WO2018216903A1 - Novel compound and organic light-emitting device using same - Google Patents

Novel compound and organic light-emitting device using same Download PDF

Info

Publication number
WO2018216903A1
WO2018216903A1 PCT/KR2018/004249 KR2018004249W WO2018216903A1 WO 2018216903 A1 WO2018216903 A1 WO 2018216903A1 KR 2018004249 W KR2018004249 W KR 2018004249W WO 2018216903 A1 WO2018216903 A1 WO 2018216903A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
light emitting
organic light
emitting device
Prior art date
Application number
PCT/KR2018/004249
Other languages
French (fr)
Korean (ko)
Inventor
차용범
이성재
김연환
전상영
한수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180002356A external-priority patent/KR102080288B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18805701.2A priority Critical patent/EP3567026B1/en
Priority to JP2019546159A priority patent/JP6818998B2/en
Priority to US16/487,404 priority patent/US11459290B2/en
Priority to CN201880012821.3A priority patent/CN110382457B/en
Publication of WO2018216903A1 publication Critical patent/WO2018216903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multilayer structure composed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000—0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following Chemical Formula 1.
  • Ri and R 2 are each independently methyl or phenyl
  • Li and L 2 are each independently a bond; Or substituted or unsubstituted C 6 -60 arylene,
  • a ri and Ar 2 are each independently a substituted or unsubstituted C 6 -60 aryl; or
  • the present invention is a first electrode; Giant 12 electrodes provided opposite to the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
  • the compound represented by Chemical Formula 1 may be used as a material of the organic layer of the organic light emitting device, and the efficiency of the organic light emitting device may be improved. Driving voltage and / or life characteristics can be improved.
  • the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, an organic material layer 3, and a cathode 4. As shown in FIG.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron suppression layer 7, a light emitting layer 8, an electron transport layer 9, an electron injection layer 10.
  • an organic light-emitting device composed of a cathode (4).
  • the present invention provides a compound represented by Chemical Formula 1.
  • the term "substituted or unsubstituted” is deuterium; halogen; nitrile; nitro, hydroxy, carbonyl; ester, imide; amino; phosphine oxide; alkoxy; aryloxy; Alkylthioxy group; Arylthioxy group; Alkyl sulfoxy group; Aryl sulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkyl An amine group, a heteroarylamine group, an arylamine group, an arylphosphine group, or an unsubstituted or substituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, 0 and S atoms, It
  • the compound may be any organic compound that is suitable for the following reasons. Specifically, the compound may be any organic compound. Specifically, the compound may be any organic compound. Specifically, the compound may be any organic compound.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula,
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t_butyldimethylboron group, triphenylboron group, phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1_ethyl-butyl, pentyl, n Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1 ⁇ methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , N-heptyl, 1-methylnucleus, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, tert-octyl 1_methylheptyl, 2-ethylnuclear
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, it is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. Another one According to an exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2, 2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl- 1-yl, 2, 2-bis (diphenyl-l-yl) vinyl- 1-yl, stilbenyl group, styrenyl group, and the like.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing one or more of 0, N, Si, and S as a dissimilar element.
  • the carbon number is not particularly limited, it is preferably 2 to 60 carbon atoms.
  • heterocyclic group examples include thiophene group, furan group, pyryl group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group pyridyl group, bipyridyl group, pyrimidyl group, triazine group and acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the above-described alkyl group.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the arylene is a divalent group
  • the description of the aryl group described above may be applied.
  • the heteroarylene is a divalent group
  • the description of the heterocyclic ring group may be applied.
  • the hydrocarbon ring is not a monovalent group, except that two substituents are bonded to each other to form the aforementioned aryl group or cycloalkyl group. The description may apply.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • Chemical Formula 1 according to the bonding position, Chemical Formula 1 is represented by the following Chemical Formula
  • L 2 are each independently a bond, phenylene, biphenyldiyl, terphenyldiyl, quarterphenyldiyl naphthalenediyl, anthracenediyl, dimethylfluorenediyl, phenanthrendiyl, pyrendiyl, or triphenylene It's Dyle. More preferably, is a bond and L 2 is a bond or phenylene.
  • a and Ar 2 are each independently unsubstituted or substituted with any substituent selected from the group consisting of Ci-4 alkyl, halogen, cyano, and tri (d- 4 alkyl) silyl.
  • Representative examples of the compound represented by Formula 1 are as follows:
  • the compound represented by Formula 1 may be prepared by a preparation method such as the following Formula 1 (when C 6 -60 arylene) or Semi Formula 2 (when this bond).
  • Reaction Scheme 1 is a reaction for preparing a compound represented by Formula 1 by reacting a compound represented by Formula 1-a with a compound represented by Formula 1-b as a Suzuki coupling reaction.
  • the reaction formula 2 is a reaction in which an amine group is substituted while halogen is released, reacting the compound represented by Formula 1-a with the compound represented by Formula 1-c to prepare a compound represented by Formula 1 It's a reaction.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1.
  • the present invention is a crab 1 electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers is an organic light emitting device comprising the compound represented by Chemical Formula 1. to provide.
  • the organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a hole injection layer, a hole transport layer, or an electron suppression layer, and the hole injection layer, the hole transport layer, or the electron suppression layer may include a compound represented by Chemical Formula 1.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, an organic material layer 3, and a cathode 4 ' .
  • 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron suppression layer 7, a light emitting layer 8, an electron transport layer 9, an electron injection layer 10.
  • an organic light emitting device including the cathode 4.
  • the compound represented by Chemical Formula 1 may be included in at least one of the hole injection layer, the hole transport layer, and the electron suppression layer. have.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1.
  • the organic material insects may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a crab 2 electrode on a substrate.
  • an organic layer comprising a
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be used to form the organic layer by vacuum vapor deposition as well as during ⁇ manufacturing an organic light emitting device a solution coating method.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (TO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, phosphine tin oxide (IT0) ⁇ indium zinc oxide (IZ0); ⁇ 0: A1 or SN0 2 : Combination of metal and oxide, such as Sb; Poly (3-methylthiophene), poly [3, 4- (ethylene-1,2-dioxy) thiophene KPED0T), but are such as polyester and avoid the "conductive polymer such as polyaniline, but are not limited thereto .
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, kaleum, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • HOMO highest occupied mol ecul ar orbi tal) of the hole injection material is preferably between the work function of the anode material and H0M0 of the surrounding organic layer.
  • the hole injection material include a compound represented by the formula (1) according to the present invention, a metal porphyr (porphyr in), oligothiophene, an arylamine-based organic material, nucleonitrile nucleated azatriphenylene-based organic material, quinacrylic Quinacr idone-based organics, perylene-based organics, anthraquinones and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transporting material is a material capable of transporting holes from an anode or a hole injection layer to a light emitting layer. This is suitable.
  • Specific examples include, but are not limited to, a compound represented by Formula 1 according to the present invention, an arylamine-based organic material, a conductive polymer ⁇ , and a block copolymer having a conjugated portion and a non-conjugated portion.
  • the electron suppression layer suppresses the electrons injected from the cathode from being transferred to the anode without recombination in the emission layer, thereby improving the efficiency of the organic light emitting device.
  • a compound represented by Chemical Formula 1 according to the present invention may be used as a material constituting the electron suppression layer.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimer i zed styryl compounds; BAl q; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Polymers of the poly (P-phenylenevinylene) (PPV) family; Spi ro compounds; Polyfluorene rubrene and the like, but are not limited thereto.
  • PV poly (P-phenylenevinylene)
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and the styrylamine compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the above-mentioned arylamine, and one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • an electron transporting material a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer is suitable. Do.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, each followed by an aluminum or silver layer.
  • the electron injection layer is a layer for injecting electrons from an electrode, has an ability to transport electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and derivatives thereof, metal Complex compounds and nitrogen-containing five-membered ring derivatives; and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolyl nolrina Sat) beryllium, bis (10-hydroxybenzo [h] quinolyl nolrina Sat) zinc, bis (2-methyl-8-quinolyl nolrina Sat) chlorogallium, bis (2-methyl-8 eukwi nolrina Sat) ( o-cresolato) gallium , Bis (2-methyl-8-quinolinato) (1 nappa nato) aluminum, bis (2-methyl'8-quinolinato) (2-naphlato) gallium, and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. Preparation of the compound represented by Chemical Formula 1 and an organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
  • a glass substrate coated with a thin film having an indium tin oxide (IT0) thickness of 1,000 A was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondly as a filter of MiUipore Co. product was used as the distilled water.
  • the ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • ⁇ transparent electrode is represented by the formula HAT
  • the compound was thermally vacuum deposited to a thickness of 100 A to form a hole injection layer.
  • Compound (1250A) represented by the following formula ⁇ was vacuum deposited on the hole injection layer to form a hole transport layer.
