WO2018128425A1 - Iridium complex and organic light emitting element using same - Google Patents

Iridium complex and organic light emitting element using same Download PDF

Info

Publication number
WO2018128425A1
WO2018128425A1 PCT/KR2018/000197 KR2018000197W WO2018128425A1 WO 2018128425 A1 WO2018128425 A1 WO 2018128425A1 KR 2018000197 W KR2018000197 W KR 2018000197W WO 2018128425 A1 WO2018128425 A1 WO 2018128425A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
compound
organic light
Prior art date
Application number
PCT/KR2018/000197
Other languages
French (fr)
Korean (ko)
Inventor
서상덕
김성소
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880002136.2A priority Critical patent/CN109311922A/en
Publication of WO2018128425A1 publication Critical patent/WO2018128425A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent research on the luminance, driving voltage, and response speed characteristics.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic charge is often made of a multi-layered structure composed of different materials. .
  • Patent Document 0001 Korean Patent Publication No. 10— 2000-0051826
  • the present invention relates to an rhythm complex and an organic light emitting device using the same.
  • the present invention provides a compound represented by Formula 1 or Formula 2:
  • X is 0 or S
  • 3 ⁇ 4 is d-60 alkyl unsubstituted or substituted with deuterium; Silyl having 1 to 60 carbon atoms; Is substituted or unsubstituted C 6 -60 aryl,
  • R 2 and R 3 are each independently hydrogen; Or Cwo alkyl unsubstituted or substituted with deuterium.
  • n 1 or 2.
  • the present invention is a first electrode; A low 12 electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein the organic material layer includes a light emitting insect including the compound.
  • the compound represented by Chemical Formula 1 or 2 may be used as an organic material layer of the organic light emitting device, particularly a material of the light emitting layer, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting device.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5 ;
  • substituted or unsubstituted is deuterium halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group imad group; amino group; phosphine oxide group; alkoxy group; aryloxy group alkylthioxy group Arylthioxy group; alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; alkylaryl group; alkylamine group; aralkylamine group; hetero An arylamine group; an arylamine group; an arylphosphine group; or an unsubstituted or substituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N,
  • the substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two phenyl groups are linked.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40.
  • the compound may be
  • the ester group may be substituted with oxygen of the ester group having 1 to 25 carbon atoms, a linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula,
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25.
  • the compound may be as follows, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group. etc. _ t-butyldimethylsilyl group, a vinyl dimethyl silyl group, a propyl dimethylsilyl group, a triphenylsilyl group diphenylsilyl group, a phenyl silyl groups, but not limited to this.
  • the boron group is specifically trimethyl boron group, triethyl boron group, t- butyl dimethyl boron group. Triphenyl boron group, phenyl boron group and the like, but is not limited thereto.
  • examples of the halogen groups include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl isobutyl, ter t-butyl, sec-butyl, 1-methyl-butyl, 1_ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber.
  • n-nuclear 1-methylpentyl. 2-methylpentyl.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1—propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3—butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl—1 ⁇ part
  • the cycloalkyl group is not particularly limited. It is preferably 3 to 60 carbon atoms, according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a cyclic group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, It is not limited.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryllenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. In the case of the fluorenyl group,
  • the heterocyclic group is a heterocyclic group including one or more of 0, N, Si, and S as heterologous elements, and the number of carbon atoms is not particularly limited, but preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyr group, imidazole group, thiazole group, oxazole group oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acri Dill, pyridazine.
  • Dibenzothiophene group benzofuranyl group, phenanthroline (phenanthrol ine), isooxazolyl group, thiadiazolyl group, phenothiazinyl group and dibenzofuranyl group, but are not limited thereto.
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group mentioned above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the above-mentioned alkyl group.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • 3 ⁇ 4 is unsubstituted or substituted with deuterium alkyl; Silyl having 3 to 10 carbon atoms; Or substituted or unsubstituted Ce-10 aryl. More preferably, ⁇ is methyl, ethyl, propyl.
  • the present invention provides, for example, a method for preparing a compound represented by Chemical Formula 1 or 2 (when n is 2), such as the following Scheme 1, and may be applied when n is 1:
  • the manufacturing method may be embodied in the following examples.
  • the present invention provides an organic light emitting device comprising the compound represented by Formula 1 or 2.
  • the present invention comprises a first electrode; A second electrode provided to face the low U electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein the ' organic material layer includes a light emitting layer including a compound represented by Formula 1 or 2 above.
  • the organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked. for example.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic light emitting device according to the present invention, the anode, one layer on the substrate The organic layer and the cathode may be an organic light emitting device having a structure in which the organic layer is sequentially stacked.
  • the organic light emitting diode according to the present invention may be an organic light emitting diode having an inverted type structure in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 or 2 may be included in the light emitting layer.
  • 2 shows a substrate 1, an anode 2, a hole injection layer 5, and a hole transport layer 6; Luminescent (7).
  • the example of the organic light emitting element which consists of the electron carrying layer 8 and the cathode 4 is shown.
  • the compound represented by Formula 1 or 2 may be included in the light emitting layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except for including the compound represented by Chemical Formula 1 or 2.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate by using a physical vapor deposition method (PVD) such as sputtering or e-beam evaporation (e).
  • PVD physical vapor deposition method
  • An organic light emitting device is fabricated by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate Can be.
  • the compound represented by Chemical Formula 1 or 2 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor ball raiding, ink jet printing, screen printing, spraying, coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890). However, the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include vanadium, chromium, copper and zinc.
  • Metals such as gold or alloys thereof;
  • Metal oxides such as zinc oxide, rhythm oxide, rhodium tin oxide (rro), zirconia zinc oxide ( ⁇ ⁇ ⁇ ); ⁇ 0: ⁇ 1 or SN0 2 : A combination of a metal and an oxide such as Sb;
  • Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPED0T), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include magnesium, calcium, sodium, potassium, titanium, indium, yttrium lithium, and gadolinium.
  • Metals such as aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from an electrode, and has a capability of transporting holes to a hole injection material, and thus has a hole injection effect at an anode, an excellent hole injection effect to a light emitting layer or a light emitting material, and excitons generated in the light emitting layer.
  • the compound which prevents the movement to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. It is preferable that the HOMO highest occupied molecul ar orbital) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injection materials include metal porphyrin, oligothiophene, and arylamine series.
  • Organic matter A nucleus nitrile nucleated azatriphenylene-based organic matter, a quinacrlone-based organic matter, and a perylene-based organic matter. Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport layer is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the light emitting insect refers to a layer that emits light in the visible region by transporting and combining holes and electrons from the hole transport insect and the electron transport layer, respectively.
  • the emission layer may include a host material and a dopant material, and the compound represented by Chemical Formula 1 or 2 may be used as the dopant material.
  • the host material include a condensed aromatic ring derivative or a hetero ring-containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like. Dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer. Suitable. Specific examples include A 1 complex of 8-hydroxyquinoline; Complexes including Al q 3 ; Organic radical compound; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum layer or silver worm. Specifically cesium. Barium, calcium. Ytterbium and samarium, followed by a layer of aluminum or silver in each case.
  • the electron injection layer is a layer for injecting electrons from an electrode, has an ability of transporting electrons, has an electron injection effect from the cathode, has an excellent electron injection effect to the light emitting layer or the light emitting material, and the hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper and bis (8-hydroxyquinolinato) manganese.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound represented by Chemical Formula 1 or 2 may be included in the organic solar cell or the organic transistor in addition to the organic light emitting device. Fabrication of the compound represented by Formula 1 or 2 and an organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
  • iridium (III) chloride hydrate (15.0 g, 42.5 ⁇ l ol), and 2-phenylpyridine (2.2 g, 14.0 ⁇ l ol) were added 2-ethoxyethanol (140 ml). Put together with water (47 ml) and stir for 18 h under argon atmosphere reflux conditions. After the reaction was completed, the mixture was cooled to room temperature, the precipitate was filtered, washed with methanol and nucleic acid, dried, and used for the next reaction without further purification (21.7 g, yield 95%).
  • Compound 2 was prepared by the same method as the method for preparing compound 1, except that intermediate 2 was used instead of intermediate 1.
  • Compound 5 was prepared in the same manner as in the preparation of compound 1, except that Intermediate C was used instead of Intermediate A, and Intermediate 2 was used instead of Intermediate 1.
  • Compound 6 was prepared by the same method as the preparation of compound 1, except that Intermediate C was used instead of Intermediate A, and Intermediate 5 was used instead of Intermediate 1.
  • ITOClndi ⁇ Tin Oxide was thin film-coated glass substrate with a thickness of 1,400 A and placed in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • Fischer Co.'s Decon TM C0N705 was used as a detergent, and distilled water was filtered using a 0.22 ⁇ ⁇ sterilizing filter from Millipore Co.'s second distilled water.
  • ITO was washed for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After the distilled water was washed, ultrasonic washing with a solvent of isopropyl alcohol, acetone and methanol for 10 minutes, dried and then transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • a mixture of 95 wt% of the following HT-A compound and 5 wt% of the following P-D0PANT compound was thermally vacuum deposited to a thickness of 100 A on the ⁇ ⁇ transparent electrode thus prepared, followed by deposition of only the following HT-A compound to a thickness of 1150 A.
  • the following HT-B compound was thermally vacuum deposited to a thickness of 450 A on the hole transporter to form an electron blocking layer.
  • a mixture of the following GH compound (94 wt%) and compound 1 (6 wt%) prepared as a dopant as a host was vacuum deposited to a thickness of 400 A to form a light emitting layer.
  • the following ET-A compound was vacuum deposited to a thickness of 50 A on the light emitting layer to form a hole blocking layer.
  • the following ET-B compound and the following Liq compound were mixed at a weight ratio of 2: 1, and thermally vacuum-bonded to a thickness of 250 A to form an electron transporting layer, followed by LiF and magnesium at a weight ratio of 1: 1.
  • Magnesium and silver were mixed at a weight ratio of 1: 4 on the electron injection layer, and then, at a thickness of 160 A.
  • An organic light-emitting device was manufactured in the same manner as in Experiment 1, except for using the compound shown in Table 1 instead of the compound 1.
  • GD-4 GD-5 Voltage, efficiency, and lifetime (T95) were measured by applying current to the organic light emitting diodes manufactured in the above Experimental Example and Comparative Experimental Example, respectively. The results are shown in the table below. 1 is shown. At this time, the voltage and efficiency were measured by applying a current density of 10 mA / cm 2 .
  • the lifetime (T95) means the time until the initial luminance drops to 95% at a current density of 20 niA / cni 2 .
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides an iridium complex and an organic light emitting element using the same.

Description

【발명의 명칭】  [Name of invention]
이리듐 착체 및 이를 이용한 유기 발광 소자  Iridium complex and organic light emitting device using the same
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2017년 1월 4일자 한국 특허 출원 제 10-2017-0001324 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 이리듬 착체 및 이를 이용한 유기 발광 소자에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0001324 dated January 4, 2017, and all content disclosed in the literature of that Korean patent application is incorporated as part of this specification. The present invention relates to an rhythm complex and an organic light emitting device using the same.
【배경기술】  Background Art
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 아용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 충은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광충, 전자수송충, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 돠면 양극에서는 정공이 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exc i ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.  In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent research on the luminance, driving voltage, and response speed characteristics. The organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic charge is often made of a multi-layered structure composed of different materials. . In the structure of the organic light emitting device, when a voltage is applied between two electrodes, holes are injected at the anode and electrons are injected into the organic material layer at the cathode, and an exciton is formed when the injected holes meet the electrons. It will glow when the excitons fall back to the ground. There is a continuous demand for the development of new materials for organic materials used in such organic light emitting devices.
[선행기술문헌]  [Preceding technical literature]
【특허문헌】 (특허문헌 0001) 한국특허 공개번호 제 10— 2000-0051826호 [Patent literature] (Patent Document 0001) Korean Patent Publication No. 10— 2000-0051826
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 이리듬 착체 및 이를 이용한 유기 발광 소자에 관한 것이다.  The present invention relates to an rhythm complex and an organic light emitting device using the same.
【과제의 해결 수단】  [Measures of problem]
본 발명은 하기 화학식 1 또는 하기 화학식 2로 표시되는 화합물을 제공한다:  The present invention provides a compound represented by Formula 1 or Formula 2:
Figure imgf000003_0001
Figure imgf000003_0001
상기 화학식 1 및 2에서,  In Chemical Formulas 1 and 2,
X는 0 , 또는 S이고,  X is 0 or S,
¾은 비치환되거나 또는 중수소로 치환된 d-60 알킬; 탄소수 1 내지 60의 실릴; 는 치환 또는 비치환된 C6-60 아릴이고, ¾ is d-60 alkyl unsubstituted or substituted with deuterium; Silyl having 1 to 60 carbon atoms; Is substituted or unsubstituted C 6 -60 aryl,
R2 및 R3는 각각 독립적으로 수소; 또는 비치환되거나 또는 중수소로 치환된 Cwo 알킬이고. R 2 and R 3 are each independently hydrogen; Or Cwo alkyl unsubstituted or substituted with deuterium.
n은 1 또는 2이다. 또한, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 저 12 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층은 상기 화합물을 포함하는 발광충을 포함하는, 유기 발광 소자를 제공한다. n is 1 or 2. In addition, the present invention is a first electrode; A low 12 electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein the organic material layer includes a light emitting insect including the compound.
【발명의 효과】  【Effects of the Invention】
상술한 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 유기물 층, 특히 발광층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다.  The compound represented by Chemical Formula 1 or 2 may be used as an organic material layer of the organic light emitting device, particularly a material of the light emitting layer, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting device.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 기판 ( 1) , 양극 (2), 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
도 2는 기판 ( 1) , 양극 (2), 정공주입층 (5), . 정공수송층 (6), 발광층 (7) , 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 2 shows a substrate 1, an anode 2, a hole injection layer 5 ; An example of the organic light emitting element consisting of the hole transport layer 6, the light emitting layer 7, the electron transport layer 8 and the cathode 4 is shown.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.  Hereinafter, in order to help the understanding of the present invention will be described in more detail.
본 명세서에서, 는 다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기 이마드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나ᅳ 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으 In the present specification, means a bond connected to another substituent. As used herein, the term "substituted or unsubstituted" is deuterium halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group imad group; amino group; phosphine oxide group; alkoxy group; aryloxy group alkylthioxy group Arylthioxy group; alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; alkylaryl group; alkylamine group; aralkylamine group; hetero An arylamine group; an arylamine group; an arylphosphine group; or an unsubstituted or substituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, 0, and S atoms; Substituent connected with more than one substituent or Means unsubstituted. For example, "the substituent to which two or more substituents are linked" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two phenyl groups are linked. Although carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, the compound may be
Figure imgf000005_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나,
Figure imgf000005_0001
In the present specification, the ester group may be substituted with oxygen of the ester group having 1 to 25 carbon atoms, a linear, branched or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula,
Figure imgf000005_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000005_0002
In this specification, carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, the compound may be as follows, but is not limited thereto.
Figure imgf000006_0001
본 명세서에 있어서, 실릴기는 구체적 트리메틸실릴기, 트리에틸실릴기 . t_부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기 디페닐실릴기, 페닐실릴기 등이 으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기. 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에, 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸 이소부틸, ter t-부틸, sec-부틸, 1-메틸—부틸, 1_에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실. n-핵실, 1-메틸펜틸. 2-메틸펜틸. 4-메틸 -2-펜틸, 3 , 3-디메틸부틸, 2—에틸부틸, 헵틸, n—헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, ter t—옥틸; 1-메틸헵틸: 2-에틸핵실, 2—프로필펜틸 . n-노닐, 2 , 2-디메틸헵틸, 1-에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4—메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1—프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3—부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸— 1ᅳ부테닐, 1 , 3—부타디에닐, 알릴, 1-페닐비닐 -1ᅳ일, 2ᅳ페닐비닐 -1-일, 2 , 2—디페닐비닐 -1—일, 2-페닐 -2- (나프틸 -1—일)비닐 -1-일 . 2.2-비스 (디페닐 -1-일)비닐— 1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서. 사이클로알킬기는 특별히 한정되지 않으나. 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3- 디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4- 메틸사이클로핵실, 2 , 3-디메틸사이클로핵실, 3 , 4 , 5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기 , 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 경우,
Figure imgf000006_0001
In the present specification, the silyl group is specifically trimethylsilyl group, triethylsilyl group. etc. _ t-butyldimethylsilyl group, a vinyl dimethyl silyl group, a propyl dimethylsilyl group, a triphenylsilyl group diphenylsilyl group, a phenyl silyl groups, but not limited to this. In the present specification, the boron group is specifically trimethyl boron group, triethyl boron group, t- butyl dimethyl boron group. Triphenyl boron group, phenyl boron group and the like, but is not limited thereto. In the present specification, examples of the halogen groups include fluorine, chlorine, bromine or iodine. In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl isobutyl, ter t-butyl, sec-butyl, 1-methyl-butyl, 1_ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber. n-nuclear, 1-methylpentyl. 2-methylpentyl. 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2—ethylbutyl, heptyl, n—heptyl, 1-methylnucleus, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, ter t-octyl; 1-methylheptyl : 2-ethylnuclear chamber, 2—propylpentyl. n-nonyl, 2, 2-dimethylheptyl, 1-ethyl-propyl, 1, 1- Dimethyl-propyl, isonuclear chamber, 2-methylpentyl, 4-methylnuclear chamber, 5-methylnuclear chamber, and the like, but is not limited thereto. In the present specification, the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1—propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3—butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl—1 ᅳ part Tenyl, 1, 3—butadienyl, allyl, 1-phenylvinyl-1-yl, 2 , phenylvinyl-1-yl, 2, 2-diphenylvinyl-1-yl, 2-phenyl-2- (naphthyl -1—yl) vinyl-1-yl. 2.2-bis (diphenyl-1-yl) vinyl—l-yl, stilbenyl, styrenyl, and the like, but are not limited to these. In this specification. The cycloalkyl group is not particularly limited. It is preferably 3 to 60 carbon atoms, according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclonuclear chamber, 3-methylcyclonuclear chamber, 4-methylcyclonuclear chamber, 2, 3-dimethylcyclonuclear chamber, 3, 4, 5-trimethylcyclonuclear chamber, 4-tert-butylcyclonuclear chamber, cycloheptyl, cyclooctyl and the like, but is not limited thereto. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a cyclic group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, It is not limited. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryllenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. In the case of the fluorenyl group,
Figure imgf000008_0001
등이 될 수 있다. 다만. 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0 , N , Si 및 S 중 1개 이상을 포함하는 해테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기ᅳ 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기. 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기. 프탈라지닐기. 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기. 벤조이미다졸기. 벤조티아졸기, 벤조카바졸기, 벤조티오펜기. 디벤조티오펜기, 벤조퓨라닐기 , 페난쓰롤린기 (phenanthrol ine) , 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서. 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서. 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 상기 화학식 1 또는 2에서, 바람직하게는, ¾은 비치환되거나 또는 중수소로 치환된 알킬; 탄소수 3 내지 10의 실릴; 또는 치환 또는 비치환된 Ce-10 아릴이다. 보다 바람직하게는, ^은 메틸, 에틸, 프로필 . 이소프로필, 부틸, 이소부틸, ter t-부틸, 펜틸, 이소펜틸, t er t-펜틸, 네오펜틸, sec—펜틸, 3-펜틸, CD3 , Si (CH3)3 , 또는 페닐이다. 바람직하게는, ¾ 및 ¾는 각각 독립적으로 수소; 또는 비치환되거나 또는 증수소로 치환된 d-5 알킬이다. 보다 바람직하게는. ¾ 및 ¾는 각각 독립적으로 수소, 메틸. 또는 CD3이다. 상기 화학식 1 또는 2로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000008_0001
And so on. but. It is not limited to this. In the present specification, the heterocyclic group is a heterocyclic group including one or more of 0, N, Si, and S as heterologous elements, and the number of carbon atoms is not particularly limited, but preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyr group, imidazole group, thiazole group, oxazole group oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acri Dill, pyridazine. Pyrazinyl group, quinolinyl group, quinazolin group, quinoxalinyl group. Phthalazinyl group. Pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group , benzoxazole group. Benzimidazole groups. Benzothiazole group, benzocarbazole group, benzothiophene group. Dibenzothiophene group, benzofuranyl group, phenanthroline (phenanthrol ine), isooxazolyl group, thiadiazolyl group, phenothiazinyl group and dibenzofuranyl group, but are not limited thereto. In this specification. The aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group mentioned above. In this specification. The alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the above-mentioned alkyl group. In the present specification, the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group. In the present specification, The alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, except that the arylene is a divalent group, the description of the aryl group described above may be applied. In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding. In the present specification, the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding. In Formula 1 or 2, preferably, ¾ is unsubstituted or substituted with deuterium alkyl; Silyl having 3 to 10 carbon atoms; Or substituted or unsubstituted Ce-10 aryl. More preferably, ^ is methyl, ethyl, propyl. Isopropyl, butyl, isobutyl, ter t-butyl, pentyl, isopentyl, ter t-pentyl, neopentyl, sec-pentyl, 3-pentyl, CD 3 , Si (CH 3 ) 3 , or phenyl. Preferably, ¾ and ¾ are each independently hydrogen; Or d- 5 alkyl unsubstituted or substituted with dihydrogen. More preferably. ¾ and ¾ are each independently hydrogen, methyl. Or CD 3 . Representative examples of the compound represented by Formula 1 or 2 are as follows:
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Ζϊ Ζϊ
Figure imgf000013_0001
Figure imgf000013_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
n n
Figure imgf000015_0001
Figure imgf000015_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000016_0001
또한, 본 발명은, 일례로 하기 반응식 1과 같은 상기 화학식 1 또는 2로 표시되는 화합물 (n이 2인 경우)의 제조 방법을 제공하며, n이 1인 경우에도 적용할 수 있다:
Figure imgf000016_0001
In addition, the present invention provides, for example, a method for preparing a compound represented by Chemical Formula 1 or 2 (when n is 2), such as the following Scheme 1, and may be applied when n is 1:
[반웅식 1] [Banungsik 1]
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
상기 제조 방법은 후술할 실시예에서 구체화할 수 있다. 또한. 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제 1 전극; 상기 저 U 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자에 있어서, 상기' 유기물층은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 발광층을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대. 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 (inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 '따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. 도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 (1), 양극 (2), 정공주입층 (5), 정공수송층 (6). 발광충 (7). 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 발광층에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 제 2 전극을 순차적으로 적충시켜 제조할 수 있다. 이때, 스퍼터링법 (sputtering)이나 전자빔 증발법 (e—beam evaporation;^]" 같은 PVD(physical Vapor Deposi t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후. 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 볼레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 게 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수- 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연. 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듬 산화물, 인듬주석 산화물 ( rro) , 인듬아연 산화물 ( ιζο)과 같은 금속 산화물; Ζη0:Α1 또는 SN02: Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜), 폴리 [3,4- (에틸렌 -1 , 2-디옥시 )티오펜 KPED0T) , 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨 리튬, 가돌리늄. 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO highest occupied mo lecul ar orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 . 유기물. 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr lone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물. 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공올 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광충은 정공수송충과 전자수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 내는 층을 의미한다. 상기 발광층은 호스트 재료 및 도편트 재료를 포함할 수 있으며, 상기 도펀트 재료로는 상술한 화학식 1 또는 2로 표시되는 화합물을 사용할 수 있다. 상기 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고 , 해테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A 1 착물; Al q3를 포함한 착물 ; 유기 라디칼 화합물 ; 히드록시플라본 -금속 착물 등이 있으나 , 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 .물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버충이 뒤따르는 통상적인 물질이다. 구체적으로 세슘. 바륨, 칼슘. 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물아 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드톡시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간. 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 ( 8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸— 8—퀴놀리나토) (0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1 또는 2로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. The manufacturing method may be embodied in the following examples. Also. The present invention provides an organic light emitting device comprising the compound represented by Formula 1 or 2. In one embodiment, the present invention comprises a first electrode; A second electrode provided to face the low U electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein the ' organic material layer includes a light emitting layer including a compound represented by Formula 1 or 2 above. Provided is an element. The organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked. for example. The organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. In addition, the organic light emitting device according to the present invention, the anode, one layer on the substrate The organic layer and the cathode may be an organic light emitting device having a structure in which the organic layer is sequentially stacked. In addition, the organic light emitting diode according to the present invention may be an organic light emitting diode having an inverted type structure in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2. FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG. In such a structure, the compound represented by Formula 1 or 2 may be included in the light emitting layer. 2 shows a substrate 1, an anode 2, a hole injection layer 5, and a hole transport layer 6; Luminescent (7). The example of the organic light emitting element which consists of the electron carrying layer 8 and the cathode 4 is shown. In such a structure, the compound represented by Formula 1 or 2 may be included in the light emitting layer. The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except for including the compound represented by Chemical Formula 1 or 2. In addition, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, a metal or conductive metal oxide or an alloy thereof is deposited on the substrate by using a physical vapor deposition method (PVD) such as sputtering or e-beam evaporation (e). And an organic layer including a hole injection layer, a hole transporting layer, a light emitting layer, and an electron transporting layer formed thereon, by depositing a material that can be used as a cathode thereon. An organic light emitting device is fabricated by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate Can be. In addition, the compound represented by Chemical Formula 1 or 2 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor ball raiding, ink jet printing, screen printing, spraying, coating, etc., but is not limited thereto. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890). However, the manufacturing method is not limited thereto. In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode, the second electrode is an anode. As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include vanadium, chromium, copper and zinc. Metals such as gold or alloys thereof; Metal oxides such as zinc oxide, rhythm oxide, rhodium tin oxide (rro), zirconia zinc oxide (ι ζ ο); Ζη0: Α1 or SN0 2 : A combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPED0T), polypyrrole and polyaniline, and the like, but are not limited thereto. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include magnesium, calcium, sodium, potassium, titanium, indium, yttrium lithium, and gadolinium. Metals such as aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto. The hole injection layer is a layer for injecting holes from an electrode, and has a capability of transporting holes to a hole injection material, and thus has a hole injection effect at an anode, an excellent hole injection effect to a light emitting layer or a light emitting material, and excitons generated in the light emitting layer. The compound which prevents the movement to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. It is preferable that the HOMO highest occupied molecul ar orbital) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injection materials include metal porphyrin, oligothiophene, and arylamine series. Organic matter. A nucleus nitrile nucleated azatriphenylene-based organic matter, a quinacrlone-based organic matter, and a perylene-based organic matter. Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer. The hole transport layer is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together. The light emitting insect refers to a layer that emits light in the visible region by transporting and combining holes and electrons from the hole transport insect and the electron transport layer, respectively. The emission layer may include a host material and a dopant material, and the compound represented by Chemical Formula 1 or 2 may be used as the dopant material. Examples of the host material include a condensed aromatic ring derivative or a hetero ring-containing compound. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like. Dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. The electron transporting material is a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer. Suitable. Specific examples include A 1 complex of 8-hydroxyquinoline; Complexes including Al q 3 ; Organic radical compound; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by an aluminum layer or silver worm. Specifically cesium. Barium, calcium. Ytterbium and samarium, followed by a layer of aluminum or silver in each case. The electron injection layer is a layer for injecting electrons from an electrode, has an ability of transporting electrons, has an electron injection effect from the cathode, has an excellent electron injection effect to the light emitting layer or the light emitting material, and the hole injection of excitons generated in the light emitting layer The compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and derivatives thereof, metal Complex compounds and nitrogen-containing five-membered ring derivatives; and the like, but are not limited thereto. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper and bis (8-hydroxyquinolinato) manganese. Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- Quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (0-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphlato) aluminum, bis ( 2-methyl-8-quinolinato) (2-naphlato) gallium and the like, but is not limited thereto. The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used. In addition, the compound represented by Chemical Formula 1 or 2 may be included in the organic solar cell or the organic transistor in addition to the organic light emitting device. Fabrication of the compound represented by Formula 1 or 2 and an organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
[제조예] [Production example]
제조예 1: 중간체 1의 제조  Preparation Example 1 Preparation of Intermediate 1
Figure imgf000022_0001
Figure imgf000022_0001
3구 플라스크에 4-아이오도디벤조 [b,d]퓨란 (30.0 g, 102.0 隱 ol), 포타슘 포스페이트 (65.0 g, 306.0 mmol)를 를루엔 (600 ml), 및 물 (60 nil)에 녹여 넣었다. 반응물을 20분간 질소 퍼징하고 2,4,6-트리메틸ᅳ1,3,5,2,4,6- 트리옥사트리보리난 (14.1 g: 112.2 mmol). Pd2(dba)3(0.9 g, 1.0 mmol) 및 S-Phos(1.7 g, 4.1 画 ol)를 넣고, 아르곤 분위기 환류 조건 하에서 18시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각한 후, 물 (200 ml)을 넣고 분액 깔대기에 옮겨 유기층을 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 1-1을 수득하였다 (18ᅳ 0 g, 수율 91%, MS:[M+H]+= 182).
Figure imgf000023_0001
In a three-necked flask, dissolve 4-iododibenzo [b, d] furan (30.0 g, 102.0 μl), potassium phosphate (65.0 g, 306.0 mmol) in toluene (600 ml), and water (60 nil). Put in. Nitrogen purge the reaction for 20 minutes and give 2,4,6-trimethyl ᅳ 1,3,5,2,4,6-trioxatriborane (14.1 g : 112.2 mmol). Pd 2 (dba) 3 (0.9 g, 1.0 mmol) and S-Phos (1.7 g, 4.1 dl ol) were added thereto, and the mixture was stirred for 18 hours under reflux conditions under argon atmosphere. When the reaction was completed, the mixture was cooled to room temperature, water (200 ml) was added to the separatory funnel, and the organic layer was extracted. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 1-1 ( 18 ᅳ 0 g, yield 91%, MS: [M + H] + = 182).
Figure imgf000023_0001
3구 플라스크에 중간체 1-1(15.0 g, 82.3 隱 ol), 소디움 카르보네이트 (9.2 g, 86.4 瞧 ol)을 n-핵산 (150 nil)에 녹이고 여기에 브로민 (4.4 ml, 86.4 inmol)을 적가하여 상은에서 72시간 동안 교반하였다. 반응이 종료되면 소디움 싸이오설페이트 수용액을 첨가한 후, 반웅액을 분액 깔대기에 옮겨 유기층을 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 증간체 1-2를 수득하였다 (15.5 g. 수율 72%, MS: [M+H]+= 261). In a three-necked flask, Intermediate 1-1 (15.0 g, 82.3 隱 ol) and Sodium Carbonate (9.2 g, 86.4 산 ol) were dissolved in n-nucleic acid (150 nil) and bromine (4.4 ml, 86.4 inmol) Was added dropwise and stirred for 72 h at silver. When the reaction was completed, the aqueous solution of sodium thiosulfate was added, and then the reaction solution was transferred to a separatory funnel to extract the organic layer. The extract was dried over MgS04, filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 1-2 (15.5 g. Yield 72%, MS: [M + H] + = 261). .
Figure imgf000023_0002
Figure imgf000023_0002
3구 플라스크에 중간체 1-2(15.0 g, 57.4 隱 ol). 비스 (피나콜라토)디보론 (17.5 g, 68.9 mniol), Pd(dba)2(0.7 g, 1.1 隱 ol), 트리사이클로핵실포스핀 (0.6 g, 2.3 mmol), 0Ac(11.3 g, 114.9 隱 ol), 및 1,4-디옥산 (225 ml)을 넣고, 아르곤 분위기 환류 조건 하에서 12시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각한 후. 반응액을 분액 깔대기에 옮기고, 물 (200 mL)을 가하여 에틸 아세테아트로 추출했다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 1-3을 수득하였다 (20.5 g, 수율 78%, MS:[M+H]+= 384). Intermediate 1-2 (15.0 g, 57.4 μl ol) in a three neck flask. Bis (pinacolato) diboron (17.5 g, 68.9 mniol), Pd (dba) 2 (0.7 g, 1.1 隱 ol), tricyclonucleosilphosphine (0.6 g, 2.3 mmol), 0Ac (11.3 g, 114.9 隱) ol), and 1,4-dioxane (225 ml) were added and stirred for 12 hours under argon atmosphere reflux conditions. When the reaction is over, after cooling to room temperature. The reaction solution was transferred to a separatory funnel, water (200 mL) was added, and the mixture was extracted with ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 1-3 (20.5 g, yield 78%, MS: [M + H] + = 384). .
4) 증간체 1의 제조
Figure imgf000024_0001
4) Preparation of Intermediate 1
Figure imgf000024_0001
3구 플라스크에 중간체 1-3(14.0 g, 45.4画 ol), 2-브로모피리딘 (7.9 g. 50.0 誦 ol)을 THF(210 ml)에 녹이고 K2C03(25.1 g, 181.7 瞧 ol)을 물 (105 ml)에 녹여 넣었다. 여기에 Pd(PPh3)4(2.1 g. 1.8 隱 ol)를 넣고, 아르곤 분위기 환류 조건 하에서 8시간 동안 교반하였다. 반웅이 종료되면 상온으로 냉각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 1을 수득하였다 (8.6 g, 수율 73%, MS:[M+H]+= 259). Intermediate 1-3 (14.0 g, 45.4 μl ol), 2-bromopyridine (7.9 g. 50.0 μl ol) was dissolved in THF (210 ml) in a three neck flask and K 2 CO 3 (25.1 g, 181.7 μl ol) Was dissolved in water (105 ml). Pd (PPh 3 ) 4 (2.1 g. 1.8 Pa) was added thereto and stirred for 8 hours under reflux conditions under argon. After the reaction was completed, the reaction mixture was cooled to room temperature, the reaction solution was transferred to a separatory funnel, and extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give intermediate 1 (8.6 g, yield 73%, MS: [M + H] + = 259).
Figure imgf000024_0002
Figure imgf000024_0002
lnt.1 lnt.2  lnt.1 lnt.2
2구 플라스크에 중간체 1(8.0 g, 30.9 mmol), 소디움 에특사이드 (4.2 g. 61.7 隱 ol), 및 에탄올 -D6(130 ml)를 넣고, 환류 조건 하에서 72시간 동안 교반하였다. 반응이 종료되면 상온으로 넁각하고 용매를 농축한 후, 물과 에틸 아세테이트를 넣고 분액 깔대기에 옮겨, 유기층을 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 2를 수득하였다 (6.1 g, 수율 75%, MS:[M+H]+= 262). 제조예 3: 중간체 3의 제조 In a two-necked flask, Intermediate 1 (8.0 g, 30.9 mmol), Sodium Ecoxide (4.2 g. 61.7 Pa), and Ethanol-D6 (130 ml) were added and stirred for 72 hours under reflux conditions. After the reaction was completed, the mixture was cooled to room temperature, the solvent was concentrated, water and ethyl acetate were added to the separatory funnel, and the organic layer was extracted. The extract was dried over M g SO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give intermediate 2 (6.1 g, yield 75%, MS: [M + H] + = 262). . Preparation Example 3 Preparation of Intermediate 3
1) 중간체 3-1의 제조 1) Preparation of Intermediate 3-1
Figure imgf000025_0001
Figure imgf000025_0001
3구 플라스크에 1-아이오도디벤조 [b,d]퓨란 -2-올 (20.0 g, 64.5隱01). 페닐보론산 (8.7 g, 70.9 mmol)을 THF(300 ml)에 녹이고, K2C03(35.7 g, 258.0 睡 ol)을 물 (150 ml)에 녹여 넣었다. 여기에 Pd(PPh3)4(3.0 g, 2.6 mmol)를 넣고, 아르곤 분위기 환류 조건 하에서 8시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각한 후, 반웅액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 3- 1을 수득하였다 (12.9 g, 수율 77%, MS:[M+H]+= 260). 1-iododibenzo [b, d] furan-2-ol (20.0 g, 64.5 × 10 1) in a three neck flask. Phenylboronic acid (8.7 g, 70.9 mmol) was dissolved in THF (300 ml) and K 2 CO 3 (35.7 g, 258.0 μl) was dissolved in water (150 ml). Pd (PPh 3 ) 4 (3.0 g, 2.6 mmol) was added thereto, followed by stirring for 8 hours under reflux conditions under argon atmosphere. After the reaction was completed, the reaction mixture was cooled to room temperature, and the reaction solution was transferred to a separatory funnel, and extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 3-1 (12.9 g, yield 77%, MS: [M + H] + = 260). .
Figure imgf000025_0002
Figure imgf000025_0002
3-2  3-2
3구 플라스크에 중간체 3-1(12.0 g, 46.1 mmol)를 아세토니트릴 (340 nil)에 녹인 후, H리에틸아민 (20 ml, 73.8 mmol), 퍼플루오로 -1ᅳ부탄술포닐 플루오라이드 (12 ml, 69.2 mmol)를 넣고 상온에서 밤새 교반하였다. 반응이 종료되면 에틸 아세테이트로 묽히고 분액 깔대기에 옮겨 0.5 M 소디움 비설페이트 수용액을 이용해 씻어준 후, 유기층을 추출하였다. 추출액을 MgS04로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 3-2를 수득하였다 (18.8 g, 수율 75%, MS:[M+H]+= 542). After dissolving intermediate 3-1 (12.0 g, 46.1 mmol) in acetonitrile (340 nil) in a three-necked flask, Hriethylamine (20 ml, 73.8 mmol), perfluoro-1'butanesulfonyl fluoride ( 12 ml, 69.2 mmol) and stirred overnight at room temperature. After completion of the reaction, the mixture was diluted with ethyl acetate, transferred to a separatory funnel, washed with an aqueous 0.5 M sodium bisulfate solution, and the organic layer was extracted. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give intermediate 3-2 (18.8 g, yield 75%, MS: [M + H] + = 542). .
3) 중간체 3의 제조 3) Preparation of Intermediate 3
Figure imgf000026_0001
Figure imgf000026_0001
3구 플라스크에 중간체 3-2(18.0 g, 33.2 隱 ol), 피리딘 -2- 일보론산 (4.5 , 36.5 議 ol)을 THF(270 nil)에 녹이고 K2C03(18.3 g, 132.8 麵 ol)을 물 (135 ml)에 녹여 넣었다. 여기에 Pd(PPh3)4(1.5 g, 1.3 隱 ol)를 넣고, 아르곤 분위기 환류 조건 하에서 8시간 동안 교반하였다. 반응이 종료되면 상온으로 넁각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 3-3을 수득하였다 (8.3 gᅳ 수율 78%. MS:[M+H]+= 321). 제조예 4: 중간체 4의 제조 Intermediate 3-2 (18.0 g, 33.2 μl ol), pyridine-2-ylboronic acid (4.5, 36.5 μl ol) was dissolved in THF (270 nil) in a three neck flask and K 2 C0 3 (18.3 g, 132.8 μl ol) Was dissolved in water (135 ml). Pd (PPh 3 ) 4 (1.5 g, 1.3 隱 ol) was added thereto and stirred for 8 hours under argon atmosphere reflux conditions. After the reaction was completed, the reaction solution was cooled to room temperature, the reaction solution was transferred to a separatory funnel, and extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give intermediate 3-3 (8.3 g ᅳ yield 78%. MS: [M + H] + = 321) . Preparation Example 4 Preparation of Intermediate 4
Figure imgf000026_0002
Figure imgf000026_0002
4-1  4-1
3구 플라스크에 1-풀루오로— 2-아이오도 -3ᅳ메틸벤젠 (25.0 g, 105.9 麵 ol), (2—하이드록시페닐)보론산 (16.1 g, 116.5 mmol)을 THF(375 ml)에 녹이고 K2C03(58.6 g, 423.7 誦 ol)을 물 (190 ml)에 녹여 넣었다. 여기에 Pd(PPh3)4(4.9 g, 4.2隱 ol)를 넣고, 아르곤 분위기 환류 조건 하에서 8시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 4-1을 수득하였다 (15.2 g, 수율 71%, MS:[M+H]+= 202). In a three-necked flask, add 1-Pluoro- 2-iodo-3 ᅳ methylbenzene (25.0 g, 105.9 麵 ol), (2—hydroxyphenyl) boronic acid (16.1 g, 116.5 mmol) to THF (375 ml). Was dissolved in K 2 CO 3 (58.6 g, 423.7 μl) and dissolved in water (190 ml). Pd (PPh 3 ) 4 (4.9 g, 4.2 Pa) was added thereto and stirred for 8 hours under reflux conditions under argon. When the reaction was completed, the reaction solution was cooled to room temperature, the reaction solution was transferred to a separatory funnel, and extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 4-1 (15.2 g, yield 71%, MS: [M + H] + = 202). .
2) 중간체 4— 2의 제조
Figure imgf000027_0001
2) Preparation of Intermediate 4-2
Figure imgf000027_0001
4-2  4-2
3구 플라스크에 중간체 4-1(15.0 g, 74.2 mmol), 2C03(20.5 g, 148.3 腿 ol), NMP(200 ml)를 넣고 120°C에서 밤새 교반하였다. 반응이 종료되면 상온으로 넁각한 후 반응액에 물 (150 ml)을 조금씩 적가하였다. 그 후 반웅액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgS04로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 증간체 4-2를 수득하였다 (11.6 g, 수율 86%, MS:[M+H]+= 182). Intermediate 4-1 (15.0 g, 74.2 mmol), 2 CO 3 (20.5 g, 148.3 μl) and NMP (200 ml) were added to a three neck flask and stirred at 120 ° C. overnight. After the reaction was completed, the reaction mixture was cooled to room temperature, and water (150 ml) was added dropwise to the reaction solution. The reaction solution was then transferred to a separatory funnel, and the organic layer was extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 4-2 (11.6 g, yield 86%, MS: [M + H] + = 182 ).
Figure imgf000027_0002
Figure imgf000027_0002
4-2 4-3  4-2 4-3
2구 플라스크에 중간체 4-2(10.0 g, 54.9 mmol), NBS(10.3 g, 57.6 隱 ol), 및 DMF(200 ml)를 넣고, 아르곤 분위기 하에서 상온에서 8시간 동안 교반하였다. 반웅 종료 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 유기층을 추출하였다. 추출액을 MgS04로 건조하고, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 4- 3을 수득하였다 (12.2 g. 수율 85%, MS:[M+H]+= 261). Intermediate 4-2 (10.0 g, 54.9 mmol), NBS (10.3 g, 57.6 μl ol), and DMF (200 ml) were added to a two-necked flask and stirred for 8 hours at room temperature under an argon atmosphere. After completion of reaction, the reaction solution was transferred to a separatory funnel, and the organic layer was extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 4- 3 (12.2 g. Yield 85%, MS: [M + H] + = 261) .
Figure imgf000027_0003
Figure imgf000027_0003
3구 폴라스크에 중간체 4-3(12.0 g, 46.0 隱 ol), 비스 (피나콜라토)디보론 (14.0 g, 55.1 mmol), Pd(dba)2(0.5 g, 0.9 mmol). 트리사이클로핵실포스핀 (0.5 g, 0.9 mmol), KOAcO.O g, 91.9 mmol), 및 1ᅳ 4-디옥산 (180 ml)을 넣고, 아르곤 분위기 환류 조건 하에서 12시간 동안 교반하였다. 반응이 종료되면 상온으로 냉각한 후, 반웅액을 분액 깔대기에 옮기고, 물 (200 mL)을 가하여 에틸 아세테이트로 추출했다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 4-4를 수득하였다 (11.6 g. 수율 82%, MS: [M+H]+= 308). Intermediate 4-3 (12.0 g, 46.0 μl), bis (pinacolato) diboron (14.0 g, 55.1 mmol), Pd (dba) 2 (0.5 g, 0.9 mmol) in a three-necked polar flask. Tricyclonucleosilphosphine (0.5 g, 0.9 mmol), KOAcO.O g, 91.9 mmol), and 1x 4-Dioxane (180 ml) was added and stirred for 12 hours under argon atmosphere reflux conditions. After the reaction was completed, the reaction mixture was cooled to room temperature, the reaction solution was transferred to a separatory funnel, and water (200 mL) was added thereto, followed by extraction with ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 4-4 (11.6 g. Yield 82%, MS: [M + H] + = 308). .
Figure imgf000028_0001
Figure imgf000028_0001
3구 플라스크에 중간체 4-4(11.0 g, 35.7 mmol), 2-브로모 -5- 메틸피리딘 (6.8 g, 39.3 麵 ol)을 THF 165 ml)에 녹이고 K2C03(19.7 g, 142.8 醜 ol)을 물 (83 ml)에 녹여 넣었다. 여기에 Pd(PPh3)4(1.6 g, 1.4 瞧 ol)를 넣고, 아르곤 분위기 환류 조건 하에서 8시간 동안 교반하였다. 반응이 종료되면 상은으로 넁각한 후, 반응액을 분액 깔대기에 옮기고, 물과 에틸 아세테이트로 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 4을 수득하였다 (7.0 g, 수율 72%, MS:[M+H]+= 273). In a three-necked flask, intermediate 4-4 (11.0 g, 35.7 mmol), 2-bromo-5-methylpyridine (6.8 g, 39.3 麵 ol) was dissolved in 165 ml of THF and K 2 C0 3 (19.7 g, 142.8 醜). ol) was dissolved in water (83 ml). Pd (PPh 3 ) 4 (1.6 g, 1.4 Pa) was added thereto, and the mixture was stirred for 8 hours under reflux conditions under argon. After the reaction was completed, the reaction solution was phase shifted to silver, and the reaction solution was transferred to a separatory funnel and extracted with water and ethyl acetate. The extract was dried over MgSO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give intermediate 4 (7.0 g, yield 72%, MS: [M + H] + = 273).
Figure imgf000028_0002
Figure imgf000028_0002
lnt.4 >n.5  lnt.4> n.5
2구 플라스크에 중간체 4(7.0 g, 25.6 mmol), 소디움 에톡사이드 (7.0 g, 102.4 隱 ol). 에탄올 -D6(220 ml)를 환류 조건 하에서 72시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각하고 용매를 농축한 후, 물과 에틸 아세테이트를 넣고 분액 깔대기에 옮겨, 유기층을 추출하였다. 추출액을 MgS04로 건조 후, 여과 및 농축한 후, 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 중간체 5를 수득하였다 (4.4 gᅳ 수율 62%ᅳ MS:[M+H]+= 279). 제조예 6: 중간체 A의 제조 Intermediate 4 (7.0 g, 25.6 mmol), sodium ethoxide (7.0 g, 102.4 μl) in a two neck flask. Ethanol-D6 (220 ml) was stirred for 72 hours under reflux conditions. When the reaction was completed, the mixture was cooled to room temperature, the solvent was concentrated, water and ethyl acetate were added to the separatory funnel, and the organic layer was extracted. The extract was dried over M g SO 4 , filtered and concentrated, and the sample was purified by silica gel column chromatography to give Intermediate 5 (4.4 g ᅳ yield 62% ᅳ MS: [M + H] + = 279). . Preparation Example 6 Preparation of Intermediate A
Figure imgf000029_0001
Figure imgf000029_0001
A-1  A-1
3구 플라스크에 이리듐 (III) 클로라이드 하이드레이트 (15.0 g, 42.5 麵 ol), 및 2-페닐피리딘 (2.2 g, 14.0 讓 ol)을 2-에톡시에탄올 (140 ml). 물 (47 ml)과 함께 넣고 아르곤 분위기 환류 조건 하에서 18시간 동안 교반하였다. 반응이 종료되면 상온으로 넁각하고 침전물을 여과하여 메탄올과 핵산으로 씻어주고 건조한 후, 추가 정제 없이 다음 반웅에 이용하였다 (21.7 g, 수율 95%).  In a three neck flask, iridium (III) chloride hydrate (15.0 g, 42.5 μl ol), and 2-phenylpyridine (2.2 g, 14.0 μl ol) were added 2-ethoxyethanol (140 ml). Put together with water (47 ml) and stir for 18 h under argon atmosphere reflux conditions. After the reaction was completed, the mixture was cooled to room temperature, the precipitate was filtered, washed with methanol and nucleic acid, dried, and used for the next reaction without further purification (21.7 g, yield 95%).
Figure imgf000029_0002
Figure imgf000029_0002
A-1 lnt.A  A-1 lnt.A
3구 플라스크에 중간체 A— 1(20.0 g, 18.7 麵 ol)을 CH2C12(1120 ml)에 넣고 상은에서 교반하고 여기에 실버 트리플레이트 (10.1 g, 39.2 mniol)를 메탄올 (560 ml)에 녹인 용액을 천천히 적가하여 밤새 교반하였다. 반웅이 완료되면 반응액을 셀라이트 플러그를 이용하여 여과한 후, 여과액을 농축하여 얻은 고체를 추가 정제 없이 다음 반웅에 이용하였다 (25.8 g. 수율 97%) .
Figure imgf000030_0001
In a three-necked flask, Intermediate A-1 (20.0 g, 18.7 μl ol) was added to CH 2 C1 2 (1120 ml) and stirred at phase silver and silver triflate (10.1 g, 39.2 mniol) was added to methanol (560 ml). The dissolved solution was slowly added dropwise and stirred overnight. When the reaction was completed, the reaction solution was filtered through a plug of celite, and the solid obtained by concentrating the filtrate was used for the next reaction without further purification (25.8 g. Yield 97%).
Figure imgf000030_0001
Int.B  Int.B
2-페닐피리딘 대신 5-메틸 -2-페닐피리딘을 사용한 것을 제외하고 : 중간체 A의 제조 방법과 동일한 방법으로 중간체 B를 제조하였다. 제조예 8: 중간체 C의 제조 Except for using 2-phenyl-pyridine instead of 5-methyl-2-phenyl pyridine was prepared an intermediate B in the same manner as the manufacturing method of an intermediate A. Preparation Example 8 Preparation of Intermediate C
Figure imgf000030_0003
Figure imgf000030_0002
Figure imgf000030_0003
Figure imgf000030_0002
2-페닐피리딘 대신 5- (메틸 -d3)-2-페닐피리딘을 사용한 것을 제외하고는, 중간체 제조 방법과 동일한 방법으로 중간체 제조하였다.  Intermediates were prepared in the same manner as in the preparation of intermediates, except that 5- (methyl-d3) -2-phenylpyridine was used instead of 2-phenylpyridine.
[실시예] EXAMPLE
실시예 1 : 화합물 1의 제조
Figure imgf000031_0001
Example 1 Preparation of Compound 1
Figure imgf000031_0001
lnt.1  lnt.1
3구 플라스크에 증간체 A(20.0g, 28.0mmol), 중간체 1(18.2 g, 70.1 mmol), 에탄올 (140 ml). 및 메탄올 (140 ml)를 넣고, 아르곤 분위기 환류 조건 하에서 20시간 동안 교반하였다. 반웅이 종료되면 상온으로 넁각하고 에탄을로 묽혀준 후, 셀라이트를 넣고 10분간 교반하였다. 이 후 흔합물을 실리카 플러그 상에서 여과하고 에탄올 및 핵산으로 세정한 후 여과액은 버렸다. 셀라이트 /실리카 플러그는 C¾C12로 세정하여 생성물을 녹여내고ᅳ 이소프로판올을 이용하여 침전시켜 여과하였다. 여과한 침전물은 이소프로판올과 핵산으로 씻어주고 건조한 후. 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 최종적으로 승화 정제를 통해 화합물 1을 수득하였다 (4.3 g, 수율 10%, MS:[M+H]+= 759). Intermediate A (20.0 g, 28.0 mmol), Intermediate 1 (18.2 g, 70.1 mmol), ethanol (140 ml) in a three neck flask. And methanol (140 ml) were added and stirred for 20 hours under reflux conditions under argon. When the reaction was finished, the mixture was cooled to room temperature, diluted with ethane, and celite was added and stirred for 10 minutes. The mixture was then filtered over a plug of silica and washed with ethanol and nucleic acid and then the filtrate was discarded. The celite / silica plug was washed with C¾C1 2 to dissolve the product, precipitated with isopropanol and filtered. The filtered precipitate was washed with isopropanol and nucleic acid and dried. The sample was purified by silica gel column chromatography and finally compound 1 was obtained by sublimation purification (4.3 g, yield 10%, MS: [M + H] + = 759).
Figure imgf000031_0002
중간체 1 대신 중간체 2를 사용한 것올 제외하고는, 화합물 1의 제조 방법과 동일한 방법으로 화합물 2를 제조하였다.
Figure imgf000031_0002
Compound 2 was prepared by the same method as the method for preparing compound 1, except that intermediate 2 was used instead of intermediate 1.
MS: [M+H]+= 762 실시예 3: 화합물 3의 제조
Figure imgf000032_0001
MS: [M + H] + = 762 Example 3: Preparation of compound 3
Figure imgf000032_0001
lnt.B lnt.3  lnt.B lnt.3
중간체 A 대신 중간체 B를 사용하고, 중간체 1 대신 중간체 3을 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 방법으로 화합물 3을 제조하였다.  Compound 3 was prepared in the same manner as in the preparation of compound 1, except that Intermediate B was used instead of Intermediate A, and Intermediate 3 was used instead of Intermediate 1.
MS:[M+H]+= 849 MS: [M + H] + = 849
Figure imgf000032_0002
Figure imgf000032_0002
lnt.B  lnt.B
중간체 A 대신 중간체 B를 사용하고, 중간체 1 대신 중간체 4를 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 방법으로 화합물 4를 제조하였다.  Compound 4 was prepared in the same manner as in the preparation of compound 1, except that Intermediate B was used instead of Intermediate A, and Intermediate 4 was used instead of Intermediate 1.
MS: [M+H]+= 800 실시예 5: 화합물 5의 제조 MS: [M + H] + = 800 Example 5: Preparation of Compound 5
Figure imgf000032_0003
Figure imgf000032_0003
중간체 A 대신 중간체 C를 사용하고, 중간체 1 대신 중간체 2를 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 방법으로 화합물 5를 제조하였다.  Compound 5 was prepared in the same manner as in the preparation of compound 1, except that Intermediate C was used instead of Intermediate A, and Intermediate 2 was used instead of Intermediate 1.
MS:[M+H]+- 796
Figure imgf000033_0001
MS: [M + H] + -796
Figure imgf000033_0001
중간체 A 대신 중간체 C를 사용하고, 중간체 1 대신 중간체 5를 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 방법으로 화합물 6을 제조하였다.  Compound 6 was prepared by the same method as the preparation of compound 1, except that Intermediate C was used instead of Intermediate A, and Intermediate 5 was used instead of Intermediate 1.
MS:[M+H]+= 813  MS: [M + H] &lt; + &gt; 813
[실험예] Experimental Example
실험예 1  Experimental Example 1
ITOClndi醒 Tin Oxide)가 1,400 A의 두께로 박막 코팅된 유리기판을 세제에 녹인 증류수에 넣고 초음파로 세척하였다. 이때 세제로는 피셔사 (Fischer Co.)의 Decon™ C0N705 제품을 사용하였으며, 증류수로는 밀러포어사 (Millipore Co.) 제품의 0.22 μη\ sterilizing filter로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필 알코올, 아세톤 및 메탄올의 용제로 각각 10분간 초음파 세척하고, 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후, 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ΠΌ 투명전극 위에 하기 HT-A 화합물 95 중량 %와 하기 P-D0PANT 화합물 5 중량 >의 흔합물을 100 A와 두께로 열 진공 증착하고, 이어서 하기 HT-A 화합물만 1150 A의 두께로 증착하여 정공수송층을 형성하였다. 상기 정공수송충 위에 하기 HT-B 화합물을 450 A의 두께로 열 진공 증착하여 전자저지층을 형성하였다. 이어서, 상기 전자저지층 위에, 호스트로 하기 GH 화합물 (94 중량 %)과 도판트로 앞서 .제조한 화합물 1(6 중량 %)의 흔합물을 400 A의 두께로 진공 증착하여 발광층을 형성하였다. 이어서, 상기 발광층 위에, 하기 ET-A 화합물을 50 A의 두께로 진공 증착하여 정공저지층을 형성하였다. 상기 정공저지층 위에 하기 ET-B 화합물과 하기 Liq 화합물을 2 : 1의 중량비로 흔합하여 250 A의 두께로 열 진공 층착하여 전자수송층을 형성하고, 이어서 LiF와 마그네슘을 1 : 1의 중량비로 흔합하여 30 A의 두께로 진공 증착하여 전자주입층을 형성하였다. 상기 전자 주입층 위에 마그네슘과 은을 1 : 4의 중량비로 흔합 후 160 A의 두께로 ITOClndi 醒 Tin Oxide) was thin film-coated glass substrate with a thickness of 1,400 A and placed in distilled water dissolved in a detergent and washed with ultrasonic waves. Fischer Co.'s Decon ™ C0N705 was used as a detergent, and distilled water was filtered using a 0.22 μη \ sterilizing filter from Millipore Co.'s second distilled water. After ITO was washed for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After the distilled water was washed, ultrasonic washing with a solvent of isopropyl alcohol, acetone and methanol for 10 minutes, dried and then transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. A mixture of 95 wt% of the following HT-A compound and 5 wt% of the following P-D0PANT compound was thermally vacuum deposited to a thickness of 100 A on the Π 위에 transparent electrode thus prepared, followed by deposition of only the following HT-A compound to a thickness of 1150 A. To form a hole transport layer. The following HT-B compound was thermally vacuum deposited to a thickness of 450 A on the hole transporter to form an electron blocking layer. Subsequently, on the electronic blocking layer, A mixture of the following GH compound (94 wt%) and compound 1 (6 wt%) prepared as a dopant as a host was vacuum deposited to a thickness of 400 A to form a light emitting layer. Subsequently, the following ET-A compound was vacuum deposited to a thickness of 50 A on the light emitting layer to form a hole blocking layer. On the hole blocking layer, the following ET-B compound and the following Liq compound were mixed at a weight ratio of 2: 1, and thermally vacuum-bonded to a thickness of 250 A to form an electron transporting layer, followed by LiF and magnesium at a weight ratio of 1: 1. Combined and vacuum deposited to a thickness of 30 A to form an electron injection layer. Magnesium and silver were mixed at a weight ratio of 1: 4 on the electron injection layer, and then, at a thickness of 160 A.
Figure imgf000034_0001
Figure imgf000034_0001
ET-A Liq 실험예 2 내지 6  ET-A Liq Experimental Examples 2 to 6
화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는 상기 .실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 1 내지 5 Except for using the compound shown in Table 1 instead of Compound 1 . Organic light-emitting devices were manufactured in the same manner as in Experimental Example 1. Comparative Experimental Examples 1 to 5
화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제 An organic light-emitting device was manufactured in the same manner as in Experiment 1, except for using the compound shown in Table 1 instead of the compound 1. Each one
Figure imgf000035_0001
Figure imgf000035_0001
GD-4 GD-5 상기 실험예 및 비교 실험예에서 제조한 유기 발광 소자에 전류를 인가하여 전압, 효율 및 수명 (T95)를 각각 측정하고. 그 결과를 하기 표. 1에 나타내었다. 이때, 전압 및 효율은 10 mA/cm2의 전류 밀도를 인가하여 측정하였으며. 수명 (T95)는 20 niA/cni2의 전류 밀도에서 초기 휘도가 95%로 저하할 때까지의 시간을 의미한다. GD-4 GD-5 Voltage, efficiency, and lifetime (T95) were measured by applying current to the organic light emitting diodes manufactured in the above Experimental Example and Comparative Experimental Example, respectively. The results are shown in the table below. 1 is shown. At this time, the voltage and efficiency were measured by applying a current density of 10 mA / cm 2 . The lifetime (T95) means the time until the initial luminance drops to 95% at a current density of 20 niA / cni 2 .
【표 1】 Table 1
Figure imgf000035_0002
상기 표 1에 나타난 바와 같이 , 본 발명의 화학식 1의 ¾의
Figure imgf000035_0002
As shown in Table 1, of ¾ of Formula 1 of the present invention
경우에 비해 화학식 1의 구조를 갖는 물질들은 이리듐과 결합하는 페닐 고리의 전자 밀도를 변화시키고 이는 발광 효율을 증가시킨다. 따라서, 본 발명의 화학식 1의 화합물을 유기 발광 소자의 발광층 도편트로 사용할 경우, 고효율, 및 장수명의 유기 발광 소자를 얻을 수 있다. In comparison, materials having the structure of Formula 1 The electron density of the phenyl ring to bond is changed, which increases the luminous efficiency. Therefore, when the compound of Formula 1 of the present invention is used as the light emitting layer dopant of the organic light emitting device, an organic light emitting device having high efficiency and long life can be obtained.
【부호의 설명】  [Explanation of code]
1: 기판 2: 양극  1: substrate 2: anode
3: 발광층 4: 음극  3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층  5 : Hole injection layer 6: Hole transport layer
7: 발광층 8: 전자수송층  7: light emitting layer 8: electron transport layer

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
하기 화학식 1 또는 하기 화학식 2로 표시되 화합물  Compound represented by the following formula (1) or (2)
Figure imgf000037_0001
Figure imgf000037_0001
상기 화학식 1 및 2에서,  In Chemical Formulas 1 and 2,
X는 0, 또는 S이고,  X is 0 or S,
Rr& 비치환되거나 또는 중수소로 치환된 알킬; 탄소수 1 내지 Alkyl, unsubstituted or substituted with deuterium; C1-C1
60의 실릴; 또는 치환 또는 비치환된 C6-60 아릴이고, 60 silyl; Or substituted or unsubstituted C 6 -60 aryl,
R2 및 ¾는 각각 독립적으로 수소; 또는 비치환되거나 또는 중수소로 치환된 d-60 알킬이고, R 2 and ¾ are each independently hydrogen; Or d-60 alkyl unsubstituted or substituted with deuterium,
n은 1 또는 2이다.  n is 1 or 2.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
Ri은 비치환되거나 또는 중수소로 치환된  Ri is unsubstituted or substituted with deuterium
10의 실릴 ; 또는 치환 또는 비치환된 C6-10 아릴인, 화합물. 10 silyl; Or a substituted or unsubstituted C 6 - 10 aryl, compound.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
¾은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸. tert-부틸, 펜틸, 이소펜틸, tert—펜틸. 네오펜틸. sec-펜틸. 3-펜틸, CD3 , Si (C¾)3 , 또는 페닐인, ¾ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl. tert-butyl, pentyl, isopentyl, tert-pentyl. Neopentyl. sec-pentyl. 3-pentyl, CD 3 , Si (C¾) 3 , or phenyl,
화합물.  compound.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
¾ 및 ¾는 각각 독립적으로 수소; 또는 비치환되거나 또는 중수소로 치환된 알킬인,  ¾ and ¾ are each independently hydrogen; Or alkyl which is unsubstituted or substituted with deuterium,
화합물.  compound.
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
R2 및 R3는 각각 독립적으로 수소, 메틸, 또는 CD3인, R 2 and R 3 are each independently hydrogen, methyl, or CD 3 ,
- 화합물.  Compounds.
【청구항 6】 [Claim 6]
저 U항에 있어서,  In that U term,
상기 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인 화합물: 8ε The compound is any one selected from the group consisting of: 8ε
Figure imgf000039_0001
Figure imgf000039_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000040_0001
Figure imgf000040_0001
39 39
Figure imgf000041_0001
Figure imgf000041_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι
Figure imgf000042_0001
Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000042_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000043_0001
Figure imgf000043_0001
Z.6lOOO/8TOraM/X3d Z.6lOOO / 8TOraM / X3d
Figure imgf000044_0001
Figure imgf000044_0001
Ζ.6ΪΟΟΟ/8ΐΟΖΗΜ/Χ3<Ι Ζ.6ΪΟΟΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000045_0001
Figure imgf000045_0001
【청구항 7】 [Claim 7]
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 저 U 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자에 있어서, 상기 유기물층은 제 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는 발광층을 포함하는, 유기 발광 소자.  A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the low U electrode and the second electrode, wherein the organic material layer comprises a light emitting layer comprising the compound according to any one of claims 1 to 6. Including, The organic light emitting element.
PCT/KR2018/000197 2017-01-04 2018-01-04 Iridium complex and organic light emitting element using same WO2018128425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880002136.2A CN109311922A (en) 2017-01-04 2018-01-04 Iridium complex and the organic illuminating element for utilizing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0001324 2017-01-04
KR20170001324 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018128425A1 true WO2018128425A1 (en) 2018-07-12

Family

ID=62790931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000197 WO2018128425A1 (en) 2017-01-04 2018-01-04 Iridium complex and organic light emitting element using same

Country Status (3)

Country Link
KR (1) KR101979917B1 (en)
CN (1) CN109311922A (en)
WO (1) WO2018128425A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221484A1 (en) * 2018-05-14 2019-11-21 주식회사 엘지화학 Organometallic compound and organic light emitting diode comprising same
EP4328285A1 (en) * 2022-08-25 2024-02-28 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054205A (en) * 2011-11-15 2013-05-24 유니버셜 디스플레이 코포레이션 Novel heteroleptic iridium complexes
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
CN103936791A (en) * 2013-12-12 2014-07-23 石家庄诚志永华显示材料有限公司 Series organic electrophosphorescent material
KR20150045295A (en) * 2013-10-18 2015-04-28 롬엔드하스전자재료코리아유한회사 Organic electroluminescent device
KR20160064955A (en) * 2014-11-28 2016-06-08 삼성전자주식회사 Organometallic compound and organic light emitting device including the same
JP2016219490A (en) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 Organic electroluminescent element, display device and illuminating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
US10367154B2 (en) 2013-02-21 2019-07-30 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054205A (en) * 2011-11-15 2013-05-24 유니버셜 디스플레이 코포레이션 Novel heteroleptic iridium complexes
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
KR20150045295A (en) * 2013-10-18 2015-04-28 롬엔드하스전자재료코리아유한회사 Organic electroluminescent device
CN103936791A (en) * 2013-12-12 2014-07-23 石家庄诚志永华显示材料有限公司 Series organic electrophosphorescent material
KR20160064955A (en) * 2014-11-28 2016-06-08 삼성전자주식회사 Organometallic compound and organic light emitting device including the same
JP2016219490A (en) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 Organic electroluminescent element, display device and illuminating device

Also Published As

Publication number Publication date
KR101979917B1 (en) 2019-05-20
CN109311922A (en) 2019-02-05
KR20180080699A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2018074845A1 (en) Organic light-emitting element
KR102469107B1 (en) Organic light emitting device
KR102506584B1 (en) Novel compound and organic light emitting device comprising the same
KR102080289B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102136381B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102206482B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2018216887A1 (en) Novel compound and organic light-emitting device using same
WO2018216913A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR102486517B1 (en) Novel compound and organic light emitting device comprising the same
KR20210034528A (en) Novel compound and organic light emitting device comprising the same
WO2019013487A1 (en) Novel compound and organic light-emitting device using same
KR102592082B1 (en) Novel compound and organic light emitting device comprising the same
CN113423706A (en) Novel compound and organic light emitting device comprising same
WO2018199466A1 (en) Novel compound and organic light-emitting element including same
KR102623893B1 (en) Novel compound and organic light emitting device comprising the same
WO2018135798A1 (en) Novel heterocyclic compound and organic light emitting element using same
WO2019078443A1 (en) Novel compound and organic light emitting device using same
KR20210020819A (en) Novel compound and organic light emitting device comprising the same
WO2018128425A1 (en) Iridium complex and organic light emitting element using same
WO2020175867A1 (en) Novel compound and organic light emitting device comprising same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
KR102103503B1 (en) Novel compound and organic light emitting device comprising the same
CN112334472A (en) Novel compound and organic light emitting device comprising same
KR102583651B1 (en) Novel compound and organic light emitting device comprising the same
KR102474921B1 (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736593

Country of ref document: EP

Kind code of ref document: A1