WO2018129603A1 - Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru - Google Patents

Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru Download PDF

Info

Publication number
WO2018129603A1
WO2018129603A1 PCT/BR2018/050003 BR2018050003W WO2018129603A1 WO 2018129603 A1 WO2018129603 A1 WO 2018129603A1 BR 2018050003 W BR2018050003 W BR 2018050003W WO 2018129603 A1 WO2018129603 A1 WO 2018129603A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudomonas
enterobacter
nrrl
ars
production
Prior art date
Application number
PCT/BR2018/050003
Other languages
English (en)
French (fr)
Inventor
Noemi JACQUES VIEIRA
Cintia ROSA FERRARI
Gabriela DA SILVA BICALHO
Patricia LÉO
Alfredo EDUARDO MAIORANO
Eliza MAMI OTA
Maria Filomena DE A. RODRIGUES
Rosa MITIKO SAITO MATSUBARA
Original Assignee
Natura Cosméticos S.A.
Instituto De Pesquisas Tecnológicas Do Estado De São Paulo S.A. - Ipt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natura Cosméticos S.A., Instituto De Pesquisas Tecnológicas Do Estado De São Paulo S.A. - Ipt filed Critical Natura Cosméticos S.A.
Priority to US16/477,496 priority Critical patent/US10801053B2/en
Priority to EP18739090.1A priority patent/EP3569714A4/en
Priority to MX2019008154A priority patent/MX2019008154A/es
Publication of WO2018129603A1 publication Critical patent/WO2018129603A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/385Pseudomonas aeruginosa

Definitions

  • the present invention pertaining to the lipid compounds sector containing monosaccharide units, relates to biosurfactants / rhamnolipids of microbial origin, obtained from the microbial strains Pseudomonas aeruginosa or Enterobacter hormaebei or Enterobacter buriae and residue. andiroba or murumuru seed as a substrate for its growth and production, and its production process, with characteristics applicable mainly in the cosmetics industry due to its emulsification capacity, stability and non-toxicity.
  • Biosurfactants are surface active agents with antipathic (hydrophilic / hydrophobic) characteristics naturally produced and excreted by a wide variety of microorganisms under specific growth conditions. These molecules are classified into glycolipids, phospholipids, lipolipids or lipoproteins.
  • Glycolipids are low molecular weight biosurfactants, including Rhamnolipids (RLs), which have the property of decreasing surface and interfacial tensions and also exhibit properties of emulsification, foaming, detergency, wetting and dispersion or solubilization.
  • RLs Rhamnolipids
  • biosurfactants are of increasing interest from the scientific community due to their physicochemical and surfactant properties, which give them a wide spectrum of application.
  • Biosurfactants can replace chemically produced synthetic surfactants because they are less toxic, more biodegradable and more ecologically acceptable.
  • Biosurfactants They have potential for application in different markets such as bioremediation, oil recovery, agriculture (pesticides), pharmaceuticals, food industry, dermatology and cosmetics.
  • rhamnolipids can be used in bioremediation processes, in biological control and in the food and cosmetics industries because they have good skin and pharmaceutical compatibility.
  • Ramnolipids have also been used to obtain rhamnose, an important precursor in flavor production.
  • Pseudomonas aeruginosa produces up to six types of ramnolipids that have similar chemical structure and surface activity and can reduce surface water tension from 72 dynes / cm to 30 dynes / cm with critical micellar concentration from 27 to 54 mg / L .
  • P. aeruginosa is a well-studied strain that produces mainly Rha-C10-C10 monorramnolipids and Rha2-C10-C10 dirramnolipids.
  • Biotensives of the ramnolipid class produced by bacteria of the genus Pseudomonas, had their structure described in the mid-1940s and since then several authors have presented methods for their production.
  • US 4,814,272 (Wagner et al, 1989) describes ramnolipid production processes using diets. carbon sources and demonstrating that ramnosylhydroxydecanoate and ramnosyl ramnosylhydroxydecanoate, as well as ramnosylhydroxydecanoylhydroxydecanoate and ramnosylhydroxydecanoylhydro are also synthesized by the pseudo-aerosone line. DSM 2874. The inventors demonstrated that rhamnolipids containing these chemical structures were produced using glycerin or paraffin as a carbon source and that the culture temperature of Pseudomonas cells also interfered with their presence.
  • Pseudomonas cultures with glycerine or paraffin at 30 ° C produced ramnolipids containing 16.2 and 17% of the new structures, respectively.
  • Pseudomonas aeruginosa DSM 2874 was grown at 37 ° C, the amount of new chemical structures obtained was 2%.
  • Daniels and co-workers disclose method of producing rhamnose through the process of producing rhamnolipids using vegetable oils. In the described process, concentrations of 30 to 50 g / l of ramnolipids are reached. The process has as its main interest the production of rhamnose, obtained from hydrolysis of rhamnolipid after biosynthesis.
  • hydrophilic (glycerol and glucose) and hydrophobic (soybean sludge, frying oil and chicken fat) carbon sources for the production of ramnolipids has been studied by Nitschke et al. (NITSCHKE, M .; COSTA, SG ; HADDAD, R.; GON ⁇ ALVES, LA; EBERLEIN, MN; CONTIERO, J. OH. Wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol.
  • PI 0705327-4 A2 describes a method using bacterial strains selected for the production of ramnolipids from vegetable oils such as castor oil, soybean, corn, sunflower, canola, cotton, jatropha and carbohydrates such as glucose, fructose, disaccharides or polysaccharides for the production of ramnolipids.
  • rhamnolipids of varying composition are obtained in a controlled manner, both in the ramno / 3-hydroxyalkanoate ratio and in the 3-hydroxyalkanoates present, by means of Pseudomonas aeruginosa mutant affected in the biosynthesis metabolism of polyhiroxialcanoates, increasing the product applications in the fields of bioremediation, food, flavoring, cosmetics and pharmaceuticals.
  • the Pseudomonas aeruginosa gene gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett v. 179, p.85-90 1999). The nucleotide sequences of these genes are available from the Pseudomonas aeruginosa genomes database PA01 and PA14 (www.pseudomonas.com).
  • Ochsner and Raiser According to Ochsner and Raiser (OCHSNER, UA; KOCH, AK; FIECHTER, A.; REISER, J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol., V. 176 ( 7): 2044-2054, 1994), the main rhamnolipids produced by Pseudomonas aeruginosa are rhamnoshydroxydecanoylhydroxydecanoate (monorramnolipid) and ramsnoyl rhamnosylhydroxydecanoylhydroxydecanoate (meanwhile, meanwhile). other chemical structures belonging to the ramolipid family have been described.
  • RLs glycolipids produced mainly by Pseudomonas aeruginosa easily isolated from the culture medium and can be produced using hydrophobic or hydrophilic substrates such as hydrocarbons, vegetable oils, sugars, glycerol or residues. from the food industry.
  • COSTA SGVAO
  • NITSCHKE M, HADDAD
  • R EBERLIN MN
  • CONTIERO J. Production of Pseudomonas aeruginosa LBI rhamnobolids following growth in Brazilian native oils. Process Biochemistry, v. 41, pp.
  • biosurfactants are still unable to compete with synthetic surfactants for commercial purposes due to their high cost of production and recovery.
  • Mukherjeee et al. MUKHERJEE, S .; DAS, P .; SEN, R. Towards commercial production of microbial surfactants. Trends Biotechnol .. Amsterdam, 24: 509-515, 2006
  • three main factors that Difficulties in the marketing of biosurfactants are: (i) the high cost of raw materials; ii) the high cost of recovery and purification; and iii) low yields in production processes.
  • various techniques and approaches have been adopted worldwide.
  • Alternative use of inexpensive substrates, optimized culture conditions in bioreactor processes, economical recovery processes and strains improvements have been investigated to improve biosurfactant yields.
  • NITSCHKE and collaborators NITSCHKE and collaborators (NITSCHKE, M .; COSTA, SG; HADDAD, R.; GON ⁇ ALVES, LA; EBERLEIN, MN; CONTIERO, J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., V 21, pp. 1562-1566, 2005); COSTA (COSTA, GAN Biotechnological production of Bacillus subtilis surfactant in agro-industry waste, characterization and applications. 85p.
  • RAZA Master's Dissertation in Food Science; Food Engineering College, State University of Campinas, Campinas, 2005); RAZA and collaborators
  • RAZA ZA
  • REHMAN A.
  • KHAN MS
  • KHALID ZM
  • Some authors also report the use of sugarcane molasses, residues from cheese, potato and cassava production as sources for biotensive production (MUKHERJEE, S.; DAS, P .; SEN, R.
  • MUKHERJEE sugarcane molasses, residues from cheese, potato and cassava production as sources for biotensive production
  • Corn maceration water is a byproduct of corn grain processing, and an acidic material rich in amino acids and polypeptides, minerals and vitamins can be used as a nutrient supplement in cultivation medium for industrial bioprocesses (LIGGETT RW; KOFFLER, H. With steep liquor in microbiology (Bacteriol. Rev., 12: 297-31 (1948)).
  • Another alternative source is glycerol, one of the main byproducts obtained during biodiesel production.
  • P. aeruginosa biosynthesis of ramnolipids is directly influenced by nutrient availability, since after cell growth, carbon source availability and nitrogen limitation promotes increased production of these glycolipids.
  • hydrophilic (glycerol and glucose) and hydrophobic (soybean sludge, frying oil and chicken fat) carbon sources for the production of ramnolipids has been studied by Nitschke et al. (NITSCHKE, M .; COSTA, SG ; HADDAD, R .; GON ⁇ ALVES, LA; EBERLEIN, MN; CONTIERO, J. OH. Waste as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., V. 21, p.
  • Mulligan (MULLIGAN, CN Recent advances in the environmental applications of biosurfactants. Curr. Op. Coll. Interf. Sci., 14: 372 - 378, 2009) studied the potential of P. aeruginosa to produce ramnolipids from A wide variety of substrates including Cu and C 12 alkanes, succinate, pyruvate, citrate, fructose, glycerol, olive oil, glucose and mannitol, the composition and yields of ramnolipid biosurfactant also depend on the type of bioreactor. , pH, nutrient composition, substrate and temperature.
  • nitrate is the best source of nitrogen to be used because it stimulates a high expression of rhlAB, the gene sequence responsible for synthesis of monoramnolipids (VENKATA-RAMANA, K .; KARANTH, NG Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J.Chem. Technol. Biotechnol., Oxford, v. 45, p. 249 -257, 1989.
  • aeruginosa 44T1 was 37, according to Robert and colleagues, (ROBERT, M .; MERCADÉ, E .; BOSH, MP; PARRA, J. L; ESPUNY; MJ; MANRESA, MA. GUINEA, J. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1 (Biotechnol. Lett., Dordrecht, v.1, n.2, p.871-874, 1989). Temperature may also affect the composition of biosurfactant produced by Pseudomonas sp. DSM-2874 (SYLDATK, C; LANG, S.; WAGNER, F.
  • Oxygen is one of the key parameters for the optimization and large scale production of surfactin by B. subtilis.
  • the membrane / powdery tube was internally located in the serpentine bioreactor liquid under the process conditions: pure oxygen with adequate pressure and flow to maintain the pressure of 0 2 in the bioreactor by 20% in the first 24 hours of testing and agitation ranging from 300 to 700 rpm using 2 radial impellers and manual adjustment as the dissolved oxygen concentration decreases.
  • Pseudomonas or enterobacter-produced ramnolipid production process using the ANDIROBA or murumuru seed residue refers to a process of obtaining Pseudomonas or Enterobacter-produced ramnolipid biosurfactant using andiroba or murumuru seed residue as substrate alternative and renewable for the production of ramnolipid biosurfactant with emulsification properties, stability and non-toxicity applicable to cosmetic formulations, according to the steps: a) cell reactivation; b) inoculum preparation and c) bioreactor batch bioprocess.
  • Figure 1 Graph of surface tension measurement of Pseudomonas aeruginosa strains ARS-NRRL B-59183, Pseudomonas aeruginosa ARS-NRRL B-59184, Enterobacter hormaechei ARS-NRRL B-59185, Pseudomonas aeruginosa ARS-NRRL B-59188 Enterobacter buriae ARS-NRRL B-59189 and Pseudomonas aeruginosa ARS-NRRL B-59193, using glucose, murumuru and andiroba.
  • Figure 2 Graph of kinetic profile of ramnolipid production after daily sample withdrawals during 240 hours of cultivation of Pseudomonas aeruginosa in mineral medium with 10% of the residues andiroba, murumuru or the mixture of both as growth substrates in rotary incubator at 180 rpm at 30 ° C.
  • Figure 3 Profile graph of measured surface tension of samples taken daily over 240 hours of culture of Pseudomonas aeruginosa in mineral medium with 10% residues andiroba, murumuru or mixture of both as growth substrates in rotary incubator at 180 rpm at 30 ° C.
  • Figure 4 Graph of kinetic profile of bioreactor ramnolipid production in the bubble free system with oxygen pressure and pH control, conducted in mineral medium with 10% andiroba seed residues and 2% glucose and 3g / l ammonium sulfate.
  • Figure 5 Graph of kinetic profile of surface tension in bioreactor in bubble free system with oxygen pressure and pH control, conducted in mineral medium with 10% andiroba seed residue and glucose 2% and 3g / L of ammonium sulfate.
  • Figure 6 Graph relating to comparative foam test between ramnolipid produced with Andora robin residue and commercial ramnolipid (Sigma Aldrich).
  • Figure 7 Graph relating to comparative evaluation of foam stability using ramnolipid produced with andiroba seed residue and commercial ramnolipid (Sigma Aldrich). DETAILED DESCRIPTION OF THE INVENTION
  • Process step (a) is to reactivate the refrigerated microorganism at a temperature of from -70 to -100 ° C by growing in nutrient broth for 10 to 30 hours, preferably 15 to 25 hours, preferably 21 hours. - 25 to 40, preferably 28 to 35, more specifically 30, on an agitator platform with stirring speed from 170 rpm to 200 rpm, preferably 180 rpm.
  • the microorganism of step (a) consists of one of the bacteria listed in Table 1, preferably Pseudomonas aeruginosa, which is kept refrigerated preferably in ultrafreezer cryopreservation at a temperature between about -70 to -100 ° C, the nutrient broth. preferably comprises meat extract at a concentration of 3 g / l and peptone at a concentration of 5 g / l. These nutrients are mixed with the aid of a magnetic stirrer and subjected to wet heat sterilization at 121.1 atm for 15 minutes.
  • Step (b) is the preparation of the inoculum, each 1 ml from reactivation step (a) being transferred preferably to 50 ml of the nutrient broth for 4 to 12 hours, preferably between 6 and 10 hours, more specifically about 8 hours, at temperatures between 20 and 40 ° C, preferably about 28 to 35 ° C, more specifically at 30 ° C, in an agitator plate with stirring speed of 170 to 200 rpm, preferably 180 ° C. rpm
  • Step (c) consists of batch bioprocess in agitated and aerated tank reactor, preferably with microporous membranes, more specifically silicone tubes that allow the delivery of bubble-free diffusion oxygen, preventing foaming. .
  • This type of aeration allows for different configurations, preferably that the porous membrane / tube is located internally in the serpentine bioreactor liquid.
  • This hose passes pure oxygen with adequate pressure and flow to maintain the pressure of 0 2 in the bioreactor preferably at 20%. within the first 24 hours. Agitation should vary from 300 to 700 rpm, adjusted according to the growth of the microorganisms in order to always maintain at 20% saturation of 0 2 using radial impellers and manual or automatic adjustment as the dissolved oxygen concentration decreases, this being a differential of the process in relation to those previously mentioned in the state of the art.
  • step (c) The bioreactor cultivation of step (c) is performed in mineral medium consisting of salts and trace elements according to RAMSAY and collaborators (RAMSAY, BA; LOMALIZA, K .; CHAVARIE, C; DUBE, B .; BATAILLE, P.; RAMSAY, JA Production of Poly (P-Hydroxybutyric-Co-3-Hydroxyvaleric) Acids Applied and Environmental Microbiology, pp. 2093-2098 v. 56 (7), 1990) as described in the Tables 2A and 2B.
  • RAMSAY RAMSAY and collaborators
  • the process must be kept constant at a temperature of 28 ⁇ to 37 ⁇ , preferably 30 ⁇ and a pH of 6.5 to 7.2, preferably pH 6.8, and can be automatically controlled by the addition of NaOH, preferably at a concentration of 4 mol / kg. L, or manually adding H 2 SO 4 , preferably at a concentration of 2 mol / L.
  • Table List of bacterial strains used in the steps for ramnolipid production.
  • Nickel chloride (NiCl 2 .6H 2 0) 0.02
  • Step (a) of the process consisted of reactivating Pseudomonas aeruginosa, or Enterobacter hormaechei or Enterobacter buriae for 21 hours at 30 ° C in a stirring platform with stirring speed of 180 rpm containing the nutrient broth.
  • meat extract and peptone at a concentration of 3 g / l and 5 g / l respectively.
  • Step (b) consisted of preparing the inoculum, each 1 ml from reactivation step (a) being inoculated into 50 ml of the nutrient broth for about 8 hours at 30 ° C on a platform stirrer with stirring speed of 180 rpm.
  • Step (c) consisted of batch bioprocess in agitated tank reactor and aeration by means of silicone tubes which allowed the supply of pure oxygen by bubble free diffusion, with adequate pressure and flow to maintain the pressure of 0 2 by 20% in the first 24 hours, avoiding foaming. Stirring from 300 rpm to 700 rpm in the reactor was performed by radial impellers and the decrease in dissolved oxygen concentration was manually adjusted.
  • the process was kept constant at 30 ° C and pH 6.8, being controlled by the addition of 4 mol / l NaOH or the addition of 2 mol / l of H 2 SO 4. .
  • the Pseudomonas aeruginosa strain was able to synthesize around 10 g / l ramnolipid from shredded andiroba seed residues used as an alternative substrate at a concentration of 100 g / l.
  • Ramnolipid yield using the andiroba seed residue was about 4 times higher than the yield obtained with the murumuru seed residue.
  • the surface tension of the crop supernatant with the andiroba seed residue was also better than the strain obtained with the murumuru seed residue (> 35 dyne / cm).
  • Andiroba and murumuru seed residues were characterized with respect to their composition, showing the presence of carbohydrates, lipids and proteins in both residues.
  • Murumuru seed residue had 53.4% carbohydrate, 29.0% lipid and 6.8% protein.
  • Andiroba seed residue had 63.4% carbohydrate, 14.8% lipid and 10.4% protein.
  • Other components such as ash and moisture were also quantified, with 1.4% ash in murumuru seed residue and 4.3% ash in andiroba seed residue.
  • the ramnolipid biosurfactant molecule produced using andiroba seed residue had surface tension of 30 to 40 dyne / cm and emulsification index greater than 60%. With murumuru residue, the surface tension obtained was 40 to 50 dyne / cm and the emulsification index also higher than 60%.
  • the ramnolipid produced did not show cytotoxicity in the in vitro assays and performed well on the surfactant and foaming properties. This performance in equipment that allows to check the foam capacity of solutions, containing surfactant by stirring and measuring the stability of the foam obtained by such stirring. Average foam measurements are obtained after four foam decay readings over a period of five minutes. In this evaluation, corrected surfactant concentration was used taking into account the sample content for 0.1% active. The tests were performed with the bioreactor-produced ramnolipid and freeze-dried versus standard Sigma Aldrich ramnolipid.
  • the foam stability of rhamnolipid has been found to be very good when compared to the rhamnolipid standard, which makes the product interesting for cosmetic application as it keeps the foam stable during the analysis time.
  • the ramnolipid molecule also proved to be quite stable, indicating that this biosurfactant produced has application in the cosmetic industry due to its emulsification capacity, stability and non-toxicity in vitro.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)

