WO2018130149A1 - 一种功率变换装置及功率变换装置的控制方法 - Google Patents
一种功率变换装置及功率变换装置的控制方法 Download PDFInfo
- Publication number
- WO2018130149A1 WO2018130149A1 PCT/CN2018/071954 CN2018071954W WO2018130149A1 WO 2018130149 A1 WO2018130149 A1 WO 2018130149A1 CN 2018071954 W CN2018071954 W CN 2018071954W WO 2018130149 A1 WO2018130149 A1 WO 2018130149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power conversion
- unit
- conversion unit
- subunit
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/23—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0043—Converters switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- This document relates to, but is not limited to, the field of electronic circuit technology, and more particularly to a power conversion device and a control method for a power conversion device.
- a power conversion device and a power conversion device control method are provided in an embodiment of the present invention to implement natural voltage equalization of the power conversion device.
- An embodiment of the present invention provides a power conversion apparatus, including a power conversion unit group and a control unit, where
- the power conversion unit group includes at least two power conversion units connected in series, the power conversion unit group is connected in series with the inductance unit and the power supply unit, and the output of the at least one power conversion unit is used as a power conversion result of the power conversion device;
- the control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit, the control signal such that each power conversion unit has the same voltage.
- the embodiment of the present invention further provides a control method for a power conversion device, which is applied to the foregoing power conversion device, and the control method of the power conversion device includes:
- the control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit;
- Each power conversion unit accesses a corresponding control signal, the control signal causing each power conversion unit to have the same voltage; the output of the at least one power conversion unit as a power conversion result of the power conversion device.
- a power conversion unit group and a control unit are provided, wherein the power conversion unit group includes at least two power conversion units connected in series, a power conversion unit group and an inductor The unit and the power supply unit are connected in series, and the output of the at least one power conversion unit is used as a power conversion result of the power conversion device; the control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit, the control signal Each power conversion unit has the same voltage. That is, the control unit inputs a control signal to each power conversion unit, by which each power conversion unit has the same voltage to achieve natural voltage equalization of each power variation unit in the power conversion unit group, and the power is increased. The reliability of the transformation.
- FIG. 1 is a schematic diagram of a power conversion apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram of another power conversion apparatus according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic diagram of a power conversion unit according to Embodiment 1 of the present invention.
- FIG. 4 is a schematic diagram of another power conversion apparatus according to Embodiment 1 of the present invention.
- FIG. 5 is a schematic diagram of a PWM modulation method according to Embodiment 2 of the present invention.
- FIG. 6 is a flowchart of a digital processor interrupt control method according to Embodiment 2 of the present invention.
- FIG. 7 is a flowchart of a main control algorithm according to Embodiment 2 of the present invention.
- FIG. 8 is a timing chart of a driving method and an inductor current of a power conversion unit according to Embodiment 2 of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the present embodiment provides a power conversion apparatus.
- a power conversion unit group and a control unit are included, wherein the power conversion unit group includes at least two power conversion units connected in series, a power conversion unit group, an inductance unit, and a power supply.
- the units are connected in series, and the output of the at least one power conversion unit is used as a power conversion result of the power conversion device;
- the control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit, the control signal making each power
- the transform units have the same voltage.
- the power conversion apparatus provided in this embodiment includes a power conversion unit group, where the power conversion unit group includes at least two power conversion units connected in series, that is, the power conversion unit group is formed by combining multiple power conversion units.
- the power conversion unit group is connected in series with the inductor unit and the power unit.
- the power conversion unit group has two input ends, one of which is connected to one end of the inductor unit, and the other end is connected to an output end of the power unit.
- the other output is connected to the other end of the inductor unit.
- a control unit is provided, by which a control signal is input to each power conversion unit, by which each power conversion unit has the same voltage, that is, the output voltage of each power conversion unit is the same .
- the control signal can be a PWM (Pulse Width Modulation) signal, that is, a pulse width modulated signal.
- PWM Pulse Width Modulation
- the control unit in this embodiment may include a digital processor, that is, the voltage control of each power change unit in the power conversion unit group can be realized by digital control, and the natural voltage equalization is realized, and the power control unit is performed by using digital control technology.
- Control not only simplifies the design of the hardware circuit, increases the flexibility of control, but also directly monitors the power conversion circuit. In addition, it can also meet the advantages of online upgrade. Therefore, the digital control technology can realize the power conversion circuit well. control.
- the outputs of each power conversion unit in the embodiment are connected in parallel, and the voltage of each power conversion unit is the same, the output of the at least one power conversion unit may be used as a power conversion result of the power conversion device,
- the power conversion result of the power conversion device may be an output voltage of each power conversion unit, or may be an output power of each power conversion unit or the like. Since the output voltages of each power conversion unit are the same, the output voltage of each power conversion unit can be used as a power conversion result of the power conversion device.
- the power conversion device provided in this embodiment may further include at least one of an inductance unit and a power supply unit.
- the inductive unit and the power supply unit in the embodiment may be an inductance unit and a power supply unit external to the power conversion device, or may be an inductance unit and a power supply unit disposed in the power conversion device, which may be based on Need to choose settings.
- the power supply unit in this embodiment may be an alternating current power supply; the inductance unit may be an inductor or an inductor combination.
- control unit provided in this embodiment is further connected to the inductor unit, the power unit, and the voltage output end of each power conversion unit, according to the current value of the inductor unit, the voltage value of the power unit, and each power conversion unit.
- the voltage value generates a control signal corresponding to each power conversion unit.
- the control unit provided in this embodiment is connected to the inductor unit, the power unit, and the voltage output end of each power conversion unit, and collects the current value of the inductor unit, the voltage value of the power unit, and each power conversion unit.
- the voltage value is then processed according to the current value of the collected inductance unit, the voltage value of the power unit, and the voltage value of each power conversion unit, to obtain a control signal corresponding to each power conversion unit.
- control unit in this embodiment includes: a sampling subunit, a averaging subunit, and a signal generating subunit; wherein the sampling subunit collects a current value of the inductor unit and a voltage value of the power unit in a preset period The voltage value of each power conversion unit; the equalization subunit generates a uniform duty ratio according to the current value of the inductance unit collected by the sampling subunit, the voltage value of the power supply unit, and the voltage value of each power conversion unit; the signal generator The unit performs phase shift processing according to a uniform duty ratio generated by the equalization subunit, and generates a control signal corresponding to each power conversion unit.
- the control unit provided in this embodiment can collect the current value of the inductor unit, the voltage value of the power unit, and the voltage value of each power conversion unit by setting a sampling subunit, and can acquire the inductor unit in a preset period.
- the preset period can be set as needed, which is not limited in this embodiment.
- the set equalization subunit generates a current corresponding uniform duty ratio according to the current value of the inductance unit, the voltage value of the power supply unit, and the voltage value of each power conversion unit collected by the sampling subunit.
- the signal generation subunit performs phase shift processing according to a uniform duty ratio generated by the equalization subunit, and generates a control signal corresponding to each power conversion unit.
- the voltage value of the power supply voltage in this embodiment is the input voltage of the power conversion unit group.
- the control unit provided in this embodiment further includes: an analog-to-digital conversion subunit connected between the sampling subunit and the equalizing subunit, and configured as an inductive unit that collects the sampling subunit.