  • the compound of Preparation Example 1 was vacuum deposited on the hole transport layer with a film thickness of 150 A to form an electron suppressing layer.
  • the compound represented by the following formula BH and the compound represented by the following formula BD were deposited under vacuum at a weight ratio of 25: 1 to form a light emitting layer on the electron suppression layer with a thickness of 200A.
  • a hole blocking layer was formed by vacuum depositing a compound represented by the following formula HB1 at a film thickness of 50 A on the light emitting layer. Subsequently, the compound represented by the following formula ET1 and the compound represented by the following formula LiQ were vacuum-deposited at a weight ratio of 1: 1 on the hole blocking layer to form an electron injection and transport layer at a thickness of 310A. On the electron injection and transport layer, aluminum was deposited to a thickness of lithium fluoride (LiF) and ⁇ , ⁇ at a thickness of 12A sequentially to form a cathode.
  • LiF lithium fluoride
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7A / sec
  • the lithium fluoride of the cathode was maintained at 0.3A / sec
  • the deposition rate of aluminum was 2A / sec
  • the vacuum degree during deposition was 2X10— 7- .
  • the organic light emitting device was manufactured by maintaining 5 to 6 6rr.
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that the compound shown in Table 1 was used instead of the compound of Preparation Example 1. Prepared. Comparative Examples 1-1 to 1-3
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that the compound shown in Table 1 was used instead of the compound of Preparation Example 1.
  • the compounds of EB1, EB2 and EB3 used in Table 1 below are as follows.
  • T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).
  • Example 1-1 Preparation Example 1 4.50 6.31 (0.140, 0.046) 280 Example 1 Example 2 Preparation Example 3 4.33 6.53 (0.141, 0.046) 285 Example 1-3 Preparation Example 4 4.56 6.34 (0.143, 0.047) 295 Example 1-4 Preparation Example 5 4.40 6.45 (0.142, 0.048) 280 Example 1-5 Preparation Example 6 4.53 6.36 (0.140, 0.044) 275 Example 1-6 Preparation Example 7 4.56 6.37 (0.141, 0.046) 285 Example 1-7 Preparation Example 9 4.64 6.29 (0.140, 0.044) 290 Example 1-8 Preparation Example 10 4.46 6.44 (0.141, 0.046) 260 Example 1 One 9 Manufacturing Example 11 4.41 6.42 (0.138, 0.044) 280 Example 1 One 10 Preparation Example 14
  • the organic light emitting device manufactured by using the compound of Comparative Example 1-2 in which the amine containing carbazole was connected as the electron suppressing layer has a efficiency of 10% or more and a lifetime of 3 or more. Indicated. As shown in Table 1, the compound according to the present invention was confirmed that the excellent electron blocking ability can be applied to the organic light emitting device. Examples 2-1 to 2-22
  • Comparative Example 1-1 an organic light emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compound shown in Table 2 was used instead of the compound represented by Chemical Formula HT1. Comparative Examples 2-1 and 2-2
  • Comparative Example 1-1 an organic light emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compound shown in Table 2 was used instead of the compound represented by Formula ⁇ .
  • Table 2 the compounds represented by HT2 and HT3 are as follows.
  • T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).
  • Comparative Example 2-1 HT2 5.07 5.86 (0.143, 0.048) 235 Comparative Example 2-2 HT3 4.92 5.43 (0.143, 0.048) 220
  • the compound of the present invention was used as a hole transport layer.
  • the organic light emitting diode exhibited excellent characteristics in terms of efficiency, driving voltage, and / or stability.
  • the organic light emitting device of the embodiment exhibited lower voltage, higher efficiency, and longer life than the organic light emitting device manufactured by using the compound represented by Formula HT2 to which an amine containing carbazole is connected as a hole transport layer.
  • the organic light emitting device manufactured using the compound represented by the formula HT3 having a structure similar to that of the core of the present invention and not containing a methyl group showed a result of 5% or more efficiency and 20% or more lifetime drop.
  • Example 3-1 Example 3-1
  • the HI 1 compound was formed to a thickness of 1100 A as a hole injection layer on the ⁇ transparent electrode thus prepared, and the following A-1 compound was p-doped at a concentration of 2%.
  • Compound 1 prepared above was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 350A.
  • the following EB1 compound was vacuum deposited on the hole transport layer to a film thickness of 150 A to form an electron suppression layer.
  • a hole blocking layer was formed by vacuum depositing the following HB1 compound on the light emitting layer with a thickness of 50 A.
  • the following ET1 compound and the following LiQ compound were vacuum deposited on the hole blocking layer in a weight ratio of 2: 1 to form an electron injection and transport layer at a thickness of 300 A.
  • the cathode was deposited by sequentially depositing aluminum with lithium fluoride (LiF) and ⁇ , ⁇ at a thickness of 12 A on the electron injection and transport layer.
  • LiF lithium fluoride
  • An organic light-emitting device was manufactured in the same manner as in Example 3-1, except for using the compound shown in Table 3 below instead of the compound of Preparation Example 1.
  • the compounds of EB4, EB5 and EB6 used in Table 3 below are as follows.
  • T98 means the time at which the luminance is required ⁇ there is reduced from the initial luminance (6000 ni t) by 98%.
  • Example 3-1 Preparation Example 1 3.58 145.92 (0.254, 0.711) 240
  • Example 3- 2 Preparation Example 2 3.56 146.11 (0.255, 0.712) 235
  • Example 3-3 Preparation Example 3 3.62 145.25 (0.256, 0.711) 235
  • Example 3-4 Preparation Example 4 3.63 145.34 (0.256, 0.713) 230
  • Example 3-5- Preparation 5 5.35 136.13 (0.262, 0.705) 170
  • Example 3-6 Preparation 6 4.36 136.39 (0.264 0.706) 165
  • Example 3-7 Preparation 7 4.38 135.91 (0.262, 0.707) 160
  • Example 3-8 Preparation 8 4.37 135.73 (0.263, 0.705) 175
  • Example 3 -9 Preparation Example 11 4.12 137.97 (0.261, 0.706) 170
  • the organic light emitting device manufactured by using the compounds of Comparative Examples 3-1 and 3-3, which were not included, as the hole transport layer showed a result that the lifespan decreased by 50 to 60% or more.
  • Comparing Examples 3-1 to 3-4 with Examples 3-5 to 3-8 the materials in which the phenyl group was linked with the linker than the direct bonds showed the best properties (particularly life).
  • Comparing Examples 3-9 to 3-12 the materials including the phenyl linker in the third direction in the compound of the present invention also showed the same tendency.
  • the core of the present invention is composed of a phenyl group instead of a methyl group, which is a direct bond, but has a relatively better lifespan.
  • Example 4-1 A glass substrate coated with a thin film of I indium tin oxide (ITO) having a thickness of ⁇ , ⁇ was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • ITO I indium tin oxide
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water. After washing IT0 for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • the HI1 compound was formed to a thickness of 1150 A as a hole injection layer on the ⁇ transparent electrode thus prepared, but the P-1 doping was performed at the concentration of 1.5% of the following A-1 compound.
  • Compound 1 prepared above was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800A.
  • the following EB1 compound was vacuum deposited on the hole transport layer to a film thickness of 150 A to form an electron suppression layer.
  • the following RH-1 compound and the following RD-1 compound were vacuum deposited on the EB1 deposition film at a weight ratio of 98: 2 to form a red light emitting layer having a thickness of 360 A.
  • a hole blocking layer was formed by vacuum depositing the following HB1 compound at a film thickness of 30 A on the light emitting layer.
  • the following ⁇ compound and the following LiQ compound were vacuum deposited on the hole blocking layer in a weight ratio of 2: 1 to form an electron injection and transport layer with a thickness of 300A.
  • Lithium fluoride (LiF) and aluminum in a thickness of 1,000 A were sequentially deposited on the electron injection and transport layer to form a cathode.
  • the deposition rate of organic material was maintained at 0.4 0.7 A / sec
  • the lithium fluoride of the cathode was maintained at a deposition rate of 0.3 A / sec aluminum at 2 A / sec
  • the vacuum degree was 2 ⁇ ⁇ during deposition.
  • the organic light emitting device was manufactured by maintaining 7 to 5 10 "6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Example 4-1, except for using the compound shown in Table 4 instead of the compound of Preparation Example 1.
  • the compounds of HT5, HT6 and HT7 used in Table 4 below are as follows.
  • T98 means the time it takes for the luminance to decrease to 98% from the initial luminance (4500 ni t).
  • Example 4-1 Preparation Example 1 4.08 47.21 (0.685, 0.315) 340
  • Example 4- 2 Preparation Example 2 4.09 47.10 (0.686, 0.314) 335
  • Example 4-3 Preparation Example 3 4.04 46.55 (0.685, 0.315) 335
  • Example 4-4 Preparation Example 4 4.07 45.96 (0.686, 0.316) 330
  • Example 4- 5 Preparation 5 4.45 42.17 (0.688, 0.318) 270
  • Example 4-6 Preparation 6 4.49 42.39 (0.689, 0.319) 265
  • Example 4—7 Preparation 7 4.41 42.71 (0.687, 0.317) 260
  • Example 4- 8 Preparation 8 4.43 42.62 (0.688, 0.321) 275
  • Example 4-9 Preparation 11 4.32 43.83 (0.687, 0.323) 270
  • Example 4-10 Preparation 12
  • the organic light emitting device using the compound of the present invention as the hole transport layer of the green light emitting device exhibited excellent characteristics in terms of efficiency, driving voltage and stability of the organic light emitting device.
  • the compounds of Comparative Example 4-2 in which carbazole-containing amines were directly connected to each other exhibited lower voltage, higher efficiency, and longer life than organic light-emitting devices manufactured using the compound as the hole transport layer.
  • the organic light emitting device manufactured by using the compounds of Comparative Examples 4-1 and 4-3 having a structure similar to that of the core of the present invention and not directly containing a methyl group and directly connected to an amine was used as the hole transport layer, and the voltage was increased by 2OT or more.
  • Hyoil is reduced by 5 ⁇ 10%
  • life span is reduced by more than 60 ⁇ 70%. This is because 800 A is used as the hole transport layer of the red light emitting layer as compared with the device deposited in the thickness of 300 A as the hole transport layer of the green light emitting layer in Experimental Example 3.
  • the core of the present invention has a relatively high hol e mobi li ty capability than the materials of Comparative Examples 4-1 and 4-3.
  • Comparing Examples 4-9 to 4-12, the materials including the phenyl linker in the third direction of the compound of the present invention also showed the same tendency.
  • the core of the present invention is composed of a phenyl group instead of a methyl group, which is a direct bond, but has a relatively better lifespan.
  • the compound according to the present invention was found to be excellent in the hole transport capacity in the device using the phosphorescent green light emitting layer can be applied to the organic light emitting device.
  • hole injection layer 6 hole transport layer 7: electron suppression layer 8: light emitting layer