Abstract

Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru pertencente ao setor de compostos contendo radicais monossacarídeos, consiste na obtenção de raminolipídeos por processo biotecnológico utilizando o resíduo de semente de andiroba ou murumuru, após extração do seu óleo, como substrato para a linhagem de Pseudomonas aeruginosa ou Enterobacter hormaechei ou Enterobacter buriae cultivada em biorreator com sistema de aeração não dispersiva para redução de espuma, obtendo-se teor de raminolipídeo de 10,5 g/L para as bactérias Pseudomonas aeruginosa, em biorreatores conduzidos em tanque agitado com aeração não dispersiva utilizando-se membranas microporosas, particularmente de tubos de silicone, que permitem o fornecimento de oxigénio por difusão. Este tipo de aeração permite diferentes configurações, sendo que no exemplo de concretização da invenção, a membrana/tubo poroso foi localizada internamente no líquido do biorreator na forma de serpentina, nas condições de processo: oxigénio puro com pressão e vazão adequada para manter a pressão de 02 no biorreator em 20% nas primeiras 24 horas de ensaio e agitação variando de 300 a 700 rpm, utilizando 2 impelidores radiais e ajuste manual conforme a diminuição da concentração de oxigénio dissolvido. O produto obtido possui características aplicáveis principalmente na indústria de cosméticos devido a sua capacidade de emulsificação, estabilidade e não toxicidade.

