60の制御に用いる情報は、記憶部91と記憶部100とに分けて記憶されてもよい。
Embodiment 1.
FIG. 1 is a diagram showing a state in which the motor drive device according to the first embodiment drives the motor with a star connection. FIG. 2 is a diagram showing a state in which the motor drive device according to the first embodiment drives the motor with a delta connection. The electric motor drive device 150 according to the first embodiment includes a reactor 20 that suppresses harmonics contained in an AC voltage supplied from an AC power supply 10, a rectifying unit 30 that rectifies an AC voltage in which harmonics are suppressed, and a rectifier. It has a capacitor 40 that smoothes the DC voltage output by the unit 30. Further, the motor drive device 150 includes an inverter 50 that converts a DC voltage into a three-phase AC voltage by a switching operation, a switching unit 60 that switches the connection state of the motor 70 to a star connection or a delta connection, and an inverter 50 and a switching unit 60. A control unit 90 for controlling is provided. The control unit 90 controls the inverter 50 by sending an inverter drive signal to the inverter 50. Further, the control unit 90 sends a switching signal to the switching unit 60 to control the switching unit 60. A storage unit 100 that stores information used for controlling the inverter 50 and the switching unit 60 is connected to the control unit 90. The number of storage units 100 connected to the control unit 90 may be one or a plurality. Information used for controlling the inverter 50 and the switching unit 60 may be stored in the storage unit 91 included in the control unit 90. Further, the information used for controlling the inverter 50 and the switching unit 60 may be stored separately in the storage unit 91 and the storage unit 100.
 整流部30は、整流素子31,32,33,34を有する。インバータ50は、それぞれに整流素子が並列に接続されたスイッチング素子51,52,53,54,55,56を有する。インバータ50は、スイッチング素子51,52,53,54,55,56のスイッチング動作により、直流電圧を交流電圧に変換する。切替部60は、機械式リレー61,62,63を有する。制御部90は、記憶部91に記憶された電圧又は電流の目標値に従ってインバータ50及び切替部60を制御することにより、電動機70に電圧を印加して、電動機70を駆動する。 The rectifying unit 30 has rectifying elements 31, 32, 33, 34. The inverter 50 has switching elements 51, 52, 53, 54, 55, 56, each of which has a rectifying element connected in parallel. The inverter 50 converts a DC voltage into an AC voltage by the switching operation of the switching elements 51, 52, 53, 54, 55, 56. The switching unit 60 has mechanical relays 61, 62, 63. The control unit 90 applies a voltage to the motor 70 to drive the motor 70 by controlling the inverter 50 and the switching unit 60 according to the target value of the voltage or current stored in the storage unit 91.
 電動機駆動装置150は、インバータ50の電圧を検出する電圧検出部81及びインバータ50の電流を検出する電流検出部82を備えた検出部80を有する。制御部90は、検出部80によって検出した電圧及び電流の少なくとも一方に基づいて切替部60を制御する。 The motor drive device 150 has a detection unit 80 including a voltage detection unit 81 that detects the voltage of the inverter 50 and a current detection unit 82 that detects the current of the inverter 50. The control unit 90 controls the switching unit 60 based on at least one of the voltage and the current detected by the detection unit 80.
 電動機駆動装置150は、切替可否の判定に使用する累積切替回数、切替寿命回数、切替上限回数及び切替許可フラグを格納する記憶部100を有する。累積切替回数は、機械式リレー61,62,63の接点切替のために切替信号を何回送信したかを示す総送信回数である。累積切替回数は、機械式リレー61,62,63の切り替えが行われるたびに、制御部90によってインクリメントされる。切替寿命回数は、機械式リレー61,62,63の電気的な開閉動作が正常に行われることが保証されなくなる切替回数であり、累積切替回数が切替寿命回数以上になると、機械式リレー61,62,63が破損して開閉動作が正常に行われなくなる可能性がある。切替上限回数は、製品設計上で想定される設計ワースト値を示す。つまり、切替上限回数は、切替寿命回数未満である必要がある。累積切替回数は、切替寿命回数未満かつ切替上限回数以下であることが望ましい。 The motor drive device 150 has a storage unit 100 that stores the cumulative number of times of switching, the number of times of switching life, the number of times of switching upper limit, and the switching permission flag used for determining whether or not switching is possible. The cumulative number of times of switching is the total number of times of transmission indicating how many times the switching signal is transmitted for contact switching of the mechanical relays 61, 62, 63. The cumulative number of switchings is incremented by the control unit 90 each time the mechanical relays 61, 62, and 63 are switched. The number of switching life is the number of switchings from which it is no longer guaranteed that the mechanical relays 61, 62, 63 are normally opened and closed. When the cumulative number of switchings exceeds the number of switching lifes, the mechanical relay 61, There is a possibility that 62 and 63 will be damaged and the opening / closing operation will not be performed normally. The upper limit of switching indicates the worst design value assumed in product design. That is, the upper limit of switching needs to be less than the number of switching lifespans. It is desirable that the cumulative number of switchings is less than the number of switching lifespans and less than or equal to the upper limit of switchings.
 切替許可フラグの初期値は、「有効」とする。切替許可フラグが「有効」の場合、制御部90は、切替可否の判定を行う。一方、切替許可フラグが「無効」の場合には、制御部90は、切替可否の判定を行わずに定常運転を継続する。 The initial value of the switching permission flag is "valid". When the switching permission flag is "valid", the control unit 90 determines whether or not switching is possible. On the other hand, when the switching permission flag is "invalid", the control unit 90 continues the steady operation without determining whether or not switching is possible.