Abstract

The present invention provides a novel compound for an organic light-emitting device, and an organic light-emitting device using same, the novel compound enabling an increase in efficiency, a low driving voltage and/or an increase in lifespan properties, and being usable as a hole injection, hole transport, hole injection and transport, light emission, electron transport or electron injection material.

Description

【발명의 명칭】  [Name of invention]
신규한 화합물 및 이를 이용한유기발광 소자  Novel compound and organic light emitting device using same
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2017년 5월 22일자 한국 특허 출원 제 10-2017-0063091호 및 2018년 1월 8일자 한국 특허 출원 게 10-2018-0002356호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0063091 dated May 22, 2017 and Korean Patent Application No. 10-2018-0002356 dated January 8, 2018. All content disclosed in the literature is included as part of this specification. The present invention relates to a novel compound and an organic light emitting device comprising the same.
【배경기술】  Background Art
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 액시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.  In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed characteristics, many studies have been conducted. The organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic layer is often formed of a multilayer structure composed of different materials, and may be formed of, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. When the axtone falls back to the ground, it glows. There is a continuous demand for the development of new materials for organic materials used in such organic light emitting devices.
【선행기술문헌】 【특허문헌】 Prior Art Documents [Patent literature]
(특허문헌 0001) 한국특허 공개번호 제 10-2000— 0051826호  (Patent Document 0001) Korean Patent Publication No. 10-2000—0051826
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel compound and an organic light emitting device comprising the same.
【과제의 해결 수단】  [Measures of problem]
본 발명은 하기 화학식 1로 표시되는 화합물을.제공한다:  The present invention provides a compound represented by the following Chemical Formula 1.
Figure imgf000003_0001
Figure imgf000003_0001
\  \
Ar2 A r 2
상기 화학식 1에서,  In Chemical Formula 1,
Ri 및 R2는 각각 독립적으로, 메틸 또는 페닐이고, Ri and R 2 are each independently methyl or phenyl,
Li 및 L2는 각각 독립적으로, 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고, Li and L 2 are each independently a bond; Or substituted or unsubstituted C 6 -60 arylene,
Ar i 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는A ri and Ar 2 are each independently a substituted or unsubstituted C 6 -60 aryl; or
0또는 S를 포함하는 C2-60 헤테로아릴이다. 또한, 본 발명은 제 1 전극; 상기 게 1 전극과 대향하여 구비된 거 12 전극; 및 상기 제 1 전극과 상기 게 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. C 2 -60 heteroaryl containing 0 or S. In addition, the present invention is a first electrode; Giant 12 electrodes provided opposite to the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
【발명의 효과】  【Effects of the Invention】
' 상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로사용될 수 있다. '' The compound represented by Chemical Formula 1 may be used as a material of the organic layer of the organic light emitting device, and the efficiency of the organic light emitting device may be improved. Driving voltage and / or life characteristics can be improved. In particular, the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 기판 ( 1), 양극 (2), 유기물층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, an organic material layer 3, and a cathode 4. As shown in FIG.
도 2는 기판 ( 1), 양극 (2) , 정공주입층 (5), 정공수송층 (6) , 전자억제층 (7), 발광층 (8), 전자수송층 (9) , 전자주입충 ( 10) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron suppression layer 7, a light emitting layer 8, an electron transport layer 9, an electron injection layer 10. And an example of an organic light-emitting device composed of a cathode (4).
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 보다상세히 설명한다. 본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.  Hereinafter, the present invention will be described in more detail to help understand the present invention. The present invention provides a compound represented by Chemical Formula 1.
본 명세서에서
Figure imgf000004_0001
는 다른 치환기에 연결되는 결합을의미한다. 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기' '는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수
In this specification
Figure imgf000004_0001
Means a bond that is linked to another substituent. As used herein, the term "substituted or unsubstituted" is deuterium; halogen; nitrile; nitro, hydroxy, carbonyl; ester, imide; amino; phosphine oxide; alkoxy; aryloxy; Alkylthioxy group; Arylthioxy group; Alkyl sulfoxy group; Aryl sulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkyl An amine group, a heteroarylamine group, an arylamine group, an arylphosphine group, or an unsubstituted or substituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, 0 and S atoms, It means that a substituted or unsubstituted two or more substituents of the substituents connected, for example, "substituent '' connected to two or more substituents may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two phenyl groups are linked. Carbon number of the carbonyl group in the present specification is not particularly limited, carbon number
1 내지 40인 것이 바람직하다'. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으 1 to 40 of it is preferred. Specifically, the compound may be
Figure imgf000005_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나,
Figure imgf000005_0001
In the present specification, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula,
Figure imgf000005_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000005_0002
In this specification, although carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
Figure imgf000005_0003
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t_부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n—프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1_에틸-부틸, 펜틸, n_펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1ᅳ메틸펜틸, 2-메틸펜틸, 4-메틸 -2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n—헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸 1_메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐, 2,2—디메틸헵틸, 1—에틸-프로필, 1,1- 디메틸—프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1 , 3-부타디에닐, 알릴, 1-페닐비닐 -1-일, 2—페닐비닐 -1-일, 2, 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1-일)비닐— 1—일, 2 , 2—비스 (디페닐 -1—일)비닐— 1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3- 디메틸사이클로펜틸, 사이클로핵실, 3—메틸사이클로핵실, 4- 메틸사이클로핵실, 2 , 3-디메틸사이클로핵실, 3 , 4, 5-트리메틸사이클로핵실, 4-tert—부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure imgf000008_0001
Figure imgf000005_0003
In the present specification, specifically, the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. However, the present invention is not limited thereto. In the present specification, the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t_butyldimethylboron group, triphenylboron group, phenylboron group, and the like. In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine. In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1_ethyl-butyl, pentyl, n Pentyl, isopentyl, neopentyl, tert-pentyl, nuclear chamber, n-nuclear chamber, 1 ᅳ methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , N-heptyl, 1-methylnucleus, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, tert-octyl 1_methylheptyl, 2-ethylnuclear, 2-propylpentyl, n-nonyl, 2,2— Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isonuclear chamber, 2-methylpentyl, 4-methylnuclear chamber, 5-methylnuclear chamber, and the like, but is not limited thereto. In the present specification, the alkenyl group may be linear or branched chain, carbon number is not particularly limited, it is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. Another one According to an exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2, 2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl- 1-yl, 2, 2-bis (diphenyl-l-yl) vinyl- 1-yl, stilbenyl group, styrenyl group, and the like. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclonuclear chamber, 3-methylcyclonuclear chamber, 4-methylcyclonuclear chamber, 2, 3-dimethylcyclonuclear chamber, 3, 4, 5-trimethylcyclonuclear chamber, 4-tert-butylcyclonuclear chamber, cycloheptyl, cyclooctyl, and the like, but is not limited thereto. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure imgf000008_0001
수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기 (phenanthrol ine) , 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 았어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 잔술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 상기 화학식 1에서, 결합 위치에 따라, 상기 화학식 1은 하기 화학식Can be. However, the present invention is not limited thereto. In the present specification, the heterocyclic group is a heterocyclic group containing one or more of 0, N, Si, and S as a dissimilar element. Although the carbon number is not particularly limited, it is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyryl group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group pyridyl group, bipyridyl group, pyrimidyl group, triazine group and acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group (phenanthrol ine), isoxazolyl group, thia Diazolyl group, phenothiazinyl group, dibenzofuranyl group, and the like, but is not limited thereto. In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the above-described alkyl group. In the present specification, the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group. In the present specification, the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, except that the arylene is a divalent group, the description of the aryl group described above may be applied. In the present specification, except that the heteroarylene is a divalent group, the description of the heterocyclic ring group may be applied. In the present specification, the hydrocarbon ring is not a monovalent group, except that two substituents are bonded to each other to form the aforementioned aryl group or cycloalkyl group. The description may apply. In the present specification, the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding. In Chemical Formula 1, according to the bonding position, Chemical Formula 1 is represented by the following Chemical Formula
1-1 내지 1-3 중 어느 하나로 표시할 수 있다: It can be represented by any of 1-1 to 1-3:
[화학식 1-1]  [Formula 1-1]
Figure imgf000009_0001
바람직하게는, 및 ¾는 모두 메틸이거나, 또는 모두 페닐이다. 바람직하게는, 및 L2는 각각 독립적으로, 결합, 페닐렌, 비페닐디일, 터페닐디일, 쿼터페닐디일 나프탈렌디일, 안트라센디일, 디메틸플루오렌디일, 페난쓰렌디일, 피렌디일, 또는 트리페닐렌디일이다. 보다 바람직하게는, 은 결합이고, L2은 결합, 또는 페닐렌이다. 바람직하게는, A 및 Ar2는 각각 독립적으로, 비치환되거나, 또는 Ci-4 알킬, 할로겐, 시아노, 및 트리 (d-4 알킬)실릴로 구성되는 군으로부터 선택되는 어느 하나의 치환기로 치환된 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 안트라세닐; 페난쓰레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 또는 디벤조티오페닐이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000009_0001
Preferably, and ¾ are all methyl or all phenyl. Preferably, and L 2 are each independently a bond, phenylene, biphenyldiyl, terphenyldiyl, quarterphenyldiyl naphthalenediyl, anthracenediyl, dimethylfluorenediyl, phenanthrendiyl, pyrendiyl, or triphenylene It's Dyle. More preferably, is a bond and L 2 is a bond or phenylene. Preferably, A and Ar 2 are each independently unsubstituted or substituted with any substituent selected from the group consisting of Ci-4 alkyl, halogen, cyano, and tri (d- 4 alkyl) silyl. Phenyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Anthracenyl; Phenanthrenyl; Triphenylenyl; Dimethyl fluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Or dibenzothiophenyl. Representative examples of the compound represented by Formula 1 are as follows:
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001
11
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
11
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000018_0001
 
