WO2018129796A1 - 用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法 - Google Patents

用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法 Download PDF

Info

Publication number
WO2018129796A1
WO2018129796A1 PCT/CN2017/075718 CN2017075718W WO2018129796A1 WO 2018129796 A1 WO2018129796 A1 WO 2018129796A1 CN 2017075718 W CN2017075718 W CN 2017075718W WO 2018129796 A1 WO2018129796 A1 WO 2018129796A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
nozzle
coolant
oxidant
injection device
Prior art date
Application number
PCT/CN2017/075718
Other languages
English (en)
French (fr)
Inventor
闵振华
伯格•卡斯珀•扬•亨德利克
汪原理
Original Assignee
中为(上海)能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中为(上海)能源技术有限公司 filed Critical 中为(上海)能源技术有限公司
Priority to RU2019118457A priority Critical patent/RU2719853C1/ru
Priority to AU2017392170A priority patent/AU2017392170B2/en
Priority to US16/477,744 priority patent/US11066916B2/en
Publication of WO2018129796A1 publication Critical patent/WO2018129796A1/zh
Priority to ZA2019/02930A priority patent/ZA201902930B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0078Nozzles used in boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • E21B10/61Drill bits characterised by conduits or nozzles for drilling fluids characterised by the nozzle structure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature

Definitions

  • the present invention provides a nozzle for an underground coal gasification process, an injection device, and an operation method of the injection device.
  • the nozzle and injection apparatus can be used to continuously inject high concentrations of oxidant into the subterranean coal seam in a coal underground gasification process.
  • Underground Coal Gasification is a process of converting coal directly into product gas through controlled combustion (incomplete combustion) and gasification of underground coal seams.
  • the product gas commonly referred to as syngas, can be used in processes such as fuel production, chemical synthesis, and power generation.
  • the underground coal gasification process integrates well completion, underground coal mining and coal gasification technology, and has the advantages of good safety, low investment, high efficiency and less pollution.
  • the completion system typically includes an injection well for injecting various reagents such as an oxidant, a gasifying agent, and a coolant, a production well for removing the product gas, and various auxiliary wells for assisting the operation, wherein the injection well
  • the production wells and the auxiliary wells are usually laid with casings and/or inner liners and are connected to each other as needed, wherein the auxiliary wells usually include an ignition well, a freezing well, a shielding well and a protective well, etc., wherein the injection well is usually Horizontally directional wells, while production and auxiliary wells are typically horizontal directional wells or vertical wells.
  • the most basic completion system consists of injection and production wells that are connected to each other and have casing and/or lining pipes inside.
  • This basic completion system is also called coal.
  • Underground gasification unit or well pair The underground coal gasification unit or well pair generally includes a combustion zone, a gasification zone and a pyrolysis zone, wherein the gasification zone is mainly The lieutenant gasifies and partially oxidizes to produce product gas.
  • the burning area formed in the coal seam gradually becomes larger, and finally the underground coal reservoir is completely consumed, leaving only coal ash.
  • the product gas produced by the underground coal gasification process usually contains CO, CO 2 , H 2 , CH 4 and solid particles, water, coal tar and hydrocarbons, and a small amount of H 2 S, NH 4 and COS.
  • the specific composition of the product gas typically depends on a number of factors, including the oxidant used (eg, air, oxygen-enriched air or pure oxygen), the presence of water (coal water or water from the surrounding formation that penetrates the coal seam), the quality of the coal, and Process parameters used (temperature and pressure, etc.).
  • an oxidant with a higher oxygen concentration In the underground coal gasification process, it is generally preferred to use an oxidant with a higher oxygen concentration because the higher the oxygen concentration, the higher the product gas quality, such as the calorific value, but the oxygen concentration is too high, such as above 35 vol%, the cooling must be used simultaneously.
  • the agent avoids too high a temperature in the combustion zone and an excessively high reburning strength, and the prior art related equipment has some problems in applying a high concentration of the oxidant.
  • CN103541714A discloses a spray head and a coal underground gasification method, the injection apparatus comprising a cylindrical casing, the casing comprising two parts and two parts being in fluid communication through a front hole, and a side hole in a side wall of the second part of the casing
  • the spray head further includes a seal assembly and a spring slidably opening or closing the front hole and the side hole, wherein the front hole of the housing is controlled by adjusting the injection flow rate of the gasifying agent, the injection pressure, and the pressure of the outlet passage port. Side opening and closing.
  • the internal structure of the nozzle ie, in the oxidant passage
  • the metal particles generated by the friction between the metal parts may cause the particles to impact spontaneous combustion and burn the equipment.
  • the side hole switch is controlled by the injection pressure, the pressure fluctuation easily causes the high-temperature syngas to flow backward into the nozzle and directly contact with the oxidant, which may cause combustion or explosion inside the nozzle, and therefore, there is a problem in safety in use.
  • CN104533377A discloses a nozzle and a gasification method, the nozzle being a sleeve structure comprising a central tube and an outer ring sleeve, a tapered cone at the end of the central tube and the outer ring sleeve
  • the shape structure forms a nozzle top cap, the nozzle top cap is provided with a gas injection port communicating with the central pipe, and the outer ring sleeve is provided with a plurality of water spray holes, the central pipe is provided with an oxygenating agent, and the outer ring casing is open
  • the water or aqueous solution enters the gasifier through the water spray holes of the side walls and the top cap, wherein a separately designed nozzle top cap is applied and the connection and separation of the center tube and the outer ring sleeve are mainly achieved by the connecting sleeve.
  • CN104564008A discloses a coal underground gasification device and a gasification method, which comprises a gas injection pipe and an inlet pipe located in the gas injection pipe and a nozzle fixedly connected with the gas injection pipe, wherein the nozzle jacket is provided with a water jacket connected with the water inlet pipe.
  • a water injection hole through which the water supply flows is disposed on the shaft wall of the water jacket, and a water injection control sleeve for controlling the water discharge is disposed on the water jacket jacket, and the water injection control sleeve is connected to the pull rod of the outer casing spring, the spring One end is fixed on the gas injection pipe and the other end is abutted against the water injection control sleeve.
  • a gasification device also has a relatively complicated structure, and wherein the oxidant delivery passage is an annulus space, causing the oxidant to be directly exposed to a possible high temperature environment, and there are also safety problems in use.
  • CN205243495U discloses a nozzle and a gasifying agent delivery system using the same, wherein the nozzle comprises a ceramic body and a metal protective sleeve, and the protective cover is wrapped around the nozzle body, but wherein the protective sleeve is only used to protect the nozzle, at all There are any active cooling mechanisms, and there is no countercurrent protection mechanism at all. Therefore, such nozzles cannot safely and efficiently use a high concentration of oxidant such as pure oxygen for underground coal gasification.
  • CN204455019U discloses a process burner assembly comprising a burner body (including a concentrically disposed burner tube and a water conduit and a cooling tube) and a gas sampling member (including a central tube in communication with the water conduit and a cooling tube).
  • the burner has a comprehensive consideration of the cooling mechanism, but the cooling coil wrapped around the outer surface of the component causes the working strength of the equipment to enter and exit the well and retreat, and the heat dissipation requirement limits the wall thickness of the cooling coil, so that the cooling coil It is easily damaged in the underground environment, in addition, the entire burner and conveyor system There is no reverse flow protection mechanism, and there are also security issues.
  • WO 2014/043747 A1 discloses an apparatus and method for carrying out an oxygen-enriched underground coal gasification process, in particular an oxygen injection apparatus and method, wherein a specially designed oxygen lance is used to inject an oxidant into an underground coal seam, the lance comprising: an internal passage a gun body having a check valve inserted therein; a coiled tubing adapter at a tail end of the gun body, the adapter having a hole for a thermocouple; at least one spacer tube connected to the front end of the gun body; An injection nozzle at the front end of the tube; and a thermocouple that monitors the temperature of the injection nozzle.
  • the oxygen injection equipment lacks its own cooling mechanism and is not suitable for underground coal gasification with high concentration of oxidant.
  • WO 2014/186823 A1 discloses an apparatus and method for supplying oxidant and water to a coal seam during underground coal gasification, wherein the apparatus comprises an oxidant passage and a casing seal, the oxidant passage comprising at least one downhole opening and at least An uphole end opening, the downhole opening is for injecting oxidant into the underground coal gasification zone, and the upper end opening is for fluid connection with the coiled tubing for sealing the oxidant passage and the wellbore casing Between the annular passages, the casing seal has one or more passages for injecting water into the underground coal gasification zone.
  • the casing seal in this patent makes it extremely difficult for the equipment to enter and exit the wellhead and pass through the directional well bend area, and although the oxidant in this patent can be substantially pure oxygen, the pressure of the water column itself in the water injection passage is controlled.
  • the rollback process is complex and difficult to implement.
  • the nozzles and related equipment used in the underground coal gasification process in the prior art still have some shortcomings or problems in structural design and safety of use, and further improvements are needed.
  • the object of the present invention is to overcome the disadvantages of the prior art and solve related problems, thereby providing a nozzle capable of continuously injecting a high concentration of oxidant in a coal underground gasification process and Inject the device.
  • the present invention provides a nozzle for an underground coal gasification process, an injection device, and an operation method of the injection device.
  • the nozzle and injection apparatus can be used to continuously inject high concentrations of oxidant into the subterranean coal seam in a coal underground gasification process.
  • the present invention provides a nozzle for a coal underground gasification process, the nozzle comprising a center tube and a casing, the center tube and the casing extending from the connection end to the injection end, the two being coaxially disposed and passing through the ring
  • the gap is spaced apart and the outer casing extends at the connecting end to form a connecting end annular end face and the encapsulating jet end forms an injection end end face, wherein the central tube and the outer casing are connected by a non-closed spiral and thereby form a spiral in the nozzle annulus a flow passage, wherein a plurality of pairs of coolant inlets and coolant outlets corresponding to each other and communicating and matching with the spiral flow passages are provided on the end faces of the connecting end annular gaps and the end faces of the injection ends, and wherein the end faces of the injection ends are further provided There are oxidant injection holes.
  • the invention also provides an injection device for a coal underground gasification process, which is based on an injection well liner as a moving passage, the injection device comprising a coiled tubing and a mechanical shearing device which are connected in series and in airtight connection with each other.
  • the nozzle of the present invention wherein: the coiled tubing is used to move the injection device through a well liner to a predetermined location of the underground coal seam to be gasified, and, if necessary, withdraw all or part of the injection equipment to the ground; A mechanical shearing device is used to disconnect the nozzle if necessary to withdraw the remainder of the injection device; and the nozzle is used to inject a coolant and an oxidant into the coal seam to be gasified.
  • the present invention further provides an operation method of applying the injection device of the present invention in a coal underground gasification process, wherein a completion system for underground coal gasification is provided in the underground coal seam, wherein the nozzle center pipe of the injection device and the like
  • the internal passages of the components together form an oxidant passage, and the spiral flow passage in the nozzle annulus of the injection device forms a cold together with the annulus between the other components and the inner wall of the injection liner.
  • the agent channel, the operation method includes the following stages:
  • Preparation phase including:
  • the ignition phase in which underground coal seam ignition is performed in a delayed manner, including:
  • the gasification stage in which the underground coal gasification process is carried out according to the retreat method, including:
  • the injection device is retracted a certain distance according to a certain time interval to continue the gasification process until all the coal in the direction of the liner in the injection well is consumed, wherein the coolant is adjusted when the injection device is retracted Injection pressure and/or flow is used to unseal the annulus space between the inner wall of the injection liner and the nozzle to facilitate the retracting operation.
  • the nozzle adopts a structure in which a center tube and a casing are combined, wherein the center pipe is an oxidant passage, and an annular gap between the center pipe and the outer casing is a coolant passage, and the center pipe is The outer casing is connected by a non-closed spiral, and the non-closed spiral forms a spiral flow passage for the coolant to pass through while connecting, thereby forming a flowing annulus cooling jacket on the nozzle, which can be
  • the nozzle is effectively cooled under working conditions, thereby avoiding nozzle burnout and structural deformation in the underground coal gasification process, thereby improving the safety of the nozzle.
  • an injection unit is further formed by further combining a coiled tubing and a mechanical shearing device on the basis of the nozzle, wherein the coiled tubing accurately transports and positions the nozzle as a conveying device, and the mechanical shearing device is necessary Disconnecting the nozzle to retract the injection equipment component including the coiled tubing to at least a safe position for subsequent use, and the nozzle is for injecting reagents such as coolant and oxidant into the subterranean coal seam, the injection device applying the combination may
  • the underground coal seam is continuously injected with a high concentration of oxidant, so that high quality and stable quality product gas can be safely produced by the underground coal seam.
  • the underground gasification process of the coal can be continuously performed using a high-concentration oxidant based on the high-efficiency cooling effect of the nozzle, and the safety based on the injection device can be further
  • the retreat cycle and/or the retreat distance of the underground gasification of coal in the prior art is shortened, thereby realizing a substantially continuous underground coal gasification process.
  • the nozzle, the injection device, and the corresponding injection device operation method of the present invention can implement the underground coal gasification process more safely and efficiently, which brings an advancement to the prior art.
  • Figure 1 is a longitudinal sectional view of the injection device of the present invention
  • Figure 2 (a) is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 2 (b) is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 3 (a) is a cross-sectional view of the main check valve support of the present invention.
  • Figure 3 (b) is a cross-sectional view of the nozzle support ring of the present invention.
  • FIG. 4 is a schematic view showing the operation method of the injection device of the present invention.
  • the present invention provides a nozzle for a coal underground gasification process, the nozzle comprising a center tube and a casing, the center tube and the casing extending from the connection end to the injection end, the two being coaxially disposed and passing through the ring
  • the gap is spaced apart and the outer casing extends at the connecting end to form a connecting end annular end face and the encapsulating jet end forms an injection end end face, wherein the central tube and the outer casing are connected by a non-closed spiral and thereby form a spiral in the nozzle annulus a flow passage, wherein a plurality of pairs of coolant inlets and coolant outlets corresponding to each other and communicating and matching with the spiral flow passages are provided on the end faces of the connecting end annular gaps and the end faces of the injection ends, and wherein the end faces of the injection ends are further provided There are oxidant injection holes.
  • the manufacturing materials of the nozzle and related components must be adapted to high temperature and high pressure pure oxygen and high-speed oxygen flow environment, and the materials may be selected from brass, inconel and monel copper-nickel alloy.
  • the central tube of the nozzle as a high concentration oxidant passage must be absolutely clean to be suitable for a pure oxygen environment, that is, strictly free of particulate or hydrocarbon contamination; in addition, the inner surface of the nozzle is subjected to special processing to Preventing the risk of particle impact auto-ignition on the inner surface of the metal under high concentration of oxidant; moreover, the outside of the nozzle needs to be smooth and smooth, and any dimensional change must be a gradual transition process, so that it can be moved within the liner of the injection well and To ensure the airtightness of the device when it passes through the wellhead; further, the outer casing of the nozzle needs to be thick enough, for example 10-20 mm, to withstand thermal radiation, heat convection and heat transfer from the high temperature combustion zone and the gasification zone and corresponding Cooling requirements to prevent backfire during operation and to ensure the integrity and reliability of the nozzle equipment.
  • the connecting end of the nozzle is for connection with other components during use, and the injection end is for injecting reagents such as oxidant and coolant, etc. into the subterranean coal seam during use
  • the central tube and the outer casing are both Extending from the connecting end to the spraying end, the two are disposed coaxially with each other and separated by an annulus