 図3は、実施の形態1に係る電動機駆動装置の累積切替回数に基づいた機械式リレーの切替制御の流れを示すフローチャートである。定常運転開始後、電動機70の負荷強度が変化して電動機70の固定子巻線の結線状態を切り替える必要が生じた場合に、制御部90は図3の処理を行う。ステップS11において、制御部90は、記憶部100に記憶されている切替寿命回数、切替上限回数及び累積切替回数を読み出す。ステップS12において、制御部90は、記憶部100に予め記憶されている切替許可フラグを取得し、切替許可フラグが「有効」であるか否かを判断する。 FIG. 3 is a flowchart showing the flow of switching control of the mechanical relay based on the cumulative number of switchings of the motor drive device according to the first embodiment. After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 performs the process of FIG. In step S11, the control unit 90 reads out the number of switching lifes, the number of switching upper limits, and the cumulative number of switchings stored in the storage unit 100. In step S12, the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
 切替許可フラグが「無効」である場合、ステップS12においてNoとなり、処理を終了する。切替許可フラグが「有効」である場合、ステップS12においてYesとなり、処理はステップS13に進む。ステップS13において、制御部90は、累積切替回数が切替寿命回数未満かつ切替上限回数以下であるか否かを判断する。累積切替回数が切替寿命回数以上の場合又は累積切替回数が切替上限回数を超える場合、ステップS13でNoとなり、処理はステップS16に進む。累積切替回数が切替寿命回数未満かつ切替上限回数以下である場合、ステップS13でYesとなり、処理はステップS14に進む。 If the switching permission flag is "invalid", the result is No in step S12, and the process ends. When the switching permission flag is "valid", Yes is set in step S12, and the process proceeds to step S13. In step S13, the control unit 90 determines whether or not the cumulative number of switchings is less than the number of switching lifespans and equal to or less than the upper limit of switchings. If the cumulative number of switching times is equal to or greater than the number of switching lifespans, or if the cumulative number of switchings exceeds the upper limit of switchings, the result is No in step S13, and the process proceeds to step S16. If the cumulative number of switchings is less than the number of switching lifespans and equal to or less than the upper limit of switchings, the result is Yes in step S13, and the process proceeds to step S14.
 ステップS14において、制御部90は、切替部60に指令を送り、機械式リレー61,62,63を切り替える。ステップS15において、制御部90は、機械式リレー61,62,63の切替が成功したか否かを判断する。機械式リレー61,62,63の切替が成功していれば、ステップS15でYesとなり、処理を終了する。機械式リレー61,62,63の切替が成功していなければ、ステップS15でNoとなり、機械式リレー61,62,63の切替が終了するまでステップS15の処理を繰り返す。 In step S14, the control unit 90 sends a command to the switching unit 60 to switch the mechanical relays 61, 62, 63. In step S15, the control unit 90 determines whether or not the switching of the mechanical relays 61, 62, 63 is successful. If the switching of the mechanical relays 61, 62, and 63 is successful, the result is Yes in step S15, and the process ends. If the switching of the mechanical relays 61, 62, 63 is not successful, the result is No in step S15, and the process of step S15 is repeated until the switching of the mechanical relays 61, 62, 63 is completed.
 ステップS16において、制御部90は、累積切替回数が切替寿命回数以上であるか否かを判断する。累積切替回数が切替寿命回数以上であれば、ステップS16でYesとなり、処理はステップS17に進む。累積切替回数が切替寿命回数未満であれば、ステップS16でNoとなり、処理を終了する。 In step S16, the control unit 90 determines whether or not the cumulative number of switching times is equal to or greater than the number of switching lifespans. If the cumulative number of switching times is equal to or greater than the number of switching lifespans, the result is Yes in step S16, and the process proceeds to step S17. If the cumulative number of switching times is less than the number of switching life times, No in step S16, and the process ends.
 ステップS17において、制御部90は、切替許可フラグを「無効」とする。 In step S17, the control unit 90 sets the switching permission flag to "invalid".
 実施の形態1に係る電動機駆動装置150は、累積切替回数が切替寿命回数以上である場合、制御部90は、切替許可フラグを無効にし、以降は機械式リレー61,62,63の切替は行わずに定常運転を継続する。実施の形態1に係る電動機駆動装置150は、累積切替回数によって機械式リレー61,62,63の切替回数を抑制するため、機械式リレー61,62,63が故障することを抑制することができる。 In the motor drive device 150 according to the first embodiment, when the cumulative number of switching times is equal to or greater than the number of switching life times, the control unit 90 invalidates the switching permission flag, and thereafter, the mechanical relays 61, 62, 63 are switched. Continue steady operation without. Since the motor drive device 150 according to the first embodiment suppresses the number of switchings of the mechanical relays 61, 62, 63 by the cumulative number of switchings, it is possible to prevent the mechanical relays 61, 62, 63 from failing. ..
 なお、切替許可フラグの初期値は「無効」であってもよい。また、切替許可フラグが「有効」であるか「無効」であるかの判定は、切替許可フラグ設定後に行ってもよい。 The initial value of the switching permission flag may be "invalid". Further, it may be determined whether the switching permission flag is "valid" or "invalid" after the switching permission flag is set.
 また、累積切替回数、切替寿命回数、切替上限回数及び切替許可フラグのうちの少なくとも一つの格納場所は、制御部90内の記憶部91であってもよい。 Further, at least one storage location of the cumulative number of times of switching, the number of times of switching life, the number of times of switching upper limit, and the switching permission flag may be the storage unit 91 in the control unit 90.
 記憶部100は、制御部90に接続されていれば電動機駆動装置150内になくてもよい。例えば、空気調和機の場合、室内機と室外機との1対1の組合せで製品となるが、室外機が電動機駆動装置150を有している場合、記憶部100が室内機にあってもよい。 The storage unit 100 does not have to be in the motor drive device 150 as long as it is connected to the control unit 90. For example, in the case of an air conditioner, a product is produced by a one-to-one combination of an indoor unit and an outdoor unit, but when the outdoor unit has an electric motor drive device 150, even if the storage unit 100 is in the indoor unit. good.
