WO2018131084A1 - Pll circuit - Google Patents

Pll circuit Download PDF

Info

Publication number
WO2018131084A1
WO2018131084A1 PCT/JP2017/000541 JP2017000541W WO2018131084A1 WO 2018131084 A1 WO2018131084 A1 WO 2018131084A1 JP 2017000541 W JP2017000541 W JP 2017000541W WO 2018131084 A1 WO2018131084 A1 WO 2018131084A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
output
oscillation
outputs
Prior art date
Application number
PCT/JP2017/000541
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 柳原
恒次 堤
下沢 充弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/000541 priority Critical patent/WO2018131084A1/en
Priority to JP2018561128A priority patent/JP6556383B2/en
Publication of WO2018131084A1 publication Critical patent/WO2018131084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division

Definitions

  • the present invention relates to a PLL (Phase Locked Loop) circuit.
  • This PLL connects the control terminal of the VCO (Voltage Controlled Oscillator) with a DAC (Digital-to-Analog-Converter) through a switch, turns on the switch at a point where the frequency changes sharply, and connects the DAC to the control terminal of the VCO. By applying this output, the time until the PLL outputs the correct frequency again is shortened.
  • VCO Voltage Controlled Oscillator
  • DAC Digital-to-Analog-Converter
  • the PLL circuit of the present invention compares a frequency divider that divides an oscillation signal whose frequency changes with time, a reference signal and an oscillation signal that is divided by the frequency divider, and outputs a signal corresponding to the difference.
  • the frequency comparator and the phase filter output the high-frequency component of the signal output from the phase filter, a loop filter that outputs the signal from which the high-frequency component is blocked, and the oscillation signal is changed according to the output signal of the loop filter.
  • An output oscillator a digital signal processor for obtaining the frequency of the oscillation signal, a parameter control circuit for obtaining a control parameter based on the frequency of the oscillation signal obtained by the digital signal processor, and an analog signal to the loop filter or the oscillator according to the control parameter And a digital-to-analog converter that corrects the time variation of the oscillation frequency of the oscillator.
  • an appropriate applied parameter can be obtained dynamically in accordance with a change in circuit characteristics due to a temperature change or aged deterioration.
  • FIG. 1 is a configuration diagram illustrating a configuration example of a PLL circuit according to a first embodiment of the present invention. It is a conceptual diagram showing the relationship between the applied voltage of DAC12 which concerns on Embodiment 1 of this invention, and convergence time. It is a block diagram which shows the modification of the PLL circuit of Embodiment 1 of this invention. It is a block diagram which shows one structural example of the PLL circuit which concerns on Embodiment 2 of this invention. It is a block diagram which shows the modification of the PLL circuit which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a block diagram showing a configuration example of a PLL circuit according to Embodiment 1 of the present invention.
  • the PLL circuit includes a PFD (Phase Frequency Detector) 1, a CP (Charge Pump) 2, an LF (Loop Filter) 3, a VCO 4, a frequency divider 5, a ⁇ modulator 6, a chirp generation circuit 7, a parameter control circuit 8, a frequency A conversion circuit 9, an ADC (Analog to Digital Converter) 10, a DSP (Digital Signal Processor) 11, a DAC 12, and a switch 13 are provided.
  • PFD1 (an example of a phase frequency comparator) is a PFD that compares the phases of the reference signal and the output signal of the frequency divider 5 and outputs a signal corresponding to the phase difference to CP2.
  • the reference signal is supplied from a signal source such as a crystal oscillator.
  • CP2 is a charge pump circuit that converts the output signal of PFD1 into a current and outputs the converted current to LF3.
  • LF3 (an example of a loop filter) is an LF that blocks a high-frequency component included in the current converted by CP2, and outputs the blocked signal to the VCO 4.
  • VCO 4 (an example of an oscillator) is a VCO that changes the oscillation frequency in accordance with a signal output by LF 3.
  • the frequency divider 5 (an example of a frequency divider) divides the oscillation signal output from the VCO 4 in accordance with the frequency division ratio setting signal output from the ⁇ modulator 6 and supplies the divided signal to the PFD 1 and the ⁇ modulator 6. This is the output frequency divider.
  • the ⁇ modulator 6 (an example of the ⁇ modulator) operates using the output signal of the frequency divider 5 as a clock, generates a frequency division ratio setting signal according to the output signal of the chirp generation circuit 7, and generates the generated frequency division ratio This is a ⁇ modulator that outputs a setting signal to the frequency divider 5.
  • the chirp generation circuit 7 outputs a chirp signal linearly changing with respect to time to the ⁇ modulator 6 corresponding to the frequency division ratio of the PLL circuit, and at the timing when the frequency of the PLL circuit changes sharply.
  • This is a circuit that outputs a signal to the parameter control circuit 8.
  • the chirp generation circuit 7 is a digital circuit, and an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a microcomputer, or the like is used.
  • the parameter control circuit 8 is a parameter control circuit 8 that generates control parameters for controlling the DAC 12 and the switch 13 and outputs the generated parameters to the DAC 12 and the switch 13.
  • the parameter control circuit 8 outputs a signal for controlling ON / OFF of the switch 13 in synchronization with a signal indicating a timing at which the frequency of the PLL circuit output from the chirp generation circuit 7 changes sharply.
  • the parameter control circuit 8 outputs a control signal indicating the output voltage of the DAC 12 to the DAC 12.
  • the parameter control circuit 8 is a digital circuit, and an ASIC, FPGA, microcomputer, or the like is used.
  • the frequency conversion circuit 9 is a frequency conversion circuit that converts the frequency of the output signal of the VCO 4 and outputs the frequency-converted signal to the ADC 10.
  • the frequency conversion circuit 9 includes a frequency divider 21 that divides the reference signal, a frequency divider 22 that divides the output signal of the VCO, a signal that the frequency divider 21 divides, and a signal that the frequency divider 22 divides. Is provided.
  • the frequency dividing ratio of the frequency divider 21 may be 1. In this case, the frequency divider 21 may be deleted and the reference signal may be input directly to the mixer 23.
  • the ADC 10 is an ADC that converts the analog signal frequency-converted by the frequency conversion circuit 9 into a digital signal and outputs the converted digital signal to the DSP 11.
  • the DSP 11 (an example of a digital signal processor) obtains the instantaneous frequency of the output signal of the VCO 4 from the digital signal converted by the ADC 10, and an error between the desired frequency and the obtained instantaneous frequency in the chirp signal (modulated wave) output from the VCO 4.
  • a method for obtaining the instantaneous frequency for example, there is a method of orthogonally demodulating an input signal, obtaining an instantaneous phase, and calculating the instantaneous frequency from the instantaneous phase.
  • the desired frequency is a frequency corresponding to the chirp signal generated by the chirp generation circuit 7, that is, a frequency obtained by multiplying the frequency of the reference signal by the frequency division ratio indicated by the chirp signal.
  • the convergence time is the time until the error between the desired frequency (desired chirp signal) and the actual frequency (actual chirp signal) falls within a predetermined value.
  • the DAC 12 (an example of a digital-analog converter) is a DAC that generates an analog signal in accordance with a control signal from the parameter control circuit 8 and outputs the generated analog signal to the switch 13.
  • the switch 13 (an example of a switch) is a switch that switches between ON and OFF according to the control signal of the parameter control circuit 8 and controls whether or not the output signal of the DAC 12 is transmitted to the VCO 4.
  • the chirp generation circuit 7 generates a signal proportional to a desired modulation wave and outputs it to the ⁇ modulator 6. For example, if the desired modulation wave is a sawtooth wave, the chirp generation circuit 7 generates a sawtooth wave.
  • the chirp generation circuit 7 outputs a pulse signal that rises at a timing when the output frequency of the PLL circuit changes sharply to the parameter control circuit 8. This pulse signal is called a frequency jump signal.
  • the frequency jump signal is a 1-bit digital signal, and the rising timing means the timing when the output frequency of the present PLL circuit changes sharply.
  • the ⁇ modulator 6 applies ⁇ modulation to a signal proportional to the desired modulation wave generated by the chirp generation circuit 7 and outputs the result to the frequency divider 5.
  • the signal proportional to the desired modulation wave generated by the chirp generation circuit 7 includes a decimal number, but the frequency divider 5 realizes a fractional division ratio by converting it into an integer with a ⁇ modulator and performing ⁇ modulation.
  • the frequency divider 5 divides the signal of the VCO 4 in accordance with the frequency division ratio signal output from the ⁇ modulator 6.
  • PFD 1 outputs a signal corresponding to the phase difference between the reference signal and the output of frequency divider 5 to CP 2.
  • CP2 outputs a current corresponding to the output of PFD1 to LF3.
  • LF3 cuts off the high frequency component of the signal output from CP2, and outputs the signal that cut off the high frequency component to VCO4.
  • the VCO 4 outputs an oscillation signal according to the applied control voltage.
  • the frequency conversion circuit 9 converts the frequency of the input VCO 4 signal and outputs it to the ADC 10.