  • the outer casing extends at the connecting end to form a connecting end annular end face and the encapsulating jet end forms an ejection end end face, such that the nozzle Both the end face of the connecting end and the end face of the jet end are part of the nozzle housing.
  • the central tube of the nozzle is connected to the outer casing by a non-closed spiral, the non-closed spiral forming a spiral flow passage in the nozzle annulus, and the depth and width of the non-closed helical thread spacing are independently 2 - 10 mm, and preferably 4-8 mm, such that the spiral flow passage meets the coolant flow requirements as well as the heat dissipation requirements and cooling efficiency of the nozzle.
  • the spiral flow passage formed by the non-closed spiral in the nozzle annulus is the main coolant passage, wherein the coolant flows through the nozzle annulus Wraparound dynamic cooling, and thanks to the threaded connection, the nozzle housing can be easily replaced and maintained according to the actual operation and operation requirements of the coal mine, for example, after damage, replacement of the coolant inlet and coolant outlet
  • the number, the number of oxidant injection holes are adjusted, and the thickness of the nozzle housing is adjusted.
  • the central tube and the outer casing are further joined at the joint end by a non-welded connection selected from the group consisting of an external grapple connector, a bayonet/positioning bolt and a flange bolt. Fixed to prevent problems in connection between the center tube and the outer casing due to loose threads or the like during underground transfer.
  • the nozzle is provided with a plurality of pairs (for example, 4-12 pairs) of coolant inlets and coolant outlets corresponding to each other and communicating and matching with the spiral flow passages on the end faces of the joint end and the end faces of the spray ends, These coolant inlets and coolant outlets are evenly distributed along the circumference.
  • the nozzle is further provided with one or more oxidant injection holes on the end face of the injection end, the total opening area may be determined based on the maximum injection speed of the oxidant, and when a plurality of oxidant injection holes are provided, the plurality of The apertures may be distributed along the center and periphery and the outer apertures may be parallel to the central aperture or may diverge outwardly at an angle of 5 to 35 degrees, preferably 8-20 degrees from the central aperture to optimize the oxidant in the combustion zone and the gasification zone. Jet transport distance and spray dispersion range.
  • the nozzle may be provided with an auxiliary check valve at each of the coolant inlets and each of the coolant outlets and each of the oxidant injection holes to prevent flammable and explosive gases from reversing during the retraction of the injection device.
  • Access to the coolant passage creates contamination and damage, etc., where the auxiliary check valve is a check valve commonly used in the prior art, but may be relatively small in size to accommodate the size of the coolant inlet and outlet and the oxidant injection orifice.
  • the nozzle may be provided with a plurality of micro-drainage lines, such as a micro-venturi drainage pattern, from the coolant outlet to the oxidant injection hole on the end face of the injection end. It may have a depth of 2-3 mm for guiding the coolant to the oxidant injection holes for cooling protection.
  • a plurality of micro-drainage lines such as a micro-venturi drainage pattern
  • a support ring may be provided on the nozzle casing near the injection end (for example, 3-30 mm from the end face of the injection end), and the design clearance between the support ring and the inner wall of the injection liner is generally not more than 10 mm ( For example 5-10 mm) and including a U-shaped support ring, a spring and a sealing ring, wherein the spring and the sealing ring are contained within a U-shaped support ring lumen, the internal cavity being in communication with a helical flow passage in the nozzle annulus, Thereby, the seal ring is ejected by the spring at the time of coolant injection to block the design clearance.
  • the thickness of the sealing ring is generally required to be larger than the design clearance, and the extension and retraction of the sealing ring are mainly controlled by the injection pressure and/or flow rate of the coolant, so that the coolant is injected during normal operation. Sealing the annulus space between the liner and the nozzle in the well, thereby allowing the coolant to pass through the spiral flow passage in the nozzle annulus into the combustion zone and the gasification zone during the gasification process, thereby completely making the nozzle device completely cooled. Coated.
  • the nozzle support ring is generally selected from special duplex steels resistant to high temperature and corrosion, for example, inconel, Monel copper-nickel alloy and tungsten alloy, etc., which can be welded, fixed bolts or integrally formed.
  • the connection is mounted on the nozzle housing.
  • the invention also provides an injection device for a coal underground gasification process, which is based on an injection well liner as a moving passage, the injection device comprising a coiled tubing and a mechanical shearing device which are connected in series and in airtight connection with each other.
  • the nozzle of the present invention wherein: the coiled tubing is used to move the injection device through a well liner to a predetermined location of the underground coal seam to be gasified, and, if necessary, withdraw all or part of the injection equipment to the ground; A mechanical shearing device is used to disconnect the nozzle if necessary to withdraw the remainder of the injection device; and the nozzle is used to inject a coolant and an oxidant into the coal seam to be gasified.
  • a main check valve is provided between the coiled tubing and the mechanical shearing device for preventing reverse flow of air into the coiled tubing, and the main check valve is further provided with
  • a support member is used for the righting positioning and sealing of the injection device, wherein the support member comprises 3 or 4 sets of circumferentially evenly distributed U-shaped support legs, springs and rollers, the U-shaped support legs and the injection liner
  • the design clearance between the walls is no more than 10 mm (e.g., 5-10 mm), the springs and rollers are contained within the U-shaped support foot lumen, and the rollers are in direct contact with the inner wall of the injection liner liner.
  • the main check valve support serves as a righting positioning and sealing function for the injection device
  • the support member can generally be selected from 316L stainless steel or higher materials, wherein 3 or 4 sets are uniformly distributed along the circumference.
  • the main check valve support member adopts 3 or 4 sets of circumferentially evenly distributed U-shaped support legs, springs and rollers to facilitate the free movement of the injection device in the injection liner, such as by injection.
  • the curved part of the well liner or the obstacles injected into the wall of the liner pipe, such as solid particles or tar condensate, and the deformation of the injection liner itself, the spring in the support will adjust the roller
  • the height of the protrusion is such that the entire injection device passes smoothly.
  • the main check valve is also used to prevent flammable and explosive gases from entering the coiled tubing to cause pollution and damage, etc., similar to the auxiliary check valves for the coolant inlet and the coolant outlet and the oxidant injection hole.
  • the primary check valve is also a check valve commonly used in the prior art, except that the size is selected based on the inner diameter of the coiled tubing.
  • both the primary check valve and the auxiliary check valve may be suitable for those skilled in the art to apply.
  • a suitable check valve for a high concentration of oxidant such as a pure oxygen environment may be, for example, a spring flapper valve or a ball + spring type.
  • the mechanical shearing device is used to break the nozzle if necessary to withdraw the remainder of the injection device, for example when the injection liner is melted
  • the nozzle can be disconnected to quickly withdraw other upstream equipment for maintenance and replacement, thereby reducing the equipment loss in the underground coal gasification process to some extent.
  • the mechanical shearing device is a self-breaking mechanism comprising a shearing device body, a shearing device housing and a shearing sheath, wherein the shearing device body and the shearing device housing are broken by the shearing sheath, This disconnects the nozzle.
  • the nozzle is located downstream of the mechanical shearing device for injecting a high concentration of oxidant such as pure oxygen and a coolant such as water, steam or carbon dioxide into the combustion zone and the gasification zone of the underground coal seam, at which time the coolant is at the nozzle
  • a moving cooling spacer is formed in the spiral flow passage in the annulus, thereby well protecting the entire nozzle device.
  • a pneumatic plug can also be provided at the nozzle injection end for protecting the nozzle device when the injection device enters the well (for example, avoiding mechanical wear and contamination (such as grease, drilling mud) when entering and exiting the injection well. And coal particles, etc.)) and blown off by the high pressure reagent stream after the start of the injection of the reagent, that is, does not hinder the injection of the reagent; or a quick connector can be installed at the nozzle injection end for connection and transportation in the ignition phase And disconnect the underground ignition equipment. Therefore, the injection apparatus of the present invention can be used in the ignition phase and the normal gasification stage of the underground coal gasification process.
  • the components of the injection device can be connected to each other and provide a hermetic seal by a non-welded connection selected from the group consisting of an external grapple connector, a quick connector, a bayonet/positioning bolt, and a flange bolt.
  • a non-welded connection selected from the group consisting of an external grapple connector, a quick connector, a bayonet/positioning bolt, and a flange bolt.
  • the present invention also provides a method of operating the injection apparatus, wherein a completion system for underground coal gasification is provided in the underground coal seam, wherein the nozzle center tube of the injection device forms an oxidant together with internal passages of other components
  • the method of operation package Including the following stages:
  • Preparation phase including:
  • the ignition phase in which underground coal seam ignition is performed in a delayed manner, including:
  • the gasification stage in which the underground coal gasification process is carried out according to the retreat method, including:
  • the injection device is retracted a certain distance according to a certain time interval to continue the gasification process until all the coal in the direction of the liner in the injection well is consumed, wherein the coolant is adjusted when the injection device is retracted Injection pressure and/or flow is used to unseal the annulus space between the inner wall of the injection liner and the nozzle to facilitate the retracting operation.
  • a high concentration of oxidant is continuously injected into the subterranean coal seam through the oxidant passage during the gasification stage, wherein the high concentration oxidant is rich in at least 80 vol% oxygen, preferably at least 90 vol% oxygen.
  • Oxygen air or pure oxygen wherein the coolant is water, steam or carbon dioxide, and at this time the coolant is simultaneously used as a gasifying agent for the coal gasification process, and wherein the cold is reduced after being returned to the position
  • the injection flow rate of the agent accelerates the burning rate of the injection liner in front of the injection equipment, so that the fresh coal seam is exposed to the high temperature combustion zone and the gasification zone.
  • the injection device in the method of operation, wherein after the ignition is successful in the ignition phase, the injection device is generally retracted to a safe position to wait for the gasification phase to begin subsequently, and wherein during the gasification phase, during the retreat
  • the injection device unseals the annulus space between the inner wall of the injection liner and the nozzle by adjusting the injection pressure and/or flow rate of the coolant, for example, by adjusting the injection pressure and/or flow rate of the coolant.
  • the sealing ring is convenient for the coiled tubing to retreat into the injection device, and after the retraction is in place, the injection flow rate of the coolant can be reduced by reducing the injection flow rate of the coolant, for example, by reducing the injection flow rate of the coolant by 10-80 vol%.
  • the burning rate of the liner in the well causes the fresh coal seam to be exposed to the high temperature combustion zone and the gasification zone, thereby continuing the underground coal gasification process until all coal deposits in the direction of the liner in the injection well are consumed.
  • the distributed temperature, pressure and acoustic wave sensors are respectively disposed in the injection well lining
  • the outside of the tube, the outer wall of the coiled tubing and the inside of the nozzle center tube are used to acquire the temperature, pressure and acoustic signals of the underground coal seam and feed back to the wellhead control equipment of the injection well.
  • the distributed temperature, pressure and acoustic wave sensors are distributed inductive optical fibers based on Optical Time-Domain Reflectometry (OTDR), the optical fibers. Extending from the vicinity of the wellhead or the starting point of the coiled tubing to the target measuring point, and additionally or alternatively using a bimetallic sheathed K-type dual probe thermocouple at the oxidant injection hole to obtain the temperature of the point and control the coolant injection based on the temperature flow.
  • OTDR Optical Time-Domain Reflectometry
  • the retraction process can be carried out by controlling the coolant injection pressure and/or flow without interrupting the injection of the oxidant and the coolant, so that the operation is relatively More flexible Moreover, the retreat period and/or the retreat distance of the prior art retreat method can be greatly shortened, and the continuous and stable operation of the underground coal gasification process can be realized; and, the injection device of the invention can safely and stably use the high concentration oxidant.
  • the temperature, pressure and acoustic signal acquisition system can be used to achieve good control of the entire coal underground gasification process.
  • 1-3 are cross-sectional views showing the injection apparatus of the present invention, a cross-sectional view of the injection apparatus taken along the line A-A, a cross-sectional view along the B-B section, a cross-sectional view of the check valve support member, and a cross-sectional view of the nozzle support ring.
  • the coiled tubing 2 is connected to the main check valve 4 via an external grapple connector 20.
  • the main check valve 4 is provided with a support member 18 for correcting the positioning and sealing of the entire injection device, and comprising three sets of U-shaped support legs 23, springs 24 and rollers 25 uniformly distributed along the circumference, wherein the springs 24 and roller 25 are contained within the interior of U-shaped support leg 23, and roller 25 is in direct contact with the inner wall of the injection liner (see Figures 2(a) and 3(a)).
  • the main check valve 4 is downstream connected to a mechanical shearing device 5 comprising a shearing device body 6, a shearing device housing 7 and a shearing sheath 8 for shearing the nozzle if necessary to withdraw the injection device
  • a mechanical shearing device 5 comprising a shearing device body 6, a shearing device housing 7 and a shearing sheath 8 for shearing the nozzle if necessary to withdraw the injection device
  • the rest of the section is like coiled tubing 2 and so on.
  • the downstream of the mechanical shearing device 5 is connected to the connection end of the nozzle, which comprises a nozzle center tube 9 and a nozzle housing 10.
  • the nozzle center tube 9 and the nozzle housing 10 are disposed coaxially with each other and are spaced apart by an annulus, and the housing extends at the connection end to form a connection end annular end face and an encapsulation ejection end to form an ejection end end face.
  • the nozzle center tube 9 and the nozzle housing 10 are connected to each other by a non-closed spiral 13 which forms a spiral flow passage in the nozzle annulus, which is the main coolant passage and provides good circumferential cooling and heat dissipation to the nozzle. effect.
  • the annular gap end face and the injection end face are provided with eight pairs of coolant inlets 15 and a coolant outlet 16 uniformly distributed along the circumference, each of the coolant inlet and the coolant outlet are connected and matched with the internal spiral flow passage and are provided inside.
  • Auxiliary check valve see Figures 2(a) and 2(b)
  • a nozzle support ring 19 is provided on the nozzle housing 10 near the injection end, and the support ring 19 is used for sealing the annulus space between the inner wall of the injection liner and the nozzle device, so that the coolant enters the nozzle annulus spirally.
  • the passage to sufficiently cool the nozzle, and the support ring 19 includes a U-shaped support ring 26, a spring 24 and a seal ring 27, wherein the spring 24 and the seal ring 27 comprise the interior of the U-shaped support ring 26 and pass through the coolant injection
  • the spring 24 is ejected from the seal ring 27 to directly contact the inner wall of the injection liner to achieve sealing (see Figures 2(b) and 3(b)).
  • the distributed temperature, pressure and acoustic wave sensors 3 are respectively fixed outside the injection liner, the outer wall of the coiled tubing and the nozzle center tube, for obtaining relevant temperature, pressure and acoustic signals and feeding back to the wellhead control device of the injection well, This controls the underground coal gasification process.
  • FIG. 4 there is shown a schematic diagram (normal production process) of the operation method of the injection device of the present invention, in which the coolant is injected through the coolant passage 12 of the injection device, and sealed by increasing the coolant injection pressure.
  • the plug 21 is blown off, underground coal gasification begins.
  • the oxidant and the coolant also used as a gasifying agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)