Description

"PROCESSO DE OBTENÇÃO DE RAMNOLIPÍDEO PRODUZIDO POR PSEUDOMONAS OU ENTEROBACTER UTILIZANDO O RESÍDUO DE SEMENTE DE ANDIROBA OU MURUMURU".
Campo da Invenção
[0001 ] A presente invenção, pertencente ao setor compostos lipí- dicos contendo unidades de monossacarídeos, refere-se a biossurfac- tantes/ramnolipídeo de origem microbiana, obtido a partir das linhagens microbianas Pseudomonas aeruginosa ou Enterobacter hormae- chei ou Enterobacter buriae e resíduo agroindustrial de semente de andiroba ou murumuru como substrato de seu crescimento e produção, e ao seu processo de obtenção, com características aplicáveis principalmente na indústria de cosméticos devido a sua capacidade de emulsificação, estabilidade e não toxicidade.
Antecedentes da Invenção
[0002] Os biossurfactantes são agentes de atividade superficial com características antipáticas (hidrofílica/hidrofóbica) naturalmente produzidos e excretados por uma ampla variedade de microrganismos sob condições específicas de crescimento. Estas moléculas são classificadas em glicolipídeos, fosfolipídeos, lipolipídeos ou lipoproteínas.
[0003] Os glicolipídeos são biossurfactantes de baixo peso molecular, incluindo os ramnolipídeos (RLs), os quais apresentam a propriedade de diminuir as tensões superficiais e interfaciais e também apresentam propriedades de emulsificação, espumação, detergência, umectação e dispersão ou solubilização.
[0004] Estes biossurfactantes apresentam crescente interesse por parte da comunidade científica devido às suas propriedades físico- químicas e tensoativas, que lhes conferem um amplo espectro de aplicação. Os biossurfactantes podem substituir os surfactantes sintéticos, produzidos quimicamente, por apresentarem menor toxicidade, serem biodegradáveis e ecologicamente mais aceitos. Os biossurfactantes apresentam potencial de aplicação em diferentes mercados tais como biorremediação, recuperação de petróleo, agricultura (pesticidas), farmacêutico, indústria de alimentos, dermatológica e cosmética. Assim, os ramnolipídeos podem ser utilizados em processos de biorremediação, no controle biológico e nas indústrias de alimentos, cosméticos por apresentarem boa compatibilidade com a pele e farmacêutica. Ramnolipídeos também têm sido utilizados para a obtenção de ramnose, um importante precursor na produção de aromas.
[0005] Pseudomonas aeruginosa produz até seis tipos de ramnoli- pídeos que possuem estrutura química e atividade superficial similares, podendo reduzir a tensão superficial da água de 72 dina/cm para 30 dina/cm com concentração micelar crítica de 27 a 54 mg/L. P. aeruginosa é uma linhagem bem estudada e produtora, principalmente, de monorramnolipídeos do tipo Rha-C10-C10 e dirramnolipídeos do tipo Rha2-C10-C10.
[0006] Os biotensoativos da classe dos ramnolipídeos, produzidos por bactérias do género Pseudomonas, tiveram sua estrutura descrita em meados dos anos 40 e desde então diversos autores têm apresentado métodos para sua produção.
[0007] O documento US 4.628.030 (KAEPELLI, O. AND GUERRA- SANTOS, L. 1986) descreve o primeiro processo contínuo de produção de ramnolipídeo sem biorreator pela linhagem P. aeruginosa DSM 2659, utilizando meio de cultura composto por sais minerais e glicose como fonte de carbono, apresentando limitação na disponibilidade de fontes nitrogénio, ferro e magnésio visando aumentar a concentração de ramnolipídeos produzidos. Nesse documento não é feita qualquer menção à utilização de resíduos como matéria-pri ma/fonte de carbono na produção dos ramnolipídeos produzidos.
[0008] Posteriormente, o documento US 4.814.272 (Wagner et al, 1989) descreve processo de produção de ramnolipídeos utilizando di- ferentes fontes de carbono e demonstrando que ramnosil- -hidroxi- decanoato e ramnosil-ramnosil- -hidroxidecanoato, além de ramnosil- -hidroxidecanoil- -hidroxidecanoato e do ramnosil-ramnosil- -hidro- xidecanoil- -hidroxidecanoato também são sintetizados pela linhagem Pseudomonas aeruginosa DSM 2874. Os inventores demonstraram que ramnolipídeos contendo essas estruturas químicas eram produzidos utilizando glicerina ou parafina como fonte de carbono e que a temperatura de cultivo das células de Pseudomonas também interferia na sua presença. Culturas de Pseudomonas com glicerina ou parafina à temperatura de 30 produziram ramnolipídeos cont endo 16,2 e 17% das novas estruturas, respectivamente. Quando Pseudomonas aeruginosa DSM 2874 foi cultivada a 37 , a quantidade das no vas estruturas químicas obtida foi de 2%. Assim, demonstram ser possível modificar a composição de ramnolipídeos em uma situação bastante particular, que envolve o cultivo utilizando glicerina ou parafina como fonte de carbono.
[0009] Daniels e colaboradores (EP 0282942, 1988), revelam método de produção de ramnose através do processo de produção dos ramnolipídeos utilizando óleos vegetais. No processo descrito, são atingidas concentrações da ordem de 30 a 50 g/l de ramnolipídeos. O processo tem como interesse principal a produção da ramnose, obtida da hidrólise do ramnolipídeo posteriormente à sua biossíntese.
[0010] No documento WO 1992005182 (1992), Mixich et al. descrevem processo para obtenção de ramnose a partir da hidrólise de ramnolipídeos. Nesse documento, o foco é o processo de hidrólise e separação da ramnose dos ramnolipídeos.
[001 1 ] O documento US 5.501 .966, (Giani et al., 1996) descreve o processo de produção de ramnose a partir da hidrólise de ramnolipídeos, resultante de um processo utilizando óleos vegetais e bactérias do género Pseudomonas isoladas de amostra de água ou seus mutan- tes submetidos a n-metil-N-nitro-N-nitrosoguanidina (MNNG). Neste processo, a concentração de ramnolipídeos atinge entre 70 e 120 g/L.
[0012] Chayabutra e colaboradores (CHAYABUTRA, C; WU, J.; JU, L.K. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Bio- technol Bioeng, v. 72(1 ), p. 25-33, 2001 ) avaliaram a produção de ramnolipídeos sob condições de desnitrificação, ou seja, na ausência de oxigénio e na presença de nitrato como aceptor final de elétrons. Nesse trabalho, foram fornecidos como fonte de carbono ácidos gra- xos, óleos vegetais, glicerol ou glicose, e condições de limitação de crescimento celular por diferentes nutrientes. A limitação com fósforo foi a mais efetiva para a produção de ramnolipídeos, resultando em produtividades quatro a cinco vezes maiores que com a limitação convencional de nitrogénio.
[0013] Santos e colaboradores (SANTOS, A.S; SAMPAIO, A.P.; VASQUEZ, G.S., SANTA ANNA, LM.; PEREIRA, N. JR; FREIRE, D.M. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Appl Biochem Biotechnol, v. 98-100, p. 1025-1035) avaliaram a biossíntese de ramnoli- pídeos utilizando diferentes fontes de carbono (C - glicerol, óleo de soja, azeite de oliva e etanol) e de nitrogénio (N - NH4+ e N03"), bem como diferentes proporções C/N. Os autores concluíram que a proporção relativa entre ramnosil- -hidroxidecanoil- -hidroxidecanoato (monorram- nolipídeo) e o ramnosil-ramnosil- -hidroxidecanoil- -hidroxidecanoato (dirramnolipídeo) variam em função da fonte de carbono fornecida.
[0014] A utilização de fontes de carbono hidrofílicas (glicerol e glicose) e hidrofóbicas (borra de soja, óleo de fritura e gordura de frango) para a produção de ramnolipídeos foi estudada por Nitschke e colaboradores (NITSCHKE, M.; COSTA, S.G.; HADDAD, R.; GONÇALVES, L.A.; EBERLEIN, M.N.; CONTIERO, J. OH wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., 21 : 1562-1566, 2005) que verificaram que os substratos oleosos apresentaram uma produção de ram- nolipídeos 64% maior do que os substratos não oleosos. O estudo va- lorizou as fontes hidrofóbicas como fonte de carbono mostrando resultados iguais ou superiores aos relatados na literatura.
[0015] O documento PI 0705327-4 A2 (2007) descreve método utilizando linhagens bacterianas selecionadas para a produção de ramnolipídeos, a partir de óleos vegetais como óleos de mamona, so- ja, milho, girassol, canola, algodão, pinhão manso e carboidratos como glicose, frutose, dissacarídeos ou polissacarídeos para produção dos ramnolipídeos. Neste método de produção são obtidos de forma controlada ramnolipídeos de composição variada, tanto na relação ramno- se/3-hidroxialcanoatos como nos 3-hidroxialcanoatos presentes, por meio de mutante de Pseudomonas aeruginosa afetada no metabolismo de biossíntese de polihiroxialcanoatos, aumentando o espectro de aplicações para os produtos, nos campos de biorremediação, alimentos, aromas, cosméticos e farmacêuticos.
[0016] Outros aspectos da biossíntese de ramnolipídeos também são considerados na literatura.
[0017] Diferentes genes associados à biossíntese de ramnolipídeos foram descritos: rhlA, rhlB, rhlC, rhIG, rhIR, rhll, rmIABCD (OCHSNER, U.A.; KOCH, A.K.; FIECHTER, A.;REISER, J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol., v. 176(7): 2044-2054, 1994); (RAHIM, R.; OCHSNER, U.A.; OLVERA, C; GRANINGER, M. ; MESSNER, P.; LAM, J.S., SOBERÓN-CHÁVEZ, G. Cloning and func- tional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di- rhamnolipid biosynthesis. Mol Microbiol 40:708-718, 2001 ); e Olvera et ai, (OLVERA, C; GOLDBERG, J.B.; SANCHEZ, R.; SOBERÓN- CHÁVEZ, G. The Pseudomonas aeruginosa algC gene product partici- pates in rhamnolipid biosynthesis. FEMS Microbiol Lett v. 179, p.85-90 1999). As sequências de nucleotídeos desses genes estão disponíveis no banco de dados dos genomas de Pseudomonas aeruginosa PA01 e PA14 (www.pseudomonas.com).
[0018] Segundo Ochsner e Raiser (OCHSNER, U.A.; KOCH, A.K.; FIECHTER, A.; REISER, J. Isolation and characterization of a regulato- ry gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol., v. 176(7):2044-2054, 1994), os principais ramnolipídeos produzidos por Pseudomonas aeruginosa são o ramno- sil- -hidroxidecanoil- -hidroxidecanoato (monorramnolipídeo) e o ram- nosil-ramnosil- -hidroxidecanoil- -hidroxidecanoato (dirramnolipídeo), entretanto, outras estruturas químicas pertencentes à família dos ram- nolipídeos foram descritas.