Figure imgf000019_0001
Figure imgf000019_0001
 
Figure imgf000020_0001
Figure imgf000020_0001
 oz  oz
Figure imgf000021_0001
?Ζΐ700/8ΐ0ΖΗΜ/Χ3<Ι εθ69ΪΖ/8ΪΟΖ OAV
Figure imgf000021_0001
? Ζΐ700 / 8ΐ0ΖΗΜ / Χ3 <Ι εθ69ΪΖ / 8ΪΟΖ OAV
Figure imgf000022_0001
Figure imgf000022_0001
21 zz 21 zz
Figure imgf000023_0001
?Ζΐ700/8ΐ0ΖΗΜ/Χ3<Ι εθ69ΪΖ/8ΪΟΖ OAV
Figure imgf000023_0001
? Ζΐ700 / 8ΐ0ΖΗΜ / Χ3 <Ι εθ69ΪΖ / 8ΪΟΖ OAV
Figure imgf000024_0001
Figure imgf000024_0001
 
Figure imgf000025_0001
Figure imgf000025_0001
 
Figure imgf000026_0001
Figure imgf000026_0001
 
Figure imgf000027_0001
Figure imgf000027_0001
 
Figure imgf000028_0001
Figure imgf000028_0001
 
Figure imgf000029_0001
Figure imgf000029_0001
 
Figure imgf000030_0001
Figure imgf000030_0001
 
Figure imgf000031_0001
Figure imgf000031_0001
30 30
Figure imgf000032_0001
Figure imgf000032_0001
31 31
Figure imgf000033_0001
Figure imgf000033_0001
Figure imgf000033_0002
상기 화학식 1로 표시뒤는 화합물은 하기 반웅식 1( 이 C6-60 아릴렌인 경우) 또는 반웅식 2( 이 결합인 경우)와 같은 제조 방법으로 제조할 수 있다.
Figure imgf000033_0002
The compound represented by Formula 1 may be prepared by a preparation method such as the following Formula 1 (when C 6 -60 arylene) or Semi Formula 2 (when this bond).
Figure imgf000033_0003
Figure imgf000033_0003
[반웅식 2] [Bungungsik 2]
Figure imgf000034_0001
Figure imgf000034_0001
상기 반웅식 1 및 2에서, , R2, Li, An 및 Ar2는 앞서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 클로로이다. 상기 반응식 1은, 스즈키 커플링 반웅으로서, 상기 화학식 1-a로 표시되는 화합물과 상기 화학식 1-b로 표시되는 화합물을 반웅시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 반웅이다. 상기 반웅식 2는, 할로겐이 이탈되면서 아민기가 치환되는 반옹으로서, 상기 화학식 1-a로 표시되는 화합물과 상기 화학식 1-c로 표시되는 화합물을 반웅시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 반웅이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 게 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 게 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은—상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 전자억제층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 전자억제층이 상기 화학식 1로 표시되는 화합물을 포함한다. 또한, 본 발명에 따른 유기 발광 소자^ , 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1에 예시되어 있다. 도 1은 기판 ( 1) , 양극 (2), 유기물층 (3), 음극 (4)'으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 전자억제층 (7), 발광층 (8) , 전자수송층 (9), 전자주입층 ( 10) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 및 전자억제층 중 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물충은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 게 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자범 증발법 (e-beam evaporat ion)과 같은 PVD(phys i cal Vapor Depos i t i on)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 \제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (TO 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 제 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듬주석 산화물 ( IT0)ᅳ 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; Ζη0 :Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜) , 폴리 [3 , 4— (에틸렌 -1,2-디옥시)티오펜 KPED0T) , 폴리피를 및 ' 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슴, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층쎄서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO highest occupi ed mol ecul ar orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 H0M0 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 본 발명에 따른 화학식 1로 표시되는 화합물, 또는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (peryl ene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는, 본 발명에 따른 화학식 1로 표시되는 화합물, 또는 아릴아민 계열의 유기물, 전도성 고분자ᅳ 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 전자억제층은, 음극에서 주입된 전자가 발광층에서 재결합하지 않고 양극 쪽으로 전달되는 것을 억제하여 유기 발광 소자의 효율을 향상시키는 역할을 한다. 본 발명에서는 상기 전자억제층을 구성하는 물질로서, 본 발명에 따른 화학식 1로 표시되는 화합물을 사용할 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; .이량체화 스티릴 (dimer i zed styryl ) 화합물; BAl q ; 10- 히드록시벤조 퀴놀린 -금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P-페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spi ro) 화합물; 폴리플루오렌 루브렌 등이 있으나, 이들에만 한정돠는 것은 아니다. 상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등아 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2—메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, ' 비스 (2—메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8ᅳ퀴놀리나토 ) (o-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토) ( 1ᅳ나프를라토)알루미늄, 비스 (2-메틸ᅳ 8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형 , 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. In the reaction formulas 1 and 2, R 2 , Li, An and Ar 2 are as defined above, X is halogen, and preferably chloro. Reaction Scheme 1 is a reaction for preparing a compound represented by Formula 1 by reacting a compound represented by Formula 1-a with a compound represented by Formula 1-b as a Suzuki coupling reaction. The reaction formula 2 is a reaction in which an amine group is substituted while halogen is released, reacting the compound represented by Formula 1-a with the compound represented by Formula 1-c to prepare a compound represented by Formula 1 It's a reaction. The manufacturing method may be more specific in the production examples to be described later. In addition, the present invention provides an organic light emitting device including the compound represented by Formula 1. In one embodiment, the present invention is a crab 1 electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers is an organic light emitting device comprising the compound represented by Chemical Formula 1. to provide. The organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. The organic layer may include a hole injection layer, a hole transport layer, or an electron suppression layer, and the hole injection layer, the hole transport layer, or the electron suppression layer may include a compound represented by Chemical Formula 1. In addition, the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIG. 1. FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, an organic material layer 3, and a cathode 4 ' . 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron suppression layer 7, a light emitting layer 8, an electron transport layer 9, an electron injection layer 10. And an organic light emitting device including the cathode 4. In this structure, the compound represented by Chemical Formula 1 may be included in at least one of the hole injection layer, the hole transport layer, and the electron suppression layer. have. The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1. In addition, when the organic light emitting device includes a plurality of organic material layers, the organic material insects may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a crab 2 electrode on a substrate. At this time, such as sputtering or e-beam evaporat ion Using a PVD method, a metal or a conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode, and a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are formed thereon. After forming an organic layer comprising a, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate. Further, the compound represented by Formula 1 may be used to form the organic layer by vacuum vapor deposition as well as during \ manufacturing an organic light emitting device a solution coating method. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, coating, etc., but is not limited thereto. In addition to such a method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (TO 2003/012890). However, the manufacturing method is not limited thereto. In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode, the second electrode is an anode. As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, crumb, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, phosphine tin oxide (IT0) ᅳ indium zinc oxide (IZ0); Ζη0: A1 or SN0 2 : Combination of metal and oxide, such as Sb; Poly (3-methylthiophene), poly [3, 4- (ethylene-1,2-dioxy) thiophene KPED0T), but are such as polyester and avoid the "conductive polymer such as polyaniline, but are not limited thereto . It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, kaleum, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or Li0 2 / Al, and the like, but are not limited thereto. The hole injection layer is a layer for injecting holes from the electrode, the hole injection material has the ability to transport holes to have a hole injection effect at the anode, has an excellent hole injection effect to the light emitting layer or the light emitting material, The compound which prevents the excitons from moving to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable. HOMO highest occupied mol ecul ar orbi tal) of the hole injection material is preferably between the work function of the anode material and H0M0 of the surrounding organic layer. Specific examples of the hole injection material include a compound represented by the formula (1) according to the present invention, a metal porphyr (porphyr in), oligothiophene, an arylamine-based organic material, nucleonitrile nucleated azatriphenylene-based organic material, quinacrylic Quinacr idone-based organics, perylene-based organics, anthraquinones and polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer. A hole transporting material is a material capable of transporting holes from an anode or a hole injection layer to a light emitting layer. This is suitable. Specific examples include, but are not limited to, a compound represented by Formula 1 according to the present invention, an arylamine-based organic material, a conductive polymer ᅳ, and a block copolymer having a conjugated portion and a non-conjugated portion. The electron suppression layer suppresses the electrons injected from the cathode from being transferred to the anode without recombination in the emission layer, thereby improving the efficiency of the organic light emitting device. To improve. In the present invention, a compound represented by Chemical Formula 1 according to the present invention may be used as a material constituting the electron suppression layer. The light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable. Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimer i zed styryl compounds; BAl q; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Polymers of the poly (P-phenylenevinylene) (PPV) family; Spi ro compounds; Polyfluorene rubrene and the like, but are not limited thereto. The light emitting layer may include a host material and a dopant material. The host material is a condensed aromatic ring derivative or a heterocyclic containing compound. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and the heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Examples of the dopant material include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and the styrylamine compound may be substituted or unsubstituted. At least one arylvinyl group is substituted with the above-mentioned arylamine, and one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted. Specifically, styryl amine, styryl diamine, styryl triamine, styryl tetraamine and the like, but is not limited thereto. In addition, as a metal complex, an iridium complex, a platinum complex, etc. However, the present invention is not limited thereto. The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. As an electron transporting material, a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer is suitable. Do. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, each followed by an aluminum or silver layer. The electron injection layer is a layer for injecting electrons from an electrode, has an ability to transport electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer The compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and derivatives thereof, metal Complex compounds and nitrogen-containing five-membered ring derivatives; and the like, but are not limited thereto. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolyl nolrina Sat) beryllium, bis (10-hydroxybenzo [h] quinolyl nolrina Sat) zinc, bis (2-methyl-8-quinolyl nolrina Sat) chlorogallium, bis (2-methyl-8 eukwi nolrina Sat) ( o-cresolato) gallium , Bis (2-methyl-8-quinolinato) (1 nappa nato) aluminum, bis (2-methyl'8-quinolinato) (2-naphlato) gallium, and the like, but are not limited thereto. The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used. In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. Preparation of the compound represented by Chemical Formula 1 and an organic light emitting device including the same will be described in detail in the following Examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
Figure imgf000040_0001
Figure imgf000040_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.45 g , 19.01 隱 ol ) , 및 화합물 al(8.80 g, 19.96 隱 ol )을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 ( 140 mL)을 첨가하고, 테트라키스ᅳ (트리페닐포스핀)팔라듐 (0.66 g , 0. 57 隱 ol )을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 320 mL로 재결정하여 제조예 1( 12.68 g , 수율: 88«를 제조하였다.  Dissolve Compound A (7.45 g, 19.01 μl) and Compound al (8.80 g, 19.96 μl) in 280 mL of tetrahydrofuran in a 500 mL equipotential bottom flask in nitrogen atmosphere, and then add 2M aqueous potassium carbonate solution (140 mL). After addition, tetrakispy (triphenylphosphine) palladium (0.66 g, 0.57 Pa) was added thereto, and the mixture was heated and stirred for 4 hours. The temperature was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 320 mL of ethyl acetate to prepare Preparation Example 1 (12.68 g, yield: 88 «.
MS [M+H] += 754 제조예 2 MS [M + H] + = 754 Preparation Example 2
Figure imgf000041_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(6.28 g, 16.02醒 ol), 및 화합물 a2(8.09 g, 16.82隱 ol)을 테트라하이드로퓨란 260 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (130 mL)을 첨가하고, 테트라키스ᅳ (트리페닐포스핀)팔라듐 (0.56 g, 0.48 匪 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 260 mL로 재결정하여 제조예 2(8/76 g, 수율: 73%)를 제조하였다.
Figure imgf000041_0001
Dissolve Compound A (6.28 g, 16.02 ° ol), and Compound a2 (8.09 g, 16.82 ° ol) in 260 mL of tetrahydrofuran in a 500 mL back-bottom flask in a nitrogen atmosphere, then add 2M aqueous potassium carbonate solution (130 mL). After addition, tetrakispy (triphenylphosphine) palladium (0.56 g, 0.48 x ol) was added thereto, followed by heating and stirring for 3 hours. The silver was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 260 mL of ethyl acetate to prepare Preparation Example 2 (8/76 g, yield: 73%).
MS[M+H]+= 794 MS [M + H] + = 794
Figure imgf000041_0002
Figure imgf000041_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A (5.97g, 15.23隱01), 및 화합물 a3(8.49 g¾ 15.99 匪 ol)을 테트라하이드로퓨란 320 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (160 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.53 g, 0.46 隱 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 250 mL로 재결정하여 제조예 3(12.68 g, 수율: 88%)를 제조하였다. Dissolve Compound A (5.97 g, 15.23 隱0 1), and Compound a3 (8.49 g¾ 15.99 匪 ol) in 320 mL of tetrahydrofuran in a 500 mL equipotential bottom flask in a nitrogen atmosphere, then add 2M aqueous potassium carbonate solution (160 mL). After addition, tetrakis- (triphenylphosphine) palladium (0.53 g, 0.46 Pa) was added thereto, and the mixture was heated and stirred for 4 hours. The temperature was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 250 mL of tetrahydrofuran to prepare Preparation Example 3 (12.68 g, yield: 88%).
MS[M+H]+= 844 제조예 4 MS [M + H] + = 844 Preparation 4
Figure imgf000042_0001