 また、切替寿命回数及び切替上限回数の設定時に余裕を持たせた回数にしてもよいことは言うまでもない。図3に示したフローチャートでは、機械式リレー61,62,63を切り替える前に切替可否の判定を行うため、通常であれば累積切替回数が切替寿命回数未満にはならないが、外乱要因によって累積切替回数のカウントを誤った場合に備え、切替寿命回数及び切替上限回数は、小さめに設定することが望ましい。 Needless to say, the number of times of switching life and the number of times of switching upper limit may be set with a margin. In the flowchart shown in FIG. 3, since it is determined whether or not the mechanical relays 61, 62, 63 can be switched before switching, the cumulative number of switching times is not normally less than the number of switching lifespans, but cumulative switching is caused by a disturbance factor. It is desirable to set the number of switching lifespans and the maximum number of switchings to be small in case the number of times is counted incorrectly.
 一般に、電動機駆動装置は、製品寿命を超過して使用された場合及び設計時の想定以上の切替回数を要する場合には、機械式リレーの電気的な切替寿命回数を超過してしまい、機械式リレー自体が故障する恐れがある。機械式リレーの接点が故障により溶着すると、電動機駆動装置が故障する可能性がある。そこで、実施の形態1に係る電動機駆動装置150は、機械式リレー61,62,63の累積切替回数を用いて機械式リレー61,62,63の切替可否を判定することで、機械式リレー61,62,63の電気的な接点切替を抑制し、機械式リレー61,62,63の故障を抑制する。さらに、実施の形態1に係る電動機駆動装置150は、機械式リレー61,62,63を全て同時に切り替える必要がないため、機械式リレー61,62,63を同時に切り替えることによる過電流及び過電圧の発生を防止できる。したがって、実施の形態1に係る電動機駆動装置150は、機械式リレー61,62,63の部品定格を増大させたり、ノイズ対策のための素子又は回路を追加する必要がなく、部品コストを低減できる。 In general, when the motor drive device is used beyond the product life or requires more switching times than expected at the time of design, the electric switching life of the mechanical relay is exceeded, and the mechanical type The relay itself may break down. If the contacts of the mechanical relay are welded due to a failure, the motor drive may fail. Therefore, the electric motor drive device 150 according to the first embodiment determines whether or not the mechanical relays 61, 62, 63 can be switched by using the cumulative number of times the mechanical relays 61, 62, 63 are switched, thereby determining the mechanical relay 61. , 62, 63 electrical contact switching is suppressed, and failure of mechanical relays 61, 62, 63 is suppressed. Further, in the motor drive device 150 according to the first embodiment, since it is not necessary to switch all the mechanical relays 61, 62, 63 at the same time, overcurrent and overvoltage are generated by switching the mechanical relays 61, 62, 63 at the same time. Can be prevented. Therefore, the motor drive device 150 according to the first embodiment does not need to increase the component ratings of the mechanical relays 61, 62, 63 or add elements or circuits for noise suppression, and can reduce the component cost. ..
実施の形態2.
 図4は、実施の形態2に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図である。実施の形態1に係る電動機駆動装置150との差異はクロック部140を有する点である。クロック部140は、初回起動時からの経過時間をカウントする。制御部90は、クロック部140から取得した累積経過時間を記憶部91に格納する。したがって、制御部90は、任意のタイミングで記憶部91から累積経過時間を取得することができる。また、記憶部100には、設計上想定する製品寿命から推定される設計上限時間が予め記憶される。
Embodiment 2.
FIG. 4 is a diagram showing a state in which the motor drive device according to the second embodiment drives the motor with a star connection. The difference from the motor drive device 150 according to the first embodiment is that it has a clock unit 140. The clock unit 140 counts the elapsed time from the first startup. The control unit 90 stores the cumulative elapsed time acquired from the clock unit 140 in the storage unit 91. Therefore, the control unit 90 can acquire the cumulative elapsed time from the storage unit 91 at an arbitrary timing. Further, the storage unit 100 stores in advance the design upper limit time estimated from the product life assumed in the design.
 図5は、実施の形態2に係る電動機駆動装置の累積経過時間を用いた切替制御の流れを示すフローチャートである。定常運転開始後、電動機70の負荷強度が変化して電動機70の固定子巻線の結線状態を切り替える必要が生じた場合に、制御部90は、図3に示した処理に加え、図5の処理を行う。ステップS21において、制御部90は、記憶部100に記憶されている設計上限時間及び累積経過時間を読み出す。ステップS22において、制御部90は、記憶部100に予め記憶されている切替許可フラグを取得し、切替許可フラグが「有効」であるか否かを判断する。 FIG. 5 is a flowchart showing the flow of switching control using the cumulative elapsed time of the motor drive device according to the second embodiment. After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 adds the processing shown in FIG. 3 to the process shown in FIG. Perform processing. In step S21, the control unit 90 reads out the design upper limit time and the cumulative elapsed time stored in the storage unit 100. In step S22, the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
 切替許可フラグが「無効」である場合、ステップS22においてNoとなり、処理を終了する。切替許可フラグが「有効」である場合、ステップS22においてYesとなり、処理はステップS23に進む。ステップS23において、制御部90は、累積経過時間が設計上限時間未満であるか否かを判断する。累積経過時間が設計上限時間以上の場合、ステップS23でNoとなり、処理はステップS26に進む。累積経過時間が設計上限時間未満である場合、ステップS23でYesとなり、処理はステップS24に進む。 If the switching permission flag is "invalid", the result is No in step S22, and the process ends. When the switching permission flag is "valid", Yes is set in step S22, and the process proceeds to step S23. In step S23, the control unit 90 determines whether or not the cumulative elapsed time is less than the design upper limit time. If the cumulative elapsed time is equal to or longer than the design upper limit time, the result is No in step S23, and the process proceeds to step S26. If the cumulative elapsed time is less than the design upper limit time, the result is Yes in step S23, and the process proceeds to step S24.
 ステップS24及びステップS25の処理は、図3に示したステップS14及びステップS15の処理と同様である。 The processing of steps S24 and S25 is the same as the processing of steps S14 and S15 shown in FIG.