Abstract

一种用于煤炭地下气化工艺的包含喷嘴的注入设备,喷嘴和注入设备用于在煤炭地下气化工艺中向地下煤层连续注入高浓度氧化剂,在此情况下,不仅可以安全稳定地使用高浓度氧化剂,获得高质量且质量稳定的产品气,还可以大幅缩短现有技术回退法的回退周期和/或回退距离,实现了煤炭地下气化工艺的连续稳定运行。还公开一种该注入设备的操作方法。

Description

用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法 技术领域
本发明提供了用于煤炭地下气化工艺的喷嘴、注入设备及所述注入设备的操作方法。特别地,按照本发明,所述喷嘴和注入设备可以用于在煤炭地下气化工艺中向地下煤层连续注入高浓度氧化剂。
背景技术
煤炭地下气化(ISC)是通过对地下煤层的受控燃烧(不完全燃烧)和气化反应,在地下将煤直接转化为产品气的工艺过程。所述产品气通常被称为合成气,可以用于燃料生产、化工合成和发电等工艺。所述煤炭地下气化工艺集成了建井完井、地下采煤和煤气化技术,具有安全性好、投资低、效益高和污染少等优点。
在煤炭地下气化过程中,通常在地下煤层中设有相应的完井系统。所述完井系统通常包括用于注入各种试剂如氧化剂、气化剂和冷却剂的注入井、用于移出产品气的产出井和用于起辅助作用的各种辅助井,其中注入井、产出井和辅助井内通常均铺设有套管和/或内衬管且按需要彼此连通,其中所述辅助井通常包括点火井、冷冻井、屏蔽井和防护井等,其中注入井通常为水平定向井,而产出井和辅助井通常为水平定向井或垂直井。
在煤炭地下气化过程中,最基本的完井系统由彼此连通且内部铺设有套管和/或内衬管的注入井和产出井组成,这种最基本的完井系统亦称为煤炭地下气化单元或井对。所述煤炭地下气化单元或井对通常包括燃烧区、气化区和热解区,其中主要在气化区 中将煤气化和部分氧化以产生产品气。随着煤炭地下气化过程的逐渐推进,煤层中形成的燃空区逐渐变大,最终地下煤藏完全被消耗,仅留下煤灰。
通过煤炭地下气化过程生成的产品气通常包含CO、CO2、H2、CH4及固体颗粒、水、煤焦油和烃以及少量H2S、NH4和COS等。所述产品气的具体组成通常取决于多个因素,包括所使用的氧化剂(例如空气、富氧空气或纯氧)、水的存在(煤层水或周边地层渗入煤层的水)、煤的质量以及所采用的工艺参数(温度和压力等)。
在煤炭地下气化过程中,通常倾向于使用氧浓度较高的氧化剂,因为氧浓度越高,产品气质量如热值越高,但氧浓度太高如高于35vol%时就必须同时使用冷却剂以避免燃烧区温度太高和回烧强度过大等,而现有技术的相关设备在应用高浓度氧化剂时还存在一些问题。
CN103541714A公开了喷头和煤炭地下气化方法,所述注入设备包括圆柱形壳体,壳体包括两个部分并且两部分之间通过前孔流体连通,壳体第二部分侧壁上设有侧孔,所述喷头还包括在内部可滑动开启或关闭前孔和侧孔的密封组件和弹簧,其中通过调节气化剂的注入流量、注入压力和出气通道口的压力来控制壳体的前孔和侧孔的开启和关闭。但其中所述喷头的内部结构(即氧化剂通道内)明显很复杂且多为金属件,这样在较高氧浓度下,金属件之间的摩擦产生的金属颗粒会造成颗粒冲击自燃并烧毁设备,而且当通过注入压力控制侧孔开关时,压力波动易造成高温合成气逆向流入喷头与氧化剂直接接触,进而可能在喷头内部发生燃烧或爆炸,因此,使用起来安全性也存在问题。
CN104533377A公开了喷嘴及气化方法,所述喷嘴为包括中心管和外环套管的套管结构,中心管和外环套管的末端的渐缩式锥 形结构形成喷嘴顶帽,喷嘴顶帽上设有与中心管连通的注气口,和外环套管上设有多个喷水孔,中心管通入含氧气化剂,外环套管中通入水或水溶液并经侧壁和顶帽的喷水孔进入气化炉,其中应用了单独设计的喷嘴顶帽和主要通过连接套实现中心管与外环套管的连接和分隔。
CN104564008A公开了煤炭地下气化装置及气化方法,其中包括注气管和位于注气管内的进水管和与注气管固定连接的喷头,所述喷头外套置有与进水管相连通的水夹套,所述水夹套的轴壁上设置有供水流出的射水孔,并在所述水夹套外套置有用于控制出水的射水控制套,所述射水控制套与外套弹簧的拉杆相连,所述弹簧一端固定在注气管上和另一端抵靠所述射水控制套。显然,这种气化装置也具有相对复杂的结构,而且其中氧化剂输送通道为环隙空间,导致氧化剂直接暴露在可能的高温环境,亦存在使用安全性问题。
CN205243495U公开了喷嘴及使用所述喷嘴的气化剂输送系统,其中所述喷嘴包括陶瓷本体和金属保护套,保护套包覆于喷嘴本体,但其中仅应用所述保护套来保护喷嘴,完全不存在任何主动冷却机制,而且,其中也完全不存在逆流保护机制。因此,这种喷嘴不能安全有效地使用高浓度氧化剂如纯氧进行煤炭地下气化过程。
CN204455019U公开了工艺烧嘴总成,包括烧嘴主体(包括同心设置的烧嘴管和输水管以及冷却管盘)和气体取样构件(包括与输水管连通的中心管以及冷却管盘)。这种烧嘴比较全面地考虑了冷却机制,但构件外表面缠绕的冷却管盘导致设备进出井下和后撤的工作强度高,同时散热要求限制了冷却盘管的管壁厚,使得冷却盘管自身在井下环境中易损坏,另外,整个烧嘴和输送系统 都没有逆流保护机制,也存在使用安全性问题。
WO2014/043747A1公开了用于实施富氧地下煤气化过程的设备和方法,具体为氧注入设备和方法,其中使用特别设计的氧枪向地下煤层注入氧化剂,所述氧枪包括:具有内部通道的枪体,所述内部通道内插有止回阀;枪体尾端的连续油管接合器,所述接合器上有用于通热电偶的孔;连至枪体前端的至少一段间隔管;连到间隔管前端的注入喷嘴;和监测注入喷嘴温度的热电偶。尽管该专利中提到了富氧地下煤气化,但其中的注氧设备缺少自身冷却机制,并不适合应用高浓度氧化剂的煤炭地下气化。
WO2014/186823A1公开了用于煤炭地下气化过程中向煤层供应氧化剂和水的设备和方法,其中所述设备包括氧化剂通道和套管密封,所述氧化剂通道包括至少一个井下端部开孔和至少一个井上端部开孔,井下端部开孔用于向地下煤气化区注入氧化剂,井上端部开孔用于与连续油管流体连接,所述套管密封用于密封氧化剂通道和井孔套管之间的环形通道,套管密封上具有一个或多个用于向地下煤气化区注入水的通道。但该专利中的套管密封导致所述设备进出井口及通过定向井弯道区域极为困难,而且尽管该专利中的氧化剂可以为基本纯的氧,但其注水通道内水柱自身的压力导致受控回退过程复杂且难以实施。
因此,现有技术中用于煤炭地下气化工艺的喷嘴及相关设备在结构设计和使用安全性方面仍然存在一些缺点或问题,需要进一步改进。
发明内容
本发明的目的在于克服现有技术的缺点和解决相关问题,从而提供可在煤炭地下气化工艺中连续注入高浓度氧化剂的喷嘴及 注入设备。
本发明提供了用于煤炭地下气化工艺的喷嘴、注入设备及所述注入设备的操作方法。特别地,按照本发明,所述喷嘴和注入设备可以用于在煤炭地下气化工艺中向地下煤层连续注入高浓度氧化剂。
本发明提供了一种用于煤炭地下气化工艺的喷嘴,所述喷嘴包括中心管和外壳,所述中心管和所述外壳从连接端延伸到喷射端,二者彼此同轴设置和通过环隙间隔并且所述外壳在连接端延伸形成连接端环隙端面和包封喷射端形成喷射端端面,其中所述中心管与所述外壳通过非闭合螺旋连接并由此在喷嘴环隙内形成螺旋式流动通道,其中在连接端环隙端面上和喷射端端面上设有若干对彼此对应且与螺旋式流动通道连通和匹配的冷却剂入口和冷却剂出口,和其中在喷射端端面上还设有氧化剂喷射孔。
本发明还提供了一种用于煤炭地下气化工艺的注入设备,基于注入井内衬管作为移动通道,所述注入设备包括彼此按顺序连接且气密性连通的连续油管、机械剪切装置和本发明的喷嘴,其中:所述连续油管用于移动所述注入设备经注入井内衬管到达待气化地下煤层的预定位置,和在必要时将全部或部分注入设备撤回地面;所述机械剪切装置用于在必要时断开所述喷嘴以撤回所述注入设备的其余部分;和所述喷嘴用于向待气化煤层注入冷却剂和氧化剂。
本发明进一步提供了在煤炭地下气化工艺中应用本发明的注入设备的操作方法,其中在地下煤层中设有用于煤炭地下气化的完井系统,其中所述注入设备的喷嘴中心管与其它部件的内部通道一起构成氧化剂通道,和所述注入设备的喷嘴环隙内的螺旋式流动通道与其它部件和注入井内衬管内壁之间的环隙一起构成冷 却剂通道,所述操作方法包括如下阶段:
准备阶段,包括:
利用所述注入设备的喷嘴喷射端的快速连接器使所述注入设备与地下点火设备相连;
通过注入井的井口控制设备经所述注入设备的连续油管将整个注入设备和地下点火设备一起移送至地下煤层的预定点火位置;
点火阶段,其中以延迟方式实施地下煤层点火,包括:
通过所述氧化剂通道注入氧化剂流或施加压力激活和随后断开地下点火设备,其中通过所述冷却剂通道向地下煤层注入低流量空气用作点火氧化剂;
气化阶段,其中按照回退法进行煤炭地下气化过程,包括:
通过所述冷却剂通道注入冷却剂,并调节冷却剂的注入压力和/或流量来密封注入井内衬管内壁与所述喷嘴之间的环隙空间;
通过所述氧化剂通道向地下煤层连续注入氧化剂,实施地下煤层气化;