  • the ADC 10 samples the input at regular intervals, converts it to a digital signal, and outputs it to the DSP 11.
  • the DSP 11 orthogonally demodulates the signal output from the ADC 10 to obtain an instantaneous phase, and calculates an instantaneous frequency from the instantaneous phase.
  • the DSP 11 calculates an error between a desired frequency and an actual frequency in the modulated wave.
  • the PLL circuit cannot follow the steep change in frequency at the point where the frequency of the modulation wave changes sharply, and an error between the desired frequency and the actual frequency becomes large.
  • the DSP 11 compares the time change of the detected actual frequency of the PLL with the time change of the desired frequency, calculates the convergence time until the error between the two becomes a predetermined value or less, and sets the convergence time to the parameter control circuit 8. Output to.
  • the DSP 11 stores parameters such as the slope and length of the chirp signal necessary for obtaining the desired frequency in an internal memory, calculates the desired frequency with reference to these parameters, and calculates the actual frequency. Used to calculate frequency error. Alternatively, the chirp signal itself may be stored.
  • the parameter control circuit 8 obtains the output voltage of the DAC 12 from the convergence time output from the DSP 11 and outputs the obtained output voltage to the DAC 12.
  • the parameter control circuit 8 turns on the switch 13 in synchronization with the frequency jump signal output from the chirp generation circuit 7 and turns off the switch 13 when the ON time of the switch 13 obtained from the convergence time elapses.
  • the ON time is a time during which the switch 13 is ON.
  • the signal output from the parameter control circuit 8 to the switch 13 is a 1-bit digital signal, which means “1” means switch ON and “0” means switch OFF.
  • the parameter control circuit 8 may calculate the set time of the DAC 12 and the ON time of the switch 13 from the convergence time, or a table showing the relationship between the convergence time, the set time of the DAC 12 and the ON time of the switch 13. May be stored in the memory, and the set time of the DAC 12 and the ON time of the switch 13 may be obtained from the table.
  • the DAC 12 sets the output voltage according to the control signal output from the parameter control circuit 8 and outputs the set voltage to the switch 13.
  • the switch 13 controls ON / OFF according to the control signal output from the parameter control circuit 8, and outputs the output voltage of the DAC 12 to the VCO 4 while the switch 13 is ON. When it is OFF, the output signal of the DAC 12 is blocked.
  • VCO 4 outputs an oscillation frequency according to a composite voltage of the output voltage of LF 4 and the output voltage of DAC 12 while switch 13 is ON.
  • the DSP 11 measures the convergence time until the error between the desired frequency and the actual frequency is equal to or less than a predetermined value, and converges to the parameter control circuit 8 in the same manner as described above. Output time.
  • the parameter control circuit 8 changes two parameters of the output voltage of the DAC 12 and the ON time of the switch 13 according to the convergence time.
  • the parameter control circuit 8 outputs the output voltage of the DAC 12 to the DAC 12 as needed.
  • the parameter control circuit 8 turns on the switch 13 in synchronization with the next frequency jump signal, and turns off the switch 13 when the ON time of the switch 13 elapses.
  • the convergence time is measured again by the DSP 11, and the parameter control circuit 8 changes two parameters of the output voltage of the DAC 12 and the ON time of the switch 13 according to the convergence time.
  • the parameter control circuit 8 searches for a parameter that minimizes the convergence time.
  • FIG. 2 is a conceptual diagram showing the relationship between the voltage applied to DAC 12 and the convergence time according to Embodiment 1 of the present invention.
  • FIG. 2 when the application amount from the DAC 12 is too large (see FIG. 2A) and too small (see FIG. 2C), the application amount by the DAC 12 is appropriate (FIG. 2).
  • the convergence time becomes longer. That is, by observing the convergence time and searching for a parameter that minimizes the convergence time, an appropriate application parameter can be obtained. For example, the following two methods can be used to search for a parameter that minimizes the convergence time.
  • the first method sweeps two parameters, the output voltage of the DAC 12 and the ON time of the switch 13, over the entire range, stores each convergence time, and creates a table of convergence times corresponding to the parameter values. It is a technique.
  • the parameter control circuit 8 employs a parameter value that minimizes the convergence time, and generates a modulated wave.
  • the second method is the gradient descent method, which is a minimization algorithm.
  • the parameter control circuit 8 calculates the gradient from the change in convergence time with respect to the change in each parameter, and reaches the minimum value by changing the parameter so as to decrease the gradient.
  • the parameter control circuit 8 employs the parameter value and generates a modulated wave.
  • the convergence time is fed back and the applied voltage and the applied time are adjusted, so that it is dynamically appropriate according to changes in circuit characteristics due to temperature changes and aging deterioration. There is an effect that the applied parameter can be obtained.
  • By performing feedback so as to minimize the convergence time it is possible to minimize the invalid time that deviates from the desired frequency and to increase the proportion of the time that is effective as a signal.
  • the PLL circuit of the first embodiment may be configured such that the output of the VCO 4 is input to the frequency divider and the output of the frequency divider is input to the frequency divider 5 and the frequency divider 22.
  • FIG. 3 is a configuration diagram showing a modification of the PLL circuit according to the first embodiment of the present invention.
  • the operating frequency of the frequency divider 5 and the frequency divider 22 is lowered, so that the frequency division ratio is also reduced. Since the frequency divider has a feature that the power consumption increases as it operates at a higher frequency, providing the frequency divider 31 (an example of a second frequency divider) reduces the overall power consumption. In addition, since the frequency dividing ratio of the frequency divider 5 and the frequency divider 22 is reduced, the overall circuit scale is reduced by providing the frequency divider 31.
  • the parameter control circuit 8 controls whether or not the output impedance of the DAC 12 is set to high impedance instead of the switch 13.
  • the parameter control circuit 8 controls the time waveform of the output voltage of the DAC 12. At this time, since the time waveform needs to be synchronized with the frequency jump signal output from the chirp generation circuit 7, the parameter control circuit 8 controls the output voltage of the DAC 12 in synchronization with the frequency jump signal.
  • FIG. 4 is a block diagram showing a configuration example of a PLL circuit according to Embodiment 2 of the present invention.
  • the DAC 12 and the switch 13 of the first embodiment are deleted, the newly added CP41 (an example of a charge pump circuit) is connected to the output terminal of CP2, and the parameter control circuit 8
  • the CP 41 is controlled.
  • the difference from the first embodiment is that, while the first embodiment uses the DAC 12 and the switch 13 to apply a voltage to the output terminal of the LF3, the second embodiment has the CP41 connected to the input terminal of the LF3. Applying current.
  • CP 41 is a charge pump circuit that applies a current to LF 3 in accordance with a control signal from parameter control circuit 8.
  • the parameter control circuit 8 obtains the set current of the CP 41 and the ON time of the CP 41 from the convergence time output from the DSP 11.
  • the parameter control circuit 8 outputs a set current to the CP 41 as needed, and outputs a control signal for turning on the CP 41 in synchronization with the frequency jump signal output from the chirp generation circuit 7. Then, the parameter control circuit 8 outputs a signal for turning off the CP 41 when the ON time of the CP 41 elapses.
  • the control signal output by the parameter control circuit 8 is a 1-bit digital signal. When “1”, it means ON, and when it is “0”, it means OFF.
  • the parameter control circuit 8 searches for the output current and ON time of the CP 41 so as to minimize the convergence time measured by the DSP 11 in the same manner as in the first embodiment, and operates using the parameters obtained thereafter. To do.
  • CP 41 applies a current to LF 3 for a predetermined time according to the control signal of parameter control circuit 8. In the point where the frequency changes sharply, the CP 41 injects an appropriate charge into the LF 3 to shorten the time until the correct frequency is output again.
  • LF3 cuts off the high frequency component of the output current of CP2 and the output current of CP41 and outputs it to VCO4 during the ON time.
  • VCO 4 controls the oscillation frequency according to the output signal of LF 3 and outputs an oscillation signal.
  • the convergence time is fed back and the applied current and the applied time of the CP 41 are adjusted. Therefore, according to the change in the circuit characteristics due to the temperature change and the aging deterioration, There is an effect that an appropriate applied parameter can be obtained.
  • an active filter is used as the loop filter, the output voltage of the loop filter cannot be directly applied from the outside to obtain a desired value, and the first embodiment cannot be used.
  • the loop filter Since charges are injected into the input, it can be used in an active filter.
  • the frequency divider 31 is loaded on the feedback path of the VCO 4, the oscillation signal of the VCO 4 is output to the frequency divider 31, and the signal divided by the frequency divider 31 is divided. 5 may be output.
  • FIG. 5 is a block diagram showing a modification of the PLL circuit according to Embodiment 2 of the present invention.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