 ステップS26において、制御部90は、切替許可フラグを「無効」とする。 In step S26, the control unit 90 sets the switching permission flag to "invalid".
 実施の形態2に係る電動機駆動装置は、累積経過時間が設計上限時間以上の場合は切替許可フラグを「無効」にするため、次回の処理時には、ステップS22において切替許可フラグが「無効」であると判断することにより、累積経過時間が設計上限時間未満であるか否かの判定を省略して定常運転を継続することができる。 Since the motor drive device according to the second embodiment sets the switching permission flag to "invalid" when the cumulative elapsed time is equal to or longer than the design upper limit time, the switching permission flag is "invalid" in step S22 at the next processing. By determining that, it is possible to continue the steady operation by omitting the determination of whether or not the cumulative elapsed time is less than the design upper limit time.
 実施の形態2に係る電動機駆動装置150は、累積経過時間が設計上限時間未満であるか否かを判定し、累積経過時間が設計上限時間以上であれば機械式リレー61,62,63の切替を行わないようにして定常運転を継続する。すなわち、実施の形態2に係る電動機駆動装置150は、累積経過時間によって機械式リレー61,62,63の切替回数を抑制するため、機械式リレー61,62,63の故障を抑制することができる。 The motor drive device 150 according to the second embodiment determines whether or not the cumulative elapsed time is less than the design upper limit time, and if the cumulative elapsed time is equal to or more than the design upper limit time, the mechanical relays 61, 62, 63 are switched. Continue steady operation without performing. That is, since the motor drive device 150 according to the second embodiment suppresses the number of times the mechanical relays 61, 62, 63 are switched depending on the cumulative elapsed time, it is possible to suppress the failure of the mechanical relays 61, 62, 63. ..
実施の形態3.
 図6は、実施の形態3に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図である。実施の形態3に係る電動機駆動装置150は、入力部110及びセンサ部120が接続される点で、実施の形態1に係る電動機駆動装置150と相違する。入力部110は、目標設定値の入力操作を受け付ける。入力部110は、表示部111及び操作部112を備える。操作部112を通じて入力された設定目標値は、表示部111に表示される。ユーザは表示部111に表示された設定目標値を確認した上で目標設定値を記憶部91に記憶させる。
Embodiment 3.
FIG. 6 is a diagram showing a state in which the motor drive device according to the third embodiment drives the motor with a star connection. The motor drive device 150 according to the third embodiment is different from the motor drive device 150 according to the first embodiment in that the input unit 110 and the sensor unit 120 are connected to each other. The input unit 110 accepts an input operation of the target set value. The input unit 110 includes a display unit 111 and an operation unit 112. The set target value input through the operation unit 112 is displayed on the display unit 111. The user confirms the set target value displayed on the display unit 111, and then stores the target set value in the storage unit 91.
 センサ部120は、空気の状態を検出するセンサを備える。ここでは、温度センサ121によって取得した実測温度を制御部90に送信する場合を例に説明する。したがって、操作部112を通じて入力される目標設定値は、目標設定温度である。制御部90は、センサ部120から受信した実測温度を記憶部91に格納する。 The sensor unit 120 includes a sensor that detects the state of air. Here, a case where the measured temperature acquired by the temperature sensor 121 is transmitted to the control unit 90 will be described as an example. Therefore, the target set value input through the operation unit 112 is the target set temperature. The control unit 90 stores the actually measured temperature received from the sensor unit 120 in the storage unit 91.
 実施の形態3に係る電動機駆動装置150は、あらかじめ記憶部91に設定した温度幅上限値及び温度幅下限値と、ユーザが設定する目標設定温度とを用いて、センサ部120から習得した実測温度に基づいて切替可否の判定を行う。判定に使用する温度範囲は、目標設定温度と温度幅上限値とを加算した値を上限値とし、目標設定温度から温度幅下限値を引算した値を下限値とする。温度幅上限値と温度幅下限値とが同じ値であってもよい。この温度範囲に実測温度が入った場合、ユーザにより設定された目標設定温度と室温との差が小さく、室温が目標設定温度に到達するまでの負荷が小さいことを示す。 The motor drive device 150 according to the third embodiment uses the temperature width upper limit value and the temperature width lower limit value set in advance in the storage unit 91 and the target set temperature set by the user, and the measured temperature acquired from the sensor unit 120. Whether or not switching is possible is determined based on. The upper limit of the temperature range used for the determination is the sum of the target set temperature and the upper limit of the temperature width, and the lower limit is the value obtained by subtracting the lower limit of the temperature width from the target set temperature. The upper limit value of the temperature width and the lower limit value of the temperature width may be the same value. When the measured temperature falls within this temperature range, the difference between the target set temperature set by the user and the room temperature is small, indicating that the load until the room temperature reaches the target set temperature is small.