- the current value, the voltage value of the power supply unit, and the voltage value of each power conversion unit are converted into corresponding digital signals, and then output to the equalizing subunit; the equalizing subunit generates a uniform duty ratio according to the accessed digital signal. Since the current value of the inductance unit, the voltage value of the power supply unit, and the voltage value of each power conversion unit are analog signals, the current value of the inductance unit and the voltage of the power supply unit are calculated when the duty ratio is calculated.
- the value, the voltage value of each power conversion unit is converted from an analog signal to a digital signal, and then the duty ratio is based on the current value of the inductance unit converted to the digital signal, the voltage value of the power supply unit, and the voltage value of each power conversion unit. Calculation.
- the control unit may use the voltage and current double closed loop control strategy to calculate the loop according to the collected current value of the inductance unit, the voltage value of the power supply unit, and the voltage value of each power conversion unit.
- a current duty cycle and the current duty cycle is taken as the size of the current pulse width modulation signal for each power unit.
- the power conversion unit provided in this embodiment includes: a high frequency arm subunit and a low frequency arm subunit, and the high frequency arm subunit and the low frequency arm subunit are connected in parallel; the high frequency arm subunit includes a pair of high frequency arms connected in series, and a low frequency The arm unit includes a pair of low frequency arms connected in series; the control signal corresponding to the power conversion unit includes a pair of high frequency pulse width modulation signals that are connected in one-to-one correspondence with a pair of series high frequency arms, and are connected in series with the pair The low frequency arm one-to-one corresponds to a pair of low frequency pulse width modulated signals. Referring to FIG.
- the power conversion unit in this embodiment is composed of a pair of high frequency arms and a pair of low frequency arms, wherein the high frequency arm is used to implement power conversion, so that the input current follows the phase of the input voltage, and the low frequency arm Used for power frequency reflow.
- the control signals are respectively connected to each frequency arm, the upper tube of the high frequency arm is connected to PWMN1, the lower tube is connected to PWMN2, the PWMN1 and PWMN2 are a pair of high frequency pulse width modulation signals; the upper tube of the low frequency arm is connected to PWMH, and the lower tube is connected PWML, the PWMH and PWML are a pair of low frequency pulse width modulated signals.
- N is the number of power conversion units
- 2N high frequency PWM signals are generated, the 2N high frequency PWM signals are N pairs PWMN1 and PWMN2; and a pair of PWMH and PWML signals are generated.
- the switching period of the PWM signal corresponding to the high frequency arm may be 35K, and the switching period of the PWM signal corresponding to the low frequency arm may be 50 Hz.
- each of the frequency arms in the embodiment includes a MOS transistor (Metal-Oxide-Semiconductor Field-Effect Transistor), a capacitor, and a freewheeling diode.
- MOS transistor Metal-Oxide-Semiconductor Field-Effect Transistor
- the gate of the MOS is connected to the corresponding pulse width modulation signal
- the drain is connected to the positive pole of the power supply unit
- the source is connected to the drain of the other frequency arm of the pair
- the freewheeling diode is connected to the integrated body of the MOS tube.
- the tube is connected between the drain and the source of the MOS transistor, and the capacitor is connected in parallel with the freewheeling diode;
- the pair of high frequency pulse width modulation signals are complementary signals; and the pair of low frequency pulse width modulation signals are complementary signals.
- V1-V4 is a MOS tube, and its on or off state is controlled by a PWM signal; D1-D4 is a freewheeling diode, and the freewheeling diode can be a body diode of a MOS tube to provide a freewheeling circuit; C1-C4 A capacitor in parallel with each freewheeling tube.
- the modulation mode is a hybrid PWM modulation method.
- the MOS tube in this embodiment is used as a power switch tube, and can also be replaced by other types of power tubes such as an IGBT (Insulated Gate Bipolar Transistor), and other power tubes such as IGBTs are provided.
- IGBT Insulated Gate Bipolar Transistor
- the connection relationship between the other power tube such as the IGBT and the power supply unit, the pulse width modulation signal, and the like can be set as needed.
- the high-frequency pulse width modulation signal corresponding to each high-frequency arm has the same duty ratio, and the phase is interleaved by 2 ⁇ /N; the pair of low-frequency pulse width modulation signals have the same duty ratio and the same phase, and each power conversion The frequency of a pair of low frequency pulse width modulation signals of the unit is the same; N is the number of power conversion units in the power conversion unit group. That is, the duty ratios of the high-frequency pulse width modulation signal and the low-frequency pulse width modulation signal in the embodiment are equal, wherein the phases of each adjacent high-frequency pulse width modulation signal are sequentially interleaved to be interlaced 2 ⁇ /N, N.
- the phases of a pair of low frequency pulse width modulated signals are the same, that is, their phases are not staggered.
- the pair of low frequency pulse width modulation signals of each power conversion unit may be a power frequency of 50 Hz.
- the power conversion apparatus provided in this embodiment further includes: a voltage conversion unit corresponding to each power conversion unit; the power conversion unit is connected in parallel with the corresponding voltage conversion unit, and the output of the at least one voltage conversion unit As a power conversion result of the power conversion device.
- a voltage conversion unit is further disposed in parallel with each power conversion unit, and each voltage conversion unit is connected in parallel; the voltage conversion unit is used for voltage adjustment to achieve natural average
- the flow, such as the voltage conversion unit can be set to output a DC voltage of 42 to 59.5 V required by the communication power supply module; in addition, the load balancing between each module can be achieved by natural current sharing.
- the voltage conversion unit is connected in parallel with the corresponding power conversion unit to perform voltage adjustment.
- the output of the voltage conversion unit can be used as a power conversion result of the power conversion device, that is, the output voltage of the voltage conversion unit can be used as power.
- the power conversion result of the transforming device is not limited to, the power conversion result of the transforming device.
- the power conversion device in this embodiment further includes: a capacitor unit corresponding to each power conversion unit, the capacitor unit being connected in parallel with a power conversion unit corresponding thereto.
- the capacitor unit is a bus capacitor C of its corresponding power conversion unit, such as bus capacitors CA to CN.
- obtaining the voltage value of each power conversion unit in this embodiment may be obtaining a voltage value of a bus capacitance corresponding to each power conversion unit.
- the power conversion unit in this embodiment may be an AC/DC (Alternating Current/Direct Current) power conversion unit, each AC/DC power conversion unit is connected in series; and the voltage conversion unit may be a DC. /DC (DC to DC) voltage conversion unit, each DC/DC voltage conversion unit is connected in parallel.
- Each DC/DC voltage conversion unit is connected in parallel with its corresponding AC/DC power conversion unit, and the DC/DC voltage conversion unit is connected in parallel with a capacitance unit corresponding to its corresponding AC/DC power conversion unit, which is a bus capacitance.
- the DC/DC voltage conversion unit and its corresponding AC/DC power conversion unit perform energy interaction through the bus capacitance.
- Each AC/DC power conversion unit in the present embodiment can reduce the bus voltage level of each power conversion unit in series, so the topology can implement a high voltage function with a low voltage power semiconductor device.
- each DC/DC voltage conversion unit is connected in parallel so that the output can be naturally averaged.