With a conventional PLL circuit, circuit characteristics change dynamically due to temperature changes and degradation over time, and therefore there was the problem that it was difficult to find suitable application parameters for DAC. This PLL circuit comprises: frequency dividers for dividing oscillation signals; a phase frequency comparator for comparing a reference signal with oscillation signals divided by the frequency dividers, and outputting signals according to the difference thereof; a loop filter that blocks high frequency components of signals output by the phase frequency comparator, and outputs signals for which the high frequency components are blocked; an oscillator that changes the oscillating frequency according to the output signals of the loop filter, and outputs oscillation signals; a digital signal processor for finding the frequency of the oscillation signals; a parameter control circuit for finding control parameters on the basis of the frequency of the oscillation signal found by the digital signal processor; and a digital analog converter that outputs analog signals to the loop filter or the oscillator according to the control parameters, and corrects the time change of the oscillating frequency.

Description

PLL回路PLL circuit
 この発明は、PLL(Phase Locked Loop)回路に関するものである。 The present invention relates to a PLL (Phase Locked Loop) circuit.
 PLLを用いて、周波数がのこぎり波のように急峻に変化する信号を出力する場合、周波数が急峻に変化する点において設定波形にPLLが追従できず、再び正しい周波数を出力するまでに時間がかかるという問題がある。これを解決するため、以下の非特許文献に示すPLLが提案されている。このPLLは、VCO(Voltage Controlled Oscillator)の制御端子を、スイッチを介してDAC(Digital to Analog Converter)と接続し、周波数が急峻に変化する点においてスイッチをON状態にし、VCOの制御端子にDACの出力を印加することによって、PLLが再び正しい周波数を出力するまでの時間を短縮している。 When using a PLL to output a signal whose frequency changes steeply like a sawtooth wave, the PLL cannot follow the set waveform at the point where the frequency changes sharply, and it takes time to output the correct frequency again. There is a problem. In order to solve this, PLLs shown in the following non-patent documents have been proposed. This PLL connects the control terminal of the VCO (Voltage Controlled Oscillator) with a DAC (Digital-to-Analog-Converter) through a switch, turns on the switch at a point where the frequency changes sharply, and connects the DAC to the control terminal of the VCO. By applying this output, the time until the PLL outputs the correct frequency again is shortened.
 EUMW2015,WS12: EuMIC_7 - SiGe for mm-Wave and THz ”Concepts for Highly Integrated Automotive Radar Circuits” EUMW2015, WS12: "EuMIC_7"-"SiGe" for "mm-Wave" and "THz" "Concepts" for "Highly" Integrated "Automotive" Radar "Circuits"
 しかし、回路の特性(VCOの制御電圧-周波数特性、やDACの制御コード-出力電圧特性など)のばらつきにより、この手法が正しく動作するための適切な印加パラメータ(印加電圧や印加時間など)は個体ごとに異なり、さらに、温度変化や経年劣化により回路特性が動的に変化するため、適切な印加パラメータを求めることが難しいという課題がある。 However, due to variations in circuit characteristics (VCO control voltage-frequency characteristics, DAC control code-output voltage characteristics, etc.), appropriate application parameters (applied voltage, application time, etc.) for this method to operate correctly are There is a problem in that it is difficult to obtain an appropriate applied parameter because the circuit characteristics dynamically change due to temperature changes and aging deterioration.
 本発明のPLL回路は、周波数が時間変化する発振信号を分周する分周器と、基準信号と分周器が分周した発振信号とを比較し、その差に応じた信号を出力する位相周波数比較器と、位相周波数比較器が出力した信号の高周波成分を遮断し、高周波成分を遮断した信号を出力するループフィルタと、ループフィルタの出力信号にしたがって、発振周波数を変化させ、発振信号を出力する発振器と、発振信号の周波数を求めるデジタルシグナルプロセッサと、デジタルシグナルプロセッサが求めた発振信号の周波数に基づいて制御パラメータを求めるパラメータ制御回路と、制御パラメータにしたがって、ループフィルタまたは発振器にアナログ信号を出力し、発振器の発振周波数の時間変化を補正するデジタルアナログ変換器とを備える。 The PLL circuit of the present invention compares a frequency divider that divides an oscillation signal whose frequency changes with time, a reference signal and an oscillation signal that is divided by the frequency divider, and outputs a signal corresponding to the difference. The frequency comparator and the phase filter output the high-frequency component of the signal output from the phase filter, a loop filter that outputs the signal from which the high-frequency component is blocked, and the oscillation signal is changed according to the output signal of the loop filter. An output oscillator, a digital signal processor for obtaining the frequency of the oscillation signal, a parameter control circuit for obtaining a control parameter based on the frequency of the oscillation signal obtained by the digital signal processor, and an analog signal to the loop filter or the oscillator according to the control parameter And a digital-to-analog converter that corrects the time variation of the oscillation frequency of the oscillator.
 この発明によれば、温度変化や経年劣化による回路特性の変化に応じて、動的に適切な印加パラメータを求めることができるという効果を奏する。 According to the present invention, there is an effect that an appropriate applied parameter can be obtained dynamically in accordance with a change in circuit characteristics due to a temperature change or aged deterioration.
この発明の実施の形態1に係るPLL回路の一構成例を示す構成図である。1 is a configuration diagram illustrating a configuration example of a PLL circuit according to a first embodiment of the present invention. この発明の実施の形態1に係るDAC12の印加電圧と収束時間との関係を表す概念図である。It is a conceptual diagram showing the relationship between the applied voltage of DAC12 which concerns on Embodiment 1 of this invention, and convergence time. この発明の実施の形態1のPLL回路の一変形例を示す構成図である。It is a block diagram which shows the modification of the PLL circuit of Embodiment 1 of this invention. この発明の実施の形態2に係るPLL回路の一構成例を示す構成図である。It is a block diagram which shows one structural example of the PLL circuit which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るPLL回路の変形例を示す構成図である。It is a block diagram which shows the modification of the PLL circuit which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1に係るPLL回路の一構成例を示す構成図である。本PLL回路は、PFD(Phase Frequency Detector)1、CP(Charge Pump)2、LF(Loop Filter)3、VCO4、分周器5、ΔΣ変調器6、チャープ生成回路7、パラメータ制御回路8、周波数変換回路9、ADC(Analog to Digital Conveter)10、DSP(Digital Signal Processor)11、DAC12、スイッチ13を備える。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration example of a PLL circuit according to Embodiment 1 of the present invention. The PLL circuit includes a PFD (Phase Frequency Detector) 1, a CP (Charge Pump) 2, an LF (Loop Filter) 3, a VCO 4, a frequency divider 5, a ΔΣ modulator 6, a chirp generation circuit 7, a parameter control circuit 8, a frequency A conversion circuit 9, an ADC (Analog to Digital Converter) 10, a DSP (Digital Signal Processor) 11, a DAC 12, and a switch 13 are provided.
 PFD1(位相周波数比較器の一例)は、基準信号と分周器5の出力信号との位相を比較し、その位相差に応じた信号をCP2に出力するPFDである。なお、基準信号は、水晶発振器などの信号源から供給される。 PFD1 (an example of a phase frequency comparator) is a PFD that compares the phases of the reference signal and the output signal of the frequency divider 5 and outputs a signal corresponding to the phase difference to CP2. The reference signal is supplied from a signal source such as a crystal oscillator.
 CP2は、PFD1の出力信号を電流に変換し、変換した電流をLF3に出力するチャージポンプ回路である。 CP2 is a charge pump circuit that converts the output signal of PFD1 into a current and outputs the converted current to LF3.
 LF3(ループフィルタの一例)は、CP2が変換した電流に含まれる高周波成分を遮断し、遮断した信号をVCO4に出力するLFである。 LF3 (an example of a loop filter) is an LF that blocks a high-frequency component included in the current converted by CP2, and outputs the blocked signal to the VCO 4.
 VCO4(発振器の一例)は、LF3が出力した信号にしたがって発振周波数を変化させるVCOである。 VCO 4 (an example of an oscillator) is a VCO that changes the oscillation frequency in accordance with a signal output by LF 3.
 分周器5(分周器の一例)は、ΔΣ変調器6が出力する分周比設定信号にしたがってVCO4が出力した発振信号を分周し、分周した信号をPFD1及びΔΣ変調器6に出力する分周器である。 The frequency divider 5 (an example of a frequency divider) divides the oscillation signal output from the VCO 4 in accordance with the frequency division ratio setting signal output from the ΔΣ modulator 6 and supplies the divided signal to the PFD 1 and the ΔΣ modulator 6. This is the output frequency divider.
 ΔΣ変調器6(ΔΣ変調器の一例)は、分周器5の出力信号をクロックとして動作し、チャープ生成回路7の出力信号にしたがって、分周比設定信号を生成し、生成した分周比設定信号を分周器5に出力するΔΣ変調器である。 The ΔΣ modulator 6 (an example of the ΔΣ modulator) operates using the output signal of the frequency divider 5 as a clock, generates a frequency division ratio setting signal according to the output signal of the chirp generation circuit 7, and generates the generated frequency division ratio This is a ΔΣ modulator that outputs a setting signal to the frequency divider 5.