[0019] Exemplos interessantes de biossurfactantes com relevância em aplicações cosméticas são os RLs, glicolipídeos produzidos principalmente por Pseudomonas aeruginosa facilmente isolados do meio de cultura e podem ser produzidos utilizando substratos hidrofóbicos ou hidrofílicos, tais como hidrocarbonetos, óleos vegetais, açúcares, glicerol ou resíduos da indústria de alimento. Costa e colaboradores (COSTA, S. G. V. A. O.; NITSCHKE, M, HADDAD; R, EBERLIN M.N. ; CONTIERO, J. Production of Pseudomonas aeruginosa LBI rhamno- lipids following growth on Brazilian native oils. Process Biochemistry, v. 41 , p. 483-488, 2006) descreveram a biossíntese de ramnolipídeos por Pseudomonas aeruginosa quando cultivada na presença de 2%, em volume, de diferentes óleos de vegetais nativos brasileiros. A concentração de ramnolipídeos variou entre 2,9 e 9,9 g/L após 120 horas de cultivo e o monorramnolipídeo foi o principal ramnolipídeo detecta- do. Cosméticos contendo ramnolipídeos já foram patenteados para serem usados como produtos antirrugas e antienvelhecimento (W01999043334, PILJAC & PILJAC, 1999).
[0020] Em geral, biossurfactantes ainda são incapazes de competir com os surfactantes sintéticos para fins comerciais devido ao seu alto custo de produção e recuperação. Como relatado por Mukherjeee colaboradores (MUKHERJEE, S.; DAS, P.; SEN, R. Towards commer- cial production of microbial surfactants. Trends Biotechnol.. Amster- dam, 24: 509-515, 2006), três principais fatores que dificultam a comercialização de biossurfactantes são: i) o elevado custo das maté- rias-primas; ii) o alto custo de recuperação e purificação; e iii) os baixos rendimentos nos processos de produção. Assim, a fim de reduzir o custo de produção de biossurfactantes e para aumentar a eficiência da produção do biotensoativo, várias técnicas e abordagens foram adota- das mundialmente. Alternativa de uso de substratos baratos, condi- ções de cultura otimizadas em processos em biorreatores, processos de recuperação económicos e melhorias de cepas têm sido investigados para melhorar os rendimentos de biossurfactante.
[0021 ] Assim, o estado da técnica demonstra que bactérias do género Pseudomonas são capazes de produzir diferentes biotensoativos da família dos ramnolipídeos, a partir de diferentes substratos, entretanto, não há informação disponível sobre a produção de ramnolipídeos a partir de resíduos vegetais. Considerando que o substrato utilizado para a produção do ramnolipídeo pode interferir na composição final do produto e nas propriedades tensoativas e, consequentemente, em suas potenciais aplicações, além é claro do custo final de produção, a utilização de resíduos agroindustriais pode representar vantagens em relação ao custo da matéria-prima. Porém produzir as moléculas de biossurfactantes com propriedades aplicáveis em produtos cosméticos semelhantes ou superiores aos dos tensoativos de origem química é um grande desafio. [0022] Estas fontes alternativas de nutrientes, tais como subproduto agrícola ou de processamento industrial, podem reduzir o problema económico da produção de biossurfactantes, pois estima-se que a ma- téria-prima seja responsável por cerca de 10 a 30% dos custos totais de produção em muitos processos biotecnológicos. Além disto, o aproveitamento de resíduos pode contribuir para a redução da poluição ambiental, bem como permitir a valorização económica dos resíduos que seriam descartados.
[0023] Grandes quantidades de resíduos são geradas pela indús- tria de óleos e gorduras, que são provenientes tanto da extração como da utilização de óleos vegetais. Estudos demonstraram que resíduos de óleos vegetais podem ser utilizados como substratos para a produção de ramnolipídeos por alguns isolados de Pseudomonas aerugino- sa (BENINCASA, M.; CONTIERO, J.; MANRESA, M.A.; MORAES, I.O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng., 54: 283-288, 2002); NITSCHKE e colaboradores (NITSCHKE, M.; COSTA, S.G. ; HADDAD, R.; GONÇALVES, L.A.; EBERLEIN, M.N.; CONTIERO, J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., v. 21 , p.. 1562-1566, 2005); COSTA (COSTA, G. A. N. Produção biotecnológica de surfactante de Bacillus subtilis em resíduo agroindústria, caracterização e aplicações. 85p. Dissertação de Mestrado em Ciência de Alimentos; Faculdade de Engenharia de Alimentos, Universidade Es- tadual de Campinas, Campinas, 2005); RAZA e colaboradores (RAZA, Z. A.; REHMAN, A.; KHAN, M. S.; KHALID, Z. M. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation, Dordrecht, v. 18, p. 1 15-121 , 2007). Alguns autores relatam ainda a utilização de melaço de cana, resíduos da produção de queijo, batata e mandioca como fontes para a produção de biotensoativos (MUKHERJEE, S.; DAS, P.; SEN, R. Towards commercial production of microbial surfactants. Trends Bio- technol., Amsterdam, 24: 509-515, 2006). A água de maceração de milho é um subproduto do processamento dos grãos de milho, sendo um material ácido, rico em aminoácidos e polipeptídios, minerais e vitaminas pode ser utilizado como suplemento de nutrientes em meio de cultivo para bioprocessos industriais (LIGGETT R. W.; KOFFLER, H. Com steep liquor in microbiology. Bacteriol. Rev., 12: 297-31 1 , 1948). Outra fonte alternativa é o glicerol, um dos principais subprodutos obti- dos durante a produção de biodiesel.
[0024] A biossíntese de ramnolipídeos por P. aeruginosa é direta- mente influenciada pela disponibilidade de nutrientes, visto que após o crescimento celular, a disponibilidade de fonte de carbono e limitação de nitrogénio promove o aumento da produção destes glicolipídeos.
[0025] A utilização de fontes de carbono hidrofílicas (glicerol e glicose) e hidrofóbicas (borra de soja, óleo de fritura e gordura de frango) para a produção de ramnolipídeos foi estudada por Nitschke e colaboradores (NITSCHKE, M.; COSTA, S.G.; HADDAD, R.; GONÇALVES, L.A.; EBERLEIN, M.N.; CONTIERO, J. OH wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., v. 21 , p.. 1562-1566, 2005) e verificaram que os substratos oleosos apresentaram uma produção de ramnolipídeos 64% maior do que os substratos não oleosos. Este estudo valorizou as fontes hidrofóbicas como fonte de carbono e mostrou resultados iguais ou superiores aos relatados na literatura. Nitschke e colaboradores (NITSCHKE, M.; COSTA, S.G.; HADDAD, R.; GONÇALVES, L.A.; EBERLEIN, M.N.; CONTIERO, J. OH wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., v. 21 , p.. 1562-1566, 2005) destacam que os resíduos oleosos estudados são produzidos em grande quantidade pelas indústrias de processamento de óleos vegetais e alimentícias, sendo que a utilização destes resíduos poderá contribuir não somente com a redução dos custos de tratamento, mas também para a sua valorização económica. Considerando que o custo de produção é o maior problema para a expansão do mercado de bi- ossurfactantes, a procura por substratos alternativos e o isolamento de novos microrganismos constituem uma estratégia para implementar a obtenção e o uso destas moléculas. O trabalho destes autores mostrou o potencial de uso de resíduos de indústrias alimentícias como fonte de carbono na produção de biotensoativos, bem como o isolamento de dois novos microrganismos.
[0026] Estudos apontam diferentes tipos de resíduos que podem ser usados como substratos alternativos na produção de biossurfac- tantes. Ter o conhecimento da composição adequada de nutrientes que permita o crescimento celular e o acúmulo do produto de interesse é um dos maiores problemas encontrados durante a escolha do resíduo a ser utilizado. O estabelecimento de um processo biotecnológico a partir desses substratos alternativos também apresenta outra dificuldade, que é a padronização devido às variações naturais de composição, bem como os custos de transporte, armazenamento e tratamento prévio (NITSCHKE, M.; PASTORE, G. M. Biossurfactantes a partir de resíduos agroindustriais: Avaliação de resíduos agroindustriais como substratos para a produção de biossurfactantes por Bacillus. Biotecnologia Ciência & Desenvolvimento. Edição nQ 31 , pag. 63-67, junho/dezembro 2003), sendo que os resíduos agroindustriais possuem elevados teores de carboidratos e lipídeos, mostrando-se como substratos interessantes para a produção de biossurfactantes (MAKKAR, R.S., CAME- OTRA, S.S. Production of biosurfactant at mesophilic and thermofilic conditions by a strain of Bacillus subtilis. Journal of Industrial Microbio- logy & Biotechnology, 20: 48-52, 1998). [0027] Alguns autores já revelaram a produção de ramnolipídeo por Pseudomonas aeruginosa utilizando substratos não convencionais, como o efluente da extração do óleo de oliva (MERCADE, M.E. ; MANRESA, M.A.; ROBERT, M.; ESPUNY, M.U.; de ANDRES, C; GUINEA, J.. Olive oil mil efluente (OOME). New substrate for biosur- factant production. Bioresour. Technol., 43:1 -6, 1993), resíduos do refino do óleo de soja (ABALOS, A.; PINAZO, A.; INFANTE, M.R.; CASALS, M., GARCIA, F.; MANRESA, A. Physicochemical and antimi- crobial properties of new rhamnolipids produced by Pseudomonas ae- ruginosa AT10 from soybean oil refinery wastes. Langmuir, 17: 1367- 1371 , 2001 ), soro de leite (KOCH, A. K.; RAISER, J.; KAPPELI, O. ; FIECHTER, A. Genetic construction of lactose utilizing strains of Pseu- domona aeruginosa and their application in biosurfactant production. Nat. Biotechnol., 6, 1335-1339. doi: 10.1038/nbt 1 188-1335, 1988), óleo de fritura usado (HABA E.; ESPUNY M.J.; BUSQUETS M.; MANRESA A. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbi- ol.; 88: 379- 387, 2000).
[0028] Thaniyavarn e colaboradores (THANIYAVARN, J.; CHONGCHIN, A.; WANITSUKSOMBUT, N.; THANIYAVARN, S.; PIN- PHANICHAKARN, P.; LEEPIPATPIBOON, N.; MORIKAWA, M.; KA- NAYA, S. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. The Journal of General and Applied Microbiology, 52: 215-222, 2006) obtiveram diferenças significativas de rendimento para a produção de ramnolipídeos pela linhagem Pseudomonas aeruginosa A41 a partir de diferentes fontes de carbono (2% v/v): azeite de oliva, óleo de palmeira, óleo de coco, ácido láurico, ácido miriástico, ácido palmítico, ácido esteárico, ácido oleico e ácido li- noleico. A maior concentração do bioproduto, 6,58 g/L, foi obtida pelo cultivo em azeite de oliva, no entanto para o óleo de coco e o de pai- meira foram produzidos apenas 2,9 g/L de ramnolipídeos.