- the sampling unit in this embodiment is configured to obtain input current, inductor current, and bus voltage information of each AC/DC unit, and then implement analog-to-digital conversion through an analog-to-digital subunit, and perform equalization calculation by a equalizing subunit, and A control signal is generated at the signal generating unit to achieve a natural voltage equalization of the bus voltage of each AC/DC unit.
- the loop of the AC/DC power conversion unit includes at least one current loop and one voltage loop; the voltage loop is used to stabilize the output voltage, and the current loop is used to cause the input current to follow the phase angle of the input voltage.
- the voltage loop and current loop are not limited to the I, II, and III controllers.
- the total bus voltage is controlled by the voltage and current double closed loop to obtain a duty cycle, and the pulse width modulation signal of each power unit is the same size as the duty ratio.
- loop control algorithms include, but are not limited to, proportional integral regulators, type I regulators, and type III regulators.
- the method further includes setting a switching period of each power conversion unit, each of the power conversion units has the same switching period, and the pulse width modulation signals have the same size.
- the phase of the high frequency arm is sequentially interleaved by 2 ⁇ /N, and N is equal to the number of power cells.
- the control period and the switching period are multipliers.
- the sampling is triggered by a single multiplier PWM to minimize the sampling delay, increase the loop bandwidth, and reduce the switching loss.
- control unit in this embodiment is a digital controller, it is not limited to adopting DSC (Digital Signal Processing), and other such as its MCU, FPGA (Field-Programmable Gate Array), ARM.
- the topology of the AC/DC power conversion unit in this embodiment may be a PFC (Power Factor Correction) topology, or other topology, such as a half bridge, a full bridge, or a BUCK. Circuits and the like can also be implemented.
- the power conversion device configured to provide a power conversion unit group and a control unit, where the power conversion unit group includes at least two power conversion units connected in series, and the power conversion unit group is connected in series with the inductance unit and the power supply unit, and at least one power
- the output of the transform unit is used as a power conversion result of the power conversion device;
- the control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit, the control signal such that each power conversion unit has the same voltage .
- the power conversion unit group is combined by the multi-power conversion unit to perform power conversion processing, which can realize high efficiency by using the low-voltage device, reduce the volume of the boost inductor, contribute to the improvement of the power density, reduce the switching frequency, and reduce Small conduction and switching losses.
- the control unit inputs a control signal to each power conversion unit, by which each power conversion unit has the same voltage to achieve natural voltage equalization of each power variation unit in the power conversion unit group;
- the voltage conversion unit enables the power conversion device to achieve current sharing, which improves the reliability of the power conversion.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the present embodiment provides a control method for a power conversion apparatus, which is used in the above power conversion apparatus, and includes: a control unit is respectively connected to each power conversion unit, and inputs a corresponding control signal to each power conversion unit; each power conversion The unit accesses a corresponding control signal that causes each power conversion unit to have the same voltage; the output of the at least one power conversion unit as a power conversion result of the power conversion device.
- control signal is generated by the unified control unit, and the control signal corresponding to each power conversion unit is input to the corresponding power conversion unit, and the output voltage of each power conversion unit is made the same by the control signal. Since the outputs of each power conversion unit are connected in parallel, and the voltage of each power conversion unit is the same, the output of the at least one power conversion unit may be used as a power conversion result of the power conversion device, and the power conversion result of the power conversion device may be The output voltage of each power conversion unit.
- control unit generates a control signal corresponding to each power conversion unit according to the current value of the inductance unit, the voltage value of the power supply unit, and the voltage value of each power conversion unit, and inputs the corresponding power conversion unit.
- control unit generates a control signal corresponding to each power conversion unit according to the current value of the inductance unit, the voltage value of the power supply unit, and the voltage value of each power conversion unit, including: collecting the inductance unit in the preset period.
- the control unit by collecting the input voltage of the power conversion unit group, the voltage value of each power conversion unit, and the current value of the inductance unit, the control unit adopts a voltage-current double closed-loop control strategy to make the loop calculate a current occupation.
- the ratio is the size of the current PWM signal for each power conversion unit.
- the PWM signal of each power conversion unit is set by a PWM phase shifting configuration, for example, the phases of the PWM signals corresponding to the pair of high frequency arms in the power conversion unit are sequentially interleaved by 2 ⁇ /N, and the PWM signals corresponding to the pair of low frequency arms are sequentially arranged.
- each power conversion unit includes a pair of high frequency arms and a pair of high frequency arms, and the low frequency arm is Complementary power frequency signal for reflow, the size of which is determined by the magnitude and direction of the input voltage; the high frequency arm is a complementary switching signal for obtaining the ideal sinusoidal signal, the size is calculated by the loop.
- the high frequency arm is a complementary switching signal for obtaining the ideal sinusoidal signal, the size is calculated by the loop.
- control unit includes a digital processor analog sampling conversion mode and an interrupt control mode, as shown in FIG. 6, which includes:
- Step S101 it is judged whether the PWM5 reaches the counting zero point, if yes, the process goes to step S102, otherwise it ends;
- Step S102 the PWM5 triggers an ADC (Analog-to-Digital Converter) sampling
- Step S103 generating an ADC interrupt
- step S104 the ADC interrupts the calling of the main control algorithm.
- the counter of the PWM5 can be monitored when the modulation is needed or in real time to determine whether it reaches the count zero point.
- the PWM sample is triggered by the PWM5, and the frequency of the PWM5 is the switching frequency N. (N is an integer) times, so the sampling conversion frequency is the N-fold relationship of the switching frequency.
- the main control algorithm is called at the ADC interrupt.
- the ADC generates an ADC interrupt every time the sample conversion is completed, so the interrupt frequency is also the N-fold relationship of the switching frequency.
- the flowchart of the main control algorithm in this embodiment is as shown in FIG. 7, and includes:
- Step S201 fast protection logic
- Step S202 AD (Analog-to-Digital) sampling and data processing
- Step S203 frequency detection and input voltage commutation
- Step S204 a high voltage protection algorithm
- Step S205 a current loop control algorithm
- Step S206 inputting a voltage driving strategy
- Step S207 assigning a value to the PWM register
- Step S208 a voltage loop control algorithm.
- a single PWM multiplying sampling triggering mode ensures that the sampling frequency and the pulsating frequency of the inductor current are the same, and the voltage current is controlled in the ripple period of each inductor current.
- the control delay is 1/N of the switching frequency, which increases the bandwidth of the current loop.
- the input current follows well, enabling the system to operate at a relatively low switching frequency and reduce switching losses.
- S cell1 - S cellN respectively correspond to the lower tube pulse width modulation of the high frequency arm of the N series PFC power conversion units.
- the signal, i 1 is the inductor current; the pulse width modulation signal of the upper tube of the high frequency arm is complementary to the dead zone. They are the same size, which is determined by the above-mentioned voltage and current double closed loop calculation and output voltage feedforward; the voltage of the bus is calculated to make the bus voltage follow a given value.
- the phase of the high frequency arm signal of each power unit is staggered, and the relationship between the interleaved angle and the number N of power units is 2 ⁇ /N.