Figure imgf000042_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A .69 g, 11.96 瞧 ol), 및 화합물 a4(5.54 g, 12.56 隱 ol)을 테트라하이드로퓨란 220 mL에 완전히 녹인 후 2M 탄산칼륨수용액 (110 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.41 g, 0.36 瞧 ol)을 넣은 후 2시간 동안 가열 교반하였다. 상은으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 제조예 4(7.77 g, 수율: 86%)를 제조하였다.  Dissolve Compound A .69 g, 11.96 瞧 ol), and Compound a4 (5.54 g, 12.56 隱 ol) in 220 mL of tetrahydrofuran in a 500 mL back-bottom flask in nitrogen atmosphere, and then add 2M aqueous potassium carbonate solution (110 mL). After addition, tetrakis- (triphenylphosphine) palladium (0.41 g, 0.36 Pa) was added thereto, and the mixture was heated and stirred for 2 hours. Lower the temperature to phase silver, remove the water layer, dried over anhydrous magnesium sulfate, concentrated under reduced pressure and recrystallized with 250 mL of ethyl acetate to prepare a Preparation Example 4 (7.77 g, yield: 86%).
MS[M+H]+= 754 MS [M + H] + = 754
Figure imgf000042_0002
Figure imgf000042_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.56 g, 19.29 隱 ol), 및 화합물 a5(6.50 g, 20.25 誦 ol)을 Xylene 180 mL에 완전히 녹인 후 Na0tBu(2.22 g, 23.14 隱 ol)을 첨가하고, Bis(tr i_tert_ butylphosphine) pal ladium(0)(0.10 g, 0.19 隱 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 180 mL으로 재결정하여 제조예 5(10.12 g, 수율: 78%)를 제조하였다.  Dissolve Compound A (7.56 g, 19.29 隱 ol) and Compound a5 (6.50 g, 20.25 誦 ol) in 180 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (2.22 g, 23.14 隱 ol) Then, Bis (tr i_tert_butylphosphine) pal ladium (0) (0.10 g, 0.19 隱 ol) was added thereto, followed by heating and stirring for 4 hours. After the temperature was lowered to room temperature and the base was removed by filtration, Xylene was concentrated under reduced pressure and recrystallized with 180 mL of ethyl acetate to prepare Preparation Example 5 (10.12 g, yield: 78%).
MS[M+H]+= 678 제조예 6
Figure imgf000043_0001
MS [M + H] + == 678 Preparation Example 6
Figure imgf000043_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(7.56 g, 19.29 隱 ol), 및 화합물 a6을 Xylene 220 mL에 완전히 녹인 후 Na0tBu(2.22 g, 23.14 隱 ol)을 첨가하고, Bis(tri-tert-butylphosphine) palladium(0)(0.10 g, 0.19 瞧 ol)을 넣은 후 4시간 동안 가열 교반하 ¾다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 180 mL으로 재결정하여 제조예 6(10.12 g, 수율: 78%)를 제조하였다.  Dissolve Compound A (7.56 g, 19.29 μl) and Compound a6 in 220 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (2.22 g, 23.14 μl) and add Bis (tri-tert- Butylphosphine) palladium (0) (0.10 g, 0.19 瞧 ol) was added and stirred under heating for 4 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized with 180 mL of ethyl acetate to prepare Preparation Example 6 (10.12 g, yield: 78%).
MS[M+H]+= 718 MS [M + H] + = 718
Figure imgf000043_0002
Figure imgf000043_0002
a7  a7
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(5.98 g, 15.26隱 ol), 및 화합물 a7(5.14 g, 16.02隱 ol)을 Xylene 160 mL에 완전히 녹인 후 Na0tBu(l/76 g, 18.31 隱 ol)을 첨가하고, Bis(tr i— tert一 butylphosphine) pal ladium(0)(0.08 g, 0.15 隱 ol)을 넣은 후 7시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 240 mL으로 재결정하여 제조예 7(6.15 g, 수율: 59%)를 제조하였다.  Dissolve Compound A (5.98 g, 15.26 μl) and Compound a7 (5.14 g, 16.02 μl) in 160 mL of Xylene in a 500 mL equipotential bottom flask in a nitrogen atmosphere, followed by Na0tBu (l / 76 g, 18.31 μl) Was added, Bis (tr i-tert butylphosphine) pal ladium (0) (0.08 g, 0.15 隱 ol) was added thereto, and the mixture was heated and stirred for 7 hours. The silver was lowered to room temperature, the filter was removed, the base was removed, and Xylene was concentrated under reduced pressure, and recrystallized with 240 mL of ethyl acetate, to prepare Preparation Example 7 (6.15 g, yield: 59%).
MS[M+H]+= 678 제조예 8
Figure imgf000044_0001
MS [M + H] + = 678 Preparation Example 8
Figure imgf000044_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(4.65 g, 11.86 匪 ol), 및 화합물 a8(5.82 g, 12.46 瞧 ol)을 Xylene 260 mL에 완전히 녹인 후 Na0tBu(1.37 g, 14.23 匪 ol)을 첨가하고, Bis(tr i-tert- butylphosphine) pal ladium(0)(0.06 g, 0.12 匪 ol)을 넣은 후 6시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 220 mL으로 재결정하여 제조예 8(7.23 g, 수율: 74%)를 제조하였다.  Dissolve Compound A (4.65 g, 11.86 匪 ol), and Compound a8 (5.82 g, 12.46 瞧 ol) in 260 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (1.37 g, 14.23 匪 ol) Then, Bis (tr i-tert-butylphosphine) pal ladium (0) (0.06 g, 0.12 匪 ol) was added thereto, and the mixture was heated and stirred for 6 hours. Lowering the silver to room temperature, filtered to remove the base, concentrated Xylene under reduced pressure and recrystallized with 220 mL of ethyl acetate to prepare Preparation Example 8 (7.23 g, yield: 74%).
MS[M+H]+= 824 MS [M + H] + = 824
Figure imgf000044_0002
Figure imgf000044_0002
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(5.25 g, 13.39 mmol), 및 화합물 a9(4.71 g, 14.06 mmol)을 Xylene 220 mL에 완전히 녹인 후 Na0tBu(1.54 g, 16.07 匪 ol)을 첨가하고, Bis(tr i-tert- butylphosphine) pal ladium(0)(0.07 g, 0.13 醒 ol)을 넣은 후 6시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 220 mL으로 재결정하여 제조예 9(6.44 g, 수율: 69%)를 제조하였다.  In a 500 mL round bottom flask under nitrogen atmosphere, Compound A (5.25 g, 13.39 mmol) and Compound a9 (4.71 g, 14.06 mmol) were completely dissolved in 220 mL of Xylene, followed by addition of Na0tBu (1.54 g, 16.07 μl). Bis (tr i-tert-butylphosphine) pal ladium (0) (0.07 g, 0.13 醒 ol) was added thereto, followed by heating and stirring for 6 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized with 220 mL of ethyl acetate to prepare Preparation Example 9 (6.44 g, Yield: 69%).
MS[M+H]+= 692 제조예 10 MS [M + H] + = 692 Preparation 10
Figure imgf000045_0001
Figure imgf000045_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 A(6.33 g, 16.15 隱 ol), 및 화합물 al0(7.38 g, 16.96 瞧 ol)을 Xylene 230 mL에 완전히 녹인 후 Na0tBu(1.86 g, 19.38 画 ol)을 첨가하고, Bis(tr i_tertᅳ butylphosphine) pal ladium(0)(0.08 g, 0.16 匪 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 240 mL으로 재결정하여 제조예 10(10.88 g, 수율: 85%)를 제조하였다. Dissolve Compound A (6.33 g, 16.15 μl) and Compound al0 (7.38 g, 16.96 μl) in 230 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (1.86 g, 19.38 μl) Then, Bis (tr i_tert ᅳ butylphosphine) pal ladium (0) (0.08 g, 0.16 匪 ol) was added thereto, and the mixture was heated and stirred for 4 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized with 240 mL of ethyl acetate to prepare Preparation Example 10 (10.88 g, yield: 85 %).
MS[M+H]+= 792 MS [M + H] + = 792
Figure imgf000045_0002
Figure imgf000045_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 B(7.56 g, 19.29 瞧 ol), 및 화합물 all(6.50 g, 20.25 隱 ol)을 Xylene 180 mL에 완전히 녹인 후 Na0tBu(2.22 g, 23.14 隱 ol)을' 첨가하고, Bis(tr i-tert- butylphosphine) pal ladium(0)(0.10 g, 0.19 瞧 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 180 mL으로 재결정하여 제조예 11(10.12 g, 수율: 78%)를 제조하였다. To a 500 mL deunggeun bottom flask under nitrogen compound B (7.56 g, 19.29瞧ol ), and Compound all (6.50 g, 20.25隱ol ) the Na0tBu (2.22 g, 23.14隱ol ) was completely dissolved in Xylene 180 mL ' After addition, Bis (tr i-tert-butylphosphine) pal ladium (0) (0.10 g, 0.19 瞧 ol) was added thereto, followed by heating and stirring for 4 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized from 180 mL of ethyl acetate to prepare Preparation Example 11 (10.12 g, yield: 78%).
MS[M+H]+= 678 제조예 12 MS [M + H] + = 678 Preparation 12
Figure imgf000046_0001
Figure imgf000046_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 B(4.89 g, 12.47 隱 ol), 및 화합물 al2(4.73 g, 13.10 隱 ol)을 Xylene 250 mL에 완전히 녹인 후 Na0tBu(1.44 g, 14.97 誦 ol)을 첨가하고, Bis(tr i_tert_ butylphosphine) pal ladium(0)(0.06 g, 0.12 睡 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 210 mL으로 재결정하여 제조예 12(5.27 g, 수율: 59%)를 제조하였다.  Dissolve Compound B (4.89 g, 12.47 μl) and Compound al2 (4.73 g, 13.10 μl) in 250 mL of Xylene in a 500 mL equipotential bottom flask in nitrogen atmosphere, then add Na0tBu (1.44 g, 14.97 μl) Then, Bis (tr i_tert_butylphosphine) pal ladium (0) (0.06 g, 0.12 睡 ol) was added thereto, and the mixture was heated and stirred for 3 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized from 210 mL of ethyl acetate to prepare Preparation Example 12 (5.27 g, Yield: 59%).
MS[M+H]+= 718 MS [M + H] + = 718
Figure imgf000046_0002
Figure imgf000046_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 B(4.25 g, 10.84 匪 ol), 및 화합물 al3(5.98 g, 11.38 隱 ol)을 Xylene 270 mL에 완전히 녹인 후 Na0tBu(1.25 g, 13.01 睡 ol)을 첨가하고, Bis(tr i— tert- butylphosphine) pal ladium(0)(0.06 g, 0.12 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 테트라하이드로퓨란 240 mL으로 재결정하여 제조예 12(7.63 g, 수율: 80%)를 제조하였다. Dissolve Compound B (4.25 g, 10.84 μl) and Compound al3 (5.98 g, 11.38 μl) in 270 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (1.25 g, 13.01 μl) Then, Bis (tr i-tert-butylphosphine) pal ladium (0) (0.06 g, 0.12 隱 ol) was added thereto, and the mixture was heated and stirred for 3 hours. Lower the silver to room temperature, filter to remove the base, concentrated Xylene under reduced pressure and recrystallized with 240 mL tetrahydrofuran to prepare Preparation Example 12 (7.63 g, yield: 80%).
MS[M+H]+= 882 제조예 14 MS [M + H] + = 882 Preparation 14
Figure imgf000047_0001
Figure imgf000047_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 B(7.45 g, 19.01 誦 ol ) , 및 제조예 al4(8.80 g, 19.96 匪 ol )을 테트라하이드로퓨란 280 mL에 완전히 녹인 후 2M 탄산칼륨수용액 ( 140 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.66 g, 0.57 mmol )을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축시키고 에틸아세테이트 320 mL로 재결정하여 제조예 14(12.68 g, 수율: 88%)를 제조하였다.  Compound B (7.45 g, 19.01 μl), and Preparation Al4 (8.80 g, 19.96 μl) were completely dissolved in 280 mL of tetrahydrofuran in a 500 mL equipotential bottom flask under nitrogen atmosphere, and then aqueous 2M potassium carbonate solution (140 mL). Was added, tetrakis- (triphenylphosphine) palladium (0.66 g, 0.57 mmol) was added and the mixture was heated and stirred for 4 hours. The silver was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 320 mL of ethyl acetate to prepare Preparation 14 (12.68 g, yield: 88%).
MS[M+H]+= 754 MS [M + H] + = 754
Figure imgf000047_0002
Figure imgf000047_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 C(5.61 g, 14.31 隱 ol ) , 및 화합물 al5(6.63 g, 15.03 醒 ol )을 테트라하이드로퓨란 260 mL에 완전히 녹인 후 2M 탄산칼륨수용액 ( 130 mL)을 첨가하고, 테트라키스- (트리페닐포스핀)팔라듐 (0.50 g, 0.43 瞧 ol ).을 넣은 후 6시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축시키고 에틸아세테이트 310 mL로 재결정하여 제조예 15(8.24 g, 수율: 76%)를 제조하였다.  Dissolve Compound C (5.61 g, 14.31 隱 ol), and Compound al5 (6.63 g, 15.03 醒 ol) in 260 mL of tetrahydrofuran in a 500 mL back-bottom flask in nitrogen atmosphere, and then add 2M aqueous potassium carbonate solution (130 mL). Tetrakis- (triphenylphosphine) palladium (0.50 g, 0.43 Pa) was added thereto, followed by heating and stirring for 6 hours. The temperature was lowered to room temperature, the water layer was removed, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized with 310 mL of ethyl acetate to prepare Preparation Example 15 (8.24 g, yield: 76%).
MS[M+H]+= 754
Figure imgf000048_0001
MS [M + H] + = 754
Figure imgf000048_0001
분위기에서 500 mL 등근 바닥 플라스크에 화합물 C .25 g Compound C .25 g in 500 mL back-bottom flask in atmosphere
10.84 mmol), 및 화합물 al6(5.98 g, 11.38 匪 ol)을 Xylene 270 mL에 완전히 녹인 후 Na0tBu(1.25 g, 13.01 隱 ol)을 첨가하고, Bis(tr i-tert- butylphosphine) pal ladium(0)(0.06 g, 0.12 瞧 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 은도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 테트라하이드로퓨란 240 mL으로 재결정하여 제조예 16(7.63 g, 수율: 80%)를 제조하였다. 10.84 mmol), and Compound al6 (5.98 g, 11.38 μl ol) was completely dissolved in 270 mL of Xylene, followed by the addition of Na0tBu (1.25 g, 13.01 μl ol), Bis (tr i-tert-butylphosphine) pal ladium (0) (0.06 g, 0.12 μl ol) was added thereto, and the resulting mixture was heated and stirred for 3 hours. Lowering the silver to room temperature, filtered to remove the base, concentrated Xylene under reduced pressure and recrystallized in 240 mL of tetrahydrofuran to prepare Preparation 16 (7.63 g, yield: 80%).
MS[M+H]+= 818 MS [M + H] + = 818
Figure imgf000048_0002
Figure imgf000048_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 C(3.98 g, Compound C (3.98 g, in a 500 mL back-bottom flask in a nitrogen atmosphere,
10.15 醒 ol), 및 화합물 al7(4.91 g, 10.66 腿 ol)을 Xylene 230 mL에 완전히 녹인 후 Na0tBu(1.17 g, 12.18 隱 ol)을 첨가하고, Bis(tr i_tert- butylphosphine) pal ladium(0)(0.05 g, 0.10 瞧 ol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 테트라하이드로퓨란 270 mL으로 재결정하여 제조예 17(7.63 g, 수율: 80%)를 제조하였다. 10.15 μl ol), and compound al7 (4.91 g, 10.66 μl ol) were completely dissolved in 230 mL of Xylene, followed by addition of Na0tBu (1.17 g, 12.18 μl), Bis (tr i_tert-butylphosphine) pal ladium (0) ( 0.05 g, 0.10 Pa ol) was added thereto, and the resulting mixture was heated and stirred for 2 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized from 270 mL of tetrahydrofuran to prepare Preparation 17 (7.63 g, Yield: 80%).
MS[M+H]+= 718
Figure imgf000049_0001
MS [M + H] + = 718
Figure imgf000049_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 C .49 g, 11.45 隱 ol), 및 화합물 al8(4.77 g, 12.03 瞧 ol)을 Xylene 250 mL에 완전히 녹인 후 Na0tBu(1.32 g, 13.74 隱 ol)을 첨가하고, Bis(tr i tert一 butylphosphine) pal ladium(0)(0.06 g, 0.11 隱 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 테트라하이드로퓨란 240 mL으로 재결정하여 제조예 18(7.79 g, 수율: 90%)를 제조하였다.  Dissolve Compound C .49 g, 11.45 μl), and Compound al8 (4.77 g, 12.03 μl) in 250 mL of Xylene in a 500 mL equipotential bottom flask under nitrogen atmosphere, then add Na0tBu (1.32 g, 13.74 μl) Then, Bis (tr i tert 一 butylphosphine) pal ladium (0) (0.06 g, 0.11 隱 ol) was added thereto, and the mixture was heated and stirred for 3 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized with 240 mL of tetrahydrofuran to prepare Preparation Example 18 (7.79 g, yield: 90%).
MS[M+H]+= 754  MS [M + H] + = 754
Figure imgf000049_0002
Figure imgf000049_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 C(5.55 g, Compound C (5.55 g, in a 500 mL back-bottom flask in a nitrogen atmosphere,
14.16 隱 ol), 및 화합물 al9(7.45 g, 14.87 隱 ol)을 Xylene 270 mL에 완전히 녹인 후 Na0tBu(1.63 g, 16.99 匪 ol)을 첨가하고, Bis(tr i— tert- butylphosphine) pal ladium(0)(0.07 g, 0.14 謹 ol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 테트라하이드로퓨란 240 mL으로 재결정하여 제조예 19(8.52 g, 수율: 80%)를 제조하였다. MS[M+H]+= 858 14.16 隱 ol), and compound al9 (7.45 g, 14.87 隱 ol) were completely dissolved in 270 mL of Xylene, followed by the addition of Na0tBu (1.63 g, 16.99 匪 ol), Bis (tr i- tert-butylphosphine) pal ladium (0 ) (0.07 g, 0.14 謹 ol) was added thereto, followed by stirring for 4 hours. After the temperature was lowered to room temperature and the base was filtered to remove the base, Xylene was concentrated under reduced pressure and recrystallized with 240 mL of tetrahydrofuran to prepare Preparation Example 19 (8.52 g, yield: 80%). MS [M + H] + = 858
Figure imgf000050_0001
Figure imgf000050_0001
질소 분위기에서 500 mL 등근'바닥 플라스크에 화합물 D(6.28 g, 12.17 睡 ol), 및 화합물 a20(3.13 g, 12.78 隱 ol)을 Xylene 220 mL에 완전히 녹인 후 NaOtBu(1.40 g, 14.60 匪 ol)을 첨가하고, Bis(tr i— tert- butylphosphine) pal ladium(0)(0.06 g, 0.12 誦 ol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 220 mL으로 재결정하여 제조예 20(6.76 g, 수율: 77«를 제조하였다. And then completely dissolved in 500 mL deunggeun "bottom flask under nitrogen compound D (6.28 g, 12.17睡ol ), and Compound a20 (3.13 g, 12.78隱ol ) in Xylene 220 mL NaOtBu (1.40 g, 14.60匪ol) After addition, Bis (tr i-tert-butylphosphine) pal ladium (0) (0.06 g, 0.12 誦 ol) was added thereto, followed by heating and stirring for 3 hours. After cooling the temperature to room temperature and removing the base by filtering, Xylene was concentrated under reduced pressure and recrystallized from 220 mL of ethyl acetate to prepare Preparation Example 20 (6.76 g, yield: 77 «.
MS[M+H]+= 726 MS [M + H] + = 726