 チャープ生成回路7は、本PLL回路の分周比に対応し、時間に対して直線的に変化するチャープ信号をΔΣ変調器6に出力するとともに、本PLL回路の周波数が急峻に変化するタイミングを示す信号をパラメータ制御回路8に出力する回路である。例えば、チャープ生成回路7は、デジタル回路であり、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、マイコンなどが用いられる。 The chirp generation circuit 7 outputs a chirp signal linearly changing with respect to time to the ΔΣ modulator 6 corresponding to the frequency division ratio of the PLL circuit, and at the timing when the frequency of the PLL circuit changes sharply. This is a circuit that outputs a signal to the parameter control circuit 8. For example, the chirp generation circuit 7 is a digital circuit, and an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a microcomputer, or the like is used.
 パラメータ制御回路8は、DAC12及びスイッチ13を制御する制御パラメータを生成し、生成したパラメータをDAC12及びスイッチ13に出力するパラメータ制御回路8である。パラメータ制御回路8は、チャープ生成回路7が出力する本PLL回路の周波数が急峻に変化するタイミングを示す信号に同期して、スイッチ13のON/OFFを制御する信号を出力する。また、パラメータ制御回路8は、DAC12の出力電圧示す制御信号をDAC12に出力する。例えば、パラメータ制御回路8は、デジタル回路であり、ASIC、FPGA、マイコンなどが用いられる。 The parameter control circuit 8 is a parameter control circuit 8 that generates control parameters for controlling the DAC 12 and the switch 13 and outputs the generated parameters to the DAC 12 and the switch 13. The parameter control circuit 8 outputs a signal for controlling ON / OFF of the switch 13 in synchronization with a signal indicating a timing at which the frequency of the PLL circuit output from the chirp generation circuit 7 changes sharply. The parameter control circuit 8 outputs a control signal indicating the output voltage of the DAC 12 to the DAC 12. For example, the parameter control circuit 8 is a digital circuit, and an ASIC, FPGA, microcomputer, or the like is used.
 周波数変換回路9は、VCO4の出力信号を周波数変換し、周波数変換した信号をADC10に出力する周波数変換回路である。周波数変換回路9は、基準信号を分周する分周器21、VCOの出力信号を分周する分周器22、及び分周器21が分周した信号と分周器22が分周した信号とを混合するミキサ23を備える。なお、分周器21の分周比は1でもよく、その場合は分周器21を削除し基準信号を直接、ミキサ23に入力してもよい。 The frequency conversion circuit 9 is a frequency conversion circuit that converts the frequency of the output signal of the VCO 4 and outputs the frequency-converted signal to the ADC 10. The frequency conversion circuit 9 includes a frequency divider 21 that divides the reference signal, a frequency divider 22 that divides the output signal of the VCO, a signal that the frequency divider 21 divides, and a signal that the frequency divider 22 divides. Is provided. The frequency dividing ratio of the frequency divider 21 may be 1. In this case, the frequency divider 21 may be deleted and the reference signal may be input directly to the mixer 23.
 ADC10は、周波数変換回路9が周波数変換したアナログ信号をデジタル信号に変換し、変換したデジタル信号をDSP11に出力するADCである。 The ADC 10 is an ADC that converts the analog signal frequency-converted by the frequency conversion circuit 9 into a digital signal and outputs the converted digital signal to the DSP 11.
 DSP11(デジタルシグナルプロセッサの一例)は、ADC10が変換したデジタル信号から、VCO4の出力信号の瞬時周波数を求め、VCO4が出力するチャープ信号(変調波)において所望の周波数と求めた瞬時周波数との誤差が所定の値以下になる収束時間を算出し、算出した収束時間をパラメータ制御回路8に出力するDSPである。瞬時周波数を求める方法としては、例えば、入力信号を直交復調し、瞬時位相を求め、瞬時位相から瞬時周波数を計算する方法がある。 The DSP 11 (an example of a digital signal processor) obtains the instantaneous frequency of the output signal of the VCO 4 from the digital signal converted by the ADC 10, and an error between the desired frequency and the obtained instantaneous frequency in the chirp signal (modulated wave) output from the VCO 4. Is a DSP that calculates a convergence time when becomes a predetermined value or less, and outputs the calculated convergence time to the parameter control circuit 8. As a method for obtaining the instantaneous frequency, for example, there is a method of orthogonally demodulating an input signal, obtaining an instantaneous phase, and calculating the instantaneous frequency from the instantaneous phase.
 なお、変調波の周波数が急峻に変化する点においては、PLL回路は周波数の急峻な変化に追従できず、所望の周波数と実際の周波数の誤差が大きくなるが、徐々に所望周波数と実際の周波数とは一致するようになる。所望周波数とは、チャープ生成回路7が生成するチャープ信号に対応する周波数、つまり、基準信号の周波数にチャープ信号が示す分周比を乗じた周波数のことである。ここでは、所望周波数と実際の周波数とがある誤差で一致するまでの時間を収束時間という。言い換えれば、収束時間とは、所望周波数(所望のチャープ信号)と実際の周波数(実際のチャープ信号)との誤差が、所定の値内に入るまでの時間をいう。 Note that, at the point where the frequency of the modulation wave changes sharply, the PLL circuit cannot follow the sudden change in frequency, and an error between the desired frequency and the actual frequency increases, but the desired frequency and the actual frequency gradually increase. Will match. The desired frequency is a frequency corresponding to the chirp signal generated by the chirp generation circuit 7, that is, a frequency obtained by multiplying the frequency of the reference signal by the frequency division ratio indicated by the chirp signal. Here, the time until the desired frequency and the actual frequency match with a certain error is called the convergence time. In other words, the convergence time is the time until the error between the desired frequency (desired chirp signal) and the actual frequency (actual chirp signal) falls within a predetermined value.
 DAC12(デジタルアナログ変換器の一例)は、パラメータ制御回路8の制御信号にしたがってアナログ信号を生成し、生成したアナログ信号をスイッチ13に出力するDACである。 The DAC 12 (an example of a digital-analog converter) is a DAC that generates an analog signal in accordance with a control signal from the parameter control circuit 8 and outputs the generated analog signal to the switch 13.
 スイッチ13(スイッチの一例)は、パラメータ制御回路8の制御信号にしたがってONとOFFとを切り替え、DAC12の出力信号をVCO4へ伝達するか否かを制御するスイッチである。 The switch 13 (an example of a switch) is a switch that switches between ON and OFF according to the control signal of the parameter control circuit 8 and controls whether or not the output signal of the DAC 12 is transmitted to the VCO 4.
 次に、この発明の実施の形態1に係るPLL回路の動作について説明する。 Next, the operation of the PLL circuit according to the first embodiment of the present invention will be described.
 まず、チャープ生成回路7は、所望の変調波に比例する信号を生成し、ΔΣ変調器6に出力する。例えば、所望の変調波がのこぎり波であれば、チャープ生成回路7はのこぎり波を生成する。また、チャープ生成回路7は、本PLL回路の出力周波数が急峻に変化するタイミングで立ち上がるパルス信号をパラメータ制御回路8に出力する。このパルス信号を周波数ジャンプ信号と言う。周波数ジャンプ信号は、1ビットのデジタル信号で、立ち上がりタイミングが、本PLL回路の出力周波数が急峻に変化しているタイミングを意味する。 First, the chirp generation circuit 7 generates a signal proportional to a desired modulation wave and outputs it to the ΔΣ modulator 6. For example, if the desired modulation wave is a sawtooth wave, the chirp generation circuit 7 generates a sawtooth wave. In addition, the chirp generation circuit 7 outputs a pulse signal that rises at a timing when the output frequency of the PLL circuit changes sharply to the parameter control circuit 8. This pulse signal is called a frequency jump signal. The frequency jump signal is a 1-bit digital signal, and the rising timing means the timing when the output frequency of the present PLL circuit changes sharply.
 ΔΣ変調器6は、チャープ生成回路7が生成した所望の変調波に比例する信号に対してΔΣ変調をかけ、分周器5に出力する。チャープ生成回路7が生成した所望の変調波に比例する信号は、小数を含むが、ΔΣ変調器で整数化するとともにΔΣ変調することで、分周器5で小数の分周比を実現する。 The ΔΣ modulator 6 applies ΔΣ modulation to a signal proportional to the desired modulation wave generated by the chirp generation circuit 7 and outputs the result to the frequency divider 5. The signal proportional to the desired modulation wave generated by the chirp generation circuit 7 includes a decimal number, but the frequency divider 5 realizes a fractional division ratio by converting it into an integer with a ΔΣ modulator and performing ΔΣ modulation.
 分周器5は、ΔΣ変調器6が出力する分周比信号に従い、VCO4の信号を分周する。 The frequency divider 5 divides the signal of the VCO 4 in accordance with the frequency division ratio signal output from the ΔΣ modulator 6.
 PFD1は、基準信号と分周器5の出力の位相差に応じた信号をCP2に出力する。 PFD 1 outputs a signal corresponding to the phase difference between the reference signal and the output of frequency divider 5 to CP 2.
 CP2は、PFD1の出力に応じた電流をLF3に出力する。 CP2 outputs a current corresponding to the output of PFD1 to LF3.
 LF3は、CP2が出力する信号の高周波成分を遮断し、高周波成分を遮断した信号をVCO4に出力する。 LF3 cuts off the high frequency component of the signal output from CP2, and outputs the signal that cut off the high frequency component to VCO4.
 VCO4は、印加される制御電圧にしたがって発振信号を出力する。 The VCO 4 outputs an oscillation signal according to the applied control voltage.
 周波数変換回路9は、入力されるVCO4の信号の周波数を変換し、ADC10に出力する。 The frequency conversion circuit 9 converts the frequency of the input VCO 4 signal and outputs it to the ADC 10.