- the working state of the circuit can be divided into N segments according to the relationship between the input voltage and the output voltage:
- a Ts switching period corresponds to 2N kinds of switching tube combination states, and during the operation of the switching tube, if the switching tubes are not damaged, the capacitance on each cell is charged in one Ts switching period.
- the size is equal.
- kTs/N-DTs (N-(k-1)) booster tubes are turned on, and (k-1) freewheeling tubes are turned on, and k-1 BUS capacitors are divided.
- DTs-(k+1)Ts/N: (N-k) booster tubes are turned on, and k freewheeling tubes are turned on, and k BUS capacitors are divided.
- the size of k is represented by the following formula: Floor means rounding down.
- the high frequency duty cycle on the inductor is D L , and the relationship between the actual duty cycle D of the switch and D L is:
- the phase shifting steady-state common duty control method is adopted, and the charging and discharging time of each bus capacitor in series is substantially the same regardless of the input voltage of any size, and the stored energy is the same, which can be not limited to four phases.
- the multi-phase power conversion unit achieves a power conversion effect of boosting, and each power conversion unit can be naturally voltage-balanced.
- vector control and SPWM Seusoidal PWM, sinusoidal pulse width modulation
- SPWM Sinusoidal PWM, sinusoidal pulse width modulation
- the normalized control of the multi-unit power converter can be realized by setting a uniform duty ratio to form a steady-state common duty ratio. Interleaving control of each power converter unit can be achieved by a phase shifting control strategy. Therefore, the embodiment of the present invention provides a method for controlling a steady-state common duty phase shift phase shift PWM, which can adopt a hybrid unipolar PWM modulation method, which simplifies control, reduces switching loss, and realizes multiple units. The combined power converter is naturally equalized.
- the power conversion device provided in this embodiment is provided with a power conversion unit group composed of a plurality of power conversion units for power conversion. Since a plurality of power conversion units are connected in series, the output voltage is divided under the same input voltage, so that it can be used. Low-voltage semiconductor devices that reduce conduction losses. Moreover, since the inductor ripple of the series power conversion unit group is 1/N not connected in series at the same switching frequency (N represents the number of series power conversion units), the inductance of the inductor can be reduced, and the volume of the magnetic component can be reduced. , increase the power density.
- the power conversion unit group in this embodiment is a multi-unit combined power converter.
- the modules or steps of the above embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device, or distributed over a network of multiple computing devices, which may be executed by a computing device.
- the code is implemented such that they can be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and in some cases, can be performed in a different order than that shown here.
- control unit inputs a control signal to each power conversion unit, by which each power conversion unit has the same voltage to achieve natural power of each power variation unit in the power conversion unit group. Pressure improves the reliability of power conversion.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
一种功率变换装置及功率变换装置的控制方法,通过设置功率变换单元组和控制单元,其中,功率变换单元组包括至少两个串联的功率变换单元,功率变换单元组与电感单元和电源单元串联,至少一个功率变换单元的输出作为功率变换装置的功率变换结果;控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。
Description
本文涉及但不限于电子电路技术领域,尤指一种功率变换装置及功率变换装置的控制方法。
随着云计算和大数据的流行,通讯用电的需求量大大增加,这使得对通讯电源的可靠性、功率容量和性能指标提出了更高的要求,高效率、高功率密度是通讯电源发展的必然趋势;多个功率变换单元组合形成的功率变换装置在提高变换效率和功率密度具有突出的优势。但是当前在多个功率变换单元组合形成的功率变换装置的控制中,对整个功率变化电路的控制方式复杂,而且很难实现该功率变换装置的自然均压,这使得整个功率变化处理的效果并不是很理想,功率变化的可靠性不高。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供的一种功率变换装置及功率变换装置的控制方法,以实现功率变换装置的自然均压。
本发明实施例提供一种功率变换装置,包括功率变换单元组和控制单元,其中,
功率变换单元组包括至少两个串联的功率变换单元,功率变换单元组与电感单元和电源单元串联,至少一个功率变换单元的输出作为功率变换装置的功率变换结果;