 図7は、実施の形態3に係る電動機駆動装置の実測温度を用いた切替制御の流れを示すフローチャートである。定常運転開始後、電動機70の負荷強度が変化して電動機70の固定子巻線の結線状態を切り替える必要が生じた場合に、制御部90は図3に示した処理に加え、図7の処理を行う。ステップS31において、制御部90は、記憶部91に記憶されている目標設定温度、温度幅上限値、温度幅下限値及び実測温度を読み出す。ステップS32において、制御部90は、記憶部100に予め記憶されている切替許可フラグを取得し、切替許可フラグが「有効」であるか否かを判断する。 FIG. 7 is a flowchart showing the flow of switching control using the measured temperature of the motor drive device according to the third embodiment. After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 performs the process of FIG. 7 in addition to the process shown in FIG. I do. In step S31, the control unit 90 reads out the target set temperature, the temperature width upper limit value, the temperature width lower limit value, and the measured temperature stored in the storage unit 91. In step S32, the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
 切替許可フラグが「無効」である場合、ステップS32においてNoとなり、処理を終了する。切替許可フラグが「有効」である場合、ステップS32においてYesとなり、処理はステップS33に進む。ステップS33において、制御部90は、実測温度が「目標設定温度+温度幅上限値」を超えるか又は実測温度が「目標設定温度-温度幅下限値」未満であるか否かを判断する。実測温度が「目標設定温度+温度幅上限値」以下であるか又は実測温度が「目標設定温度-温度幅下限値」以上である場合、ステップS33でNoとなり、処理はステップS36に進む。実測温度が「目標設定温度+温度幅上限値」を超えるか又は実測温度が「目標設定温度-温度幅下限値」未満である場合、ステップS33でYesとなり、処理はステップS34に進む。 If the switching permission flag is "invalid", the result is No in step S32, and the process ends. When the switching permission flag is "valid", Yes is set in step S32, and the process proceeds to step S33. In step S33, the control unit 90 determines whether the measured temperature exceeds the "target set temperature + temperature range upper limit value" or the measured temperature is less than the "target set temperature-temperature width lower limit value". If the measured temperature is equal to or less than "target set temperature + upper limit of temperature width" or equal to or higher than "target set temperature-lower limit of temperature width", No is obtained in step S33, and the process proceeds to step S36. If the measured temperature exceeds the "target set temperature + temperature range upper limit value" or the measured temperature is less than the "target set temperature-temperature width lower limit value", the result is Yes in step S33, and the process proceeds to step S34.
 ステップS34及びステップS35の処理は、図3に示したステップS14及びステップS15の処理と同様である。 The processing of steps S34 and S35 is the same as the processing of steps S14 and S15 shown in FIG.
 ステップS36において、制御部90は、切替許可フラグを「無効」とする。 In step S36, the control unit 90 sets the switching permission flag to "invalid".
 実施の形態3に係る電動機駆動装置150は、実測温度が「目標設定温度+温度幅上限値」以下又は「目標設定温度-温度幅下限値」以上である場合に、機械式リレー61,62,63の切替を行うことなく実測温度を目標設定温度に到達させる。このため、実施の形態3に係る電動機駆動装置150は、機械式リレー61,62,63の切替回数を抑制し、機械式リレー61,62,63の故障を抑制することができる。 The motor drive device 150 according to the third embodiment has mechanical relays 61, 62, when the measured temperature is equal to or less than "target set temperature + upper limit of temperature width" or more than or lower to "target set temperature-lower limit of temperature width". The measured temperature reaches the target set temperature without switching 63. Therefore, the motor drive device 150 according to the third embodiment can suppress the number of times the mechanical relays 61, 62, 63 are switched, and can suppress the failure of the mechanical relays 61, 62, 63.
 入力部110は、電動機駆動装置150の外部に配置されてもよい。例えば、空気調和機の場合、電動機駆動装置150が室外機の内部に配置されるのであれば、室内機のコントローラを操作することにより、室内機と室外機との通信を介して電動機駆動装置150に目標値を設定してもよい。さらに、制御部90と入力部110との接続は、有線接続に限定されることはなく、赤外線通信又は無線通信を用いた無線接続であってもよい。無線通信には、Wi-Fi(登録商標)、Wi-SUN(Wireless Smart Utility Network)、Bluetooth(登録商標)及びNFC(Near Field Communication)といった公知の無線通信規格を適用できる。 The input unit 110 may be arranged outside the motor drive device 150. For example, in the case of an air conditioner, if the motor drive device 150 is arranged inside the outdoor unit, the motor drive device 150 can be operated via communication between the indoor unit and the outdoor unit by operating the controller of the indoor unit. The target value may be set in. Further, the connection between the control unit 90 and the input unit 110 is not limited to the wired connection, and may be a wireless connection using infrared communication or wireless communication. Known wireless communication standards such as Wi-Fi (registered trademark), Wi-SUN (Wireless Smart Utility Network), Bluetooth (registered trademark) and NFC (Near Field Communication) can be applied to wireless communication.
 また、上記の説明では、温度センサ121で測定した実測温度に基づいて機械式リレー61,62,63の切替を抑制しているが、赤外線センサを用いて室内の温度分布を測定し、メッシュ状に分割された各エリアうち、「目標設定温度+温度幅上限値」以下、又は「目標設定温度-温度幅下限値」以上であるエリアが占める割合に基づいて機械式リレー61,62,63の切替を制御してもよい。また、機械式リレー61,62,63の切替の判断を湿度センサで測定した湿度に基づいて制御してもよい。さらに、空気調和機の圧縮機に用いられる冷媒の圧力を測定する圧力センサ、又は冷媒の濃度を測定するガスセンサの測定値に基づいて、機械式リレー61,62,63の切替を抑制してもよい。 Further, in the above description, the switching of the mechanical relays 61, 62, 63 is suppressed based on the measured temperature measured by the temperature sensor 121, but the temperature distribution in the room is measured by using the infrared sensor, and the temperature distribution is measured in a mesh shape. Of the areas divided into, the mechanical relays 61, 62, 63 are occupied based on the ratio of the area equal to or less than "target set temperature + temperature range upper limit" or "target set temperature-temperature range lower limit" or more. Switching may be controlled. Further, the determination of switching of the mechanical relays 61, 62, 63 may be controlled based on the humidity measured by the humidity sensor. Further, even if the switching of the mechanical relays 61, 62, 63 is suppressed based on the measured values of the pressure sensor that measures the pressure of the refrigerant used in the compressor of the air conditioner or the gas sensor that measures the concentration of the refrigerant. good.
実施の形態4.
 図8は、実施の形態4に係る電動機駆動装置が電動機をスター結線で駆動している状態を示す図である。実施の形態4に係る電動機駆動装置150は、電流検出部130を備える点で、実施の形態1に係る電動機駆動装置150と相違する。電流検出部130は、電動機70のU相、V相及びW相の3相の電流を測定し、電流値を記憶部91に記憶させる。
Embodiment 4.