[0029] Manresa e colaboradores. (MANRESA, M. A.; BASTIDA, M.E.; MERCADÉ, M R.; DE ANDRÉS, C; ESPUNY, M.J.; GUINEA, J. Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. Journal of Industrial Microbiology, 8: 133-136, 1991 ) consideram a produção de ramnolipídeos utilizando óleo de oliva como um fenómeno complexo, e sugerem que a Pseudomonas aeruginosa 44T1 provavelmente produza lipases extracelulares que quebrem as triglicé- rides e catabolizem os ácidos graxos liberados. Ressaltam ainda que, apesar das dificuldades técnicas no bioprocesso e no downstream do produto, a produção de ramnolipídeos de óleos vegetais apresenta vantagens.
[0030] Mulligan (MULLIGAN, C. N. Recent advances in the envi- ronmental applications of biosurfactants. Curr. Op. Coll. Interf. Sei. ,14: 372 - 378, 2009) estudou o potencial de P. aeruginosa para produzir ramnolipídeos a partir de uma grande variedade de substratos, incluindo alcanos Cu e C12, succinato, piruvato, citrato, frutose, glicerol, óleo de oliva, glicose e manitol, sendo que a composição e os rendimentos do biossurfactante ramnolipídeo dependem também do tipo de biorrea- tor, pH, composição de nutrientes, substrato e temperatura.
[0031 ] Diversos autores empregaram estratégias visando otimizar o meio de cultura para a produção de biossurfactantes, porém um fator pouco avaliado, que pode contribuir para um aumento na produção de biossurfactantes, é a influência dos micronutrientes presentes no meio de cultura.
[0032] A produção de biossurfatantes se depara com várias dificuldades de processo. Entre os parâmetros que influenciam o tipo e a quantidade de produto formado estão: a natureza da fonte de carbono, possíveis limitações nutricionais e parâmetros físicos e químicos, co- mo aeração, agitação, geração de espuma, temperatura e pH. Eleva- das proporções C/N (GUERRA-SANTOS, L.H.; KÀPPELI, O.; Fl- ECHTER, A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Micróbio!., v. 48, p.301-305, 1984); e C/P (MULLIGAN C.N.; MAHMOUR- IDES G., GIBBS B.F. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Bacteriol 12:199-210, 1989) estimula a síntese de ramnolipídeos, enquanto altas concentrações de cátions bivalentes, especialmente ferro, são inibitórias (GUERRA-SANTOS, L; KAPPELI, O.; FIECHTER, A. Depen- dence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Applied Microbiol- ogy and Biotechnology, 24: 443-448, 1986); (BENINCASA, M.; AC- CORSINI F.R. Pseudomonas aeruginosa LBI production as an inte- grated process using the wastes from sunflower-oil refining as a sub- strate. Bioresour. Technol., 99: 3843-3849, 2008) avaliaram a produção de ramnolipídeos por P. aeruginosa LBI sob diferentes proporções C/N e alcançaram a mais alta concentração, 7,3 g/L, com a proporção C/N de 8/1 . A utilização de NH4, glutamina, asparagina e arginina, como fonte de nitrogénio, inibem a produção de ramnolipídeos, enquanto NO"3, glutamato e aspartato promovem a síntese (MULLIGAN, C. N.; GIBBS, B. F. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl. Environ. MicrobioL, 55: 3016-3019, 1989). De acordo com alguns autores, o nitrato é a melhor fonte de nitrogénio a ser utilizada, pois estimula uma alta expres- são de rhlAB, sequência gênica responsável pela síntese de monor- ramnolipídeos (VENKATA-RAMANA, K.; KARANTH, N. G. Factors af- fecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J.Chem. Technol. Biotechnol., Oxford, v. 45, p. 249-257, 1989). De acordo com Manresa e colabora- dores (MANRESA, M. A.; BASTIDA, M.E.; MERCADÉ, M R.; DE AN- DRÉS, C; ESPUNY, M.J.; GUINEA, J. Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. Journal of Industrial Microbiology. 8: 133-136, 1991 ), a preferência por esta fonte de nitrogénio pode ser devido ao fato de P. aeruginosa ser apta a fazer de- nitrificação e, portanto, pode utilizar nitrato como aceptor de elétrons, mesmo na presença de oxigénio.
[0033] Fatores ambientais e condições de crescimento como pH, temperatura, agitação e disponibilidade de oxigénio afetam a produção de biossurfactantes, interferindo no crescimento e na atividade celular. A produção de ramnolipídeos por Pseudomonas sp. foi máxima quando o pH foi mantido entre 6 e 6,5; já acima de 7, a produção caiu bruscamente (GUERRA-SANTOS, L; KAPPELI, O.; FIECHTER, A. 1984. Pseudomonas aeruginosa biosurfactant production in continuous cul- ture with glucose as carbon source. Applied and Environmental Mi- crobiology, 48: 301 -305, 1984). A temperatura ótima de produção de ramnolipídeos por P. aeruginosa 44T1 foi 37 , de acordo com Robert e colaboradores, (ROBERT, M.; MERCADÉ, E.; BOSH, M. P.; PARRA, J. L; ESPUNY; M. J.;MANRESA, M. A.; GUINEA, J. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol. Lett., Dordrecht, v.1 , n.2, p.871 -874, 1989). A temperatura pode afetar também a composição do biossurfactante produzido por linhagens de Pseudomonas sp. DSM-2874 (SYLDATK, C; LANG, S.; WAGNER, F. Chemical and physical characterization of 4interfacial-active rhamnolipids from Pseudomonas spec dsm 2874 grown on normal alkanes. Zeitschrift fur Naturforschung c-a Journal of Biosciences, Tubingen, 40, 51 -60, 1985). Durante a produção por leveduras, a produção de biossurfactantes aumentou quando as taxas de agitação e aeração foram elevadas (YEH, M.S.; WEI, Y.H.; CHANG, J.S. Bioreactor design foe enhanced carrier - assisted surfac- tin production with Bacillus subtilis. Proc. Biochem., v. 41 , p. 1799- 1805, 2006). Para Sheppard e Cooper (SHEPPARD, J. D.; COPPER, D. G. The effect o f biosurfactant on oxygen transfer in acyclone column reactor. J. Chem. Technol. Biotechnol.. Oxford, v. 48, p. 325-336, 1990) a transferência de oxigénio é um dos parâmetros chaves para a otimização e produção em grande escala de surfactina por B. subtilis.
[0034] A maior parte dos relatos na literatura da utilização de produtos ou subprodutos agroindustriais está relacionada a produtos puros como carboidratos e óleos vegetais. Pouco tem sido publicado sobre a utilização de resíduos sólidos provenientes de plantas oleagino- sas (BENINCASA, M.; CONTIERO, J.; MANRESA, M. A.; MORAES, I. O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng., v. 54, p. 283- 288, 2002) e sobre as possíveis soluções para o problema da formação de espuma. MULLER e colaboradores utilizaram um sistema de separador de espuma instalado na cabeça do biorreator para o controle da espuma (MLILLER, M.M., HÕRMANN, B., KUGEL, M., SYL- DATK, C, HAUSMANN, R. Evaluation of rhamnolipid production capa- city of Pseudomonas aeruginosa PA01 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol. v. 89, p. 585-592, 201 1 .
[0035] A novidade e atividade inventiva de OBTENÇÃO DE RAMNOLIPÍDEO PRODUZIDO POR PSEUDOMONAS AERUGINOSA UTILIZANDO O RESÍDUO DE SEMENTE DE ANDIROBA" consiste na obtenção de raminolipídeos por processo biotecnológico utilizando o resíduo de semente de andiroba após extração do seu óleo, como substrato para a linhagem de Pseudomonas aeruginosa, cultivada em biorreator com sistema de aeração não dispersiva para redução de espuma, obtendo-se teor de raminolipídeo de 10,5 g/L em biorreatores conduzidos em tanque agitado com aeração não dispersiva, utilizando- se membranas microporosas, particularmente de tubos de silicone, que permitem o fornecimento de oxigénio por difusão. Estas membranas permitem a aeração isenta de bolhas, evitando a formação de espuma. Este tipo de aeração permite diferentes configurações, sendo que no exemplo de concretização da invenção, a membrana/tubo po- roso foi localizado internamente no líquido do biorreator na forma de serpentina, nas condições de processo: oxigénio puro com pressão e vazão adequada para manter a pressão de 02 no biorreator em 20% nas primeiras 24 horas de ensaio e agitação variando de 300 a 700 rpm, utilizando 2 impelidores radiais e ajuste manual conforme a dimi- nuição da concentração de oxigénio dissolvido.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
[0036] "PROCESSO DE obtenção de ramnolipídeo produzido por Pseudomonas ou enterobacter utilizando o resíduo de semente de ANDIROBA ou murumuru" refere-se a um processo de obtenção de biossurfactante ramnolipídeo produzido por Pseudomonas ou Enterobacter utilizando resíduo de semente de andiroba ou murumuru como substrato alternativo e renovável para a produção do biossurfactante ramnolipídeo com propriedades de emulsificação, estabilidade e não toxicidade aplicáveis a formulações cosméticas, de acordo com as etapas: a) reativação celular; b) preparo de inoculo e c) bioprocesso em batelada em biorreator.
DESCRIÇÃO DAS FIGURAS
[0037] Figura 1 : Gráfico da medida da tensão superficial das linhagens Pseudomonas aeruginosa ARS-NRRL B-59183, Pseudomonas aeruginosa ARS-NRRL B-59184, Enterobacter hormaechei ARS-NRRL B-59185, Pseudomonas aeruginosa ARS-NRRL B-59188, Enterobacter buriae ARS-NRRL B-59189 e Pseudomonas aeruginosa ARS- NRRL B-59193, utilizando glicose, murumuru e andiroba.
[0038] Figura 2: Gráfico do perfil cinético da produção de ramnoli- pídeos após retiradas diárias de amostras durante 240 horas de cultivo de Pseudomonas aeruginosa em meio mineral com 10% dos resíduos andiroba, murumuru ou a mistura de ambos como substratos de crescimento em incubador rotativo a 180 rpm, a 30 .
[0039] Figura 3: Gráfico do perfil da tensão superficial medida de amostras retiradas diariamente ao longo de 240 horas de cultivo de Pseudomonas aeruginosa em meio mineral com 10% dos resíduos andiroba, murumuru ou a mistura de ambos como substratos de crescimento em incubador rotativo a 180 rpm, a 30 .
[0040] Figura 4: Gráfico do perfil cinético da produção de ramnoli- pídeo em biorreator no sistema livre de bolhas com controle de pressão de oxigénio e pH, conduzido em meio mineral com 10% de resíduos de semente de andiroba e com glicose 2% e 3g/L de sulfato de amónia.
[0041 ] Figura 5: Gráfico do perfil cinético da tensão superficial em biorreator no sistema livre de bolhas com controle de pressão de oxigénio e pH, conduzido em meio mineral com 10% de resíduo de semente de andiroba e com glicose 2% e 3g/L de sulfato de amónia.