控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。
本发明实施例还提供一种功率变换装置的控制方法,应用于前述的功 率变换装置,功率变换装置的控制方法包括:
控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号;
每个功率变换单元接入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压;至少一个功率变换单元的输出作为功率变换装置的功率变换结果。
根据本发明实施例提供的功率变换装置及功率变换装置的控制方法,通过设置功率变换单元组和控制单元,其中,功率变换单元组包括至少两个串联的功率变换单元,功率变换单元组与电感单元和电源单元串联,至少一个功率变换单元的输出作为功率变换装置的功率变换结果;控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。即控制单元向每个功率变换单元输入控制信号,通过该控制信号使得每个功率变换单元具有相同的电压,以实现对该功率变换单元组中每个功率变化单元的自然均压,提高了功率变换的可靠性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一的功率变换装置示意图;
图2为本发明实施例一的另一功率变换装置示意图;
图3为本发明实施例一的功率变换单元示意图;
图4为本发明实施例一的另一功率变换装置示意图;
图5为本发明实施例二的PWM调制方式示意图;
图6为本发明实施例二的数字处理器中断控制方式流程图;
图7为本发明实施例二的主控算法流程图;
图8为本发明实施例二的功率变换单元的驱动方式以及电感电流的时序图。
详述
下面通过实施方式结合附图对本发明实施例进行详细说明。
实施例一:
本实施例提供一种功率变换装置,请参见图1,包括:功率变换单元组和控制单元,其中,功率变换单元组包括至少两个串联的功率变换单元,功率变换单元组与电感单元和电源单元串联,至少一个功率变换单元的输出作为功率变换装置的功率变换结果;控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。
在一实施方式中,本实施例提供的功率变换装置,包括功率变换单元组,该功率变换单元组包括至少两个串联的功率变换单元,即该功率变换单元组为多功率变换单元组合形成的功率变换单元。该功率变换单元组与电感单元和电源单元串联,该功率变换单元组有两个输入端,其中一个输入端与电感单元的一端连接,另一端与电源单元的一个输出端连接,该电源单元的另一个输出端与电感单元的另一端连接。另外,本实施例中设置控制单元,通过该控制单元向每个功率变换单元输入控制信号,通过该控制信号使得每个功率变换单元具有相同的电压,即使得每个功率变换单元的输出电压相同。该控制信号可以为PWM(Pulse Width Modulation,脉冲宽度调制)信号,即脉宽调制信号。本实施例中,通过设置该控制单元使得每个功率变换单元的电压相同,方便的实现了对功率变换单元组中每个功率变化单元的自然均压,提高了功率变化的可靠性。
本实施例中的控制单元可以包括数字处理器,即可以通过数字控制方式实现对功率变换单元组中每个功率变化单元的电压控制,实现其自然均压,采用数字控制技术对功率变化单元进行控制,不仅可以简化硬件电路的设计,增加控制的灵活性,而且可以直接对功率变换电路进行监控,另外也能满足在线升级的优势,因此采用数字控制技术可以很好地实现对功率变换电路的控制。
在一实施方式中,本实施例中的每个功率变换单元的输出并联,且每个 功率变换单元的电压相同,则可以将至少一个功率变换单元的输出作为功率变换装置的功率变换结果,该功率变换装置的功率变换结果可以是每个功率变换单元的输出电压,也可以是每个功率变换单元的输出功率等。由于每个功率变换单元的输出电压都相同,所以每个功率变换单元的输出电压都可以作为功率变换装置的功率变换结果。
本实施例提供的功率变换装置,还可以包括电感单元和电源单元中至少之一。本实施例中的电感单元和电源单元可以是该功率变换装置外部的电感单元和电源单元,也可以是设置在该功率变换装置内,属于该功率变换装置的电感单元和电源单元,其可以根据需要选择设置。另外,本实施例中的电源单元可以是交流电电源;电感单元可以是一个电感或是电感组合。
在一实施方式中,本实施例提供的控制单元还与电感单元、电源单元、每个功率变换单元的电压输出端连接,根据电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号。
请参见图2,本实施例提供的控制单元与电感单元、电源单元和每个功率变换单元的电压输出端连接,采集该电感单元的电流值,电源单元的电压值,及每个功率变换单元的电压值;然后根据采集到的电感单元的电流值,电源单元的电压值,及每个功率变换单元的电压值,进行处理,得到与每个功率变换单元对应的控制信号。
在一实施方式中,本实施例中的控制单元包括:采样子单元、均压子单元和信号生成子单元;其中,采样子单元采集预设周期内电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值;均压子单元根据采样子单元采集的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成统一的占空比;信号生成子单元根据均压子单元生成的统一的占空比进行移相处理,生成与每个功率变换单元对应的控制信号。
请参见图2,本实施例提供的控制单元通过设置采样子单元采集该电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值,可以采集预设周期内的该电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值。该预设周期可以根据需要设置,本实施例对此不作限定。设置均 压子单元根据采样子单元采集的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成当前对应的统一的占空比。信号生成子单元根据均压子单元生成的统一的占空比进行移相处理,生成与每个功率变换单元对应的控制信号。本实施例中的电源电压的电压值即为功率变换单元组的输入电压。
在一实施方式中,请参见图2,本实施例提供的控制单元还包括:模数转换子单元,连接在采样子单元与均压子单元之间,设置为将采样子单元采集的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值转换成对应的数字信号后,输出给均压子单元;均压子单元根据接入的数字信号生成统一的占空比。由于采样单元采集的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值都是模拟信号,在进行占空比计算时,将该电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值从模拟信号转换为数字信号,再根据转换为数字信号的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值进行占空比的计算。其中,对于占空比的计算,可以由控制单元根据采集得到的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值,采用电压电流双闭环控制策略使环路计算出一个当前的占空比,并将该当前的占空比作为每一个功率单元当前脉宽调制信号的大小。
本实施例提供的功率变换单元,包括:高频臂子单元和低频臂子单元,且高频臂子单元和低频臂子单元并联;高频臂子单元包括一对串联的高频臂,低频臂子单元包括一对串联的低频臂;与该功率变换单元对应的控制信号包括与一对串联的高频臂一一对应接入的一对高频脉宽调制信号,以及与一对串联的低频臂一一对应接入的一对低频脉宽调制信号。请参见图3,本实施例中的功率变换单元是由一对高频臂和一对低频臂组成的,其中高频臂用来实现功率变换,从而使输入电流跟随输入电压的相位,低频臂用于工频回流。控制信号分别接在每个频臂上,高频臂的上管接PWMN1,下管接PWMN2,该PWMN1和PWMN2为一对高频脉宽调制信号;低频臂的上管接PWMH,下管接PWML,该PWMH和PWML为一对低频脉宽调制信号。其中N为功率变换单元的个数,对于N个功率变换单元,会产生2N个高频 的PWM信号,该2N个高频PWM信号为N对PWMN1和PWMN2;和产生一对PWMH和PWML信号。其中,高频臂对应的PWM信号的开关周期可以是35K,低频臂对应的PWM信号的开关周期可以是50Hz。
在一实施方式中,如图3所示,本实施例中每个频臂均包括MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)、电容和续流二极管,且MOS的栅极接对应的脉宽调制信号,漏极接电源单元的正极,源极接互为一对的另一频臂的漏极,续流二极管接为MOS管自身集成的体二级管并联接在MOS管的漏极和源极之间,电容与续流二极管并联;一对高频脉宽调制信号为互补信号;一对低频脉宽调制信号为互补信号。即PWMN1和PWMN2分别接在其对应的MOS的栅极。其中,V1-V4为MOS管,其导通或关断状态受到PWM信号的控制;D1-D4为续流二极管,该续流二极管可以是MOS管的体二极管,提供续流回路;C1-C4为与每个续流管并联的电容。电路工作时,MOS管V1和V2通断状态互补,V3和V4通断状态互补。其调制方式从本质上而言,采用的是混合式PWM调制方式;本实施例中,通过使用一对低频臂既可以实现功率变换,又可以缩小开关管的开关损耗,提高了转换效率。另外,本实施例中的MOS管作为功率开关管,也可以被其他如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)等类型的功率管替代,当设置其他如IGBT等类型的功率管代替MOS管作为功率开关管时,该其他如IGBT等类型的功率管与电源单元、脉宽调制信号等的连接关系可以根据需要设置。