FIG. 8 is a diagram showing a state in which the motor drive device according to the fourth embodiment drives the motor with a star connection. The motor drive device 150 according to the fourth embodiment is different from the motor drive device 150 according to the first embodiment in that it includes a current detection unit 130. The current detection unit 130 measures the currents of the three phases of the U-phase, V-phase, and W-phase of the motor 70, and stores the current value in the storage unit 91.
 図9は、実施の形態4に係る電動機駆動装置の電流検出値を用いた切替制御の流れを示すフローチャートである。定常運転開始後、電動機70の負荷強度が変化して電動機70の固定子巻線の結線状態を切り替える必要が生じた場合に、制御部90は図3に示した処理に加え、図9の処理を行う。ステップS41において、制御部90は、記憶部91に記憶されている切替目標電流値、切替電流上限値、切替電流下限値及び検出電流値を読み出す。ステップS42において、制御部90は、記憶部100に予め記憶されている切替許可フラグを取得し、切替許可フラグが「有効」であるか否かを判断する。 FIG. 9 is a flowchart showing the flow of switching control using the current detection value of the motor drive device according to the fourth embodiment. After the start of steady operation, when the load strength of the motor 70 changes and it becomes necessary to switch the connection state of the stator windings of the motor 70, the control unit 90 performs the process of FIG. 9 in addition to the process shown in FIG. I do. In step S41, the control unit 90 reads out the switching target current value, the switching current upper limit value, the switching current lower limit value, and the detected current value stored in the storage unit 91. In step S42, the control unit 90 acquires the switching permission flag stored in advance in the storage unit 100, and determines whether or not the switching permission flag is “valid”.
 切替許可フラグが「無効」である場合、ステップS42においてNoとなり、処理を終了する。切替許可フラグが「有効」である場合、ステップS42においてYesとなり、処理はステップS43に進む。ステップS43において、制御部90は、検出電流値が「切替目標電流値+切替電流上限値」を超えるか又は検出電流値が「切替目標電流値-切替電流下限値」未満であるか否かを判断する。検出電流値が「切替目標電流値+切替電流上限値」以下であるか又は検出電流値が「切替目標電流値-切替電流下限値」以上である場合、ステップS43でNoとなり、処理はステップS46に進む。検出電流値が「切替目標電流値+切替電流上限値」を超えるか又は検出電流値が「切替目標電流値-切替電流下限値」未満である場合、ステップS43でYesとなり、処理はステップS44に進む。 If the switching permission flag is "invalid", the result is No in step S42, and the process ends. When the switching permission flag is "valid", Yes is set in step S42, and the process proceeds to step S43. In step S43, the control unit 90 determines whether the detected current value exceeds the "switching target current value + switching current upper limit value" or the detected current value is less than the "switching target current value-switching current lower limit value". to decide. If the detected current value is equal to or less than "switching target current value + switching current upper limit value" or the detected current value is equal to or greater than "switching target current value-switching current lower limit value", No is obtained in step S43, and the process is performed in step S46. Proceed to. If the detected current value exceeds the "switching target current value + switching current upper limit value" or the detected current value is less than the "switching target current value-switching current lower limit value", Yes in step S43, and the process proceeds to step S44. move on.
 ステップS44及びステップS45の処理は、図3に示したステップS14及びステップS15の処理と同様である。 The processing of steps S44 and S45 is the same as the processing of steps S14 and S15 shown in FIG.
 ステップS46において、制御部90は、切替許可フラグを「無効」とする。 In step S46, the control unit 90 sets the switching permission flag to "invalid".
 実施の形態4に係る電動機駆動装置150は、検出電流値が「切替目標電流値+切替電流上限値」以下又は「切替目標電流値-切替電流下限値」以上である場合に、機械式リレー61,62,63の切替は行わない。このため、実施の形態4に係る電動機駆動装置150は、機械式リレー61,62,63の切替回数を抑制し、機械式リレー61,62,63の故障を抑制することができる。 The motor drive device 150 according to the fourth embodiment is a mechanical relay 61 when the detected current value is "switching target current value + switching current upper limit value" or less or "switching target current value-switching current lower limit value" or more. , 62, 63 are not switched. Therefore, the motor drive device 150 according to the fourth embodiment can suppress the number of times the mechanical relays 61, 62, 63 are switched, and can suppress the failure of the mechanical relays 61, 62, 63.
 なお、電流検出部130は、2相の電流値を検出して、負荷電流がほぼゼロになるゼロクロス点で切替部60を切替えてもよいし、1相の電流値のみを検出して切替部60に流れる電流が少ない時点を推定して切替えてもよい。 The current detection unit 130 may detect the two-phase current values and switch the switching unit 60 at the zero crossing point where the load current becomes almost zero, or detect only the one-phase current value and switch the switching unit. You may switch by estimating the time point when the current flowing through 60 is small.
実施の形態5.
 図10は、実施の形態5に係る空気調和機の構成を示す図である。実施の形態5に係る空気調和機200は、実施の形態1から実施の形態4のいずれかに係る電動機駆動装置150を備える。実施の形態5の空気調和機200は、電動機70を内蔵した圧縮機101、四方弁102、室外熱交換器103、膨張弁104、室内熱交換器105が冷媒配管106を介して取り付けられた冷凍サイクルを有して、セパレート形空気調和機を構成している。
Embodiment 5.
FIG. 10 is a diagram showing the configuration of the air conditioner according to the fifth embodiment. The air conditioner 200 according to the fifth embodiment includes the motor drive device 150 according to any one of the first to fourth embodiments. The air conditioner 200 of the fifth embodiment is a refrigerating machine in which a compressor 101 having a built-in electric motor 70, a four-way valve 102, an outdoor heat exchanger 103, an expansion valve 104, and an indoor heat exchanger 105 are attached via a refrigerant pipe 106. It has a cycle and constitutes a separate type air conditioner.