[0042] Figura 6: Gráfico relativo a teste de espumação comparativo entre o ramnolipídeo produzido com o resíduo da semente de andi- roba e com ramnolipídeo comercial (Sigma Aldrich).
[0043] Figura 7: Gráfico relativo a avaliação comparativa da estabilidade da espuma utilizando o ramnolipídeo produzido com o resíduo da semente de andiroba e com ramnolipídeo comercial (Sigma Aldrich). DESCRIÇÃO DETALHADA DA INVENÇÃO
[0044] A produção de ramnolipídeo é realizada de acordo com as etapas:
[0045] A etapa (a) do processo consiste em reativar o microrganismo mantido em refrigeração em temperatura compreendida entre - 70 a -100 por meio de crescimento em caldo nutrie nte durante 10 a 30 horas, preferencialmente 15 a 25 horas, preferencialmente 21 ho- ras, entre 25 e 40 , preferencialmente a 28 e 35 , mais especificamente 30 , em uma plataforma agitadora com veloc idade de agitação de 170 rpm a 200 rpm, preferencialmente 180 rpm.
[0046] O microrganismo da etapa (a) consiste em uma das bacté- rias listadas na Tabela 1 , preferencialmente Pseudomonas aeruginosa, que é mantida refrigerada preferencialmente em criopreservação em ultrafreezer a uma temperatura entre cerca de -70 a -100 , o caldo nutriente compreende preferencialmente extrato de carne na concentração de 3 g/L e peptona, a uma concentração de 5 g/L. Estes nutri- entes são misturados com o auxílio de agitador magnético e submetidos ao processo de esterilização por calor úmido a 121 , 1 atm, durante 15 minutos.
[0047] A etapa (b) consiste na preparação do inoculo, sendo que cada 1 ml proveniente da etapa (a) de reativação (a) é transferido, pre- ferencialmente em 50 ml do caldo nutriente, durante 4 a 12 horas, preferencialmente entre 6 e 10 horas, mais especificamente cerca de 8 horas, em temperatura entre 20 a 40 , preferenci almente cerca de 28 a 35 , mais especificamente a 30Ό, em uma pl ataforma agitadora com velocidade de agitação de 170 a 200 rpm, preferencialmente 180 rpm.
[0048] A etapa (c) consiste em bioprocesso em batelada em reator de tanque agitado e com aeração, preferencialmente com membranas microporosas, mais especificamente de tubos de silicone que permitem o fornecimento de oxigénio por difusão isento de bolhas, evitando a formação de espuma.
[0049] Este tipo de aeração permite diferentes configurações, preferencialmente a de a membrana/tubo poroso ser localizado internamente no líquido do biorreator na forma de serpentina. Por esta mangueira passa-se oxigénio puro com pressão e vazão adequada para manter a pressão de 02 no biorreator em preferencialmente em 20% nas primeiras 24 horas. A agitação deve variar de 300 a 700 rpm, ajustados de acordo com o crescimento dos microrganismos de forma a manter sempre em 20% de saturação de 02 utilizando impelidores radiais e ajuste manual ou automático conforme a diminuição da concen- tração de oxigénio dissolvido, sendo este um diferencial do processo em relação aos anteriormente citados no estado da técnica.
[0050] O cultivo em biorreator da etapa (c) é realizado em meio mineral constituído de sais e elementos traços de acordo com RAMSAY e colaboradores (RAMSAY, B. A.; LOMALIZA, K.; CHAVARIE, C; DU- BE, B.; BATAILLE, P.; RAMSAY, J. A. Production of Poly-(P-Hydro- xybutyric-Co-3-Hydroxyvaleric) Acids. Applied and Environmental Microbiology, p. 2093-2098 v. 56 (7), 1990) conforme descrito nas Tabelas 2A e 2B. O processo deve ser mantido constante em temperatura de 28Ό a 37Ό , preferencialmente 30Ό e pH de 6,5 a 7,2 , preferenci- almente pH 6,8, podendo ser controlado automaticamente pela adição de NaOH, preferencialmente na concentração de 4 mol/L, ou adição manual de H2S04, preferencialmente na concentração de 2 mol/L.
Tabelai : Lista das linhagens bacterianas utilizadas nas etapas para a produção de ramnolipídeo.
Banco de Origem e
Nome da Linhagem Número IPT número de registro
Pseudomonas aeruginosa (Schroeter 1872)
ARS-NRRL B-59183 998
Migula 1900 E03-31
Pseudomonas aeruginosa (Schroeter 1872)
ARS-NRRL B-59184 999
Migula 1900 E03-36
Enterobacter hormaechei 0'Hara et al.
ARS-NRRL B-59185 1000
1990E03-50
Pseudomonas aeruginosa (Schroeter 1872)
ARS-NRRL B-59188 1001
Migula 1900H05-1 1
Enterobacter buriae Brenner et al. 1988
ARS-NRRL B-59189 1002
H05-14
Pseudomonas aeruginosa (Schroeter 1872)
ARS-NRRL B-59193 1005
Migula 1900 H05-45 Tabela 2 A: Composição do meio mineral utilizado para crescimento e produção de ramnolipídeos.
Componentes do meio mineral Concentração (g/L)
Fosfato de sódio dibásico (Na2HP04) 3,5
Fosfato de potássio (KH2P04) 1 ,5
Sulfeto de amónio (NH4)2S04 1 ,0 a 3,0
Sulfeto de magnésio (MgS04.7H20) 0,2
Cloreto de cálcio (CaCI2.2H20) 0,01
Citrato férrico amoniacal 0,06
Solução de elementos traços (Tabela 3) 1 ,0 ml
Glicose 0 a 2,0
Resíduo sólido de Andiroba 100
H20 destilada q.s.p. 1 L
Tabela 2 B: Comoosicão da solução de elementos traços.
Componentes da solução de elementos traço Concentração (g/L)
Acido Bórico (H3B03) 0,3
Cloreto de cobalto (CoCI2.6H20) 0,2
Sulfato de Zinco (ZnSO4.7H20) 0,1
Cloreto de manganês (MnCI2.4H20) 0,03
Molibidato de sódio (NaMo04.2H20) 0,03
Cloreto de níquel (NiCI2.6H20) 0,02
Sulfato de cobre (CuS04.5H20) 0,01
H20 destilada q.s.p. 1 L
CONCRETIZAÇÃO DA INVENÇÃO [0051 ] Todas as linhagens apresentadas na Tabela 1 apresentaram produção de ramnolipídeo utilizando o resíduo de sementes de murumuru e andiroba indicando suas aplicações para a obtenção de tensoativo.
[0052] Entre as linhagens avaliadas todas apresentaram resulta- dos semelhantes entre si de tensão superficial utilizando o resíduo da semente de andiroba e de murumuru.
[0053] A produção de ramnolipídeo foi realizada de acordo com:
[0054] A etapa (a) do processo consistiu em reativar Pseudomo- nas aeruginosa, ou Enterobacter hormaechei ou Enterobacter buriae durante 21 horas em temperatura de 30 , em uma pla taforma agitadora com velocidade de agitação de 180 rpm, contendo o caldo nutriente de extrato de carne e peptona a uma concentração de 3 g/L e 5 g/L, respectivamente.
[0055] A etapa (b) consistiu na preparação do inoculo, sendo que cada 1 ml proveniente da etapa (a) de reativação foi inoculado em 50 ml do caldo nutriente, durante cerca de 8 horas, em temperatura de 30 , em uma plataforma agitadora com velocidade de agitação de 180 rpm.
[0056] A etapa (c) consistiu em bioprocesso em batelada em reator de tanque agitado e com aeração por meio de tubos de silicone que permitiram o fornecimento de oxigénio puro por difusão isenta de bolhas, com pressão e vazão adequada para manter a pressão de 02 em 20% nas primeiras 24 horas, evitando a formação de espuma. Uma agitação de 300 rpm a 700 rpm no reator foi realizada por impelidores radiais e ajustou-se manualmente a diminuição da concentração de oxigénio dissolvido.
[0057] O processo foi mantido constante em temperatura de 30 e pH de pH 6,8, sendo controlado pela adição de NaOH na concentra- ção de 4 mol/L, ou adição de H2S04 na concentração de 2 mol/L.
[0058] Os resíduos de andiroba e murumuru utilizados nos ensaios foram triturados previamente, utilizando processador doméstico com pulsos de 10 segundos ou liquidificador industrial com copo de inox de alta rotação (22.000 rpm), e potência de 1200 w. Após trituração, quando necessário, os resíduos foram peneirados por um conjunto de peneiras variando de 1 ,0 a 0,25 mm.
Resultados
[0059] A linhagem Pseudomonas aeruginosa apresentou capacidade para sintetizar em torno de 10 g/L de ramnolipídeo a partir de re- síduos de semente de andiroba triturada utilizada como substrato alternativo na concentração de 100 g/L.
[0060] A produção de ramnolipídeo utilizando o resíduo de semente de andiroba foi em torno de 4 vezes superior à produção obtida com o resíduo de semente de murumuru. A tensão superficial do sobrena- dante do cultivo com o resíduo da semente de andiroba (< 35 dina/cm) também foi melhor que a tensão obtida com o resíduo de semente de murumuru (> 35 dina/cm).
[0061 ] Os resíduos de semente de andiroba e de murumuru foram caracterizados com relação à sua composição, mostrando a presença carboidratos, lipídios e proteínas em ambos os resíduos. Resíduo de semente de murumuru apresentou 53,4% de carboidratos, 29,0% de lipídios e 6,8% de proteínas. Resíduo de semente de andiroba apresentou 63,4% de carboidratos, 14,8% de lipídios e 10,4% de proteínas. Outros componentes como cinzas e umidade também foram quantifi- cados, sendo 1 ,4% de cinzas em resíduo de semente de murumuru e 4,3% de cinzas em resíduo de semente de andiroba.
[0062] A molécula de biossurfactante ramnolipídica produzida utilizando resíduo de semente de andiroba apresentou tensão superficial de 30 a 40 dina/cm e índice de emulsificação superior a 60%. Com re- síduo de murumuru, a tensão superficial obtida foi de 40 a 50 dina/cm e o índice de emulsificação também superior a 60%.
[0063] O ramnolipídeo produzido não apresentou citotoxicidade nos ensaios in vitro e apresentou bom desempenho nas propriedades tensoativas e de formação de espuma. Este desempenho em equipa- mento que permite verificar a capacidade espumógena de soluções, que contêm tensoativo, através da agitação e aferição da estabilidade da espuma obtida por essa agitação. As medidas de espumação média são obtidas após quatro leituras do decaimento de espuma durante tempo de cinco minutos. Nesta avaliação, foi utilizada concentração corrigida de tensoativos levando em consideração o teor das amostras para 0,1 % de ativo. Os testes foram feitos com o ramnolipídeo produzido em biorreator e seco em liofilizador versus ramnolipídeo padrão Sigma Aldrich.
[0064] Os resultados de espumação média do ramnolipídeos pro- duzido com o resíduo de semente de andiroba mostram-se melhores que os obtidos pelo ramnolipídeo padrão Sigma Aldrich.
[0065] Observou-se que a estabilidade de espuma do ramnolipídeo é muito boa quando comparamos ao padrão de ramnolipídeo, o que torna o produto interessante para aplicação em cosméticos, uma vez que mantém a espuma estável durante o tempo de análise.
[0066] A molécula de ramnolipídeo também se mostrou bastante estável, indicando que esse biossurfactante produzido tem aplicação na indústria de cosmético devido sua capacidade de emulsificação, estabilidade e não toxicidade in vitro.