 ADC10は、一定の間隔で入力をサンプリングし、デジタル信号に変換して、DSP11に出力する。 The ADC 10 samples the input at regular intervals, converts it to a digital signal, and outputs it to the DSP 11.
 DSP11は、ADC10が出力した信号を直交復調し、瞬時位相を求め、瞬時位相から瞬時周波数を計算する。DSP11は、変調波において所望の周波数と実際の周波数との誤差を計算する。変調波の周波数が急峻に変化する点においては、一般的に、PLL回路は、周波数の急峻な変化に追従できず、所望の周波数と実際の周波数の誤差が大きくなる。DSP11は、検出したPLLの実際の周波数の時間変化と所望の周波数の時間変化とを比較し、両者の誤差が所定の値以下になるまでの収束時間を計算し、収束時間をパラメータ制御回路8に出力する。なお、DSP11は、所望の周波数を求めるのに必要なチャープ信号の傾きや長さなどのパラメータを内部のメモリに記憶しており、これらのパラメータを参照して所望の周波数を計算し、実際の周波数との誤差の計算に用いる。あるいはチャープ信号自体を記憶しておいても良い。 The DSP 11 orthogonally demodulates the signal output from the ADC 10 to obtain an instantaneous phase, and calculates an instantaneous frequency from the instantaneous phase. The DSP 11 calculates an error between a desired frequency and an actual frequency in the modulated wave. In general, the PLL circuit cannot follow the steep change in frequency at the point where the frequency of the modulation wave changes sharply, and an error between the desired frequency and the actual frequency becomes large. The DSP 11 compares the time change of the detected actual frequency of the PLL with the time change of the desired frequency, calculates the convergence time until the error between the two becomes a predetermined value or less, and sets the convergence time to the parameter control circuit 8. Output to. The DSP 11 stores parameters such as the slope and length of the chirp signal necessary for obtaining the desired frequency in an internal memory, calculates the desired frequency with reference to these parameters, and calculates the actual frequency. Used to calculate frequency error. Alternatively, the chirp signal itself may be stored.
 パラメータ制御回路8は、DSP11が出力する収束時間からDAC12の出力電圧を求め、求めた出力電圧をDAC12に出力する。また、パラメータ制御回路8は、チャープ生成回路7が出力する周波数ジャンプ信号に同期してスイッチ13をONし、収束時間から求めたスイッチ13のON時間が経過するとスイッチ13をOFFする。ここで、ON時間とは、スイッチ13がONである時間である。パラメータ制御回路8がスイッチ13に出力する信号は1ビットのデジタル信号で、”1”でスイッチON、”0”でスイッチOFFを意味する信号である。後述するが、パラメータ制御回路8は、収束時間から、DAC12の設定時間及びスイッチ13のON時間を算出しても良いし、収束時間とDAC12の設定時間及びスイッチ13のON時間と関係を示すテーブルをメモリに記憶しておいて、そのテーブルからDAC12の設定時間及びスイッチ13のON時間を求めても良い。 The parameter control circuit 8 obtains the output voltage of the DAC 12 from the convergence time output from the DSP 11 and outputs the obtained output voltage to the DAC 12. The parameter control circuit 8 turns on the switch 13 in synchronization with the frequency jump signal output from the chirp generation circuit 7 and turns off the switch 13 when the ON time of the switch 13 obtained from the convergence time elapses. Here, the ON time is a time during which the switch 13 is ON. The signal output from the parameter control circuit 8 to the switch 13 is a 1-bit digital signal, which means “1” means switch ON and “0” means switch OFF. As will be described later, the parameter control circuit 8 may calculate the set time of the DAC 12 and the ON time of the switch 13 from the convergence time, or a table showing the relationship between the convergence time, the set time of the DAC 12 and the ON time of the switch 13. May be stored in the memory, and the set time of the DAC 12 and the ON time of the switch 13 may be obtained from the table.
 DAC12は、パラメータ制御回路8が出力する制御信号にしたがって、出力電圧を設定し、設定した電圧をスイッチ13に出力する。 The DAC 12 sets the output voltage according to the control signal output from the parameter control circuit 8 and outputs the set voltage to the switch 13.
 スイッチ13は、パラメータ制御回路8の出力する制御信号にしたがってON/OFFを制御し、ONの間、DAC12の出力電圧をVCO4に出力する。OFFの場合は、DAC12の出力信号を遮断する。 The switch 13 controls ON / OFF according to the control signal output from the parameter control circuit 8, and outputs the output voltage of the DAC 12 to the VCO 4 while the switch 13 is ON. When it is OFF, the output signal of the DAC 12 is blocked.
 VCO4は、スイッチ13がONの間、LF4の出力電圧とDAC12の出力電圧との合成電圧にしたがって、発振周波数を出力する。 VCO 4 outputs an oscillation frequency according to a composite voltage of the output voltage of LF 4 and the output voltage of DAC 12 while switch 13 is ON.
 スイッチ13がOFFされた後、上記で説明した動作と同様に、DSP11は、所望の周波数と実際の周波数の誤差が所定の値以下になるまでの収束時間を測定し、パラメータ制御回路8に収束時間を出力する。 After the switch 13 is turned off, the DSP 11 measures the convergence time until the error between the desired frequency and the actual frequency is equal to or less than a predetermined value, and converges to the parameter control circuit 8 in the same manner as described above. Output time.
 パラメータ制御回路8は、収束時間に応じて、DAC12の出力電圧とスイッチ13のON時間の2パラメータを変更する。パラメータ制御回路8は、DAC12の出力電圧を、随時、DAC12に出力する。そして、パラメータ制御回路8は、次の周波数ジャンプ信号に同期して、スイッチ13をONし、スイッチ13のON時間が経過するとスイッチ13をOFFする。その後、再びDSP11により収束時間が計測され、パラメータ制御回路8は収束時間応じてDAC12の出力電圧とスイッチ13のON時間の2パラメータを変更する。 The parameter control circuit 8 changes two parameters of the output voltage of the DAC 12 and the ON time of the switch 13 according to the convergence time. The parameter control circuit 8 outputs the output voltage of the DAC 12 to the DAC 12 as needed. Then, the parameter control circuit 8 turns on the switch 13 in synchronization with the next frequency jump signal, and turns off the switch 13 when the ON time of the switch 13 elapses. After that, the convergence time is measured again by the DSP 11, and the parameter control circuit 8 changes two parameters of the output voltage of the DAC 12 and the ON time of the switch 13 according to the convergence time.
 このフローを繰り返すことにより、パラメータ制御回路8は、収束時間が最小となるパラメータを探索する。 By repeating this flow, the parameter control circuit 8 searches for a parameter that minimizes the convergence time.
 図2は、この発明の実施の形態1に係るDAC12の印加電圧と収束時間との関係を表す概念図である。
 図2に示すように、DAC12からの印加量が大きすぎる場合(図2(a)参照)及び小さすぎる場合(図2(c)参照)においては、DAC12による印加量が適切な場合(図2(b)参照)に比べて収束時間が長くなる。つまり、収束時間を観測し、収束時間を最小化するようなパラメータを探すことで、適切な印加パラメータを求めることができる。 収束時間が最小となるパラメータの探索手法としては、例えば以下の2つが挙げられる。
FIG. 2 is a conceptual diagram showing the relationship between the voltage applied to DAC 12 and the convergence time according to Embodiment 1 of the present invention.
As shown in FIG. 2, when the application amount from the DAC 12 is too large (see FIG. 2A) and too small (see FIG. 2C), the application amount by the DAC 12 is appropriate (FIG. 2). Compared to (b)), the convergence time becomes longer. That is, by observing the convergence time and searching for a parameter that minimizes the convergence time, an appropriate application parameter can be obtained. For example, the following two methods can be used to search for a parameter that minimizes the convergence time.
 1つ目の手法は、DAC12の出力電圧及びスイッチ13のON時間という2つのパラメータをそれぞれ全範囲でスイープし、それぞれの収束時間を記憶し、パラメータの値に対応する収束時間のテーブルを作成する手法である。最終的にパラメータ制御回路8は、収束時間が最小となるパラメータの値を採用し、変調波の生成を行う。 The first method sweeps two parameters, the output voltage of the DAC 12 and the ON time of the switch 13, over the entire range, stores each convergence time, and creates a table of convergence times corresponding to the parameter values. It is a technique. Finally, the parameter control circuit 8 employs a parameter value that minimizes the convergence time, and generates a modulated wave.
 2つ目の手法は、最小化アルゴリズムである勾配降下法である。パラメータ制御回路8は、それぞれのパラメータの変化に対する収束時間の変化から勾配を計算し、勾配を下るようにパラメータを変化させることで、極小値にたどり着く。パラメータ制御回路8は、そのパラメータの値を採用し、変調波の生成を行う。 The second method is the gradient descent method, which is a minimization algorithm. The parameter control circuit 8 calculates the gradient from the change in convergence time with respect to the change in each parameter, and reaches the minimum value by changing the parameter so as to decrease the gradient. The parameter control circuit 8 employs the parameter value and generates a modulated wave.
 以上のとおり、この発明の実施形態1によれば、収束時間をフィードバックして、印加電圧及び印加時間を調整するので、温度変化や経年劣化による回路特性の変化に応じて、動的に適切な印加パラメータを求めることができるという効果を奏する。収束時間を最小化するようにフィードバックを行うことで、所望の周波数からずれている無効な時間を最小化し、信号として有効な時間の割合を高めることが可能である。 As described above, according to the first embodiment of the present invention, the convergence time is fed back and the applied voltage and the applied time are adjusted, so that it is dynamically appropriate according to changes in circuit characteristics due to temperature changes and aging deterioration. There is an effect that the applied parameter can be obtained. By performing feedback so as to minimize the convergence time, it is possible to minimize the invalid time that deviates from the desired frequency and to increase the proportion of the time that is effective as a signal.