 圧縮機101内部には冷媒を圧縮する圧縮機構107と、圧縮機構107を動作させる電動機70とが設けられ、圧縮機101から室外熱交換器103と室内熱交換器105間を冷媒が循環することで冷暖房等を行う冷凍サイクルが構成されている。なお、図10に示した構成は、空気調和機だけでなく、冷蔵庫、冷凍庫等の冷凍サイクルを備える冷凍サイクル装置に適用可能である。 A compression mechanism 107 for compressing the refrigerant and an electric motor 70 for operating the compression mechanism 107 are provided inside the compressor 101, and the refrigerant circulates from the compressor 101 between the outdoor heat exchanger 103 and the indoor heat exchanger 105. A refrigeration cycle is configured to perform heating and cooling. The configuration shown in FIG. 10 can be applied not only to an air conditioner but also to a refrigerating cycle device including a refrigerating cycle such as a refrigerator and a freezer.
 上記の実施の形態1から実施の形態4に係る電動機駆動装置150の制御部90の機能は、処理回路により実現される。処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する処理装置であってもよい。制御装置には、マイクロコントローラを適用可能であるが、これに限定されない。 The function of the control unit 90 of the motor drive device 150 according to the first to fourth embodiments is realized by the processing circuit. The processing circuit may be dedicated hardware or a processing device that executes a program stored in the storage device. A microcontroller can be applied to the control device, but the controller is not limited to this.
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図11は、実施の形態1から実施の形態4のいずれかに係る電動機駆動装置の制御部の機能をハードウェアで実現した構成を示す図である。処理回路39には、制御部90の機能を実現する論理回路39aが組み込まれている。 If the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application-specific integrated circuit, a field programmable gate array, or a combination thereof. Applies to. FIG. 11 is a diagram showing a configuration in which the function of the control unit of the motor drive device according to any one of the first to fourth embodiments is realized by hardware. The processing circuit 39 incorporates a logic circuit 39a that realizes the function of the control unit 90.
 処理回路39が処理装置の場合、制御部90の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit 39 is a processing device, the function of the control unit 90 is realized by software, firmware, or a combination of software and firmware.
 図12は、実施の形態1から実施の形態4のいずれかに係る電動機駆動装置の制御部をソフトウェアで実現した構成を示す図である。処理回路39は、プログラム39bを実行するプロセッサ391と、プロセッサ391がワークエリアに用いるランダムアクセスメモリ392と、プログラム39bを記憶する記憶装置393を有する。記憶装置393に記憶されているプログラム39bをプロセッサ391がランダムアクセスメモリ392上に展開し、実行することにより、制御部90の機能が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置393に格納される。プロセッサ391は、中央処理装置を例示できるがこれに限定はされない。記憶装置393は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、又はEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった半導体メモリを適用できる。半導体メモリは、不揮発性メモリでもよいし揮発性メモリでもよい。また記憶装置393は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disc)を適用できる。なお、プロセッサ391は、演算結果といったデータを記憶装置393に出力して記憶させてもよいし、ランダムアクセスメモリ392を介して不図示の補助記憶装置に当該データを記憶させてもよい。 FIG. 12 is a diagram showing a configuration in which the control unit of the motor drive device according to any one of the first to fourth embodiments is realized by software. The processing circuit 39 includes a processor 391 that executes the program 39b, a random access memory 392 that the processor 391 uses for the work area, and a storage device 393 that stores the program 39b. The function of the control unit 90 is realized by the processor 391 expanding and executing the program 39b stored in the storage device 393 on the random access memory 392. The software or firmware is written in a programming language and stored in a storage device 393. Processor 391 can exemplify a central processing unit, but is not limited thereto. The storage device 393 applies a semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). can. The semiconductor memory may be a non-volatile memory or a volatile memory. In addition to the semiconductor memory, the storage device 393 can be applied with a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc). The processor 391 may output data such as a calculation result to the storage device 393 and store the data, or may store the data in an auxiliary storage device (not shown) via the random access memory 392.
 処理回路39は、記憶装置393に記憶されたプログラム39bを読み出して実行することにより、制御部90の機能を実現する。プログラム39bは、制御部90の機能を実現する手順及び方法をコンピュータに実行させるものであるとも言える。 The processing circuit 39 realizes the function of the control unit 90 by reading and executing the program 39b stored in the storage device 393. It can be said that the program 39b causes the computer to execute the procedure and the method for realizing the function of the control unit 90.
 なお、処理回路39は、制御部90の機能の一部を専用のハードウェアで実現し、制御部90の機能の一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that the processing circuit 39 may realize a part of the functions of the control unit 90 with dedicated hardware and a part of the functions of the control unit 90 with software or firmware.
 このように、処理回路39は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 39 can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example of the content, can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.
 10 交流電源、20 リアクトル、30 整流部、31,32,33,34 整流素子、39 処理回路、39a 論理回路、39b プログラム、40 コンデンサ、50 インバータ、51,52,53,54,55,56 スイッチング素子、60 切替部、61,62,63 機械式リレー、70 電動機、80 検出部、81 電圧検出部、82,130 電流検出部、90 制御部、91,100 記憶部、101 圧縮機、102 四方弁、103 室外熱交換器、104 膨張弁、105 室内熱交換器、106 冷媒配管、107 圧縮機構、110 入力部、111 表示部、112 操作部、120 センサ部、121 温度センサ、140 クロック部、150 電動機駆動装置、200 空気調和機、391 プロセッサ、392 ランダムアクセスメモリ、393 記憶装置。 10 AC power supply, 20 reactor, 30 rectifier, 31, 32, 33, 34 rectifier element, 39 processing circuit, 39a logic circuit, 39b program, 40 capacitor, 50 inverter, 51, 52, 53, 54, 55, 56 switching Element, 60 switching unit, 61, 62, 63 mechanical relay, 70 motor, 80 detection unit, 81 voltage detection unit, 82, 130 current detection unit, 90 control unit, 91, 100 storage unit, 101 compressor, 102 squares Valve, 103 outdoor heat exchanger, 104 expansion valve, 105 indoor heat exchanger, 106 refrigerant piping, 107 compression mechanism, 110 input unit, 111 display unit, 112 operation unit, 120 sensor unit, 121 temperature sensor, 140 clock unit, 150 motor drive, 200 air conditioner, 391 processor, 392 random access memory, 393 storage device.