Claims

REIVINDICAÇÕES
1 . Processo de obtenção de ramnolipídeo produzido por Pseudomonas ou Enterobacter utilizando o resíduo de semente de an- diroba ou murumuru, de acordo com as seguintes etapas: uma etapa 5 (a) consistir em reativar o microrganismo mantido em refrigeração por meio de crescimento em caldo de nutriente; uma etapa (b) consistir na preparação do inoculo; uma etapa (c) consistir em bioprocessamento em batelada em reator de tanque agitado e com aeração, caracterizado por a etapa a) reativar os microrganismos Pseudomonas ou Entei o robacter, mantidos em refrigeração em crioperservação em temperatura compreendida entre -70 a -100 , por meio de cre scimento em caldo nutriente durante 10 a 30 horas, em temperatura entre 25 e 40 , em uma plataforma agitadora com velocidade de agitação de 170 rpm a 200 rpm, e o caldo nutriente compreender extrato de carne e pepto- 15 na, nutrientes esses misturados com o auxílio de agitador e submetidos a processo de esterilização por calor úmido a 121 , 1 atm, durante 15 minutos; a etapa (b) consistir na preparação do inoculo, transferindo o material proveniente da etapa (a) de reativação para caldo nutriente, durante 4 a 12 horas, em temperatura entre 20 a 40 , em 20 uma plataforma agitadora com velocidade de agitação de 170 a 200 rpm; a etapa (c) consistir em bioprocesso em batelada em reator de tanque agitado de 300 a 700 rpm e com aeração com membranas mi- croporosas por onde se passa oxigénio puro com pressão e vazão adequada para manter a pressão de 02 no biorreator em 20% nas pri- 25 meiras 24 horas, sendo que a agitação deve variar em ajuste de acordo com o crescimento do microrganismos, de forma a manter sempre em 20% de saturação de 02 pela utilização de impelidores radiais e ajuste manual ou automático conforme a diminuição da concentração de oxigénio dissolvido, mantendo-se o processo constante em tempe- 30 ratura de 28 a 37 , e pH de 6,5 a 7,2, sendo o meio mineral desta etapa constituído de sais e elementos traços.
2. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de an- diroba ou murumuru, de acordo com a reivindicação 1 , caracterizado por etapa (a) consistir em reativar os microrganismos em caldo nutriente durante 15 a 25 horas, em temperatura entre 28 e 35 , em uma plataforma agitadora com velocidade de agitação de 180 rpm, e o caldo nutriente compreender extrato de carne na concentração de 3 g/L e peptona a uma concentração de 5 g/L; a etapa (b) consistir na preparação do inoculo pela transferência de 1 ml do material da etapa (a) em 50 ml do caldo nutriente durante 6 e 10 horas, em temperatura entre 28 a 35 , em uma plataforma agitadora com velocidade de agitação de 180 rpm; a etapa (c) consistir em bioprocesso em batelada em reator de tanque agitado e com aeração com membranas micropo- rosas de tubos de silicone localizados internamente no líquido do bior- reator na forma de serpentina, mantendo-se o processo constante em temperatura de 30 e pH de pH 6,8, podendo ser con trolado pela adição de NaOH, na concentração de 4 mol/L, ou adição de H2S04, na concentração de 2 mol/L.
3. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de an- diroba ou murumuru, de acordo com as reivindicações 1 e 2, caracterizado por etapa (a) consistir em reativar o microrganismo em caldo nutriente durante 21 horas, em temperatura de 30 ; a etapa (b) consistir na preparação do inoculo pela transferência do material da etapa (a) ao caldo nutriente durante 8 horas, em temperatura de 30 .
4. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de an- diroba ou murumuru de acordo com a reivindicação 1 , caracterizado por se utilizar as bactérias Pseudomonas aeruginosa ARS-NRRL B- 59183 ou ARS-NRRL B-59184 ou ARS-NRRL B-59188 ou ARS-NRRL B-59193; ou Enterobacter hormaechei ARS-NRRL B-59185 ou Entero- bacter buriae ARS-NRRL B-59189.
5. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de an- diroba ou murumuru de acordo com as reivindicações 1 e 4, caracterizado por se utilizar as bactérias Pseudomonas aeruginosa ARS-NRRL B-59183 ou ARS-NRRL B-59184 ou ARS-NRRL B-59188 ou ARS- NRRL B-59193.
6. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andi- roba ou murumuru, de acordo com a reivindicação 1 , caracterizado por o cultivo em biorreator da etapa (c) ser realizado em meio mineral constituído de 3,5 g/L Fosfato de sódio dibásico (Na2HP04), 1 ,5 g/L Fosfato de potássio (KH2P04), 1 ,0 a 3,0 g/L Sulfeto de amónio (NH4)2S04, 0,2 g/L Sulfeto de magnésio (MgS04.7H20), 0,01 g/L Cloreto de cálcio (CaCI2.2H20); 0,06 g/L Citrato férrico amoniacal, 0 a 2,0 g/L Glicose, 100 g/L Resíduo sólido de Andiroba, 1 ,0 ml / g/L Solução de elementos traços, q.s.p. 1 L H20 destilada; e a Solução de elementos traço ser constituída de 0,3 g/L Ácido Bórico (H3B03), 0,2 Cloreto de cobalto (CoCI2.6H20); 0, 1 Sulfato de Zinco (ZnSO4.7H20), 0,03 g/L Cloreto de manganês (MnCI2.4H20), 0,03 g/L Molibidato de sódio (NaMo04.2H20), 0,02 g/L Cloreto de níquel (NiCI2.6H20), 0,01 g/L Sulfato de cobre (Cu- S04.5H20), q.s.p. 1 L H20 destilada.
7. Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru, de acordo com a reivindicação 1 , caracterizado por os resíduos de andiroba e murumuru utilizados serem triturados previamente e, após trituração, quando necessário, os resíduos serem peneirados por um conjunto de peneiras variando de 1 ,0 a 0,25 mm.
PCT/BR2018/050003 2017-01-11 2018-01-08 Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru WO2018129603A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/477,496 US10801053B2 (en) 2017-01-11 2018-01-08 Process for producing a rhamnolipid produced by Pseudomonas or Enterobacter using andiroba or murumuru seed waste
EP18739090.1A EP3569714A4 (en) 2017-01-11 2018-01-08 PROCESS FOR OBTAINING RAMNOLIPID PRODUCED BY PSEUDOMONAS OR ENTEROBACTER BY MEANS OF RESIDUE FROM ANDIROBA OR MURUMURU SEEDS
MX2019008154A MX2019008154A (es) 2017-01-11 2018-01-08 Proceso de obtencion de un ramnolipido producido por pseudomonas o enterobacter usando el residuo de semilla de andiroba o murumuru.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102017000578-0 2017-01-11
BR102017000578-0A BR102017000578B1 (pt) 2017-01-11 2017-01-11 Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru

Publications (1)

Publication Number Publication Date
WO2018129603A1 true WO2018129603A1 (pt) 2018-07-19

Family

ID=62839196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050003 WO2018129603A1 (pt) 2017-01-11 2018-01-08 Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru

Country Status (7)

Country Link
US (1) US10801053B2 (pt)
EP (1) EP3569714A4 (pt)
AR (1) AR110736A1 (pt)
BR (1) BR102017000578B1 (pt)
CL (1) CL2019001899A1 (pt)
MX (1) MX2019008154A (pt)
WO (1) WO2018129603A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251387A (zh) * 2020-11-05 2021-01-22 广东省微生物研究所(广东省微生物分析检测中心) 一种脱氮菌及其应用
CN112481335A (zh) * 2019-09-11 2021-03-12 万华化学集团股份有限公司 一种鼠李糖脂发酵方法
CN113897407A (zh) * 2021-10-27 2022-01-07 长春工业大学 一株铜绿假单胞菌及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892254B (zh) * 2020-09-02 2022-08-16 浙江一清环保工程有限公司 一种资源化利用餐厨废水、鱼粉废水发酵产鼠李糖脂的方法
CN117126767B (zh) * 2023-06-28 2024-03-29 安徽省农业科学院烟草研究所 一种解钾促生霍氏肠杆菌及其菌剂和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628030A (en) 1983-08-09 1986-12-09 Petrotec Forschungs Ag Process for the production of rhamnolipids
EP0282942A2 (en) 1987-03-17 1988-09-21 University Of Iowa Research Foundation Method for producing rhamnose
US4814272A (en) 1984-02-17 1989-03-21 Wintershall Ag Process for the biotechnical production of rhamnolipids including rhamnolipids with only one β-hydroxydecanoic acid residue in the molecule
WO1992005182A1 (de) 1990-09-25 1992-04-02 Südzucker AG Mannheim/Ochsenfurt Verfahren zur herstellung von rhamnose aus rhamnolipiden
US5501966A (en) 1992-06-25 1996-03-26 Hoechst Aktiengesellschaft Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose
EP0705327A1 (de) 1993-06-16 1996-04-10 CALL, Hans-Peter Dr. Mehrkomponentenbleichsystem
WO1999043334A1 (en) 1998-02-24 1999-09-02 Tatjana Piljac Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics
CN101898100A (zh) * 2010-04-13 2010-12-01 东北农业大学 生物表面活性剂及其制备方法和应用
CN104498566A (zh) * 2014-12-17 2015-04-08 江南大学 一种半固态发酵法制备鼠李糖脂的方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628030A (en) 1983-08-09 1986-12-09 Petrotec Forschungs Ag Process for the production of rhamnolipids
US4814272A (en) 1984-02-17 1989-03-21 Wintershall Ag Process for the biotechnical production of rhamnolipids including rhamnolipids with only one β-hydroxydecanoic acid residue in the molecule
EP0282942A2 (en) 1987-03-17 1988-09-21 University Of Iowa Research Foundation Method for producing rhamnose
WO1992005182A1 (de) 1990-09-25 1992-04-02 Südzucker AG Mannheim/Ochsenfurt Verfahren zur herstellung von rhamnose aus rhamnolipiden
US5501966A (en) 1992-06-25 1996-03-26 Hoechst Aktiengesellschaft Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose
EP0705327A1 (de) 1993-06-16 1996-04-10 CALL, Hans-Peter Dr. Mehrkomponentenbleichsystem
WO1999043334A1 (en) 1998-02-24 1999-09-02 Tatjana Piljac Use of rhamnolipids in wound healing, treating burn shock, atherosclerosis, organ transplants, depression, schizophrenia and cosmetics
CN101898100A (zh) * 2010-04-13 2010-12-01 东北农业大学 生物表面活性剂及其制备方法和应用
CN104498566A (zh) * 2014-12-17 2015-04-08 江南大学 一种半固态发酵法制备鼠李糖脂的方法及其应用

Non-Patent Citations (41)