 なお、実施の形態1のPLL回路は、VCO4の出力を分周器に入力し、分周器の出力を分周器5及び分周器22に入力する構成にしても良い。 Note that the PLL circuit of the first embodiment may be configured such that the output of the VCO 4 is input to the frequency divider and the output of the frequency divider is input to the frequency divider 5 and the frequency divider 22.
 図3は、この発明の実施の形態1のPLL回路の一変形例を示す構成図である。 
 図3の構成にすると、分周器5及び分周器22の動作周波数は下がるので、分周比も小さくなる。分周器は、高い周波数で動作するほど消費電力が大きい特徴があるため、分周器31(第2の分周器の一例)を設けることにより、全体としての消費電力が小さくなる。また、分周器5及び分周器22の分周比が小さくなるため、分周器31を設けることにより全体の回路規模が小さくなる。
FIG. 3 is a configuration diagram showing a modification of the PLL circuit according to the first embodiment of the present invention.
In the configuration shown in FIG. 3, the operating frequency of the frequency divider 5 and the frequency divider 22 is lowered, so that the frequency division ratio is also reduced. Since the frequency divider has a feature that the power consumption increases as it operates at a higher frequency, providing the frequency divider 31 (an example of a second frequency divider) reduces the overall power consumption. In addition, since the frequency dividing ratio of the frequency divider 5 and the frequency divider 22 is reduced, the overall circuit scale is reduced by providing the frequency divider 31.
 なお、DAC12として、出力インピーダンスをハイインピーダンスにすることができるDACを用いると、スイッチ13を用いなくても、スイッチ13をオフする代わりにDAC12の出力インピーダンスをハイインピーダンスとすることで同じ動作をさせることができる。その場合、パラメータ制御回路8はスイッチ13の代わりにDAC12の出力インピーダンスをハイインピーダンスにするか否かを制御する。 If a DAC capable of setting the output impedance to high impedance is used as the DAC 12, the same operation is performed by setting the output impedance of the DAC 12 to high impedance instead of turning off the switch 13 without using the switch 13. be able to. In that case, the parameter control circuit 8 controls whether or not the output impedance of the DAC 12 is set to high impedance instead of the switch 13.
 また、DAC12が出力する電圧を時間変化させる構成も考えられる。この場合は、パラメータ制御回路8はDAC12の出力電圧の時間波形を制御する。このとき、時間波形はチャープ生成回路7が出力する周波数ジャンプ信号に同期している必要があるため、パラメータ制御回路8は、周波数ジャンプ信号に同期してDAC12の出力電圧を制御する。 A configuration in which the voltage output from the DAC 12 is changed over time is also conceivable. In this case, the parameter control circuit 8 controls the time waveform of the output voltage of the DAC 12. At this time, since the time waveform needs to be synchronized with the frequency jump signal output from the chirp generation circuit 7, the parameter control circuit 8 controls the output voltage of the DAC 12 in synchronization with the frequency jump signal.
実施の形態2.
 図4は、この発明の実施の形態2に係るPLL回路の一構成例を示す構成図である。
 実施の形態2の構成は、実施の形態1のDAC12及びスイッチ13を削除し、新たに追加したCP41(チャージポンプ回路の一例)の出力端子をCP2の出力端子と接続し、パラメータ制御回路8がCP41を制御する構成としたものである。実施の形態1との違いは、実施の形態1がDAC12とスイッチ13とを用いてLF3の出力端子に電圧を印加していたのに対し、実施の形態2は、CP41がLF3の入力端子に電流を印加することである。
Embodiment 2.
FIG. 4 is a block diagram showing a configuration example of a PLL circuit according to Embodiment 2 of the present invention.
In the configuration of the second embodiment, the DAC 12 and the switch 13 of the first embodiment are deleted, the newly added CP41 (an example of a charge pump circuit) is connected to the output terminal of CP2, and the parameter control circuit 8 In this configuration, the CP 41 is controlled. The difference from the first embodiment is that, while the first embodiment uses the DAC 12 and the switch 13 to apply a voltage to the output terminal of the LF3, the second embodiment has the CP41 connected to the input terminal of the LF3. Applying current.
 CP41は、パラメータ制御回路8の制御信号にしたがって、LF3に電流を印加するチャージポンプ回路である。 CP 41 is a charge pump circuit that applies a current to LF 3 in accordance with a control signal from parameter control circuit 8.
 次に、この発明の実施の形態2に係るPLL回路の動作について説明する。
 パラメータ制御回路8及びCP41以外の動作は、実施の形態1と同様であるので、主にパラメータ制御回路8及びCP41について説明する。
Next, the operation of the PLL circuit according to the second embodiment of the present invention will be described.
Since operations other than the parameter control circuit 8 and CP41 are the same as those in the first embodiment, the parameter control circuit 8 and CP41 will be mainly described.
 パラメータ制御回路8は、DSP11が出力した収束時間からCP41の設定電流及びCP41のON時間を求める。パラメータ制御回路8は、随時、CP41に設定電流を出力するとともに、チャープ生成回路7の出力する周波数ジャンプ信号に同期して、CP41をONする制御信号を出力する。そして、パラメータ制御回路8は、CP41のON時間が経過すると、CP41をOFFする信号を出力する。パラメータ制御回路8が出力する制御信号は、1ビットのデジタル信号で、”1”であればON、”0”であればOFFを意味する。なお、パラメータ制御回路8は、実施の形態1と同様の方法で、DSP11が計測する収束時間を最小化するようなCP41の出力電流及びON時間を探索し、その後得られたパラメータを用いて運用する。 The parameter control circuit 8 obtains the set current of the CP 41 and the ON time of the CP 41 from the convergence time output from the DSP 11. The parameter control circuit 8 outputs a set current to the CP 41 as needed, and outputs a control signal for turning on the CP 41 in synchronization with the frequency jump signal output from the chirp generation circuit 7. Then, the parameter control circuit 8 outputs a signal for turning off the CP 41 when the ON time of the CP 41 elapses. The control signal output by the parameter control circuit 8 is a 1-bit digital signal. When “1”, it means ON, and when it is “0”, it means OFF. The parameter control circuit 8 searches for the output current and ON time of the CP 41 so as to minimize the convergence time measured by the DSP 11 in the same manner as in the first embodiment, and operates using the parameters obtained thereafter. To do.
 CP41は、パラメータ制御回路8の制御信号にしたがって、一定時間、LF3に電流を印加する。周波数が急峻に変化する点において、CP41は、LF3に適切な電荷を注入することにより、再び正しい周波数を出力するまでの時間が短縮する。 CP 41 applies a current to LF 3 for a predetermined time according to the control signal of parameter control circuit 8. In the point where the frequency changes sharply, the CP 41 injects an appropriate charge into the LF 3 to shorten the time until the correct frequency is output again.
 LF3は、ON時間において、CP2の出力電流及びCP41の出力電流の高周波成分を遮断し、VCO4に出力する。 LF3 cuts off the high frequency component of the output current of CP2 and the output current of CP41 and outputs it to VCO4 during the ON time.
 VCO4は、LF3の出力信号にしたがって、発振周波数を制御し、発振信号を出力する。 VCO 4 controls the oscillation frequency according to the output signal of LF 3 and outputs an oscillation signal.
 以上のとおり、この発明の実施形態2によれば、収束時間をフィードバックして、CP41の印加電流及び印加時間を調整するので、温度変化や経年劣化による回路特性の変化に応じて、動的に適切な印加パラメータを求めることができるという効果を奏する。ループフィルタとしてアクティブフィルタを用いる場合、ループフィルタの出力電圧を外部から直接印加して所望の値にすることはできず、実施形態1を用いることはできないが、CP41を用いる構成では、ループフィルタの入力に電荷を注入することになるので、アクティブフィルタでも用いることができる。 As described above, according to the second embodiment of the present invention, the convergence time is fed back and the applied current and the applied time of the CP 41 are adjusted. Therefore, according to the change in the circuit characteristics due to the temperature change and the aging deterioration, There is an effect that an appropriate applied parameter can be obtained. When an active filter is used as the loop filter, the output voltage of the loop filter cannot be directly applied from the outside to obtain a desired value, and the first embodiment cannot be used. However, in the configuration using CP41, the loop filter Since charges are injected into the input, it can be used in an active filter.
 なお、実施の形態2のPLL回路において、分周器31をVCO4の帰還経路に装荷し、VCO4の発振信号を分周器31に出力し、分周器31が分周した信号を分周器5に出力するようにしても良い。 In the PLL circuit according to the second embodiment, the frequency divider 31 is loaded on the feedback path of the VCO 4, the oscillation signal of the VCO 4 is output to the frequency divider 31, and the signal divided by the frequency divider 31 is divided. 5 may be output.
 図5は、この発明の実施の形態2に係るPLL回路の変形例を示す構成図である。
 図5のように分周器31を挿入することにより、実施の形態1で説明したのと同様の理由で、全体としての消費電力を下げるとともに、回路規模を小さくすることができる。
FIG. 5 is a block diagram showing a modification of the PLL circuit according to Embodiment 2 of the present invention.
By inserting the frequency divider 31 as shown in FIG. 5, the power consumption as a whole can be reduced and the circuit scale can be reduced for the same reason as described in the first embodiment.
 1 PFD、2 CP、3 LF、4 VCO、5 分周器、6 ΔΣ変調器、7 チャープ生成回路、8 パラメータ制御回路、9 周波数変換回路、10 ADC、11 DSP、12 DAC、13 スイッチ、21 分周器、22 分周器、23 ミキサ、31 分周器、41 CP。 1 PFD, 2 CP, 3 LF, 4 VCO, 5 divider, 6 ΔΣ modulator, 7 chirp generation circuit, 8 parameter control circuit, 9 frequency conversion circuit, 10 ADC, 11 DSP, 12 DAC, 13 switch, 21 Frequency divider, 22 divider, 23 mixer, 31 divider, 41 CP.