本实施例中,每个高频臂对应的高频脉宽调制信号的占空比相同,相位交错2π/N;一对低频脉宽调制信号的占空比相同,相位相同,每个功率变换单元的一对低频脉宽调制信号的频率相同;N为功率变换单元组中功率变换单元的个数。即本实施例中的高频脉宽调制信号和低频脉宽调制信号的占空比大小都相等,其中,每个相邻高频脉宽调制信号的相位依次交错,为交错2π/N,N为功率变换单元的个数,一对低频脉宽调制信号的相位相同,即其相位不交错。另外,每个功率变换单元的一对低频脉宽调制信号可以是频率为50HZ的工频。
在一实施方式中,本实施例提供的功率变换装置,还包括:与每个功率 变换单元一一对应的电压变换单元;功率变换单元与对应的电压变换单元并联,至少一个电压变换单元的输出作为功率变换装置的功率变换结果。请参见图4,本实施例提供的功率变换装置中,与每个功率变换单元还并联设置有电压变换单元,每个电压变换单元间并联;该电压变换单元用于进行电压调整,实现自然均流,如该电压变换单元可以设置为输出通讯电源模块需要的42~59.5V的直流电压;另外,通过自然均流,可以实现每个模块之间的带载平衡。在该电压变换单元与其对应的功率变换单元并联,进行电压调整的基础上,可将该电压变换单元的输出作为功率变换装置的功率变换结果,即可以是将该电压变换单元的输出电压作为功率变换装置的功率变换结果。
在一实施方式中,本实施例中的功率变换装置,还包括:与每个功率变换单元对应的电容单元,所述电容单元与与其对应的功率变换单元并联。请参见图4,该电容单元为其对应的功率变换单元的母线电容C,如母线电容CA至CN。另外,本实施例中获取每个功率变换单元的电压值可以是获取每个功率变换单元对应的母线电容的电压值。
在一实施方式中,本实施例中的功率变换单元可以是AC/DC(Alternating Current/Direct Current,交流转直流)功率变换单元,每个AC/DC功率变换单元串联;电压变换单元可以是DC/DC(直流转直流)电压变换单元,每个DC/DC电压变换单元并联。每个DC/DC电压变换单元与其对应的AC/DC功率变换单元并联,且该DC/DC电压变换单元与与其对应的AC/DC功率变换单元对应的电容单元并联,该电容单元为母线电容。该DC/DC电压变换单元与与其对应的AC/DC功率变换单元通过该母线电容实现能量交互。本实施例中的每个AC/DC功率变换单元串联可以降低每一个功率变换单元的母线电压大小,因此该拓扑可以用低压的功率半导体器件来实现高压的功能。另外,每个DC/DC电压变换单元并联,从而可以使输出自然均流。本实施例中的采样单元设置为获得输入电流、电感电流及每个AC/DC单元的母线电压信息,然后通过模数转换子单元实现模数转换,通过均压子单元进行均压计算,并在信号生成单元生成控制信号,从而实现每个AC/DC单元的母线电压的自然均压。
另外,该AC/DC功率变换单元的环路至少包括一个电流环和一个电压 环;电压环用于稳定输出电压,电流环用于使输入电流跟随输入电压的相位角度。电压环、电流环均不限使用I、II、III型控制器。通过电压和电流双闭环对总的母线电压进行控制得到一个占空比,每一个功率单元的脉宽调制信号的大小均与该占空比大小相同。另外,环路控制算法包括但不限于比例积分调节器、I型调节器和III型调节器。在一实施方式中,还包括设置每个功率变换单元的开关周期,每个功率变换单元的开关周期相同,脉宽调制信号的大小相同。高频臂的相位依次交错2π/N,N等于功率单元的个数。另外,控制周期和开关周期是倍频的关系,采样通过单独一路倍频的PWM触发,最大限度降低采样延时,增加环路带宽,降低开关损耗。
本实施例中的控制单元为数字控制器时,不限制于采用DSC(Digital Signal Processing,数字信号处理器),其它如它单片机、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、ARM等也可以实现;本实施例中的AC/DC功率变换单元的拓扑结构可以是图腾柱PFC(Power Factor Correction,功率因数校正)拓扑,也可以是其它拓扑结构,如半桥、全桥、BUCK电路等也可以实施。
本实施例提供的功率变换装置,通过设置功率变换单元组和控制单元,其中,功率变换单元组包括至少两个串联的功率变换单元,功率变换单元组与电感单元、电源单元串联,至少一个功率变换单元的输出作为功率变换装置的功率变换结果;控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。其中,功率变换单元组通过多功率变换单元组合,进行功率转换处理,可以利用低压器件实现较高的效率,并且降低了升压电感的体积,有助于功率密度的提升,降低开关频率,减小了导通和开关损耗。另外,控制单元向每个功率变换单元输入控制信号,通过该控制信号使得每个功率变换单元具有相同的电压,以实现对该功率变换单元组中每个功率变化单元的自然均压;通过设置电压变换单元,使得该功率变换装置可以实现均流,提高了功率变换的可靠性。
实施例二:
本实施例提供一种功率变换装置的控制方法,用于上述功率变换装置, 其包括:控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号;每个功率变换单元接入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压;至少一个功率变换单元的输出作为功率变换装置的功率变换结果。
本实施例中,由统一的控制单元生成控制信号,将每个功率变换单元对应的控制信号输入到对应的功率变换单元,通过该控制信号使得每个功率变换单元的输出电压相同。由于每个功率变换单元的输出并联,且每个功率变换单元的电压相同,则可以将至少一个功率变换单元的输出作为功率变换装置的功率变换结果,该功率变换装置的功率变换结果可以是每个功率变换单元的输出电压。
本实施例中,控制单元根据电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号,并输入对应的功率变换单元。在一实施方式中,控制单元根据电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号包括:采集预设周期内电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值;根据采集的电感单元的电流值、电源单元的电压值、每个功率变换单元的电压值生成统一的占空比;根据统一的占空比进行移相处理,生成与每个功率变换单元对应的控制信号。
本实施例中,通过采集功率变换单元组的输入电压,每个功率变换单元的电压值,及电感单元的电流值,在控制单元采用电压电流双闭环控制策略使环路计算出一个当前的占空比,作为每一个功率变换单元当前PWM信号的大小。然后,每一个功率变换单元的PWM信号,通过PWM移相配置进行设置,如该功率变换单元中一对高频臂对应的PWM信号的相位依次交错2π/N,一对低频臂对应的PWM信号的相位相同,N等于功率变换单元的个数,即使得每一功率变换单元的时序交错,电感电流相位交错2π/N,实现自然均压的功能。另外,如图5所示,本实施例中,采用混合PWM调制方式,且采用单极性的调试方式,每个功率变换单元包含的一对高频臂和一对高频臂,低频臂为互补的工频信号,用于回流,其大小由输入电压的大小和方向决定;高频臂为互补的开关信号,用于得到理想的正弦信号,大小由环 路计算得到。本实施例中,通过使用一对低频臂既可以实现功率变换,又可以缩小开关管的开关损耗,提高了转换效率。
本实施例中控制单元包含的数字处理器模拟采样转换方式和中断控制方式,如图6所示,其包括:
步骤S101,判断PWM5是否到达计数零点,是则跳转到步骤S102,否则结束;
步骤S102,PWM5触发ADC(Analog-to-Digital Converter,模数转换器)采样;
步骤S103,产生ADC中断;
步骤S104,ADC中断调用主控算法。
本实施例中可以在需要进行调制时或实时对PWM5的计数器的计数进行监控,判断其是否达到计数零点,当达到计数零点后,由该PWM5触发ADC采样转换,PWM5的频率是开关频率的N(N为整数)倍,因此采样转换频率是开关频率的N倍频关系。主控制算法是在ADC中断调用的,ADC每次采样转换完成产生一次ADC中断,因此中断频率也是开关频率的N倍频关系。
本实施例中的主控算法的流程图如图7所示,包括:
步骤S201,快速保护逻辑;
步骤S202,AD(Analog-to-Digital,模数转换)采样及数据处理;
步骤S203,频率检测及输入电压换向;
步骤S204,高压保护算法;
步骤S205,电流环控制算法;
步骤S206,输入电压驱动策略;
步骤S207,PWM寄存器赋值;
步骤S208,电压环路控制算法。
通过上述方式,采用单独一路PWM倍频采样触发方式保证了采样频率和电感电流的脉动频率相同,在每一个电感电流的纹波周期均进行了电压电 流控制。控制延时是开关频率的1/N,提高了电流环的带宽,输入电流的跟随性较好,使系统能够工作在相对较低的开关频率下,减小开关损耗。
本发明实施例提供的稳态共占空比移相脉宽调制方式,请参见图8,其中S
cell1-S
cellN分别对应于N个串联PFC功率变换单元的高频臂的下管脉宽调制信号,i