按照一定时间间隔使所述注入设备回退一定距离以继续所述气化过程,直至消耗完沿注入井内衬管方向的所有煤藏,其中在回退所述注入设备时通过调节冷却剂的注入压力和/或流量来解密封注入井内衬管内壁与所述喷嘴之间的环隙空间,以利于所述回退操作。
按照本发明,所述喷嘴采用了中心管与外壳组合的结构,其中所述中心管为氧化剂通道,所述中心管与所述外壳之间的环隙为冷却剂通道,所述中心管与所述外壳通过非闭合螺旋连接,而所述非闭合螺旋在起连接作用的同时还形成螺旋式流动通道供冷却剂通过,进而在喷嘴上形成流动状态的环隙冷却夹套,可以在 工作状态下有效冷却喷嘴,避免了煤炭地下气化工艺中喷嘴被烧坏和结构变形等,进而提高了喷嘴的使用安全性。
另外,按照本发明,在所述喷嘴的基础上进一步组合连续油管和机械剪切装置等形成了注入设备,其中连续油管作为输送装置准确地输送和定位所述喷嘴,机械剪切装置在必要时断开喷嘴以回退包括连续油管在内的注入设备部件至少至安全位置以供后续应用,和所述喷嘴用于向地下煤层注入试剂如冷却剂和氧化剂,应用这种组合的注入设备可以向地下煤层连续注入高浓度氧化剂,从而可以由地下煤层安全地产生高质量且质量稳定的产品气。
进一步,按照本发明,还提供了所述注入设备的操作方法,其中基于所述喷嘴的高效冷却作用可以连续利用高浓度氧化剂进行煤炭地下气化过程,而基于所述注入设备的安全性可以进一步缩短现有技术中回退法进行煤炭地下气化时的回退周期和/或回退距离,进而实现了基本连续的煤炭地下气化过程。
因此,本发明的喷嘴、注入设备以及相应的注入设备操作方法可以更安全和更高效地实施煤炭地下气化过程,为现有技术带来了进步。
附图说明
下面参考附图来进一步描述本发明,其中:
图1为本发明的注入设备的纵向剖面图;
图2(a)为图1中沿A-A截面的剖面图;
图2(b)为图1中沿B-B截面的剖面图;
图3(a)为本发明的主止回阀支撑件的剖面图;
图3(b)为本发明的喷嘴支撑环的剖面图;和
图4为本发明的注入设备的操作方法示意图。
在各附图中,相同的附图标记指代相同部件。具体地,各附图中涉及的附图标记的含义如下:
1、注入井内衬管;2、连续油管;3、分布式温度、压力和声波传感器(分别固定在注入井内衬管外部、连续油管外壁和喷嘴中心管内部);4、主止回阀(位于连续油管和机械剪切装置之间);5、机械剪切装置;6、剪切装置主体;7、剪切装置外壳;8、剪切鞘;9、喷嘴中心管;10、喷嘴外壳;11、氧化剂通道;12、冷却剂通道;13、螺旋式流动通道(在喷嘴环隙内部由非闭合螺旋形成);14、燃烧区和气化区;15、冷却剂入口;16、冷却剂出口;17、氧化剂喷射孔;18、主止回阀支撑件;19、喷嘴支撑环;20、外部抓钩连接器;21、喷嘴的气动保护塞;22、微型文丘里引流纹路;23、U型支撑脚;24、弹簧;25、滚轮;26、U型支撑圈;27、密封圈;28、氧化剂和冷却剂混合物;29、煤层;30、燃空区;31、U型支撑圈内腔与喷嘴环隙连通通道。
具体实施方式
下面将结合附图对本发明作进一步的详细描述。
本发明提供了一种用于煤炭地下气化工艺的喷嘴,所述喷嘴包括中心管和外壳,所述中心管和所述外壳从连接端延伸到喷射端,二者彼此同轴设置和通过环隙间隔并且所述外壳在连接端延伸形成连接端环隙端面和包封喷射端形成喷射端端面,其中所述中心管与所述外壳通过非闭合螺旋连接并由此在喷嘴环隙内形成螺旋式流动通道,其中在连接端环隙端面上和喷射端端面上设有若干对彼此对应且与螺旋式流动通道连通和匹配的冷却剂入口和冷却剂出口,和其中在喷射端端面上还设有氧化剂喷射孔。
按照本发明,由于主要用于使用高浓度氧化剂的煤炭地下气 化工艺中,所述喷嘴及其相关部件的制造材料都必须要适应高温高压纯氧及高速氧气流环境,所述材料具体可以选用黄铜、铬镍铁合金和蒙乃尔铜-镍合金等。
按照本发明,所述喷嘴的中心管作为高浓度氧化剂通道必须要绝对干净以适合纯氧环境,即严格无微粒或碳氢化合物污染;另外,所述喷嘴的内部表面还要经过特殊加工处理以防止在高浓度氧化剂下金属内表面出现颗粒冲击自燃的危险;而且,所述喷嘴的外部需要保持平整光滑,其任何尺寸变化都必须为渐变过渡过程,从而方便其在注入井内衬管内移动并确保其通过井口控制设备时的气密性;进一步,所述喷嘴的外壳需要足够厚,例如为10-20mm,以耐受来自高温燃烧区和气化区的热辐射、热对流和热传导和相应的冷却要求,防止在操作过程中出现反向燃烧和保证喷嘴设备的完整性和可靠性。
按照本发明,所述喷嘴的连接端用于在使用时与其它部件连接,和喷射端用于在使用时向地下煤层注入试剂如氧化剂和冷却剂等,其中所述中心管和所述外壳都从连接端延伸到喷射端、二者彼此同轴设置和通过环隙间隔,其中所述外壳在连接端延伸形成连接端环隙端面和包封喷射端形成喷射端端面,这样,所述喷嘴的连接端环隙端面和喷射端端面都是喷嘴外壳的一部分。
按照本发明,所述喷嘴的中心管与外壳通过非闭合螺旋连接,所述非闭合螺旋在喷嘴环隙内形成螺旋式流动通道,和非闭合螺旋的螺纹间隔的深度和宽度各自独立地为2-10mm,和优选为4-8mm,从而使所述螺旋式流动通道符合冷却剂流量要求以及喷嘴的散热要求和冷却效率。
按照本发明,由所述非闭合螺旋在喷嘴环隙内形成的螺旋式流动通道为主要的冷却剂通道,其中冷却剂流动通过喷嘴环隙实 施环绕式动态冷却,而且,由于采用螺纹连接,可以很方便地根据煤矿的实际运行情况和操作要求对喷嘴外壳进行更换和维护,例如,在损坏后进行更换、调整冷却剂入口和冷却剂出口数目、调整氧化剂喷射孔数目和调整喷嘴外壳厚度等。
按照本发明,除了通过非闭合螺旋连接外,所述中心管和所述外壳在连接端还通过选自外部抓钩连接器、卡口/定位螺栓和法兰螺栓的非焊接连接方式进一步连接和固定,以防止在地下移送过程中由于螺纹松动等原因造成所述中心管和所述外壳之间的连接出问题。
按照本发明,所述喷嘴在连接端环隙端面上和喷射端端面上设有若干对(例如4-12对)彼此对应且与螺旋式流动通道连通和匹配的冷却剂入口和冷却剂出口,这些冷却剂入口和冷却剂出口沿圆周均匀分布。
按照本发明,所述喷嘴在喷射端端面上还设有一个或多个氧化剂喷射孔,总开孔面积可以基于氧化剂最大喷射速度确定,和当设有多个氧化剂喷射孔时,所述多个孔可以按照中心和外周分布且外周各孔可以与中心孔平行或者可以按照与中心孔成5-35°角、优选8-20°角向外发散,以优化氧化剂在燃烧区和气化区内的喷射输送距离和喷射分散范围。
按照本发明,所述喷嘴在每个冷却剂入口和每个冷却剂出口以及每个氧化剂喷射孔内都可以装有辅助止回阀,以防止在注入设备回退过程中易燃易爆气体逆向进入冷却剂通道造成污染和损坏等,在此,辅助止回阀为现有技术中常用的止回阀,只是尺寸可能比较小,以适应冷却剂入出口和氧化剂喷射孔的大小。
按照本发明,所述喷嘴在喷射端端面上从冷却剂出口至氧化剂喷射孔可以设有多条微型引流纹路,例如微型文丘里引流纹路, 其深度可以为2-3mm,用于引导冷却剂到达氧化剂喷射孔以实施冷却保护。
按照本发明,在喷嘴外壳上接近喷射端(例如距离喷射端端面3-30mm)处可以设有支撑环,所述支撑环与注入井内衬管内壁之间的设计余隙一般不超过10mm(例如5-10mm)和包括U型支撑圈、弹簧和密封圈,其中弹簧和密封圈包含在U型支撑圈内腔内,所述内腔与所述喷嘴环隙内的螺旋式流动通道连通,从而在冷却剂注入时通过弹簧顶出密封圈以封堵所述设计余隙。
按照上述设计,通常要求密封圈的厚度大于所述设计余隙,密封圈的伸出和缩回主要由冷却剂的注入压力和/或流量控制,这样在正常操作过程中会由于冷却剂注入而密封注入井内衬管和喷嘴之间的环隙空间,由此使得气化过程中冷却剂全部通过喷嘴环隙内的螺旋式流动通道进入燃烧区和气化区,进而使喷嘴设备完全被冷却剂包覆。
按照本发明,所述喷嘴支撑环一般要选用耐高温耐腐蚀的特殊双相钢材,例如可以使用铬镍铁合金、蒙乃尔铜-镍合金和钨合金等,可以通过焊接、固定螺栓或一体成型等连接方式安装在喷嘴外壳上。
本发明还提供了一种用于煤炭地下气化工艺的注入设备,基于注入井内衬管作为移动通道,所述注入设备包括彼此按顺序连接且气密性连通的连续油管、机械剪切装置和本发明的喷嘴,其中:所述连续油管用于移动所述注入设备经注入井内衬管到达待气化地下煤层的预定位置,和在必要时将全部或部分注入设备撤回地面;所述机械剪切装置用于在必要时断开所述喷嘴以撤回所述注入设备的其余部分;和所述喷嘴用于向待气化煤层注入冷却剂和氧化剂。
按照本发明,在所述注入设备中,在所述连续油管和所述机械剪切装置之间设有主止回阀用于阻止逆向气流进入连续油管,所述主止回阀上还设有支撑件用于所述注入设备的扶正定位和密封,其中所述支撑件包括3或4组沿圆周均匀分布的U型支撑脚、弹簧和滚轮,所述U型支撑脚与注入井内衬管内壁之间的设计余隙不超过10mm(例如5-10mm),所述弹簧和滚轮包含在U型支撑脚内腔内,和所述滚轮与注入井内衬管内壁直接接触。
按照本发明,所述主止回阀支撑件对所述注入设备起到扶正定位和密封作用,所述支撑件一般可以选用316L不锈钢或更高级材料,其中使用3或4组沿圆周均匀分布的U型支撑脚、弹簧和滚轮,这是因为使用更多组时可能会对冷却剂造成限流。