* Cited by examiner, † Cited by third party
Title
"Biotecnologia Ciencia & Desenvolvimento", June 2003, pages: 63 - 67
ABALOS, A.PINAZO, A.INFANTE, M.R.CASALS, M.GARCIA, F.MANRESA, A.: "Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes.", LANGMUIR, vol. 17, 2001, pages 1367 - 1371
BENINCASA, M. ET AL.: "Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source", JOURNAL OF FOOD ENGINEERING, vol. 54, no. 4, 2002, pages 283 - 288, XP055508023, Retrieved from the Internet <URL:https://doi.org/10.1016/S0260-8774(01)00214-X> *
BENINCASA, M.ACCORSINI F.R.: "Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate", BIORESOUR. TECHNOL., vol. 99, 2008, pages 3843 - 3849, XP022494986, doi:10.1016/j.biortech.2007.06.048
BENINCASA, M.CONTIERO, J.MANRESA, M. A.MORAES, I. O.: "Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source", J. FOOD ENG., vol. 54, 2002, pages 283 - 288, XP055508023
BENINCASA, M: "Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil", CURR MICROBIOL., vol. 54, no. 6, pages 445 - 449, XP019514847 *
CHAYABUTRA, C.WU, J.JU, L.K.: "Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates", BIOTECHNOL BIOENG, vol. 72, no. 1, 2001, pages 25 - 33
COSTA, G. A. N.: "Master's Degree Dissertation in Food Science; Food Engineering School", 2005, UNIVERSIDADE ESTADUAL DE CAMPINAS, article "Produgao biotecnologica de surfactante de Bacillus subtilis em residuo agroindustria, caracterizag5o e aplicagoes", pages: 85
COSTA, S. G. V. A. O.NITSCHKE, M, HADDADR, EBERLIN M.N.CONTIERO, J.: "Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils", PROCESS BIOCHEMISTRY, vol. 41, 2006, pages 483 - 488, XP025124949, doi:10.1016/j.procbio.2005.07.002
GUERRA-SANTOS, L.H.KAPPELI, O.FIECHTER, A.: "Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source", APPL ENVIRON MICROBIOL., vol. 48, 1984, pages 301 - 305
GUERRA-SANTOS, L.KAPPELI, O.FIECHTER, A.: "Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 24, 1986, pages 443 - 448
GUERRA-SANTOS, L.KAPPELI, O.FIECHTER, A.: "Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 48, no. 301-305, 1984, pages 1984
HABA E.ESPUNY M.J.BUSQUETS M.MANRESA A.: "Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils", J. APPL. MICROBIOL., vol. 88, 2000, pages 379 - 387
HAZRA, C. ET AL.: "Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials", J. CHEM. TECHNOL. BIOTECHNOL., vol. 86, 2010, pages 185 - 198, XP055508015 *
KOCH, A. K.RAISER, J.KAPPELI, O.FIECHTER, A.: "Genetic construction of lactose utilizing strains of Pseudomona aeruginosa and their application in biosurfactant production", NAT. BIOTECHNOL., vol. 6, 1988, pages 1335 - 1339
KUMAR, A. P. ET AL.: "Statistical approach to optimize production of biosurfactant by Pseudomonas aeruginosa 2297", BIOTECH., vol. 5, no. 1, 2015, pages 71 - 79, XP055508042 *
LIGGETT R. W.KOFFLER, H.: "Corn steep liquor in microbiology", BACTERIOL. REV., vol. 12, 1948, pages 297 - 311
MAKKAR, R.S.CAMEOTRA, S.S.: "Production of biosurfactant at mesophilic and thermofilic conditions by a strain of Bacillus subtilis", JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, vol. 20, 1998, pages 48 - 52, XP002502157, doi:10.1038/sj.jim.2900474
MANRESA, M. A.BASTIDA, M.E.MERCADE, M R.DE ANDRES, C.ESPUNY, M.J.GUINEA, J.: "Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1", JOURNAL OF INDUSTRIAL MICROBIOLOGY, vol. 8, 1991, pages 133 - 136
MERCADE, M.E.MANRESA, M.A.ROBERT, M.ESPUNY, M.U.DE ANDRES, C.GUINEA, J.: "Olive oil mil efluente (OOME). New substrate for biosurfactant production", BIORESOUR. TECHNOL., vol. 43, 1993, pages 1 - 6
MUKHERJEE, S. ET AL.: "Towards commercial production of microbial surfactants", TRENDS IN BIOTECHNOLOGY, vol. 24, no. 11, 2006, pages 509 - 515, XP027921673, Retrieved from the Internet <URL:https://doi.org/10.1016/j.tibtech.2006.09.005> *
MUKHERJEE, S.DAS, P.SEN, R.: "Towards commercial production of microbial surfactants", TRENDS BIOTECHNOL., vol. 24, 2006, pages 509 - 515, XP025052231, doi:10.1016/j.tibtech.2006.09.005
MULLER, M.M.HORMANN, B.KUGEL, M.SYLDATK, C.HAUSMANN, R.: "Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PA01 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874", APPL MICROBIOL BIOTECHNOL., vol. 89, 2011, pages 585 - 592
MULLIGAN C.N.MAHMOURIDES G.GIBBS B.F.: "The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa", J BACTERIOL, vol. 12, 1989, pages 199 - 210
MULLIGAN, C. N.: "Recent advances in the environmental applications of biosurfactants", CURR. OP. COLL. INTERF. SCI., vol. 14, 2009, pages 372 - 378, XP026498522, doi:10.1016/j.cocis.2009.06.005
MULLIGAN, C. N.: "Recent advances in the environmental applications of biosurfactants", CURR. OP. COLL. INTERF. SCI., vol. 14, no. 5, 2009, pages 372 - 378, XP026498522, Retrieved from the Internet <URL:https://doi.org/10.1016/j.cocis.2009.06.005> *
MULLIGAN, C. N.GIBBS, B. F.: "Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa", APPL. ENVIRON. MICROBIOL., vol. 55, 1989, pages 3016 - 3019
NITSCHKE, M.COSTA, S.G.HADDAD, R.GONQALVES, L.A.EBERLEIN, M.N.CONTIERO, J.: "Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI", BIOTECHNOL. PROG., vol. 21, 2005, pages 1562 - 1566
OCHSNER, U.A.KOCH, A.K.FIECHTER, A.REISER, J.: "Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa", J BACTERIOL., vol. 176, no. 7, 1994, pages 2044 - 2054
OLVERA, C.GOLDBERG, J.B.SANCHEZ, R.SOBERON-CHAVEZ, G.: "The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis", FEMS MICROBIOL LETT, vol. 179, 1999, pages 85 - 90
RAHIM, R.OCHSNER, U.A.OLVERA, C.GRANINGER, M.MESSNER, P.LAM, J.S.SOBERON-CHAVEZ, G.: "Cloning and functional characterization of the Pseudomonas aeruginosa rhIC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis", MOL MICROBIOL, vol. 40, 2001, pages 708 - 718
RAMSAY, B. A.LOMALIZA, K.CHAVARIE, C.DUBE, B.BATAILLE, P.RAMSAY, J. A.: "Production of Poly-(P-Hydroxybutyric-Co-3-Hydroxyvaleric) Acids", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 56, no. 7, 1990, pages 2093 - 2098, XP008120879
RAZA, Z. A.REHMAN, A.KHAN, M. S.KHALID, Z. M.: "Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes", BIODEGRADATION, DORDRECHT, vol. 18, 2007, pages 115 - 121, XP019464018, doi:10.1007/s10532-006-9047-9
ROBERT, M.MERCADE, E.BOSH, M. P.PARRA, J. L.ESPUNY; M. J.MANRESA, M. A.GUINEA, J.: "Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1", BIOTECHNOL. LETT., DORDRECHT, vol. 1, no. 2, 1989, pages 871 - 874
SANTOS, A.SSAMPAIO, A.P.VASQUEZ, G.S.SANTA ANNA, L.M.PEREIRA, N. JRFREIRE, D.M.: "Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa", APPL BIOCHEM BIOTECHNOL, vol. 98-100, pages 1025 - 1035
See also references of EP3569714A4
SHEPPARD, J. D.COPPER, D. G.: "The effect of biosurfactant on oxygen transfer in acyclone column reactor.", J. CHEM. TECHNOL. BIOTECHNOL., vol. 48, 1990, pages 325 - 336
SYLDATK, C.LANG, S.WAGNER, F.: "Chemical and physical characterization of 4interfacial-active rhamnolipids from Pseudomonas spec dsm 2874 grown on normal alkanes", ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, vol. 40, 1985, pages 51 - 60
THANIYAVARN, J.CHONGCHIN, A.WANITSUKSOMBUT, N.THANIYAVARN, S.PINPHANICHAKARN, P.LEEPIPATPIBOON, N.MORIKAWA, M.KANAYA, S.: "Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source", THE JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, vol. 52, 2006, pages 215 - 222
VENKATA-RAMANA, K.KARANTH, N. G.: "Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions", J.CHEM. TECHNOL. BIOTECHNOL., vol. 45, 1989, pages 249 - 257
YEH, M.S.WEI, Y.H.CHANG, J.S.: "Bioreactor design foe enhanced carrier - assisted surfactin production with Bacillus subtilis", PROC. BIOCHEM., vol. 41, 2006, pages 1799 - 1805

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481335A (zh) * 2019-09-11 2021-03-12 万华化学集团股份有限公司 一种鼠李糖脂发酵方法
CN112251387A (zh) * 2020-11-05 2021-01-22 广东省微生物研究所(广东省微生物分析检测中心) 一种脱氮菌及其应用
CN112251387B (zh) * 2020-11-05 2022-05-10 广东省微生物研究所(广东省微生物分析检测中心) 一种脱氮菌及其应用
CN113897407A (zh) * 2021-10-27 2022-01-07 长春工业大学 一株铜绿假单胞菌及其应用
CN113897407B (zh) * 2021-10-27 2023-10-24 长春工业大学 一株铜绿假单胞菌及其应用

Also Published As

Publication number Publication date
CL2019001899A1 (es) 2020-01-24
MX2019008154A (es) 2019-12-11
US20200115729A1 (en) 2020-04-16
EP3569714A4 (en) 2021-01-27
AR110736A1 (es) 2019-05-02
BR102017000578B1 (pt) 2019-04-02
US10801053B2 (en) 2020-10-13
EP3569714A1 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
WO2018129603A1 (pt) Processo de obtenção de ramnolipídeo produzido por pseudomonas ou enterobacter utilizando o resíduo de semente de andiroba ou murumuru
US11203738B2 (en) Microbial conversion of CO2 and other C1 substrates to protein and meat substitute products
Domínguez Rivera et al. Advances on research in the use of agro-industrial waste in biosurfactant production
Slivinski et al. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent
Saikia et al. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production
US8835152B2 (en) Altering metabolism in biological processes
Vecino et al. Study of the surfactant properties of aqueous stream from the corn milling industry
CN102229889A (zh) 一株小球藻及其培养方法和应用
US20230242428A1 (en) Remediation of Food Production and Processing Effluents and Waste Products
WO2004081034A2 (en) Altering metabolism in biological processes
Sellami et al. Agro-industrial waste based growth media optimization for biosurfactant production by Aneurinibacillus migulanus
Saranraij et al. Microbial fermentation technology for biosurfactants production
US11788054B2 (en) Methods for production of mannosylerythritol lipids
Rubio-Ribeaux et al. Sustainable production of bioemulsifiers, a critical overview from microorganisms to promising applications
BR102017000578A2 (pt) Process of obtaining ramnolipide produced by pseudomonas or enterobacter using andiroba or murumuru seed residue
BR102022013191A2 (pt) Processo de produção de biossurfactante de origem fúngica a partir de recursos naturais renováveis
Annamalai et al. Analysis and Identification of Biosurfactants Postbiotics
Susetyo et al. Combination of Mollase and Glucose as Substrate for The Production of Biosurfactant by Bacillus subtilis BK7. 1
Sodagari Optimization of Production and Recovery of Rhamnolipids and Study of Their Effect on Bacterial Attachment
BR102020015252A2 (pt) Processos para estabilizar a biomassa úmida de microrganismos utilizando efluente agroindustrial
Ramadan et al. Optimization of biosurfactant production by Bacillus licheniformis isolated from oil–contaminated Egyptian soil
Cha et al. Production of biosurfactant by Pseudomonas aeruginosa EMS1 from soybean Oil and Whey
BRPI0804115B1 (pt) processo para a produção de biodiesel e/ou óleo combustível
BRPI1102193A2 (pt) Burkholderia kururiensis geneticamente modificada, método para de biossurfactantes do tipo raminolipídeos e usos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018739090

Country of ref document: EP

Effective date: 20190812