1为电感电流;高频臂上管的脉宽调制信号加上死区后与其互补。它们的大小相同,由前述电压电流双闭环计算和输出电压前馈共同决定;通过电压环计算来使母线电压跟随给定值。同时,每一个功率单元的高频臂信号相位是交错的,其交错的角度和功率单元的个数N的关系为2π/N。采用上述稳态共占空比移相脉宽调制方式,电路的工作状态可以依据输入电压和输出电压的关系分为N段:
对任意输入电压段,一个Ts开关周期内均对应2N种开关管组合状态,且在该开关管工作过程中,假设开关管均未损坏,那么每一个cell上的电容在一个Ts开关周期内充电的大小相等。对应每第K个电压段,在一个Ts开关周期内存在以下共性:
kTs/N-DTs:(N-(k-1))个升压管开通,有(k-1)个续流管开通,有k-1个BUS电容进行了分压。
DTs-(k+1)Ts/N:(N-k)个升压管开通,有k个续流管开通,有k个BUS电容进行了分压。
在CCM(Continuous Conduction Mode,连续导通模式)模式下由KVL(Kirchhoff voltage law,基尔霍夫电压定律)及伏秒平衡可得:
可见,输入电压和输出电压及占空比仍然满足boost电路增益表达式。因此采用该移相式稳态共占空比的控制方法,不管在任何大小的输入电压下,串联的每一母线电容的充放电时间基本相同,储存的能量相同,可以使不限于四相的多相功率变换单元实现升压的功率变换作用,并且每一功率变换单元能够自然均压。目前通常采用的有矢量控制和SPWM(Sinusoidal PWM,正弦脉宽调制)调制方式对多单元组合式功率变换器进行控制来说,在上述调制方式下很容易导致母线不均压和输出不均流。假如不采用统一调制,而采用每个功率单元单独控制,则会导致控制模态太多,难以实现,且当功率单元个数增加后,驱动和采样会变的复杂。而本实施例提供的功率变换装置的控制方法,通过设置统一的占空比,形成稳态共占空比,可以实现多单元功率变换器的归一化控制。通过移相的控制策略,可以实现每一功率变换器单元的交错控制。由此本发明实施例提供了一种通过稳态共占空比移相式PWM控制方法,该PWM控制方法可以是采用混合单极性PWM调制方式,简化了控制,降低开关损耗,实现多单元组合式功率变换器自然均压。
另外,本实施例提供的功率变换装置,设置多个功率变换单元组成的功率变换单元组进行功率变换,由于多个功率变换单元串联,在同样的输入电压下,输出电压分压,因此可以使用低压半导体器件,降低导通损耗。而且由于在同样的开关频率下,串联功率变换单元组的电感纹波是不串联的1/N(N代表串联功率变换单元的个数),因此可以降低电感的感量,减小磁件体积,增大功率密度。由于该功率变换单元组的电感纹波减小,开关频率相比传统的单相功率变换单元可以降低,因此可以减小开关损耗;而且由于功率变换单元组中的每个功率变换单元串联,减小了谐波,因此降低了滤波器 的设计难度。本实施例中的功率变换单元组即为多单元组合式功率变换器。
上述本发明实施例的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本申请不限制于任何特定的硬件和软件结合。
本发明实施例中,控制单元向每个功率变换单元输入控制信号,通过该控制信号使得每个功率变换单元具有相同的电压,以实现对该功率变换单元组中每个功率变化单元的自然均压,提高了功率变换的可靠性。
Claims (13)
- 一种功率变换装置,包括功率变换单元组和控制单元,其中,所述功率变换单元组包括至少两个串联的功率变换单元,所述功率变换单元组与电感单元和电源单元串联,至少一个功率变换单元的输出作为所述功率变换装置的功率变换结果;所述控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压。
- 如权利要求1所述的功率变换装置,还包括所述电感单元和所述电源单元中的至少之一。
- 如权利要求1所述的功率变换装置,其中,所述控制单元还与所述电感单元、所述电源单元和每个功率变换单元的电压输出端连接,根据所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号。
- 如权利要求3所述的功率变换装置,其中,所述控制单元包括:采样子单元、均压子单元和信号生成子单元;其中,所述采样子单元采集预设周期内所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值;所述均压子单元根据所述采样子单元采集的所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值生成统一的占空比;所述信号生成子单元根据所述均压子单元生成的所述统一的占空比进行移相处理,生成与每个功率变换单元对应的控制信号。
- 如权利要求4所述的功率变换装置,其中,所述控制单元还包括:模数转换子单元,连接在所述采样子单元与均压子单元之间,设置为将所述采样子单元采集的所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值转换成对应的数字信号后,输出给所述均压子单元;所述均压子单元根据接入的数字信号生成所述统一的占空比。
- 如权利要求4所述的功率变换装置,其中,功率变换单元包括:高频臂子单元和低频臂子单元,且高频臂子单元和低频臂子单元并联;所述高 频臂子单元包括一对串联的高频臂,所述低频臂子单元包括一对串联的低频臂;与该功率变换单元对应的控制信号包括与所述一对串联的高频臂一一对应接入的一对高频脉宽调制信号,以及与所述一对串联的低频臂一一对应接入的一对低频脉宽调制信号。
- 如权利要求6所述的功率变换装置,其中,每个频臂均包括MOS管、电容和续流二极管,且MOS管的栅极接对应的脉宽调制信号,漏极接所述电源单元的正极,源极接互为一对的另一频臂的漏极,所述续流二极管为所述MOS管自身集成的体二级管并联接在所述MOS管的漏极和源极之间,所述电容与所述续流二极管并联;所述一对高频脉宽调制信号为互补信号;所述一对低频脉宽调制信号为互补信号。
- 如权利要求7所述的功率变换装置,其中,每个高频臂对应的高频脉宽调制信号的占空比相同,相位交错2π/N;所述一对低频脉宽调制信号的占空比相同,相位相同,每个功率变换单元的一对低频脉宽调制信号的频率相同;N为所述功率变换单元组中所述功率变换单元的个数。
- 如权利要求1至8任一项所述的功率变换装置,还包括:与每个功率变换单元一一对应的电压变换单元;功率变换单元与对应的电压变换单元并联,至少一个电压变换单元的输出作为所述功率变换装置的功率变换结果。
- 如权利要求9所述的功率变换装置,还包括:与每个功率变换单元对应的电容单元,所述电容单元与对应的功率变换单元并联。
- 一种功率变换装置的控制方法,应用于如权利要求1至10任一项所述的功率变换装置,所述功率变换装置的控制方法包括:控制单元分别与每个功率变换单元连接,向每个功率变换单元输入对应的控制信号;每个功率变换单元接入对应的控制信号,所述控制信号使得每个功率变换单元具有相同的电压;至少一个功率变换单元的输出作为所述功率变换装置的功率变换结果。
- 如权利要求11所述的功率变换装置的控制方法,其中,所述控制 单元根据电感单元的电流值、电源单元的电压值和每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号,并输入对应的功率变换单元。
- 如权利要求12所述的功率变换装置的控制方法,其中,所述控制单元根据电感单元的电流值、电源单元的电压值和每个功率变换单元的电压值生成与每个功率变换单元对应的控制信号包括:采集预设周期内所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值;根据采集的所述电感单元的电流值、所述电源单元的电压值和每个功率变换单元的电压值生成统一的占空比;根据所述统一的占空比进行移相处理,生成与每个功率变换单元对应的控制信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18738697.4A EP3570421A4 (en) | 2017-01-12 | 2018-01-09 | POWER CONVERSION DEVICE AND CONTROL METHOD FOR THE POWER CONVERSION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710022927.9A CN108306484B (zh) | 2017-01-12 | 2017-01-12 | 一种功率变换装置及功率变换装置的控制方法 |
CN201710022927.9 | 2017-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018130149A1 true WO2018130149A1 (zh) | 2018-07-19 |
Family
ID=62840057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/071954 WO2018130149A1 (zh) | 2017-01-12 | 2018-01-09 | 一种功率变换装置及功率变换装置的控制方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3570421A4 (zh) |
CN (1) | CN108306484B (zh) |
WO (1) | WO2018130149A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110011538B (zh) * | 2019-01-30 | 2020-09-08 | 深圳供电局有限公司 | 基于离散化开关电容的模块化直流变压器及其调制方法 |