按照本发明,所述主止回阀支撑件采用3或4组沿圆周均匀分布的U型支撑脚、弹簧和滚轮的设计可以方便所述注入设备在注入井内衬管内自由移动,如通过注入井内衬管的弯道部分或注入井内衬管管壁上的障碍物如固体颗粒或焦油冷凝物以及注入井内衬管本身的变形等,此时所述支撑件内的弹簧会调节滚轮的伸出高度,从而使整个注入设备顺利通过。
按照本发明,所述主止回阀亦用于阻止易燃易爆气体逆向进入连续油管造成污染和损坏等,类似于用于冷却剂入口和冷却剂出口以及氧化剂喷射孔内的辅助止回阀,主止回阀亦为现有技术中常用的止回阀,只是尺寸要基于连续油管的内径进行选择,另外,主止回阀和辅助止回阀都可以是本领域技术人员已知适用于高浓度氧化剂如纯氧环境的合适止回阀,例如可以为弹簧挡板阀或球+弹簧型等。
按照本发明,所述机械剪切装置用于在必要时断开所述喷嘴以撤回所述注入设备的其余部分,例如当注入井内衬管由于熔融 或变形而造成机械卡死时,断开所述喷嘴可以将其它上游设备快速撤回以及时进行维护和更换,从而在一定程度上减少了煤炭地下气化工艺中的设备损耗。
按照本发明,所述机械剪切装置为一种自断机构,包括剪切装置主体、剪切装置外壳和剪切鞘,其中通过剪切鞘断开剪切装置主体和剪切装置外壳,由此断开所述喷嘴。
按照本发明,所述喷嘴位于所述机械剪切装置下游,用于向地下煤层的燃烧区和气化区注入高浓度氧化剂如纯氧和冷却剂如水、蒸汽或二氧化碳,此时,冷却剂在喷嘴环隙内的螺旋式流动通道内形成移动的冷却隔离带,从而很好地保护了整个喷嘴设备。
按照本发明,在所述喷嘴喷射端还可以带有气动保护塞,用于在所述注入设备进入井下时保护喷嘴设备(如避免在进出注入井时发生机械磨损和污染(如油脂、钻井泥浆和煤颗粒等))和在开始注入试剂后被高压试剂流吹掉,即不会防碍试剂注入;或者在所述喷嘴喷射端还可以装有快速连接器,用于在点火阶段连接、输送和断开地下点火设备。因此,本发明的注入设备可以用于煤炭地下气化过程的点火阶段和正常气化阶段。
按照本发明,所述注入设备的各部件之间可以通过选自外部抓钩连接器、快速连接器、卡口/定位螺栓和法兰螺栓的非焊接连接方式彼此连接和提供气密性密封,这种非焊接连接方式非常利于所述各部件之间的快速连接及后续拆卸和维护。
进一步,本发明还提供了所述注入设备的操作方法,其中在地下煤层中设有用于煤炭地下气化的完井系统,其中所述注入设备的喷嘴中心管与其它部件的内部通道一起构成氧化剂通道,和所述注入设备的喷嘴环隙内的螺旋式流动通道与其它部件和注入井内衬管内壁之间的环隙一起构成冷却剂通道,所述操作方法包 括如下阶段:
准备阶段,包括:
利用所述注入设备的喷嘴喷射端的快速连接器使所述注入设备与地下点火设备相连;
通过注入井的井口控制设备经所述注入设备的连续油管将整个注入设备和地下点火设备一起移送至地下煤层的预定点火位置;
点火阶段,其中以延迟方式实施地下煤层点火,包括:
通过所述氧化剂通道注入氧化剂流或施加压力激活和随后断开地下点火设备,其中通过所述冷却剂通道向地下煤层注入低流量空气用作点火氧化剂;
气化阶段,其中按照回退法进行煤炭地下气化过程,包括:
通过所述冷却剂通道注入冷却剂,并调节冷却剂的注入压力和/或流量来密封注入井内衬管内壁与所述喷嘴之间的环隙空间;
通过所述氧化剂通道向地下煤层连续注入氧化剂,实施地下煤层气化;
按照一定时间间隔使所述注入设备回退一定距离以继续所述气化过程,直至消耗完沿注入井内衬管方向的所有煤藏,其中在回退所述注入设备时通过调节冷却剂的注入压力和/或流量来解密封注入井内衬管内壁与所述喷嘴之间的环隙空间,以利于所述回退操作。
按照本发明,在所述操作方法中,其中在气化阶段通过所述氧化剂通道向地下煤层连续注入高浓度氧化剂,其中所述高浓度氧化剂为包含至少80vol%氧、优选至少90vol%氧的富氧空气或纯氧,其中所述冷却剂为水、水蒸汽或二氧化碳,此时该冷却剂同时用作煤炭气化过程的气化剂,和其中在回退到位后通过减少冷 却剂的注入流量来加快注入设备前方注入井内衬管的燃烧速率,使得新鲜煤层暴露在高温燃烧区和气化区。
按照本发明,在所述操作方法中,其中在点火阶段点火成功后,一般要将所述注入设备回退至安全位置,以等待随后开始气化阶段,和其中在气化阶段,在回退所述注入设备时通过调节冷却剂的注入压力和/或流量来解密封注入井内衬管内壁与所述喷嘴之间的环隙空间,例如,通过调整冷却剂的注入压力和/或流量打开密封圈以方便连续油管回退注入设备,而在回退到位后则可以通过减少冷却剂的注入流量,例如可以将冷却剂的注入流量减小10-80vol%,来加快所述注入设备前方注入井内衬管的燃烧速率,使得新鲜煤层暴露在高温燃烧区和气化区,从而继续煤炭地下气化过程,直到沿注入井内衬管方向的所有煤藏都被消耗掉。
按照本发明,在所述操作方法中,其中利用分布式温度、压力和声波传感器监测和控制煤炭地下气化过程的工艺参数,所述分布式温度、压力和声波传感器分别设于注入井内衬管外部、连续油管外壁和喷嘴中心管内部,用于获取地下煤层的温度、压力和声波信号并反馈给注入井的井口控制设备。
按照本发明,在所述操作方法中,其中所述分布式温度、压力和声波传感器均为基于光纤时域反射测量技术(Optical Time-Domain Reflectometry--OTDR)的分布式感应光纤,所述光纤由井口附近或连续油管起点一直延伸到目标测量点,和其中在氧化剂喷射孔处附加或替代地使用双金属护套K型双探头热电偶,以获取该点温度并基于该温度控制冷却剂注入流量。
按照本发明,当利用所述注入设备进行煤炭地下气化过程时,可以在不需要中断氧化剂和冷却剂注入的情况下通过控制冷却剂注入压力和/或流量实施回退过程,因此操作起来相对更为灵活方 便,并可以大幅缩短现有技术回退法的回退周期和/或回退距离,实现煤炭地下气化工艺的连续稳定运行;而且,利用本发明的注入设备可以安全稳定地使用高浓度氧化剂如纯氧,从而可以获得高质量且质量稳定的产品气;进一步,按照本发明利用所述温度、压力和声波信号采集系统,可以实现对整个煤炭地下气化过程的良好控制。因此,本发明明显改进了现有技术,带来了技术进步。
下面参考附图进一步描述本发明。
图1-3分别给出了本发明注入设备的剖面示意图、所述注入设备沿A-A截面的剖面图、沿B-B截面的剖面图以及止回阀支撑件剖面图和喷嘴支撑环剖面图。
如图1所示,连续油管2通过外部抓钩连接器20与主止回阀4相连。主止回阀4上设有支撑件18,支撑件18起到扶正定位和密封整个注入设备的作用,和包括3组沿圆周均匀分布的U型支撑脚23、弹簧24和滚轮25,其中弹簧24和滚轮25包含在U型支撑脚23内腔内,和滚轮25直接接触注入井内衬管内壁(参见图2(a)和图3(a))。
主止回阀4下游连接机械剪切装置5,该机械剪切装置5包括剪切装置主体6、剪切装置外壳7和剪切鞘8,用于在必要时剪断喷嘴以撤回所述注入设备的其余部分如连续油管2等。
机械剪切装置5下游与喷嘴的连接端相连,所述喷嘴包括喷嘴中心管9和喷嘴外壳10。喷嘴中心管9和喷嘴外壳10彼此同轴设置和通过环隙间隔,并且所述外壳在连接端延伸形成连接端环隙端面和包封喷射端形成喷射端端面。
喷嘴中心管9和喷嘴外壳10通过非闭合螺旋13彼此连接,非闭合螺旋13在喷嘴环隙内形成螺旋式流动通道,该通道为主要的冷却剂通道和对喷嘴起到良好的环绕冷却和散热作用。在喷嘴 环隙端面和喷射端面上设有沿圆周均匀分布的8对冷却剂入口15和冷却剂出口16,各冷却剂入口和冷却剂出口都与内部螺旋式流动通道连通和匹配并且在内部都设有辅助止回阀(参见图2(a)和2(b))。在喷嘴喷射端上设有9个氧化剂喷射孔17(参见图2(b))和另外设有快速连接器(图中未标出),用于在点火阶段连接、输送和断开地下点火设备。
在喷嘴外壳10上接近喷射端处设有喷嘴支撑环19,支撑环19用于密封注入井内衬管内壁和喷嘴设备之间的环隙空间,使得冷却剂全部进入喷嘴环隙的螺旋式流动通道以充分冷却所述喷嘴,和支撑环19包括U型支撑圈26、弹簧24和密封圈27,其中弹簧24和密封圈27包含U型支撑圈26内腔内,和在冷却剂注入时通过弹簧24顶出密封圈27直接接触注入井内衬管内壁实现密封(参见图2(b)和图3(b))。
当注入设备通过注入井内衬管进入地下煤层时,需要在喷嘴喷射端加装气动保护塞21,以保护喷嘴和防止污染物进入注入设备。
分布式温度、压力和声波传感器3分别固定在注入井内衬管外部、连续油管外壁和喷嘴中心管内部,用于获取相关的温度、压力和声波信号并反馈给注入井的井口控制设备,由此控制煤炭地下气化过程。
进一步,如图4所示,其中给出了本发明注入设备的操作方法的示意图(正常生产过程),其中通过注入设备的冷却剂通道12注入冷却剂,和通过加大冷却剂注入压力来密封注入井内衬管内壁与喷嘴设备之间的环隙空间(密封圈27被弹簧24顶出而直接接触注入井内衬管内壁),其中通过注入设备的氧化剂通道11注入氧化剂,在将气动保护塞21吹掉后开始实施煤炭地下气化,其中 氧化剂和冷却剂(同时用作气化剂)在喷嘴前端混合形成氧化剂和冷却剂混合物28,之后进入燃烧区和气化区14实施煤炭地下气化过程。
本申请的说明书只是给出了本发明的优选实施方案,但本发明并不局限于这些优选实施方案。对于本领域的技术人员来说,在不偏离本发明的精神和原则的前提下本发明可以有其它变体和改型,并且所述变体和改型均在本发明范围内。