Claims (7)

  1.  周波数が時間変化する発振信号を分周する分周器と、
     基準信号と前記分周器が分周した前記発振信号とを比較し、その差に応じた信号を出力する位相周波数比較器と、
     前記位相周波数比較器が出力した信号の高周波成分を遮断し、高周波成分を遮断した信号を出力するループフィルタと、
     前記ループフィルタの出力信号にしたがって、発振周波数を変化させ、前記発振信号を出力する発振器と、
     前記発振信号の周波数を求めるデジタルシグナルプロセッサと、
     前記デジタルシグナルプロセッサが求めた前記発振信号の周波数に基づいて制御パラメータを求めるパラメータ制御回路と、
     前記制御パラメータにしたがって、前記ループフィルタまたは前記発振器にアナログ信号を出力し、前記発振器の前記発振周波数の時間変化を補正するデジタルアナログ変換器と、
     を備えたPLL回路。
    A frequency divider that divides an oscillation signal whose frequency changes over time;
    A phase frequency comparator that compares a reference signal and the oscillation signal divided by the divider and outputs a signal corresponding to the difference;
    A loop filter that blocks a high-frequency component of the signal output by the phase frequency comparator, and outputs a signal that blocks the high-frequency component;
    According to the output signal of the loop filter, an oscillator that changes the oscillation frequency and outputs the oscillation signal;
    A digital signal processor for determining the frequency of the oscillation signal;
    A parameter control circuit for obtaining a control parameter based on the frequency of the oscillation signal obtained by the digital signal processor;
    A digital-to-analog converter that outputs an analog signal to the loop filter or the oscillator according to the control parameter, and corrects a temporal change in the oscillation frequency of the oscillator;
    A PLL circuit comprising:
  2.  前記デジタルシグナルプロセッサは、前記分周器の分周比を介して前記発振器に設定する前記発振周波数の時間変化と、前記発振器が出力した前記発振信号の周波数の時間変化とを比較して前記発振信号に対する収束時間を求め、前記収束時間を前記パラメータ制御回路に出力し、
     前記パラメータ制御回路は、前記収束時間から前記制御パラメータを求めることを特徴とする請求項1に記載のPLL回路。
    The digital signal processor compares the time change of the oscillation frequency set in the oscillator via the frequency division ratio of the frequency divider and the time change of the frequency of the oscillation signal output from the oscillator to compare the oscillation Obtaining a convergence time for a signal, and outputting the convergence time to the parameter control circuit;
    The PLL circuit according to claim 1, wherein the parameter control circuit obtains the control parameter from the convergence time.
  3.  前記ループフィルタまたは前記発振器と前記デジタルアナログ変換器との間に設けられ、前記デジタルアナログ変換器が出力する電圧を通過もしくは遮断するスイッチを備え、
     前記パラメータ制御回路は、前記収束時間から、前記スイッチのON時間及び前記デジタルアナログ変換器の出力電圧を求めて、前記ON時間に基づいて前記スイッチを制御し、前記出力電圧を前記制御パラメータとして前記デジタルアナログ変換器を制御することを特徴とする請求項2に記載のPLL回路。
    A switch that is provided between the loop filter or the oscillator and the digital-analog converter, and that passes or cuts off a voltage output by the digital-analog converter;
    The parameter control circuit obtains an ON time of the switch and an output voltage of the digital-analog converter from the convergence time, controls the switch based on the ON time, and uses the output voltage as the control parameter. The PLL circuit according to claim 2, wherein the digital-analog converter is controlled.
  4.  前記発振信号の周波数変化を示すチャープ信号を生成し、前記チャープ信号において周波数が変化するタイミングを前記パラメータ制御回路に出力するチャープ生成回路と、
     前記チャープ信号をΔΣ変調するΔΣ変調器と、
     を備え、
     前記分周器は、ΔΣ変調された前記チャープ信号にしたがって、前記発振信号を分周し、
     前記パラメータ制御回路は、前記タイミングにしたがって、前記スイッチをONすることを特徴とする請求項3に記載のPLL回路。
    A chirp generation circuit that generates a chirp signal indicating a frequency change of the oscillation signal, and outputs a timing at which the frequency of the chirp signal changes to the parameter control circuit;
    A ΔΣ modulator that ΔΣ modulates the chirp signal;
    With
    The frequency divider divides the oscillation signal according to the chirp signal that is ΔΣ-modulated,
    The PLL circuit according to claim 3, wherein the parameter control circuit turns on the switch according to the timing.
  5.  前記デジタルアナログ変換器に代えてチャージポンプ回路を用いて、前記ループフィルタに電流を出力することを特徴とする請求項2に記載のPLL回路。 3. The PLL circuit according to claim 2, wherein a current is output to the loop filter using a charge pump circuit instead of the digital-analog converter.
  6.  前記パラメータ制御回路は、前記収束時間にしたがって、前記チャージポンプ回路の印加電流及び印加時間を制御することを特徴とする請求項5に記載のPLL回路。 6. The PLL circuit according to claim 5, wherein the parameter control circuit controls an applied current and an applied time of the charge pump circuit according to the convergence time.
  7.  前記発振器と前記分周器との間に設けられ、前記発振器が出力する前記発振信号を分周し、分周した前記発振信号を前記分周器に出力する第2の分周器を備えたことを特徴とする請求項4または請求項6に記載のPLL回路。 A second frequency divider provided between the oscillator and the frequency divider, which divides the oscillation signal output by the oscillator and outputs the frequency-divided oscillation signal to the frequency divider; The PLL circuit according to claim 4 or 6, wherein
PCT/JP2017/000541 2017-01-11 2017-01-11 Pll circuit WO2018131084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/000541 WO2018131084A1 (en) 2017-01-11 2017-01-11 Pll circuit
JP2018561128A JP6556383B2 (en) 2017-01-11 2017-01-11 PLL circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000541 WO2018131084A1 (en) 2017-01-11 2017-01-11 Pll circuit