CN110518796B (zh) * | 2019-09-24 | 2020-06-23 | 四川灵通电讯有限公司 | 直流恒流转直流恒流的多模块电源控制装置及应用方法 |
CN112928898A (zh) * | 2019-12-06 | 2021-06-08 | 中兴通讯股份有限公司 | 功率变换器的bus电压均衡调节方法及功率变换器 |
CN110995040B (zh) * | 2019-12-14 | 2021-09-24 | 西南交通大学 | 一种基于mmc分布式控制结构的电容电压分组回传方法 |
CN111030488B (zh) * | 2019-12-14 | 2021-09-24 | 西南交通大学 | 一种基于mmc分布式控制结构的电容电压分组回传方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090021966A1 (en) * | 2007-07-17 | 2009-01-22 | Jacobson Boris S | Methods and apparatus for a cascade converter using series resonant cells with zero voltage switching |
CN102082514A (zh) * | 2009-11-27 | 2011-06-01 | 南京理工大学 | 基于反激变换器的多模块组合交-交变换器 |
CN103269177A (zh) * | 2013-04-27 | 2013-08-28 | 南京航空航天大学 | 一种分布式isop逆变器及其输入均压输出同幅值控制方法 |
CN104980015A (zh) * | 2015-07-03 | 2015-10-14 | 哈尔滨工业大学深圳研究生院 | 输入串联输出并联的dc/dc变换器的电流差控制方法 |
CN105186883A (zh) * | 2015-11-06 | 2015-12-23 | 国网上海市电力公司 | 一种isop变换器系统的控制方法 |
CN105743352A (zh) * | 2016-04-18 | 2016-07-06 | 清华大学 | 一种改进的开关电容接入的双向直流变压器及其控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008099381A (ja) * | 2006-10-10 | 2008-04-24 | Sansha Electric Mfg Co Ltd | アーク溶接用等の電源装置 |
CN101902142B (zh) * | 2010-07-26 | 2013-03-06 | 南京航空航天大学 | 二极管箝位型五电平双降压式半桥逆变器 |
CN102013826A (zh) * | 2010-12-01 | 2011-04-13 | 北京理工大学 | 输入串联输出并联型高频链逆变器模块的稳定电流控制方法 |
US9755537B2 (en) * | 2015-03-04 | 2017-09-05 | Infineon Technologies Austria Ag | Multi-cell power conversion method with failure detection and multi-cell power converter |
TWI530082B (zh) * | 2015-03-06 | 2016-04-11 | 國立清華大學 | 可允許電感值變化之三相模組化多階換流器電流控制方法 |
CN110061636A (zh) * | 2015-06-24 | 2019-07-26 | 中兴通讯股份有限公司 | 功率变换装置 |
-
2017
- 2017-01-12 CN CN201710022927.9A patent/CN108306484B/zh active Active
-
2018
- 2018-01-09 EP EP18738697.4A patent/EP3570421A4/en active Pending
- 2018-01-09 WO PCT/CN2018/071954 patent/WO2018130149A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090021966A1 (en) * | 2007-07-17 | 2009-01-22 | Jacobson Boris S | Methods and apparatus for a cascade converter using series resonant cells with zero voltage switching |
CN102082514A (zh) * | 2009-11-27 | 2011-06-01 | 南京理工大学 | 基于反激变换器的多模块组合交-交变换器 |
CN103269177A (zh) * | 2013-04-27 | 2013-08-28 | 南京航空航天大学 | 一种分布式isop逆变器及其输入均压输出同幅值控制方法 |
CN104980015A (zh) * | 2015-07-03 | 2015-10-14 | 哈尔滨工业大学深圳研究生院 | 输入串联输出并联的dc/dc变换器的电流差控制方法 |
CN105186883A (zh) * | 2015-11-06 | 2015-12-23 | 国网上海市电力公司 | 一种isop变换器系统的控制方法 |
CN105743352A (zh) * | 2016-04-18 | 2016-07-06 | 清华大学 | 一种改进的开关电容接入的双向直流变压器及其控制方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3570421A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN108306484A (zh) | 2018-07-20 |
EP3570421A4 (en) | 2020-11-11 |
CN108306484B (zh) | 2021-08-31 |
EP3570421A1 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018130149A1 (zh) | 一种功率变换装置及功率变换装置的控制方法 | |
CN108475999B (zh) | 单相五电平有源嵌位变换器单元及变换器 | |
JP5928928B2 (ja) | 5段階電力変換器ならびにその制御方法および制御装置 | |
CN102308467B (zh) | 级联型两电平变换器中的方法、控制器件及计算机程序产品 | |
WO2019029694A1 (zh) | 一种变换电路、控制方法和供电设备 | |
CN106786485B (zh) | 用于不平衡负载下直流微电网的电压脉动抑制方法 | |
CN108599604B (zh) | 一种单相七电平逆变电器及其pwm信号调制方法 | |
CN108631633B (zh) | 一种基于mmc的混合电容电压型双子模块串联拓扑结构 | |
CN113452248B (zh) | 一种谐振开关电容变换器及其控制方法 | |
CN108141147B (zh) | 高电压增益的五电平逆变器拓扑电路 | |
CN113938013A (zh) | 双向升降压直流变换器及工作参数配置方法 | |
CN109167525B (zh) | 一种新型非隔离五电平逆变器 | |
CN113489363B (zh) | 一种双向h6光伏并网变换器及其调制方法 | |
McHugh et al. | A high power density single-phase inverter using stacked switched capacitor energy buffer | |
CN111740624B (zh) | 高增益多电平dc/ac变流拓扑及方法 | |
CN112787529A (zh) | 一种t型三电平变换器直接电流预测控制方法及系统 | |
CN102255532A (zh) | 单相多电平pwm变换器的并联结构 | |
Azari et al. | Realization of an extended switched-capacitor multilevel inverter topology with self voltage balancing | |
Genc et al. | Application of interleaved bridgeless boost PFC converter without current sensing | |
US10033182B2 (en) | Bidirectional electrical signal converter | |
CN107482892B (zh) | 能量缓冲电路以及变流器 | |
CN113193768B (zh) | 四开关管串联型的背靠背式三电平整流器 | |
JP6500738B2 (ja) | 電力変換装置及びその制御方法 | |
CN213461552U (zh) | 一种ac-ac混合升压开关电容变换器 | |
WO2022011520A1 (zh) | 逆变器共模电压注入控制方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18738697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018738697 Country of ref document: EP Effective date: 20190812 |