Claims (17)

  1. 用于煤炭地下气化工艺的喷嘴,所述喷嘴包括中心管和外壳,所述中心管和所述外壳从连接端延伸到喷射端,二者彼此同轴设置和通过环隙间隔并且所述外壳在连接端延伸形成连接端环隙端面和包封喷射端形成喷射端端面,其中所述中心管与所述外壳通过非闭合螺旋连接并由此在喷嘴环隙内形成螺旋式流动通道,其中在连接端环隙端面上和喷射端端面上设有若干对彼此对应且与螺旋式流动通道连通和匹配的冷却剂入口和冷却剂出口,和其中在喷射端端面上还设有氧化剂喷射孔。
  2. 权利要求1所述的喷嘴,其中所述中心管和所述外壳在连接端还通过选自外部抓钩连接器、卡口/定位螺栓和法兰螺栓的非焊接连接方式进一步连接和固定。
  3. 权利要求1或2所述的喷嘴,其中对于连接所述中心管和所述外壳的非闭合螺旋,其螺纹间隔的深度和宽度各自独立地为2-10mm。
  4. 权利要求1-3任一项所述的喷嘴,其中在连接端环隙端面上和喷射端端面上设有4-12对彼此对应且与螺旋式流动通道连通和匹配的冷却剂入口和冷却剂出口,这些冷却剂入口和冷却剂出口沿圆周均匀分布,和在每个冷却剂入口和冷却剂出口内都装有辅助止回阀。
  5. 权利要求1-4任一项所述的喷嘴,其中在喷射端端面上设有一个或多个氧化剂喷射孔,总开孔面积基于氧化剂最大喷射速度确定,和在每个氧化剂喷射孔内都装有辅助止回阀,当设有多个氧化剂喷射孔时,所述多个孔按照中心和外周分布且外周各孔与中心孔平行或按照与中心孔成5-35°角向外发散。
  6. 权利要求1-5任一项所述的喷嘴,其中在喷射端端面上从冷却剂出口至氧化剂喷射孔设有多条微型文丘里引流纹路,用于引导冷却剂到达氧化剂喷射孔以实施冷却保护。
  7. 权利要求1-6任一项所述的喷嘴,其中在喷嘴外壳上接近喷射端设有支撑环,所述支撑环与注入井内衬管内壁之间的设计余隙不超过10mm和包括U型支撑圈、弹簧和密封圈,其中弹簧和密封圈包含在U型支撑圈内腔内,所述内腔与所述喷嘴环隙内的螺旋式流动通道连通,从而在冷却剂注入时通过弹簧顶出密封圈以封堵所述设计余隙。
  8. 用于煤炭地下气化工艺的注入设备,基于注入井内衬管作为移动通道,所述注入设备包括彼此按顺序连接且气密性连通的连续油管、机械剪切装置和权利要求1-7任一项的喷嘴,其中:所述连续油管用于移动所述注入设备经注入井内衬管到达待气化地下煤层的预定位置,和在必要时将全部或部分注入设备撤回地面;所述机械剪切装置用于在必要时断开所述喷嘴以撤回所述注入设备的其余部分;和所述喷嘴用于向待气化煤层注入冷却剂和氧化剂。
  9. 权利要求8所述的注入设备,其中在所述连续油管和所述机械剪切装置之间设有主止回阀用于阻止逆向气流进入连续油管,所述主止回阀上还设有支撑件用于所述注入设备的扶正定位和密封。
  10. 权利要求9所述的注入设备,其中所述主止回阀支撑件包括3或4组沿圆周均匀分布的U型支撑脚、弹簧和滚轮,所述U型支撑脚与注入井内衬管内壁之间的设计余隙不超过10mm,所述弹簧和滚轮包含在U型支撑脚内腔内,和所述滚轮与注入井内衬管内壁直接接触。
  11. 权利要求8-10任一项所述的注入设备,其中所述机械剪切装置为一种自断机构,包括剪切装置主体、剪切装置外壳和剪切鞘,其中通过剪切鞘断开剪切装置主体和剪切装置外壳,由此断开所述喷嘴。
  12. 权利要求8-11任一项所述的注入设备,其中所述注入设备的各部件之间通过选自外部抓钩连接器、快速连接器、卡口/定位螺栓和法兰螺栓的非焊接连接方式彼此连接和提供气密性密封。
  13. 权利要求8-12任一项所述的注入设备,其中在所述喷嘴喷射端还带有气动保护塞,用于在所述注入设备进入井下时保护喷嘴设备和在开始注入试剂后被高压试剂流吹掉,或者在所述喷嘴喷射端还装有快速连接器,用于在点火阶段连接、输送和断开地下点火设备。
  14. 权利要求8-13任一项所述的注入设备的操作方法,其中在地下煤层中设有用于煤炭地下气化的完井系统,其中所述注入设备的喷嘴中心管与其它部件的内部通道一起构成氧化剂通道,和所述注入设备的喷嘴环隙内的螺旋式流动通道与其它部件和注入井内衬管内壁之间的环隙一起构成冷却剂通道,所述操作方法包括如下阶段:
    准备阶段,包括:
    利用所述注入设备的喷嘴喷射端的快速连接器使所述注入设备与地下点火设备相连;
    通过注入井的井口控制设备经所述注入设备的连续油管将整个注入设备和地下点火设备一起移送至地下煤层的预定点火位置;
    点火阶段,其中以延迟方式实施地下煤层点火,包括:
    通过所述氧化剂通道注入氧化剂流或施加压力激活和随后断开地下点火设备,其中通过所述冷却剂通道向地下煤层注入低流量空气用作点火氧化剂;
    气化阶段,其中按照回退法进行煤炭地下气化过程,包括:
    通过所述冷却剂通道注入冷却剂,并调节冷却剂的注入压力和/或流量来密封注入井内衬管内壁与所述喷嘴之间的环隙空间;
    通过所述氧化剂通道向地下煤层连续注入氧化剂,实施地下煤层气化;
    按照一定时间间隔使所述注入设备回退一定距离以继续所述气化过程,直至消耗完沿注入井内衬管方向的所有煤藏,其中在回退所述注入设备时通过调节冷却剂的注入压力和/或流量来解密封注入井内衬管内壁与所述喷嘴之间的环隙空间,以利于所述回退操作。
  15. 权利要求14所述的操作方法,其中在气化阶段通过所述氧化剂通道向地下煤层连续注入高浓度氧化剂,其中所述高浓度氧化剂为包含至少80vol%氧的富氧空气或纯氧,其中所述冷却剂为水、水蒸汽或二氧化碳,此时该冷却剂同时用作煤炭气化过程的气化剂,和其中在回退到位后通过减少冷却剂的注入流量来加快注入设备前方注入井内衬管的燃烧速率,使得新鲜煤层暴露在高温燃烧区和气化区。
  16. 权利要求15所述的操作方法,其中利用分布式温度、压力和声波传感器监测和控制煤炭地下气化过程的工艺参数,所述分布式温度、压力和声波传感器分别设于注入井内衬管外部、连续油管外壁和喷嘴中心管内部,用于获取地下煤层的温度、压力和声波信号并反馈给注入井的井口控制设备。
  17. 权利要求16所述的操作方法,其中所述分布式温度、压 力和声波传感器均为基于光纤时域反射测量技术的分布式感应光纤,所述光纤由井口附近或连续油管起点一直延伸到目标测量点,和其中在氧化剂喷射孔处附加或替代地使用双金属护套K型双探头热电偶,以获取该点温度并基于该温度控制冷却剂注入流量。
PCT/CN2017/075718 2017-01-12 2017-03-06 用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法 WO2018129796A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2019118457A RU2719853C1 (ru) 2017-01-12 2017-03-06 Форсунка и нагнетательное устройство для применения в процессе подземной газификации угля и способ работы нагнетательного устройства
AU2017392170A AU2017392170B2 (en) 2017-01-12 2017-03-06 Nozzle and injection device for use in underground coal gasification process and method for operating injection device
US16/477,744 US11066916B2 (en) 2017-01-12 2017-03-06 Nozzle and injection device for use in underground coal gasification process and method for operating injection device
ZA2019/02930A ZA201902930B (en) 2017-01-12 2019-05-10 Nozzle and injection device for use in underground coal gasification process and method for operating injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710022286.7A CN106761653B (zh) 2017-01-12 2017-01-12 用于煤炭地下气化工艺的喷头设备及其操作方法
CN201710022286.7 2017-01-12