Publications (1)

Publication Number Publication Date
WO2018131084A1 true WO2018131084A1 (en) 2018-07-19

Family

ID=62839472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000541 WO2018131084A1 (en) 2017-01-11 2017-01-11 Pll circuit

Country Status (2)

Country Link
JP (1) JP6556383B2 (en)
WO (1) WO2018131084A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015738B1 (en) * 2003-06-18 2006-03-21 Weixun Cao Direct modulation of a voltage-controlled oscillator (VCO) with adaptive gain control
JP2006136000A (en) * 2004-11-08 2006-05-25 Samsung Electronics Co Ltd Spread spectrum clock generator and method for generating spread spectrum clock signal
US8022782B2 (en) * 2008-09-16 2011-09-20 Samsung Electronics Co., Ltd. Two-point phase modulator and method of calibrating conversion gain of the same
JP2012165036A (en) * 2011-02-03 2012-08-30 Toshiba Corp Spread spectrum clock generator
JP2015115633A (en) * 2013-12-09 2015-06-22 株式会社メガチップス Clock generation circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015738B1 (en) * 2003-06-18 2006-03-21 Weixun Cao Direct modulation of a voltage-controlled oscillator (VCO) with adaptive gain control
JP2006136000A (en) * 2004-11-08 2006-05-25 Samsung Electronics Co Ltd Spread spectrum clock generator and method for generating spread spectrum clock signal
US8022782B2 (en) * 2008-09-16 2011-09-20 Samsung Electronics Co., Ltd. Two-point phase modulator and method of calibrating conversion gain of the same
JP2012165036A (en) * 2011-02-03 2012-08-30 Toshiba Corp Spread spectrum clock generator
JP2015115633A (en) * 2013-12-09 2015-06-22 株式会社メガチップス Clock generation circuit

Also Published As

Publication number Publication date
JPWO2018131084A1 (en) 2019-07-11
JP6556383B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US8228219B2 (en) Time-to-digital converter with calibration
US8610508B2 (en) Injection-locked oscillator
US9020089B2 (en) Phase-locked loop (PLL)-based frequency synthesizer
US10461756B2 (en) PLL circuit
US9007109B2 (en) Automatic loop-bandwidth calibration for a digital phased-locked loop
US8441323B2 (en) Signal processing using timing comparison
US8405434B2 (en) System and method for calibrating output frequency in phase locked loop
US10659062B2 (en) PLL circuit
US10951215B2 (en) Semiconductor devices and methods of operating the same
CN110504962B (en) Digital compensation analog fractional frequency division phase-locked loop and control method
TW201524127A (en) Phase lock loop device with calibration function of loop bandwidth and calibration method thereof
US9077592B2 (en) Low phase-noise indirect frequency synthesizer
KR102038557B1 (en) Apparatus and Method for Signal Linearizing of Radar System
JP2005072876A (en) Wideband modulation pll and its modulation degree adjusting method
US9379723B2 (en) Method and apparatus for generating a digital signal of tunable frequency and frequency synthesizer employing same
JP5701149B2 (en) High frequency oscillation source
JP6556383B2 (en) PLL circuit
US5777464A (en) Spectrum analyzer
CN111835347B (en) Phase-locked loop device
JP2016161499A (en) Frequency modulation circuit
US11088697B2 (en) PLL circuit
KR101600168B1 (en) Frequency Synthesizer and Phase synchronizing control device based on initial tuning voltage offsetting
JP5793127B2 (en) Frequency synthesizer
KR100638894B1 (en) Programable frequency divider using sigma-delta modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891275

Country of ref document: EP

Kind code of ref document: A1