Claims (6)

  1.  電動機の固定子巻線の結線状態をスター結線及びデルタ結線のいずれにするかを切り替える複数の機械式リレーを備える切替部と、
     前記電動機に駆動電力を印加するインバータと、
     前記切替部を制御する制御部とを有し、
     前記制御部は、前記切替部によって前記結線状態が切り替えられた回数を示す累積切替回数が、前記機械式リレーの電気的な開閉動作が正常に行われることが保証されなくなる切替回数である切替寿命回数以上となったら、前記切替部に、前記結線状態の切替を停止させる電動機駆動装置。
    A switching unit equipped with a plurality of mechanical relays for switching the connection state of the stator windings of the motor to either star connection or delta connection, and
    An inverter that applies drive power to the motor and
    It has a control unit that controls the switching unit.
    In the control unit, the cumulative number of times of switching indicating the number of times the connection state is switched by the switching unit is the number of times of switching in which the electrical opening / closing operation of the mechanical relay is not guaranteed to be performed normally. An electric motor drive device that stops the switching of the connection state at the switching unit when the number of times is exceeded.
  2.  前記累積切替回数が、前記機械式リレーの設計上の切替回数の上限を示す切替上限回数を超えたら、前記切替部に、前記結線状態の切替を停止させる請求項1に記載の電動機駆動装置。 The motor drive device according to claim 1, wherein when the cumulative number of switching times exceeds the upper limit of the number of times of switching in the design of the mechanical relay, the switching unit stops the switching of the connection state.
  3.  前記電動機の初回起動時からの経過時間を計測するクロック部を有し、
     前記制御部は、前記経過時間が設定時間以上となったら、前記切替部に、前記結線状態の切替を停止させる請求項1又は2に記載の電動機駆動装置。
    It has a clock unit that measures the elapsed time from the first start of the motor.
    The motor drive device according to claim 1 or 2, wherein the control unit causes the switching unit to stop switching of the connection state when the elapsed time exceeds the set time.
  4.  目標設定値の入力操作を受け付ける入力部と、
     空気の状態を測定するセンサ部とを有し、
     前記制御部は、前記センサ部による測定値が前記目標設定値以上となったら、前記切替部に、前記結線状態の切替を停止させる請求項1又は2に記載の電動機駆動装置。
    An input unit that accepts input operations for target setting values,
    It has a sensor unit that measures the state of air, and has a sensor unit.
    The motor drive device according to claim 1 or 2, wherein the control unit causes the switching unit to stop switching of the connection state when the value measured by the sensor unit becomes equal to or higher than the target set value.
  5.  前記切替部を通じて前記電動機に流れる電流を検出する電流検出部を有し、
     前記制御部は、前記切替部を通じて前記電動機に流れる電流の電流零点において前記結線状態を切り替える請求項1又は2に記載の電動機駆動装置。
    It has a current detection unit that detects the current flowing through the motor through the switching unit.
    The motor drive device according to claim 1 or 2, wherein the control unit switches the connection state at the current zero point of the current flowing through the motor through the switching unit.
  6.  請求項1から5のいずれか1項に記載の電動機駆動装置を備える空気調和機。 An air conditioner including the motor drive device according to any one of claims 1 to 5.
PCT/JP2020/006551 2020-02-19 2020-02-19 Electric motor drive device and air conditioner WO2021166124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006551 WO2021166124A1 (en) 2020-02-19 2020-02-19 Electric motor drive device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006551 WO2021166124A1 (en) 2020-02-19 2020-02-19 Electric motor drive device and air conditioner

Publications (1)

Publication Number Publication Date
WO2021166124A1 true WO2021166124A1 (en) 2021-08-26

Family

ID=77390846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006551 WO2021166124A1 (en) 2020-02-19 2020-02-19 Electric motor drive device and air conditioner

Country Status (1)

Country Link
WO (1) WO2021166124A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110839A (en) * 2011-11-21 2013-06-06 Toyota Motor Corp Inverter for electric vehicle
WO2019021448A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110839A (en) * 2011-11-21 2013-06-06 Toyota Motor Corp Inverter for electric vehicle
WO2019021448A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
CN111033143B (en) Air conditioner
JP2009216324A (en) Air conditioner
KR20190042705A (en) Driving device, air conditioner and driving method of electric motor
WO2010119620A1 (en) Power circuit, and computer-readable recording medium containing a control program for power circuits
CN103326665A (en) Motor driving device, air-conditioner possessing the motor driving device and motor driving method
US11368118B2 (en) Motor driving device and air conditioner
KR20130106292A (en) Motor control device, motor drive device using the same, compressor, refrigeration device, air conditioner, and motor control method
EP4030615B1 (en) Motor driving device
JP6983697B2 (en) Air conditioner for railway vehicles
CN111033140B (en) Air conditioner
EP3917000A1 (en) Rotary machine control device, refrigerant compression apparatus, and air-conditioner
WO2021166124A1 (en) Electric motor drive device and air conditioner
WO2021090414A1 (en) Air conditioning device
JP6235381B2 (en) Compressor
JP7224524B2 (en) air conditioner
JP4623220B2 (en) Power circuit
JP7270841B2 (en) Motor drive device and air conditioner
JP4859483B2 (en) Air conditioner
JP6949253B2 (en) Refrigeration cycle equipment
US11828512B2 (en) Motor driving device and refrigeration cycle apparatus
JP7471505B2 (en) AC/DC converters, motor drives and refrigeration cycle equipment
WO2023175893A1 (en) Drive device and air conditioning device
WO2020208722A1 (en) Outdoor unit of air conditioner
JP4015665B2 (en) Air conditioner
WO2019155620A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP