WO2018135798A1 - Novel heterocyclic compound and organic light emitting element using same - Google Patents

Novel heterocyclic compound and organic light emitting element using same Download PDF

Info

Publication number
WO2018135798A1
WO2018135798A1 PCT/KR2018/000486 KR2018000486W WO2018135798A1 WO 2018135798 A1 WO2018135798 A1 WO 2018135798A1 KR 2018000486 W KR2018000486 W KR 2018000486W WO 2018135798 A1 WO2018135798 A1 WO 2018135798A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
layer
compound
substituted
Prior art date
Application number
PCT/KR2018/000486
Other languages
French (fr)
Korean (ko)
Inventor
허동욱
이동훈
허정오
장분재
한미연
정민우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180001717A external-priority patent/KR102003351B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/341,884 priority Critical patent/US11228001B2/en
Priority to EP18741013.9A priority patent/EP3527564B1/en
Priority to JP2019521771A priority patent/JP6801162B2/en
Priority to CN201880004727.3A priority patent/CN110023306B/en
Publication of WO2018135798A1 publication Critical patent/WO2018135798A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent research on the luminance, driving voltage, and response speed.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel heterocyclic compound compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1).
  • X 4 are each independently N or CH
  • Li and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6 - 60 arylene; Substituted or unsubstituted C 2 -60 heteroarylene comprising one or more of N, 0 and S,
  • Ri and 3 ⁇ 4 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more of N, 0 and S,
  • Each R 3 is independently C 6 -60 aryl, substituted with one or two cyano, n is an integer of 1 or 2.
  • the present invention is a first electrode; A crab 2 electrode provided to face the first electrode; And an organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode. One or more layers of the organic material layers provide an organic light emitting device including the compound of the present invention described above.
  • the compound represented by Chemical Formula 1 may be used as a material of the organic material layer of the organic light emitting diode, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting diode.
  • the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG.
  • FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4.
  • the present invention provides a compound represented by the following formula (1).
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently N or -CH
  • Li and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6 - 60 arylene; Substituted or unsubstituted C 2 -60 heteroarylene comprising one or more of N, 0 and S,
  • Ri and 3 ⁇ 4 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more of N, 0 and S,
  • 3 ⁇ 4 is each independently C 6 -60 aryl substituted with one or two cyano, n is an integer of 1 or 2.
  • substituted or unsubstituted is deuterium; Halogen group nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group phosphine oxide group; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group alkyl sulfoxy group; Aryl sulfoxy group; Threading; Boron group; An alkyl group; Cycloalkyl group alkenyl group; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group Aralkyl amine group; Heteroarylamine group; Arylamine group; Aryl phosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups including one or more of N, 0 and S atoms, or two or
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group is an aryl group It may also be interpreted as a substituent to which two phenyl groups are linked.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40.
  • a compound of the following structure
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t_butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine bromide or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has carbon number of . 1 to 6.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1_methyl-butyl, 1-ethyl-butyl, pentyl, n—pentyl, isopentyl, neopentyl, ter t -pentyl, nuclear chamber, ⁇ -nuclear chamber, 1—methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2 ⁇ ethyl Butyl, heptyl, ⁇ -heptyl, 1-methylnuclear, cyclopentylmethyl, cyclonuxylmethyl octyl, ⁇ -octyl, tert-octyl, 1-methylheptyl 2-ethylnuclear,
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl- 1- Butenyl 1, 3-butadienyl, allyl, 1-phenylvinyl-1 uni day, 2-phenylvinyl -1-yl, 2, 2-diphenylvinyl -1-yl, 2 uniphenyl—2— (naph Yl-1-yl) vinyl-1-yl 2, 2-bis (diphenyl ⁇ 1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. In another embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • a polorerenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted
  • the heterocyclic group is a heterocyclic group containing one or more of 0, ⁇ , Si, and S as a dissimilar element, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heterocyclic group examples include thiophene group, furan group, pyr group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group , Aridyl, pyridazine, pyrazinyl, quinolinyl, quinazolin, quinoxalinyl, phthalazinyl, pyrido pyrimidinyl, pyrido pyrazinyl, pyrazino pyrazinyl, isoquinoline Group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group.
  • Dibenzothiophene group benzofuranyl group, phenanthroline group (phenanthrol ine), thiazolyl group, isoxoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group and dibenzofura
  • a nil group etc. it is not limited to these.
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group of the aralkyl group alkylaryl group and the alkylamine group is the same as the example of the alkyl group described above.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the above-described aryl group except that arylene is a divalent group Can be applied.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding.
  • the heterocyclic ring is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • Formula 1 preferably, at least two or more of 3 ⁇ 4, 3 ⁇ 4 and X 4 may be N. The rest is CH. That is, the compound represented by Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1—1 to 1-3.
  • L1 and L 2 are each independently a single bond, Or ⁇ .
  • 3 ⁇ 4 and 3 ⁇ 4 may each be any one selected from the group consisting of:
  • 3 ⁇ 4 is each independently phenyl substituted with 1 or 2 cyano, biphenylyl substituted with 1 or 2 cyano, terphenylyl substituted with 1 or 2 cyano, or 1 or It may be any one selected from dimethylfloorenyl substituted with two cyano.
  • the compound represented by the formula (1) is any one selected from the group consisting of:
  • the compound represented by Formula 1 may be prepared by the following Scheme 1, Scheme 2, Scheme 3, and Scheme 4 in a sequential manner.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the present invention also provides an organic light emitting device including the compound represented by Chemical Formula 1.
  • the present invention comprises a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting charge, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a hole injection layer, a hole transport layer, or a layer for simultaneously injecting and transporting the hole injection layer, the hole transport layer, or a layer for simultaneously injecting and transporting the hole is represented by the formula (1) It includes a compound represented.
  • the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1.
  • the organic layer may include an electron transport layer, or an electron injection layer, the electron transport layer, or the electron injection layer comprises a compound represented by the formula (1).
  • the electron transport layer, the electron injection layer, or a layer for simultaneously injecting and transporting electrons includes a compound represented by the formula (1).
  • the compound represented by Formula 1 according to the present invention has excellent thermal stability, has a deep HOMO level of 6.0 eV or higher, high triplet energy (ET), and hole stability.
  • electron injection and electron transport of the compound represented by the formula (1) When used in the organic layer that can be done simultaneously, n-type dopants used in the art can be used in combination.
  • the organic material layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Chemical Formula 1.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2. the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2. .
  • FIG. 1 shows a substrate 1 and an anode.
  • the example of the organic light emitting element which consists of the light emitting layer 3 and the cathode 4 is shown.
  • the compound represented by Chemical Formula 1 may be included in the light emitting layer.
  • FIG. 2 illustrates a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, and a light emitting layer. (7), an electron transport layer (8), and an example of an organic light emitting element consisting of a cathode (4).
  • the compound represented by the formula (1) is the hole injection layer, hole transport layer, light emitting layer And it may be included in one or more layers of the electron transport layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (W0 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode, the second .
  • the electrode is a cathode, or the first electrode is a cathode, and the second electrode is an anode.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, rhythm oxide, rhodium tin oxide (IT0), indium zinc oxide (IZ0); A combination of a metal such as ⁇ 0: ⁇ 1 or SN0 2 : Sb and an ' oxide; Conductive polymers such as poly (3-methylthiophene), poly [3,4— (ethylene-1,2-dioxy) thio3 ⁇ 4], 00 poly), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material may include magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, Metals such as aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. It is preferable that H0M0 (highest occupied molecu ar arbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic layer.
  • the hole injection material examples include metal porphyr (in), oligothiophene, arylamine-based organics, hexanitrile nucleated azatriphenylene-based organics, quinacr i done-based organics, and perylene ( perylene) . .
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport layer is a material that can transport holes from the anode or the hole injection layer to the light emitting layer as a hole transporting material. This large material is suitable.
  • the light emitting material has a hole and electron from the hole number, songcheung and the electron transport layer each as a transport material which may be a visible light by combining received, a high quantum efficiency for fluorescence and the phosphor is preferred.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a hetero ring-containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and the arylamino compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the above-described arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group ' and an arylamino group are substituted or unsubstituted. .
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, kale, ytterbium and samarium, each followed by an aluminum or silver layer.
  • the electron injection layer is a layer for injecting electrons from the electrode, the electrons Compound which has the ability to transport, the electron injection effect from a cathode, the electron injection effect with respect to a light emitting layer or a light emitting material, prevents the movement of the excitons produced
  • they include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like .
  • 8'hydroxyquinolinato lithium as the metal complex compound.
  • the present invention is not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • the production of the compound represented by Chemical Formula 1 and the organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
  • Example KE1 is only for illustrating the present invention, and the scope of the present invention is not limited thereto.
  • a compound represented by Chemical Formula E2-P2 was prepared by the same method as E1-P2 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
  • a compound represented by Chemical Formula E3-P1 was prepared by the same method as E1-P1 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
  • a compound represented by Chemical Formula E5 was prepared in the same manner as in Example E1 except that each starting material was performed in the same manner as in the above Scheme.
  • a compound represented by Chemical Formula E12 was prepared in the same manner as in Example 1, except that each starting material was used in the same manner as described above. MS [M + H] + -653
  • a compound represented by Chemical Formula E19 was prepared by the same method as E1 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
  • a compound represented by Chemical Formula E21 was prepared by the same method as E1 in Example 1, except that each starting material was performed in the same manner as in the above scheme.
  • a compound represented by Chemical Formula E22 was prepared by the same method as E1 in Example 1, except that each starting material was performed in the same manner as in the above Scheme.
  • a glass substrate coated with a thin film having a thickness of 1000 A (IT0 (indi um t in oxi de)) was placed in distilled water in which a detergent was dissolved and ultrasonically cleaned.
  • IT0 in um t in oxi de
  • Fischer Co. was used as a detergent
  • distilled water was filtered secondly with a filter of Mi 1 1 ipore Co. as a distilled water.
  • the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following HI-A compound was thermally vacuum deposited to a thickness of 600 A on the prepared IT0 transparent electrode to form a hole injection layer.
  • the following HAT compound 50 A and the following HT—A compound 600 A were sequentially vacuum deposited on the hole injection layer to form a hole transport layer.
  • the light emitting layer was formed by vacuum depositing the following BH compound and BD compound at a weight ratio of 25: 1 on the hole transport layer with a film thickness of 20 nm.
  • Compound (E1) of Example 1 and the following LiQ compound were vacuum-deposited at a weight ratio of 1: 1 on the emission layer to form an electron injection and transport layer at a thickness of 350 A.
  • Lithium fluoride (LiF) and aluminum at a thickness of 1000 A were sequentially deposited on the electron injection and transport layer to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 to 0.9 A / sec
  • the lithium fluoride of the cathode was maintained at 0.3 A / sec
  • the aluminum was maintained at a deposition rate of 2 A / sec.
  • the organic light emitting device was manufactured by maintaining 7 to 5 X ⁇ 5 torr.
  • An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compounds (E2 to E22) of Examples 2 to 22 instead of the compound (E1) of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound (ET—A to ET—K) instead of the compound (El) of Example 1.
  • the driving voltage and the luminous efficiency of the organic light emitting diodes manufactured in the above Experimental Example and Comparative Experimental Example were measured at a current density of 10 mA / cm 2 , and the time of 90% of the initial luminance at a current density of 20 mA / cm 2 ( T90) was measured. The results are shown in Tables 1 and 2 below.
  • the compound represented by Formula 1 according to the present invention can be used in the organic material layer capable of simultaneous electron injection and electron transport of the organic light emitting device.
  • the compound of Formula 1 according to the present invention is dibenzofuran (or dibenzothiophene) in triazine (or pyrimidine) and Driving voltage, efficiency and lifespan of organic light emitting diodes compared to compounds substituted with heteroaryl groups other than that of Formula 1 It was confirmed that it is remarkably excellent in terms of.
  • the compound of Formula 1 according to the present invention is remarkably superior in terms of driving voltage, efficiency and lifespan of an organic light emitting device as compared to a compound in which only triazine (or pyrimidine) is substituted for dibenzofuran (or dibenzothiophene).
  • dibenzofuran or dibenzo thiophene
  • the organic light emitting device is significantly superior in terms of driving voltage, efficiency and lifetime.
  • Substrate 2 Anode

Abstract

The present invention provides a novel heterocyclic compound and an organic light emitting element using the same.

Description

【발명의 명칭】  [Name of invention]
신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자  Novel heterocyclic compound and organic light emitting device using the same
【기술분야】 Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2017년 1월 20일자 한국 특허 출원 제 10-201그 0009884호 및 2018년 1월 5일자 한국 특허 출원 제 10-2018-0001717호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 신규한 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-201 No. 0009884 dated January 20, 2017 and Korean Patent Application No. 10-2018-0001717 dated January 5, 2018. All content disclosed in the literature is included as part of this specification. The present invention relates to a novel heterocyclic compound and an organic light emitting device comprising the same.
【배경기술】 Background Art
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공 -이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤 (exc i ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게. 된다ᅳ 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. 【선행기술문헌】 In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent research on the luminance, driving voltage, and response speed. The organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode. The organic layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer. When a voltage is applied between two electrodes in the structure of the organic light emitting diode, holes are injected into the organic material layer at the anode and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. It shines when this exciton falls back to the ground. The development of new materials is continuously required for the organic materials used in the organic light emitting device as described above. Prior Art Documents
【특허문헌】  [Patent literature]
(특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호  (Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 신규한 헤테로고리 화합물 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel heterocyclic compound compound and an organic light emitting device comprising the same.
【기술적 해결방법】 Technical Solution
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.  The present invention provides a compound represented by the following formula (1).
Figure imgf000003_0001
Figure imgf000003_0001
)^은 0또는 S이고, ) ^ Is 0 or S,
, ¾ 및 X4는 각각 독립적으로 N 또는 CH이고, , ¾ and X 4 are each independently N or CH,
Li 및 L2는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌; N , 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C2-60 헤테로아릴렌이고, Li and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6 - 60 arylene; Substituted or unsubstituted C 2 -60 heteroarylene comprising one or more of N, 0 and S,
Ri 및 ¾는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 N, 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C2-60 헤테로아릴이고, Ri and ¾ are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more of N, 0 and S,
R3는 각각 독립적으로 1개 또는 2개의 시아노로 치환된 C6-60 아릴이고, n은 1 또는 2의 정수이다. 또한, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 게 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로세 상기 유기물층 중 1층 이상은 전술한 본 발명와화합물을 포함하는 유기 발광 소자를 제공한다. Each R 3 is independently C 6 -60 aryl, substituted with one or two cyano, n is an integer of 1 or 2. In addition, the present invention is a first electrode; A crab 2 electrode provided to face the first electrode; And an organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode. One or more layers of the organic material layers provide an organic light emitting device including the compound of the present invention described above.
[발명의 효과] [Effects of the Invention]
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며 , 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.  The compound represented by Chemical Formula 1 may be used as a material of the organic material layer of the organic light emitting diode, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting diode. In particular, the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 기판 ( 1), 양극 (2) , 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. As shown in FIG.
도 2는 기판 ( 1) , 양극 (2) , 정공주입층 (5) , 정공수송층 (6) , 발광층 (7) , 전자수송층 (8) 및 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다 【발명의 실시를 위한 형태】  2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8 and a cathode 4. [Form for implementation of invention]
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.  Hereinafter, the present invention will be described in more detail to aid in understanding the present invention. The present invention provides a compound represented by the following formula (1).
[화학식 1] [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
)^는 0또는 s이고, ) ^ Is 0 or s,
, ¾ 및 ¾는 각각 독립적으로 N또는 -CH이고,  , ¾ and ¾ are each independently N or -CH,
Li 및 L2 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌; N , 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C2-60 헤테로아릴렌이고, Li and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6 - 60 arylene; Substituted or unsubstituted C 2 -60 heteroarylene comprising one or more of N, 0 and S,
Ri 및 ¾는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 N , 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C2-60 헤테로아릴이고, Ri and ¾ are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more of N, 0 and S,
¾는 각각 독립적으로 1개 또는 2개의 시아노로 치환된 C6-60 아릴이고, n은 1 또는 2의 정수이다. ¾ is each independently C 6 -60 aryl substituted with one or two cyano, n is an integer of 1 or 2.
본 명세서에서, ; 또 다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기 알킬술폭시기; 아릴술폭시기; 실뮐기; 붕소기; 알킬기; 사이클로알킬기 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기 아랄킬아민기; 헤테로아릴아민기 ; 아릴아민기; 아릴포스핀기; 또는 N, 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, In the present specification, means a bond connected to another substituent. As used herein, the term "substituted or unsubstituted" is deuterium; Halogen group nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group phosphine oxide group; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group alkyl sulfoxy group; Aryl sulfoxy group; Threading; Boron group; An alkyl group; Cycloalkyl group alkenyl group; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group Aralkyl amine group; Heteroarylamine group; Arylamine group; Aryl phosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups including one or more of N, 0 and S atoms, or two or more substituents of the above-described substituents connected or substituted. . For example, "a substituent to which two or more substituents are linked" may be a biphenyl group. That is, the biphenyl group is an aryl group It may also be interpreted as a substituent to which two phenyl groups are linked. Although carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, but may be a compound of the following structure,
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되 것은 아니다.
Figure imgf000006_0001
In the present specification, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure imgf000006_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다ᅳ
Figure imgf000006_0002
In this specification, although carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
Figure imgf000007_0001
Figure imgf000007_0001
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t_부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본, 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t—부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소 브름 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는. 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n—프로필, 이소프로필, 부틸, n-부틸, 이소부틸, t ert—부틸, sec-부틸, 1_메틸-부틸, 1-에틸-부틸, 펜틸, n—펜틸, 이소펜틸, 네오펜틸, t er t -펜틸, 핵실, η-핵실, 1—메틸펜틸, 2-메틸펜틸, 4-메틸 -2-펜틸, 3 , 3-디메틸부틸, 2ᅳ에틸부틸, 헵틸, η-헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸 옥틸, η-옥틸, tert-옥틸, 1—메틸헵틸 2-에틸핵실, 2-프로필펜틸, η—노닐, 2 , 2-디메틸헵틸, 1—에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5—메틸핵실 등이 있으나, 이들에 한정되지 않는다 . 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다ᅳ 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1—프로페닐, 이소프로페닐, 1-부테닐, 2—부테닐, 3—부테닐, 1—펜테닐, 2-펜테닐, 3—펜테닐, 3-메틸— 1-부테닐 1 , 3-부타디에닐, 알릴, 1-페닐비닐 -1一 일, 2-페닐비닐 -1-일, 2 , 2-디페닐비닐 -1-일, 2一페닐—2— (나프틸 -1-일)비닐 -1-일 2 , 2—비스 (디페닐ᅳ 1—일)비닐 -1—일 , 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 파르면 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3-디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4-메틸사이클로핵실, 2 , 3- 디메틸사이클로핵실, 3 , 4 , 5-트리메틸사이클로핵실, 4-tert—부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 폴루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 In the present specification, specifically, the silyl group includes trimethylsilyl group, triethylsilyl group, t_butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. However, the present invention is not limited thereto. In the present specification, the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group, and the like. In the present specification, examples of the halogen group include fluorine, chlorine bromide or iodine. In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has carbon number of . 1 to 6. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1_methyl-butyl, 1-ethyl-butyl, pentyl, n—pentyl, isopentyl, neopentyl, ter t -pentyl, nuclear chamber, η-nuclear chamber, 1—methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2 ᅳ ethyl Butyl, heptyl, η-heptyl, 1-methylnuclear, cyclopentylmethyl, cyclonuxylmethyl octyl, η-octyl, tert-octyl, 1-methylheptyl 2-ethylnucleic, 2-propylpentyl, η-nonyl, 2, 2-dimethylheptyl, 1-ethyl-propyl, 1, 1-dimethyl-propyl, isonuclear chamber, 2-methylpentyl, 4-methylnuclear chamber, 5-methylnuclear chamber, It is not limited to these. In the present specification, the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl- 1- Butenyl 1, 3-butadienyl, allyl, 1-phenylvinyl-1 uni day, 2-phenylvinyl -1-yl, 2, 2-diphenylvinyl -1-yl, 2 uniphenyl—2— (naph Yl-1-yl) vinyl-1-yl 2, 2-bis (diphenyl ᅳ 1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited to these. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. In another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclonuclear chamber, 3-methylcyclonuclear chamber, 4-methylcyclonuclear chamber, 2, 3-dimethylcyclonuclear chamber, 3, 4, 5-trimethylcyclonuclear chamber, 4-tert-butylcyclonuclear chamber, cycloheptyl, cyclooctyl, and the like, but is not limited thereto. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto. In the present specification, a polorerenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. The fluorenyl group is substituted
Figure imgf000009_0001
Figure imgf000009_0001
될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, Ν, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기. 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기 (phenanthrol ine) , 티아졸릴기, 이소옥사졸릴기 , 옥사디아졸릴기 , 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서 , 아르알킬기, 아르알케닐기 , 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 .관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어세 해테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 해테로고리기에 관한 설명이 적용될 수 있다. 상기 화학식 1에서, 바람직하게는, ¾ , ¾ 및 X4 중 적어도 둘 이상이 N일 수 있으며 . 나머지는 CH이다. 즉, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1—1 내지 1-3 중 어느 하나로 표시될 수 있다. Can be. However, the present invention is not limited thereto. In the present specification, the heterocyclic group is a heterocyclic group containing one or more of 0, Ν, Si, and S as a dissimilar element, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyr group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group , Aridyl, pyridazine, pyrazinyl, quinolinyl, quinazolin, quinoxalinyl, phthalazinyl, pyrido pyrimidinyl, pyrido pyrazinyl, pyrazino pyrazinyl, isoquinoline Group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group. Dibenzothiophene group, benzofuranyl group, phenanthroline group (phenanthrol ine), thiazolyl group, isoxoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group and dibenzofura Although there exist a nil group etc., it is not limited to these. In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group of the aralkyl group alkylaryl group and the alkylamine group is the same as the example of the alkyl group described above. In the present specification, the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group. In the present specification, the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, the description of the above-described aryl group except that arylene is a divalent group Can be applied. In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding. In the present specification, the heterocyclic ring is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding. In Formula 1, preferably, at least two or more of ¾, ¾ and X 4 may be N. The rest is CH. That is, the compound represented by Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1—1 to 1-3.
Figure imgf000010_0001
Figure imgf000010_0001
[화학식 1一 3] [Formula 1 一 3]
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0002
보다 바람직하게는, Ll 및 L2는 각각 독립적으로 단일 결합,
Figure imgf000011_0003
또는 ^ 일 수 있다. 바람직하게는, ¾ 및 ¾는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
More preferably, L1 and L 2 are each independently a single bond,
Figure imgf000011_0003
Or ^. Preferably, ¾ and ¾ may each be any one selected from the group consisting of:
Figure imgf000012_0001
바람직하게는, ¾는 각각 독립적으로 1개 또는 2개의 시아노로 치환된 페닐, 1개 또는 2개의 시아노로 치환된 비페닐릴, 1개 또는 2개의 시아노로 치환된 터페닐릴, 또는 1개 또는 2개의 시아노로 치환된 디메틸플로오레닐 중에서 선택되는 어느 하나일 수 있다. 바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나이다.
Figure imgf000012_0001
Preferably, ¾ is each independently phenyl substituted with 1 or 2 cyano, biphenylyl substituted with 1 or 2 cyano, terphenylyl substituted with 1 or 2 cyano, or 1 or It may be any one selected from dimethylfloorenyl substituted with two cyano. Preferably, the compound represented by the formula (1) is any one selected from the group consisting of:
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000013_0001
Figure imgf000013_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000014_0001
Figure imgf000014_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000015_0001
Figure imgf000015_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000016_0001
Figure imgf000016_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000017_0001
Figure imgf000017_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0001
Figure imgf000018_0002
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000019_0001
Figure imgf000019_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0003
상기 화학식 1로 표시되는 화합물은 하기 반응식 1, 반응식 2, 반응식 3및 반응식 4를 순차적으로 거친 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. The compound represented by Formula 1 may be prepared by the following Scheme 1, Scheme 2, Scheme 3, and Scheme 4 in a sequential manner. The manufacturing method may be more specific in the production examples to be described later.
[반웅식 1] [Banungsik 1]
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000022_0002
상기 반웅식 1 내지 4 중에서,
Figure imgf000022_0002
In the reaction form 1 to 4,
Xi, ¾, ¾, , Li, L2, R2j R3 및 n은 앞서 정의한 바와 같고, Yi, Y2, 및 Υ3는 할로겐이다. 또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광충, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 상기 전자수송층, 전자주입층, 또는 전자 주입 및 전자 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히 , 본 발명에 따른 화학식 1로 표시되는 화합물은 열적 안정성이 우수하고, 6.0 eV 이상의 깊은 HOMO 준위, 높은 삼중함 에너지 (ET) , 및 정공 안정성을 가지고 있다. 또한, 상기 화학식 1로 표시되는 화합물을 전자 주입 및 전자 수송을 동시에 할 수 있는 유기물 층에 사용할 경우, 당업계에서 사용하는 n-형 도편트를 흔합하여 사용할 수 있다. 또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. . 도 1은 기판 ( 1) , 양극. (2), 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.. 도 2는 기판 ( 1) , 양극 (2) , .정공주입층 (5), 정공수송층 (6), 발광층 (7) , 전자수송층 (8) .및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다ᅳ 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대 , 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극 , 유기물층 및 제 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sput ter ing)이나 전자빔 증발법 (e-beam evaporat i on)과 같은 PVD(physical Vapor Deposit ion)방법을 이용하여 , 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서 , 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩 , 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 제 1 전극은 양극이고, 상기 제 2.전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듬 산화물, 인듬주석 산화물 (IT0), 인듐아연 산화물 (IZ0)과 같은 금속 산화물; Ζη0:Α1 또는 SN02:Sb와 같은 금속과 '산화물의 조합; 폴리 (3-메틸티오펜), 폴리 [3,4—(에틸렌-1,2—디옥시)티오¾] 00丁), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리륨, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금;. LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 H0M0(highest occupi ed mo lecu l ar orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr i done)계열의 유기물, 페릴렌 (perylene). .계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄ᅵ 수 있는 물질로.정국에 .대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수'송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8一 히드록시—퀴놀린— 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAlq ; 10-히드록시벤조 퀴놀린 -금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P- 페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 ( sp i ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 해테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고 , 헤테로환 함유 화합물로는 카바졸 유도체 , 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도편트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물 , 금속 착체 등이 있다 . 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스타릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기' 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다.. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민ᅳ 스티릴테트라아민 등이 있으나 , 이에 한정되지 않는다 . 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8—히드록시퀴놀린의 A 1 착물; A 1 Q3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슴, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸 , 트리아졸, 이미다졸 , 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들.의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8ᅳ하이드록시퀴놀리나토 리튬. 비스 (8ᅳ 하이드록시퀴놀리나토)아연, 비스 (8—하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, . 트리스 (8—하이드록시퀴놀리나토)알루미늄, 트리스 (2ᅳ메틸—8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 1으하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2ᅳ메틸 -8-퀴놀리나토) (0—크레졸라토)갈륨, 비스 (2—메틸ᅳ 8-퀴놀리나토) ( 1—나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프틀라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조를 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. 실시예 KE1)
Figure imgf000029_0001
Xi, ¾, ¾,, Li, L 2 , R 2j R 3 and n are as defined above and Yi, Y 2 , and Υ 3 are halogen. The present invention also provides an organic light emitting device including the compound represented by Chemical Formula 1. In one embodiment, the present invention comprises a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do. The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting charge, an electron transport layer, an electron injection layer and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. In addition, the organic layer may include a hole injection layer, a hole transport layer, or a layer for simultaneously injecting and transporting the hole injection layer, the hole transport layer, or a layer for simultaneously injecting and transporting the hole is represented by the formula (1) It includes a compound represented. In addition, the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1. In addition, the organic layer may include an electron transport layer, or an electron injection layer, the electron transport layer, or the electron injection layer comprises a compound represented by the formula (1). In addition, the electron transport layer, the electron injection layer, or a layer for simultaneously injecting and transporting electrons includes a compound represented by the formula (1). In particular, the compound represented by Formula 1 according to the present invention has excellent thermal stability, has a deep HOMO level of 6.0 eV or higher, high triplet energy (ET), and hole stability. In addition, electron injection and electron transport of the compound represented by the formula (1) When used in the organic layer that can be done simultaneously, n-type dopants used in the art can be used in combination. In addition, the organic material layer may include a light emitting layer and an electron transport layer, and the electron transport layer may include a compound represented by Chemical Formula 1. In addition, the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2. . 1 shows a substrate 1 and an anode. (2), the example of the organic light emitting element which consists of the light emitting layer 3 and the cathode 4 is shown. In such a structure, the compound represented by Chemical Formula 1 may be included in the light emitting layer. FIG. 2 illustrates a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, and a light emitting layer. (7), an electron transport layer (8), and an example of an organic light emitting element consisting of a cathode (4). In such a structure, the compound represented by the formula (1) is the hole injection layer, hole transport layer, light emitting layer And it may be included in one or more layers of the electron transport layer. The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1. In addition, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. In this case, such as sputtering or e-beam evaporation, Using a physical vapor deposit ion (PVD) method, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode, and including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon. After forming the organic layer, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate. In addition, the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto. In addition to such a method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (W0 2003/012890). However, the manufacturing method is not limited thereto. In one example, the first electrode is an anode, the second . The electrode is a cathode, or the first electrode is a cathode, and the second electrode is an anode. As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, rhythm oxide, rhodium tin oxide (IT0), indium zinc oxide (IZ0); A combination of a metal such as Ζη0: Α1 or SN0 2 : Sb and an ' oxide; Conductive polymers such as poly (3-methylthiophene), poly [3,4— (ethylene-1,2-dioxy) thio¾], 00 poly), polypyrrole and polyaniline, and the like, but are not limited thereto. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material may include magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, Metals such as aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto. The hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. It is preferable that H0M0 (highest occupied molecu ar arbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic layer. Specific examples of the hole injection material include metal porphyr (in), oligothiophene, arylamine-based organics, hexanitrile nucleated azatriphenylene-based organics, quinacr i done-based organics, and perylene ( perylene) . . Organic, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer. The hole transport layer is a material that can transport holes from the anode or the hole injection layer to the light emitting layer as a hole transporting material. This large material is suitable. Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto. As the light emitting material has a hole and electron from the hole number, songcheung and the electron transport layer each as a transport material which may be a visible light by combining received, a high quantum efficiency for fluorescence and the phosphor is preferred. Specific examples include 8-hydroxy-quinoline-aluminum complexes (Alq 3 ); Carbazole series compounds; Dimer i zed styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Polymers of the poly (P-phenylenevinylene) (PPV) family; Spi ro compounds; Polyfluorene, rubrene and the like, but are not limited thereto. The light emitting layer may include a host material and a dopant material. The host material is a condensed aromatic ring derivative or a hetero ring-containing compound. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and the heterocyclic compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and the arylamino compound may be substituted or unsubstituted. At least one arylvinyl group is substituted with the above-described arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group ' and an arylamino group are substituted or unsubstituted. . Specifically, styryl amine, styryl diamine, styryl triamine styryl tetraamine and the like, but is not limited thereto. In addition, the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like. The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. As the electron transporting material, a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples include A 1 complex of 8—hydroxyquinoline; Complexes including A 1 Q 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, kale, ytterbium and samarium, each followed by an aluminum or silver layer. The electron injection layer is a layer for injecting electrons from the electrode, the electrons Compound which has the ability to transport, the electron injection effect from a cathode, the electron injection effect with respect to a light emitting layer or a light emitting material, prevents the movement of the excitons produced | generated in a light emitting layer to the hole injection layer, and is excellent in thin film formation ability. This is preferred. Specifically, they include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like . Derivatives, metal complex compounds and nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto. 8'hydroxyquinolinato lithium as the metal complex compound. Bis (8'hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese,. Tris (8—hydroxyquinolinato) aluminum, Tris (2 ᅳ methyl—8-hydroxyquinolinato) aluminum, Tris (8-hydroxyquinolinato) gallium, bis (1-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2 (methyl-8-quinolinato) ( 0—cresolato) gallium, bis (2-methylsulfone 8-quinolinato) (1—naphlato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtrato) gallium, etc. However, the present invention is not limited thereto. The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used. In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. The production of the compound represented by Chemical Formula 1 and the organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto. Example KE1)
Figure imgf000029_0001
E1-P1-A E1-P1-B E1-P1  E1-P1-A E1-P1-B E1-P1
상기 화학식 El— P1-A로 표시되는 화합물 (10.0 g, 38.0 麵 ol)과 상기 화학식 E1-P1-B로 표시되는 화합물 (10.0 g, 38.0 隱 ol)을 THF(100 mL)에 완전히 녹인 후, 탄산칼륨 (15.8 g, 114.0 隱 ol)을 물 60 mL에 용해시켜 첨가하였다. 테트라키스트리페닐ᅳ포스피노팔라듐 (1.3 g, 1.14隱 ol)을 넣은 후, 8시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 반응을 종결한 후, 탄산칼륨 용액을 제거하여 흰색 고체를 여과하였다. 여과된 흰색 고체를 THF 및 에틸아세테이트로 각각 2번씩 세척하여 상기 화학식 E1-P1로 표시되는 화합물 (13.5 g, 수율 8 )을 제조하였다.  After completely dissolving the compound represented by Formula El—P1-A (10.0 g, 38.0 μl ol) and the compound represented by Formula E1-P1-B (10.0 g, 38.0 μl ol) in THF (100 mL), Potassium carbonate (15.8 g, 114.0 μl) was dissolved in 60 mL of water and added. Tetrakistriphenylpyphosphinopalladium (1.3 g, 1.14 'ol) was added thereto, followed by heating and stirring for 8 hours. After the temperature was lowered to room temperature and the reaction was completed, the potassium carbonate solution was removed to filter the white solid. The filtered white solid was washed twice with THF and ethyl acetate twice to give the compound represented by Chemical Formula E1-P1 (13.5 g, yield 8).
Figure imgf000029_0002
Figure imgf000029_0002
상기 화학식 E1-P1로 표시되는 화합물 (13.5 g, 33.6 匪 ol)을 Acetonitrile(130 mL)에 완전히 녹인 후, 탄산칼륨 (13.9 g, 100.9 瞧 ol)을 물 55 mL에 용해시켜 첨가하였다. 상기 화학식 E1-P2-A로 표시되는 화합물 (10.2 g, 33.6 隱 ol)을 반웅 용액에 적가하였다. 반응을 종결한 후, 탄산.칼륨 용액을 제거하고 여과하여 흰색 고체를 여과하였다. 여과된 흰색 고체를 Ethanol 및 물로 각각 2번씩 세척하여 상기 화학식 E1-P2로 표시되는 화합물 (20.9 g, 수율 91%)을 제조하였다.  Compound (13.5 g, 33.6 μl ol) represented by Chemical Formula E1-P1 was completely dissolved in Acetonitrile (130 mL), and potassium carbonate (13.9 g, 100.9 μl ol) was dissolved in 55 mL of water and added. The compound represented by the above formula E1-P2-A (10.2 g, 33.6 μl ol) was added dropwise to the reaction solution. After the reaction was completed, the white carbonate solution was removed by filtration and filtration. The filtered white solid was washed twice with Ethanol and water, respectively, to prepare a compound represented by Chemical Formula E1-P2 (20.9 g, 91% yield).
Figure imgf000029_0003
Figure imgf000029_0003
E1-P3  E1-P3
E1-P2  E1-P2
상기 화학식 E1-P2로 표시되는 화합물 (2으 0 g, 29.3 mmol)과 화학식 E1-P3-A 화합물 (그 5 g, 29.3 mmol) 을 Dioxane (200 mL)에 완전히 녹인 후, 초산칼륨 (8.6 g, 87.8 mmol)을 첨가하여 가열 교반 하였다. 상온으로 온도를 낮추고 반웅을 종결한 후, 탄산칼륨 용액을 제거하고 여과하여 초산칼륨올 제거하였다. 여과 용액을 에탄올로 고체화 시켜 여과하였다. 흰색 고체를 에탄을로 각각 2번씩 세척하여 상기 화학식 E1-P3로 표시되는 화합물 (12.7 g, 수율 85%)을 제조하였다. ' Compound represented by Chemical Formula E1-P2 (0 g, 29.3 mmol) and Chemical Formula The E1-P3-A compound (5 g, 29.3 mmol) was completely dissolved in Dioxane (200 mL), and potassium acetate (8.6 g, 87.8 mmol) was added thereto, followed by heating and stirring. After the temperature was lowered to room temperature and reaction was completed, the potassium carbonate solution was removed and filtered to remove potassium acetate. The filtrate was solidified with ethanol and filtered. The white solid was washed twice with ethane each to prepare the compound represented by Chemical Formula E1-P3 (12.7 g, yield 85%). '
MS [M+H]+ = 512  MS [M + H] < + > = 512
Figure imgf000030_0001
상기 화학식 El— P3 로 표시되는 화합물 (12.0 g, 23.5 隱 οθ과 상기 화학식 El— A 로 표시되는 화합물 (6.3 g, 23.5 隱 ol)을 THF(120 mL)에 완전히 녹인 후, 탄산칼륨(9.7 g, 70.4 睡 ol)을 물 40 mL에 용해시켜 첨가하였다. 테트라키스트리페닐-포스피노팔라듐 (0.8 g, 0.704 mmol)을 넣은 후, 8시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 반응을 종결한 후, 탄산칼륨 용액을 제거하여 흰색 고체를 여과하였다. 여과된 흰색 고체를 THF 및 에틸아세테이트로 각각 2번씩 세척하여 상기 화학식 E1 로 표시되는 화합물 (11.1 g, 수율 77%)을 제조하였다.
Figure imgf000030_0001
After completely dissolving the compound represented by Chemical Formula El—P3 (12.0 g, 23.5 隱 οθ) and the compound represented by Chemical Formula El—A (6.3 g, 23.5 隱 ol) in THF (120 mL), potassium carbonate (9.7 g , 70.4 dl ol) were added by dissolving in 40 mL of water Tetrakistriphenyl-phosphinopalladium (0.8 g, 0.704 mmol) was added and stirred under heating for 8 hours. Then, the potassium carbonate solution was removed to filter the white solid, and the filtered white solid was washed twice with THF and ethyl acetate twice to prepare the compound represented by Chemical Formula E1 (11.1 g, yield 77%).
MS [M+H]+ = 617 실시예 2(E2)
Figure imgf000030_0002
MS [M + H] < + > = 617 Example 2 (E2)
Figure imgf000030_0002
E2-P1 E2-P1
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 Example 1 except that each starting material is the same as the reaction scheme
E1-P1과 동일한 방법으로 상기 화학식 E2-P1로 표시되는 화합물을 제조하였다. In the same manner as E1-P1, a compound represented by Chemical Formula E2-P1 was prepared.
MS [M+H]+ = 362
Figure imgf000031_0001
MS [M + H] < + > = 362
Figure imgf000031_0001
E2-P2  E2-P2
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1-P2과 동일한 방법으로 상기 화학식 E2-P2로 표시되는 화합물을 제조하였다.  A compound represented by Chemical Formula E2-P2 was prepared by the same method as E1-P2 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
MS [M+H] + = 644 MS [M + H] + = 644
Figure imgf000031_0002
Figure imgf000031_0002
E2-P2  E2-P2
E2-P3  E2-P3
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1-P3과 동일한 방법으로 상기 화학식 E2— P3로 표시되는 화합물을 제조하였다.  Except that each starting material was the same as the reaction scheme, a compound represented by the formula E2-P3 was prepared by the same method as E1-P3 of Example 1.
MS [M+H] + = 472  MS [M + H] + = 472
Figure imgf000031_0003
Figure imgf000031_0003
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 Example 1 except that each starting material was the same as the reaction scheme
E1 과 동일한 방법으로 상기 화학식 E2로 표시되는 화합물을 제조하였다. In the same manner as E1, a compound represented by Chemical Formula E2 was prepared.
MS [M+H] + = 653 MS [M + H] + = 653
Figure imgf000031_0004
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1一 P1과 동일한 방법으로 상기 화학식 E3— P1로 표시되는 화합물을 제조하였다.
Figure imgf000031_0004
Except that each starting material was the same as the reaction scheme, a compound represented by the formula E3-P1 was prepared in the same manner as in the E1 I P1 of Example 1.
Figure imgf000032_0001
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1-P1과 동일한 방법으로 상기 화학식 E3-P1로 표시되는 화합물을 제조하였다.
Figure imgf000032_0001
A compound represented by Chemical Formula E3-P1 was prepared by the same method as E1-P1 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
Figure imgf000032_0002
Figure imgf000032_0002
E3-P2  E3-P2
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1-P3과 동일한 방법으로 상기 화학식 E3-P3로 표시되는 화합물올 제조하였다.  Except that each starting material was the same as the reaction scheme, a compound represented by the formula E3-P3 was prepared in the same manner as in E1-P3 of Example 1.
Figure imgf000032_0003
Figure imgf000032_0003
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 동일한 방법으로 상기 화학식 E3 로 표시되는 화합물을 제조하였다. MS [M+H] + = 754 실시예 4(E4)
Figure imgf000033_0001
Except that each starting material was the same as the reaction scheme, in the same manner as in Example to prepare a compound represented by the formula (E3). MS [M + H] + = 754 Example 4 (E4)
Figure imgf000033_0001
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 동일한 방법으로 상기 화학식 E4 로 표시되는 화합물을 제조하였다. MS [M+H] + = 667 A compound represented by Chemical Formula E4 was prepared in the same manner as in Example 1, except that each starting material was used as in the scheme. MS [M + H] + = 667
Figure imgf000033_0002
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 E1 과 동일한 방법으로 상기 화학식 E5 로 표시되는 화합물을 제조하였다.
Figure imgf000033_0002
A compound represented by Chemical Formula E5 was prepared in the same manner as in Example E1 except that each starting material was performed in the same manner as in the above Scheme.
MS [M+H] + = 693 MS [M + H] + = 693
Figure imgf000033_0003
Figure imgf000033_0003
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E6 로 표시되는 화합물을 제조하였다.  Except that each starting material was the same as the reaction formula, the compound represented by the formula E6 was prepared in the same manner as in Example E1.
MS [M+H] + = 653 실시예 7(E7)
Figure imgf000034_0001
MS [M + H] + = 653 Example 7 (E7)
Figure imgf000034_0001
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E7 로 표시되는 화합물을 제조하였다.  Except that each starting material was the same as the reaction formula, the compound represented by the formula E7 was prepared in the same manner as in E1 of Example 1.
MS [M+H]+ = 693 MS [M + H] + = 693
Figure imgf000034_0002
Figure imgf000034_0002
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E8 로 표시되는 화합물을 제조하였다. Except that each starting material was the same as the reaction formula, a compound represented by the formula E8 was prepared in the same manner as in Example E1.
MS [M+H]+ = 652 MS [M + H] + = 652
Figure imgf000034_0003
Figure imgf000034_0003
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E9 로 표시되는 화합물을 제조하였다.  Except that each starting material was carried out in the same manner as described above, the compound represented by Chemical Formula E9 was prepared by the same method as E1 of Example 1.
MS [M+H]+ = 693 실시예 ΙΟ(ΕΙΟ)
Figure imgf000035_0001
MS [M + H] + = 693 Example ΙΟ (ΕΙΟ)
Figure imgf000035_0001
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 동일한 방법으로 상기 화학식 E10 로 표시되는 화합물을 제조하였다. MS [M+H]+ = 653 Except that each starting material was the same as the reaction formula, a compound represented by the formula E10 was prepared in the same manner as in Example. MS [M + H] + = 653
Figure imgf000035_0002
Figure imgf000035_0002
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 동일한 방법으로 상기 화학식 E11 로 표시되는 화합물을 제조하였다. MS [M+H]+ = 693 Except that each starting material was the same as the reaction scheme, the compound represented by the formula E11 was prepared in the same manner as in Example. MS [M + H] + = 693
Figure imgf000035_0003
Figure imgf000035_0003
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 동일한 방법으로 상기 화학식 E12 로 표시되는 화합물을 제조하였다. MS [M+H]+ - 653
Figure imgf000036_0001
A compound represented by Chemical Formula E12 was prepared in the same manner as in Example 1, except that each starting material was used in the same manner as described above. MS [M + H] + -653
Figure imgf000036_0001
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 Example 1 except that each starting material is the same as the reaction scheme
E1 과 동일한 방법으로 상기 화학식 E13 로 표시되는 화합물을 제조하였다. In the same manner as E1, a compound represented by Chemical Formula E13 was prepared.
MS [M+H] + = .653 MS [M + H] + = .653
Figure imgf000036_0002
Figure imgf000036_0002
각 출발물질을 상기 반웅식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E14 로 표시되는 화합물을 제조하였다.  Except that each starting material was carried out in the same manner as described above, the compound represented by Chemical Formula E14 was prepared in the same manner as in Example 1 E1.
MS [M+H] + = 652 . MS [M + H] + = 652.
Figure imgf000036_0003
Figure imgf000036_0003
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 El 과 동일한 방법으로 상기 화학식 E15 로 표시되는 화합물을 제조하였다. MS [M+H]+ = 577 Example 1 except that each starting material was the same as the reaction scheme In the same manner as El, the compound represented by Chemical Formula E15 was prepared. MS [M + H] + = 577
Figure imgf000037_0001
Figure imgf000037_0001
각 출발물질을 상기 반응식과 같이 하는 것을.제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E16 로 표시되는 화합물을 제조하였다.  Except that each starting material was the same as the reaction scheme. A compound represented by the above formula (E16) was prepared in the same manner as in Example 1 E1.
MS [M+H]+ = 693 MS [M + H] + = 693
Figure imgf000037_0002
Figure imgf000037_0002
각 출발물질을 상기 반웅식과 같이 하는 것올 제외하고는, 실시예 1의 동일한 방법으로 상기 화학식 E17 로 표시되는 화합물올 제조하였다. MS [M+H]+ = 577 Except that each starting material was performed in the same manner as described above, the compound represented by Chemical Formula E17 was prepared in the same manner as in Example 1. MS [M + H] + = 577
Figure imgf000037_0003
Figure imgf000037_0003
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E18 로 표시되는 화합물을 제조하였다. MS [M+H] + = 567 A compound represented by Chemical Formula E18 was prepared in the same manner as in E1 of Example 1, except that each starting material was performed in the same manner as in the above Scheme. MS [M + H] + = 567
Figure imgf000038_0001
Figure imgf000038_0001
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E19 로 표시되는 화합물을 제조하였다.  A compound represented by Chemical Formula E19 was prepared by the same method as E1 of Example 1, except that each starting material was performed in the same manner as in the above Scheme.
MS [M+H] + = 593 MS [M + H] + = 593
Figure imgf000038_0002
Figure imgf000038_0002
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 동일한 방법으로 상기 화학식 E20 로 표시되는 화합물을 제조하였다. MS [M+H] + = 745 실시예 2KE21)  Except that each starting material was the same as the reaction scheme, in the same manner as in Example to prepare a compound represented by the formula (E20). MS [M + H] + = 745 Example 2KE21)
Figure imgf000038_0003
Figure imgf000038_0003
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E21 로 표시되는 화합물을 제조하였다.  A compound represented by Chemical Formula E21 was prepared by the same method as E1 in Example 1, except that each starting material was performed in the same manner as in the above scheme.
MS [M+H] + = 669
Figure imgf000039_0001
MS [M + H] + = 669
Figure imgf000039_0001
각 출발물질을 상기 반응식과 같이 하는 것을 제외하고는, 실시예 1의 E1 과 동일한 방법으로 상기 화학식 E22 로 표시되는 화합물을 제조하였다.  A compound represented by Chemical Formula E22 was prepared by the same method as E1 in Example 1, except that each starting material was performed in the same manner as in the above Scheme.
MS [M+H]+ = 709 실험예 1 MS [M + H] + = 709 Experimental Example 1
IT0( indi um t in oxi de)가 1000 A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때ᅳ 세제로는 피셔사 (Fi scher Co . ) 제품을 사용하였으며, 증류수로는 밀리포어사 (Mi 1 1 ipore Co . ) 제품의 필터 (Fi l ter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 IT0 투명 전극 위에 하기 HI-A 화합물을 600 A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 상에 하기 HAT 화합물 50 A 및 하기 HT— A 화합물 600 A를 순차적을 진공 증착하여 정공 수송층을 형성하였다. 이어서, 상기 정공 수송층 상에 막 두께 20 nm로 하기 BH 화합물 및 BD 화합물을 25 : 1의 중량비로 진공 증착하여 발광층을 형성하였다. 상기 발광층 상에 실시예 1의 화합물 (E1)과 하기 LiQ 화합물을 1 : 1 중량비로 진공 증착하여 350 A의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 상에 순차적으로 10 A의 두께로 리튬 플루오라이드 (LiF)와 1000 A 두께로 알루미늄을 증착하여 음극을 형성하였다. 상기의 과정에서 유기물의 증착 속도는 0.4 내지 0.9 A/sec를 유지하였고, 음극의 리튬 플루오라이드는 0.3 A/sec , 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10— 7 내지 5 X ΚΓ5 torr를 유지하여, 유기발광소자를 제조하였다. A glass substrate coated with a thin film having a thickness of 1000 A (IT0 (indi um t in oxi de)) was placed in distilled water in which a detergent was dissolved and ultrasonically cleaned. In this case, Fischer Co. was used as a detergent, and distilled water was filtered secondly with a filter of Mi 1 1 ipore Co. as a distilled water. After washing IT0 for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes. After washing the distilled water, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. The following HI-A compound was thermally vacuum deposited to a thickness of 600 A on the prepared IT0 transparent electrode to form a hole injection layer. The following HAT compound 50 A and the following HT—A compound 600 A were sequentially vacuum deposited on the hole injection layer to form a hole transport layer. Subsequently, the light emitting layer was formed by vacuum depositing the following BH compound and BD compound at a weight ratio of 25: 1 on the hole transport layer with a film thickness of 20 nm. Compound (E1) of Example 1 and the following LiQ compound were vacuum-deposited at a weight ratio of 1: 1 on the emission layer to form an electron injection and transport layer at a thickness of 350 A. Lithium fluoride (LiF) and aluminum at a thickness of 1000 A were sequentially deposited on the electron injection and transport layer to form a cathode. In the above process, the deposition rate of the organic material was maintained at 0.4 to 0.9 A / sec, the lithium fluoride of the cathode was maintained at 0.3 A / sec, and the aluminum was maintained at a deposition rate of 2 A / sec. — The organic light emitting device was manufactured by maintaining 7 to 5 X ΓΓ 5 torr.
Figure imgf000041_0001
실험예 2 내지 22
Figure imgf000041_0001
Experimental Examples 2 to 22
실시예 1의 화합물 (E1) 대신 실시예 2 내지 22의 화합물 (E2 내지 E22)을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기발광소자를 제조하였다. An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compounds (E2 to E22) of Examples 2 to 22 instead of the compound (E1) of Example 1.
Figure imgf000042_0001
Figure imgf000042_0001
Figure imgf000042_0002
o o o o
Figure imgf000042_0002
oooo
o o o o
Figure imgf000042_0003
Figure imgf000042_0003
ET-J ET-K  ET-J ET-K
비교 실험예 1내지 11 Comparative Experimental Examples 1 to 11
실시예 1의 화합물 (El) 대신 상기의 화합물 (ET— A 내지 ET— K)을 사용하는 것올 제외하고는, 상기 실험예 1과 동일한 방법으로 유기발광소자를 제조하였다. 상기 실험예 및 비교 실험예에서 제조한 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 구동전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류 밀도에서 초기 휘도 대비 90%가 되는 시간 (T90)을 측정하였다. 상기 결과를 하기 표 1 및 2에 나타내었다. An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using the compound (ET—A to ET—K) instead of the compound (El) of Example 1. The driving voltage and the luminous efficiency of the organic light emitting diodes manufactured in the above Experimental Example and Comparative Experimental Example were measured at a current density of 10 mA / cm 2 , and the time of 90% of the initial luminance at a current density of 20 mA / cm 2 ( T90) was measured. The results are shown in Tables 1 and 2 below.
【표 11 Table 11
전압 효율 — 수명 (h) 구분  Voltage Efficiency — Life (h) Classification
(V@10 mA/cm2) (cd/A@10 mA/cm2) (x, y) T90 at 20 mA/cm2) 실험예 KE1) r 4.47 5.01 270 실험예 2(E2) 4.50 4.95 300 실험예 3(E3) 4.66 4.80 410 실험예 4(E4) 4.51 4.94 314 실험예 5(E5) 4.45 5.05 266 실험예 6(E6) 4.40 5. 10 245 실험예 7(E7) 4.39 5.08 239 실험예 8(E8) 4.39 5. 11 230 실험예 9(E9 ) 4.41 5.09 255 실험예 10(E10) 4.43 5.06 261 실험예 ll(Ell) 4.42 5. 13 244 실험예 12(E12) 4.33 5.08 240 실험예 13(E13) 4.48 5.03 284 실험예 14(E14) 4.37 5. 11 (0. 142 , 0.096) 266 실험예 15(E15) 4.47 4.99 299 실험예 16(E16) 4.40 5. 15 (0. 142 , 0.097) 235 실험예 17(E17) 4.33 5.20 233 실험예 18(E18) 4.47 5.00 301 실험예 19(E19) 4.32 5. 18 231 실험예 20(E20) 4.41 5.07 287 실험예 2KE21) 4.40 5.08 255 실험예 22(E22) 4.41 5. 12 o o o o o o o o o o 260 (V @ 10 mA / cm 2 ) (cd / A @ 10 mA / cm 2 ) (x, y) T90 at 20 mA / cm 2 ) Experimental Example KE1) r 4.47 5.01 270 Experimental Example 2 (E2) 4.50 4.95 300 Experimental Example 3 (E3) 4.66 4.80 410 Experimental Example 4 (E4) 4.51 4.94 314 Experimental Example 5 (E5) 4.45 5.05 266 Experimental Example 6 (E6) 4.40 5. 10 245 Experimental Example 7 (E7) 4.39 5.08 239 Experimental Example 8 (E8) 4.39 5. 11 230 Experimental Example 9 (E9) 4.41 5.09 255 Experimental Example 10 (E10) 4.43 5.06 261 Experimental Example ll (Ell) 4.42 5. 13 244 Experimental Example 12 (E12) 4.33 5.08 240 Experimental Example 13 ( E13) 4.48 5.03 284 Experimental Example 14 (E14) 4.37 5. 11 (0.142, 0.096) 266 Experimental Example 15 (E15) 4.47 4.99 299 Experimental Example 16 (E16) 4.40 5. 15 (0.142, 0.097) 235 Experimental Example 17 (E17) 4.33 5.20 233 Experimental Example 18 (E18) 4.47 5.00 301 Experimental Example 19 (E19) 4.32 5. 18 231 Experimental Example 20 (E20) 4.41 5.07 287 Experimental Example 2KE21 4.40 5.08 255 Experimental Example 22 (E22) ) 4.41 5. 12 oooooooooo 260
【표 2] [Table 2]
o o o o o o o o o o o o o o  o o o o o o o o o o o o o o o
o o o o o o o o o o  o o o o o o o o o o o
 、
Figure imgf000043_0001
상기 표 1에 기재된 바와 같이, 본 발명에 따른 화학식 1로 표시되는 화합물은 유기 발광 소자의 전자 주입 및 전자 수송을 동시에 할 수 있는 유기물 층에 사용될 수 있음을 확인할 수 있었다.. 또한, 상기 표 1의 실험예와 상기 표 2의 비교 실험예 2 3 4 8 및 9를 비교하면, 본 발명에 따른 화학식 1의 화합물은, 디벤조퓨란 (또는 디벤조사이오펜)에 트리아진 (또는 피리미딘)과 화학식 1과는 다른 다른 해테로 아릴기가 치환된 화합물에 비하며 유기 발광 소자의 구동 전압, 효율 및 수명 면에서 현저히 우수함을 확인할 수 있었다. 또한, 상기 표 1의 실험예와 상기 표 2의 비교 실험예 1를 비교하면, 본 발명에 따른 화학식 1의 화합물은, 디벤조퓨란 (또는 디벤조사이오펜)에 시아노기 및 화학식 1과는 다른 헤테로 아릴기가 치환된 화합물에 비하여 유기 발광 소자의 구동 전압, 효율 및 수명 면에서 현저히 우수함을 확인할 수 있었다, 또한, 상기 표 1의 실험예와 상기 표 2의 비교 실험예 5, 6 및 7 를 비교하면, 본 발명에 따른 화학식 1의 화합물은, 디벤조퓨란 (또는 디벤조사이오펜)에 트리아진 (또는 피리미딘)만이 치환된 화합물에 비하여 유기 발광 소자의 구동 전압, 효율 및 수명 면에서 현저히 우수함을 확인할 수 있었다. 또한, 상기 표 1의 실험예와 상기 표 2의 비교 실험예 10를 비교하면, 본 발명에 따른 화학식 1의 화합물은, 디벤조퓨란 (또는 디벤조사이오펜)에 시아노기가 아닌 다른 헤테로 아릴기로만 이루어진 치환된 화합물에 비하여 유기 발광 소자의 구동 전압, 효율 및 수명 면에서 현저히 우수함을 확인할 수 있었다. 또한, 상기 표 1의 실험예와 상기 표 2의 비교 실험예 11 를 비교하면, 본 발명에 따른 화학식 1의 화합물은, 디벤조퓨란 (또는 디벤조사이오펜)의 서로 다른 페닐기에 각각 트리아진 (또는 피리미딘)과 시아노기가 치환된 화합물에 비하여 유기 발광 소자의 구동 전압, 효율 및 수명 면에서 현저히 우수함을 확인할 수 있었다.
Figure imgf000043_0001
As shown in Table 1, it was confirmed that the compound represented by Formula 1 according to the present invention can be used in the organic material layer capable of simultaneous electron injection and electron transport of the organic light emitting device. Comparing Experimental Example of Table 2 and Comparative Experimental Example 2 3 4 8 and 9 of Table 2, the compound of Formula 1 according to the present invention is dibenzofuran (or dibenzothiophene) in triazine (or pyrimidine) and Driving voltage, efficiency and lifespan of organic light emitting diodes compared to compounds substituted with heteroaryl groups other than that of Formula 1 It was confirmed that it is remarkably excellent in terms of. In addition, when comparing Experimental Example 1 of Table 1 and Comparative Experimental Example 1 of Table 2, the compound of Formula 1 according to the present invention is different from the cyano group and the formula 1 in dibenzofuran (or dibenzothiophene) Compared with the compound substituted with the hetero aryl group, it was confirmed that the organic light emitting device is significantly superior in terms of driving voltage, efficiency and lifespan. Furthermore, the experimental examples of Table 1 and Comparative Experimental Examples 5, 6 and 7 of Table 2 were compared. In contrast, the compound of Formula 1 according to the present invention is remarkably superior in terms of driving voltage, efficiency and lifespan of an organic light emitting device as compared to a compound in which only triazine (or pyrimidine) is substituted for dibenzofuran (or dibenzothiophene). Could confirm. In addition, when comparing the experimental example of Table 1 and Comparative Experimental Example 10 of Table 2, the compound of Formula 1 according to the present invention, dibenzofuran (or dibenzo thiophene) in the heteroaryl group other than the cyano group Compared with the substituted compound consisting of only, it was confirmed that the organic light emitting device is significantly superior in terms of driving voltage, efficiency and lifetime. In addition, when comparing the experimental example of Table 1 and Comparative Example 11 of Table 2, the compound of formula 1 according to the present invention, each of the triazine (dibenzofuran (or dibenzo Or pyrimidine) and a cyano group, the organic light-emitting device was found to be remarkably superior in terms of driving voltage, efficiency and lifetime.
【부호의 설명】 [Explanation of code]
1 : .기판 2: 양극 1. Substrate 2: Anode
3: 발광층 4: 음극  3: light emitting layer 4: cathode
5: 정공주입층 6 정공수송층  5: Hole injection layer 6 Hole transport layer
. 7: 발광층 8 : 전자수송층  . 7: light emitting layer 8: electron transport layer

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
하기 화학식 1로 표시되는 화합물:  Compound represented by the following formula (1):
Figure imgf000045_0001
Figure imgf000045_0001
상기 화학식 1에서,  In Chemical Formula 1,
Xi은 0또는 S이고,  Xi is 0 or S,
¾ , ¾ 및 X4는 각각 독립적으로 N또는 CH이고, ¾, ¾ and X 4 are each independently N or CH,
Li 및 L2는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌; N, 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C2-60 헤테로아릴렌이고, Li and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6 - 60 arylene; Substituted or unsubstituted C 2 -60 heteroarylene comprising one or more of N, 0 and S,
Ri 및 ¾는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 N, 0 및 S 중 1개 이상을 포함하는 치환 또는 비치환된 C260 헤테로아릴이고, Ri and ¾ are each independently substituted or unsubstituted C 6 -60 aryl; Or a substituted or unsubstituted C 2 —60 heteroaryl comprising one or more of N, 0 and S,
R3는 각각 독립적으로 1개 또는 2개의 시아노로 치환된 C6-60 아릴이고, n는 1 또는 2의 정수이다. Each R 3 is independently C 6 -60 aryl, substituted with one or two cyano, n is an integer of 1 or 2.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
¾ᅳ 및 중 적어도 둘 이상이 ί^ , 화합물.  At least two of ¾ and ί ^, a compound.
【청구항 3] [Claim 3]
제 1항에 있어서,  The method of claim 1,
및 L2는 각각 독립적으로 단일 결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물: And L 2 is each independently a single bond or any one selected from the group consisting of:
Figure imgf000046_0001
Figure imgf000046_0001
【청구항 4】 [Claim 4]
제 1항에 있어서 및 L2는 각각 독립적으로 단일 결합, 또는 . 인, 화합물 The compound of claim 1 and L 2 are each independently a single bond, or. Phosphorus compounds
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
Ri 및 ¾는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어. 하나인 화합물:  Ri and ¾ are each independently selected from the group consisting of One compound:
Figure imgf000046_0002
Figure imgf000046_0002
【청구항 6】 [Claim 6]
제 1항에 있어서  The method of claim 1
¾는 각각 독립적으로
Figure imgf000046_0003
Figure imgf000047_0001
¾ are each independently
Figure imgf000046_0003
Figure imgf000047_0001
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
¾는 1개 또는 2개의 시아노로 치환된 페닐, 1개 또는 2개의 시아노로 치환된 비페닐릴, 1개 또는 2개의 시아노로 치환된 터페닐릴, 또는 1개 또는 2개의 시아노로 치환된 디메틸플로오레닐 중에서 선택되는 어느 하나인, 화합물.  ¾ is phenyl substituted with 1 or 2 cyano, biphenylyl substituted with 1 or 2 cyano, terphenylyl substituted with 1 or 2 cyano, or dimethyl substituted with 1 or 2 cyano Compound which is any one selected from fluorenyl.
【청구항 8] [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나인  The compound represented by Formula 1 is any one selected from the group consisting of
Figure imgf000047_0002
//:/ O 98S008S2M12-S28SZAV
Figure imgf000047_0002
//: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000048_0001
Figure imgf000048_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000049_0001
Figure imgf000049_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000051_0001
Figure imgf000051_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000052_0001
Figure imgf000052_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0001
Figure imgf000053_0002
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000054_0001
Figure imgf000054_0001
//:/ O 98S008S2M12-S28SZAV //: / O 98S00 8 S2M12- S 2 8 S Z A V
Figure imgf000055_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000056_0004
Figure imgf000056_0004
【청구항 9】 [Claim 9]
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 게 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 8항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자. 【청구항 10】 A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound according to any one of claims 1 to 8. That is, an organic light emitting device. [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 화합물을 포함하는 유기물충은 전자주입층; 전자수송층; 또는 전자주입과 전자수송을 동시에 하는 층인 것을 특징으로 하는, 유기 발광 소자.  The organic material insect containing the compound is an electron injection layer; Electron transport layer; Or a layer that simultaneously performs electron injection and electron transport.
PCT/KR2018/000486 2017-01-20 2018-01-10 Novel heterocyclic compound and organic light emitting element using same WO2018135798A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/341,884 US11228001B2 (en) 2017-01-20 2018-01-10 Hetero-cyclic compound and organic light emitting device comprising the same
EP18741013.9A EP3527564B1 (en) 2017-01-20 2018-01-10 Novel heterocyclic compound and organic light emitting element using same
JP2019521771A JP6801162B2 (en) 2017-01-20 2018-01-10 New heterocyclic compounds and organic light emitting devices using them
CN201880004727.3A CN110023306B (en) 2017-01-20 2018-01-10 Novel heterocyclic compound and organic light-emitting device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0009884 2017-01-20
KR20170009884 2017-01-20
KR10-2018-0001717 2018-01-05
KR1020180001717A KR102003351B1 (en) 2017-01-20 2018-01-05 Novel hetero-cyclic compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2018135798A1 true WO2018135798A1 (en) 2018-07-26

Family

ID=62909179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000486 WO2018135798A1 (en) 2017-01-20 2018-01-10 Novel heterocyclic compound and organic light emitting element using same

Country Status (1)

Country Link
WO (1) WO2018135798A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134443A (en) * 2018-09-12 2019-01-04 陕西莱特光电材料股份有限公司 A kind of novel electroluminescent layer material and the preparation method and application thereof
JP2020507575A (en) * 2017-04-13 2020-03-12 エルジー・ケム・リミテッド Novel heterocyclic compound and organic light emitting device containing the same
WO2020111663A1 (en) * 2018-11-26 2020-06-04 두산솔루스 주식회사 Organic compound and organic electroluminescent device using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20150076129A (en) * 2013-12-26 2015-07-06 롬엔드하스전자재료코리아유한회사 An organic electroluminescent compound and an organic electroluminescent device comprising the same
US20150336937A1 (en) * 2014-05-21 2015-11-26 Samsung Electronics Co., Ltd. Carbazole compound and organic light emitting device incuding the same
KR20160028524A (en) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 Materials for organic light emitting devices
WO2016129672A1 (en) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
KR20160112111A (en) * 2015-03-18 2016-09-28 에스에프씨 주식회사 Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20150076129A (en) * 2013-12-26 2015-07-06 롬엔드하스전자재료코리아유한회사 An organic electroluminescent compound and an organic electroluminescent device comprising the same
KR20160028524A (en) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 Materials for organic light emitting devices
US20150336937A1 (en) * 2014-05-21 2015-11-26 Samsung Electronics Co., Ltd. Carbazole compound and organic light emitting device incuding the same
WO2016129672A1 (en) * 2015-02-13 2016-08-18 コニカミノルタ株式会社 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
KR20160112111A (en) * 2015-03-18 2016-09-28 에스에프씨 주식회사 Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507575A (en) * 2017-04-13 2020-03-12 エルジー・ケム・リミテッド Novel heterocyclic compound and organic light emitting device containing the same
US11081655B2 (en) 2017-04-13 2021-08-03 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device using the same
CN109134443A (en) * 2018-09-12 2019-01-04 陕西莱特光电材料股份有限公司 A kind of novel electroluminescent layer material and the preparation method and application thereof
WO2020111663A1 (en) * 2018-11-26 2020-06-04 두산솔루스 주식회사 Organic compound and organic electroluminescent device using same

Similar Documents

Publication Publication Date Title
KR102017790B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2018074845A1 (en) Organic light-emitting element
WO2019031679A1 (en) Organic light emitting device
KR102064992B1 (en) Novel hetero ring compound and organic light emitting device comprising the same
KR102080289B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20150120875A (en) New compounds and organic electronic device using the same
KR102052710B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2018216887A1 (en) Novel compound and organic light-emitting device using same
WO2018216903A1 (en) Novel compound and organic light-emitting device using same
KR20180086126A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102576227B1 (en) Novel compound and organic light emitting device comprising the same
WO2019208991A1 (en) Novel heterocyclic compound and organic light emitting device using same
WO2018190522A1 (en) Novel compound and organic light emitting device comprising same
WO2018135798A1 (en) Novel heterocyclic compound and organic light emitting element using same
KR20200018322A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102623893B1 (en) Novel compound and organic light emitting device comprising the same
KR102032954B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20200018321A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20200020582A (en) Novel compound and organic light emitting device comprising the same
WO2019212325A1 (en) Novel compound and organic light emitting diode using same
KR20190122547A (en) Novel compound and organic light emitting device comprising the same
KR101876678B1 (en) Carbazole based compound and organic light emitting device comprising the same
WO2018128425A1 (en) Iridium complex and organic light emitting element using same
WO2018084426A1 (en) Novel heterocyclic compound, and organic light-emitting device using same
KR20180038969A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521771

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018741013

Country of ref document: EP

Effective date: 20190516

NENP Non-entry into the national phase

Ref country code: DE