Publications (1)

Publication Number Publication Date
WO2018129796A1 true WO2018129796A1 (zh) 2018-07-19

Family

ID=58947826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075718 WO2018129796A1 (zh) 2017-01-12 2017-03-06 用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法

Country Status (6)

Country Link
US (1) US11066916B2 (zh)
CN (1) CN106761653B (zh)
AU (1) AU2017392170B2 (zh)
RU (1) RU2719853C1 (zh)
WO (1) WO2018129796A1 (zh)
ZA (1) ZA201902930B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593909A (zh) * 2020-12-07 2021-04-02 中国地质调查局油气资源调查中心 一种适用于地下煤气化的移动注气装置及其工作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287069B (zh) * 2018-03-19 2023-06-20 华电电力科学研究院有限公司 一种用于靠背管与试验测口固定的连接装置和连接方法
CN108518211B (zh) * 2018-03-29 2024-01-30 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的氧化剂混合注入系统及操作方法
CN110465415A (zh) * 2019-09-16 2019-11-19 上海锅炉厂有限公司 一种套筒式气流喷口及其设计实施方法
CN111411922B (zh) * 2020-03-11 2021-07-16 大连理工大学 一种水平井压裂填充天然气水合物增效开采装备及方法
CN112761611B (zh) * 2020-12-07 2022-10-25 中国地质调查局油气资源调查中心 一种新型地下煤炭实时煤气化装置
CN113236171A (zh) * 2021-05-31 2021-08-10 西京学院 一种油气井用径向熔蚀切割工具
CN113818892A (zh) * 2021-07-29 2021-12-21 中国铁建重工集团股份有限公司 一种破岩掘进装置及其破岩方法
CN113931590B (zh) * 2021-10-25 2023-06-20 国能神东煤炭集团有限责任公司 一种水力切割装置及瓦斯抽采管切割方法
WO2024117927A1 (ru) * 2022-12-02 2024-06-06 Общество С Ограниченной Ответственностью "Специальные Инструменты Горного Дела - Пгу" Устройство для управляемого перемещения точки подачи дутья в подземный газогенератор
CN116025290B (zh) * 2023-03-30 2023-07-04 成都迪普金刚石钻头有限责任公司 一种压力自适应pdc钻头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136585A1 (en) * 2002-01-18 2003-07-24 Tobishima Corporation & Fuji Research Institute Corp. Device and method for extracting a gas hydrate
CN103742121A (zh) * 2014-01-14 2014-04-23 新奥气化采煤有限公司 地下气化注气装置和方法
CN204082121U (zh) * 2014-09-17 2015-01-07 新奥气化采煤有限公司 一种煤炭气化喷嘴
CN104533377A (zh) * 2014-11-06 2015-04-22 新奥气化采煤有限公司 一种喷嘴及气化方法
CN104612652A (zh) * 2015-01-28 2015-05-13 新奥气化采煤有限公司 喷嘴

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507204B1 (fr) * 1981-06-05 1985-07-05 Air Liquide Procede et installation de gazeification souterraine de charbon
US5055030A (en) * 1982-03-04 1991-10-08 Phillips Petroleum Company Method for the recovery of hydrocarbons
CN1055332C (zh) * 1995-03-15 2000-08-09 柴兆喜 拉管注气点后退式煤层气化方法
CN200968601Y (zh) * 2006-09-06 2007-10-31 中国船舶重工集团公司第七一一研究所 干煤粉加压气化炉的燃烧喷嘴
US9051820B2 (en) * 2007-10-16 2015-06-09 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
CN103380266A (zh) * 2011-02-18 2013-10-30 领潮能源有限公司 在煤炭地下气化过程ucg中点燃地下煤层
WO2014043747A1 (en) 2012-09-18 2014-03-27 Linc Energy Ltd Oxygen injection device and method
GB2523020B (en) * 2012-12-06 2017-09-20 Schlumberger Holdings Multiphase flare for effluent flow
WO2014186823A1 (en) 2013-05-23 2014-11-27 Linc Energy Ltd Oxidant and water injection apparatus
CN103541714B (zh) * 2013-10-30 2016-06-15 新奥气化采煤有限公司 喷头及煤炭地下气化方法
CN104295282B (zh) * 2014-08-12 2017-06-23 新奥科技发展有限公司 后退式煤层气化方法
US20160076344A1 (en) * 2014-09-17 2016-03-17 Otech Service Canada Ltd. Combustion System of Composite Heat Carrier Generator
CN204455019U (zh) * 2014-12-18 2015-07-08 新奥气化采煤有限公司 工艺烧嘴总成
CN104564008B (zh) * 2014-12-18 2018-05-01 新奥科技发展有限公司 煤炭地下气化装置及其气化方法
CN104632182B (zh) * 2015-02-03 2018-08-24 新奥科技发展有限公司 一种喷嘴
CN104863563B (zh) * 2015-04-09 2019-06-25 新奥科技发展有限公司 一种喷嘴
CN205243495U (zh) * 2015-10-28 2016-05-18 新奥气化采煤有限公司 喷嘴及具有该喷嘴的气化剂输送系统
CN106121618B (zh) * 2016-08-24 2019-01-08 中为(上海)能源技术有限公司 用于煤炭地下气化过程的氧化剂注入设备及其应用
CN106150472B (zh) * 2016-08-28 2019-05-17 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的接合管注入系统及操作方法
CN206608160U (zh) * 2017-01-12 2017-11-03 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的喷头设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136585A1 (en) * 2002-01-18 2003-07-24 Tobishima Corporation & Fuji Research Institute Corp. Device and method for extracting a gas hydrate
CN103742121A (zh) * 2014-01-14 2014-04-23 新奥气化采煤有限公司 地下气化注气装置和方法
CN204082121U (zh) * 2014-09-17 2015-01-07 新奥气化采煤有限公司 一种煤炭气化喷嘴
CN104533377A (zh) * 2014-11-06 2015-04-22 新奥气化采煤有限公司 一种喷嘴及气化方法
CN104612652A (zh) * 2015-01-28 2015-05-13 新奥气化采煤有限公司 喷嘴

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112593909A (zh) * 2020-12-07 2021-04-02 中国地质调查局油气资源调查中心 一种适用于地下煤气化的移动注气装置及其工作方法
CN112593909B (zh) * 2020-12-07 2022-12-09 中国地质调查局油气资源调查中心 一种适用于地下煤气化的移动注气装置及其工作方法

Also Published As

Publication number Publication date
US11066916B2 (en) 2021-07-20
AU2017392170B2 (en) 2023-03-16
ZA201902930B (en) 2020-01-29
RU2719853C1 (ru) 2020-04-23
US20190360318A1 (en) 2019-11-28
CN106761653B (zh) 2023-03-14
CN106761653A (zh) 2017-05-31
AU2017392170A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2018129796A1 (zh) 用于煤炭地下气化工艺的喷嘴和注入设备以及所述注入设备的操作方法
RU2706498C1 (ru) Оборудование для нагнетания окислителя в процессе подземной газификации угля и его применение
RU2513737C2 (ru) Способ и устройство для скважинного газогенератора
CN106121618B (zh) 用于煤炭地下气化过程的氧化剂注入设备及其应用
US4366860A (en) Downhole steam injector
CN110617466A (zh) 一种用于超深井下稠油热采的超临界水热燃烧型蒸汽发生器
US20130312950A1 (en) Igniting an underground coal seam in an underground coal gasification process, ucg
CN106150472B (zh) 用于煤炭地下气化工艺的接合管注入系统及操作方法
EP0805937B1 (en) Improved partial oxidation process burner with recessed tip and gas blasting
CN108518211B (zh) 用于煤炭地下气化工艺的氧化剂混合注入系统及操作方法
FR2507204A1 (fr) Procede et installation de gazeification souterraine de charbon
WO2014186823A1 (en) Oxidant and water injection apparatus
WO2014089603A1 (en) Apparatus for igniting an underground coal seam
CN104153757A (zh) 一种抗高温防烧坏多通道连续管及制造方法
CN206608160U (zh) 用于煤炭地下气化工艺的喷头设备
CN205990905U (zh) 用于煤炭地下气化工艺的接合管注入系统
WO2018035734A1 (zh) 用于煤炭地下气化过程的点火设备及其应用
CN206053927U (zh) 用于煤炭地下气化过程的氧化剂注入设备
CN208633812U (zh) 用于煤炭地下气化工艺的氧化剂混合注入系统
CN210772088U (zh) 一种用于超深井下稠油热采的超临界水热燃烧型蒸汽发生器
US20220275715A1 (en) Steam generator tool
CN109652144B (zh) 一体化水煤浆烧嘴及点火方法
AU2015100786A4 (en) Apparatus for igniting an underground coal seam
US20230383942A1 (en) Steam generator tool
AU2015101245A4 (en) Oxygen and water injection process for underground coal gasification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017392170

Country of ref document: AU

Date of ref document: 20170306

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891070

Country of ref document: EP

Kind code of ref document: A1