Figure imgf000050_0002
Figure imgf000050_0002
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 E(5.05 g, 9.79隱 ol), 및 화합물 a21(3/71 g, 10.28 隱 ol)을 Xylene 280 mL에 완전히 녹인 후 Na0tBu(1.13 g, 11.74 隱 ol)을 첨가하고, Bis(tr i— tert— butylphosphine) pal ladium(0)(0.05 g, 0.12 rraiol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 210 mL으로 재결정하여 제조예 21(6.68 g, 수율: 81%)를 제조하였다. MS[M+H] = 842 Compound E (5.05 g, 9.79 μl) and Compound a21 (3/71 g, 10.28 μl) were completely dissolved in 280 mL of Xylene in a 500 mL equibottom flask in a nitrogen atmosphere, followed by Na0tBu (1.13 g, 11.74 μl). Was added, Bis (tr i-tert-butylphosphine) pal ladium (0) (0.05 g, 0.12 rraiol) was added thereto, and the mixture was heated and stirred for 3 hours. After the temperature was lowered to room temperature and the base was removed by filtration, Xylene was concentrated under reduced pressure and recrystallized with 210 mL of ethyl acetate to prepare Preparation Example 21 (6.68 g, Yield: 81%). MS [M + H] = 842
Figure imgf000051_0001
Figure imgf000051_0001
질소 분위기에서 500 mL 등근 바닥 플라스크에 화합물 F(7.18 g, Compound F (7.18 g, in a 500 mL back-bottom flask in a nitrogen atmosphere,
12.82 誦 ol), 및 화합물 a22(5.88 g, 13.46 隱 ol)을 Xylene 320 mL에 완전히 녹인 후 Na0tBu(1.48 g, 15.39 腿 ol)을 첨가하고, Bis(tr i-tert- butylphosphine) pal ladium(0)(0.07 g, 0.13 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상은으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축시키고 에틸아세테이트 210 mL으로 재결정하여 제조예 22(6.68 g, 수율: 81%)를 제조하였다. 12.82 μl ol), and Compound a22 (5.88 g, 13.46 μl ol) were completely dissolved in 320 mL of Xylene, followed by addition of Na0tBu (1.48 g, 15.39 μl ol) and Bis (tr i-tert-butylphosphine) pal ladium (0 ) (0.07 g, 0.13 mmol) was added thereto, followed by stirring for 3 hours. Lowering the temperature with phase silver, filter to remove the base, concentrated Xylene under reduced pressure and recrystallized with 210 mL of ethyl acetate to prepare Preparation Example 22 (6.68 g, yield: 81%).
MS[M+H]+= 918 실시예 1-1  MS [M + H] + = 918 Example 1-1
IT0( indium tin oxide)가 1,000A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (MiUipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ΠΌ를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ΠΌ 투명 전극 위쎄 하기 화학식 HAT로 표시되는 화합물을 100A의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식 ΗΊΊ으로 표시되는 화합물 (1250A )을 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150 A으로 앞서 제조한 제조예 1의 화합물을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 전자억제층 위에 막 두께 200A으로 하기 화학식 BH로 표시되는 화합물 및 하기 화학식 BD로 표시되는 화합물을 25: 1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두.께 50 A으로 하기 화학식 HB1으로 표시되는 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 화학식 ET1으로 표시되는 화합물과 하기 화학식 LiQ로 표시되는 화합물을 1: 1의 중량비로 진공증착하여 310A의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12A두께로 리튬플로라이드 (LiF)와 Ι ,ΟΟΟΑ 두께로 알루미늄을 증착하여 음극을 형성하였다. A glass substrate coated with a thin film having an indium tin oxide (IT0) thickness of 1,000 A was placed in distilled water in which detergent was dissolved and ultrasonically cleaned. At this time, Fischer Co. product was used as the detergent, and distilled water filtered secondly as a filter of MiUipore Co. product was used as the distilled water. After washing ΠΌ for 30 minutes, the ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After washing the distilled water, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. Thus prepared ΠΌ transparent electrode is represented by the formula HAT The compound was thermally vacuum deposited to a thickness of 100 A to form a hole injection layer. Compound (1250A) represented by the following formula ΗΊΊ was vacuum deposited on the hole injection layer to form a hole transport layer. Subsequently, the compound of Preparation Example 1 was vacuum deposited on the hole transport layer with a film thickness of 150 A to form an electron suppressing layer. Subsequently, the compound represented by the following formula BH and the compound represented by the following formula BD were deposited under vacuum at a weight ratio of 25: 1 to form a light emitting layer on the electron suppression layer with a thickness of 200A. A hole blocking layer was formed by vacuum depositing a compound represented by the following formula HB1 at a film thickness of 50 A on the light emitting layer. Subsequently, the compound represented by the following formula ET1 and the compound represented by the following formula LiQ were vacuum-deposited at a weight ratio of 1: 1 on the hole blocking layer to form an electron injection and transport layer at a thickness of 310A. On the electron injection and transport layer, aluminum was deposited to a thickness of lithium fluoride (LiF) and Ι, ΟΟΟΑ at a thickness of 12A sequentially to form a cathode.
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0003
Figure imgf000053_0003
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7A/sec를 유지하였고, 음극의 리튬플로라이드는 0.3A/sec, 알루미늄은 2A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2X10—7 - 5ΧΚΓ6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 1-2내지 실시예 1-16 In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7A / sec, the lithium fluoride of the cathode was maintained at 0.3A / sec, the deposition rate of aluminum was 2A / sec, the vacuum degree during deposition was 2X10— 7- . The organic light emitting device was manufactured by maintaining 5 to 6 6rr. Example 1-2 to Example 1-16
제조예 1의 화합물 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1—1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교예 1-1내지 1-3 An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that the compound shown in Table 1 was used instead of the compound of Preparation Example 1. Prepared. Comparative Examples 1-1 to 1-3
제조예 1의 화합물 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1—1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 EB1, EB2 및 EB3의 화합물을 하기와 같다.  An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that the compound shown in Table 1 was used instead of the compound of Preparation Example 1. The compounds of EB1, EB2 and EB3 used in Table 1 below are as follows.
Figure imgf000054_0001
Figure imgf000054_0001
실험예 1 Experimental Example 1
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도 (6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.  When the current was applied to the organic light emitting diodes manufactured in Examples and Comparative Examples, voltage, efficiency, color coordinate, and lifetime were measured, and the results are shown in Table 1 below. T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).
【표 1】  Table 1
화합물 전압 효을 ᄀ - -^- T95 Compound Voltage Effect a--^-T95
(전자억제층) (V@10mA/cm2) (cd/A@10mA/cm2) (x, y) (hr) 실시예 1-1 제조예 1 4.50 6.31 (0.140, 0.046) 280 실시예 1一 2 제조예 3 4.33 6.53 (0.141, 0.046) 285 실시예 1-3 제조예 4 4.56 6.34 (0.143, 0.047) 295 실시예 1-4 제조예 5 4.40 6.45 (0.142, 0.048) 280 실시예 1-5 제조예 6 4.53 6.36 (0.140, 0.044) 275 실시예 1-6 제조예 7 4.56 6.37 (0.141, 0.046) 285 실시예 1-7 제조예 9 4.64 6.29 (0.140, 0.044) 290 실시예 1-8 제조예 10 4.46 6.44 (0.141, 0.046) 260 실시예 1一 9 제조예 11 4.41 6.42 (0.138, 0.044) 280 실시예 1一 10 제조예 14 4.50 6.33 (0.139, 0.043) 295 실시예 1-11 제조예 15 4.53 6.35 (0.140, 0.047) 285 실시예 1-12 제조예 17 4.56 6.31 (0.141, 0.046) 270 실시예 1-13 제조예 18 4.68 6.26 (0.138, 0.044) 265 실시예 1-14 제조예 19 4.63 6.28 (0. 139 , 0.043) 285 실시예 1-15 제조예 20 4.62 6.23 (0. 142 , 0.045) 275 실시예 1-16 제조예 21 4.61 6.27 (0. 141 , 0.044) 290 비교예 1—1 EB1 5.12 5.84 (0. 141 , 0.045) 240 비교예 1-2 EB2 4.97 5.86 (0. 143 , 0.048) 235 비교예 1-3 EB3 4.72 5.43 (0. 143 , 0.048) 220 상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 전자억제층으로 사용한 유기 발광 소자는, 유기 발광 소자의 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다. 특히, 카바졸이 포함된 아민이 연결된 비교예 1-2의 화합물을 전자억제층으로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 나타내었다. 또한, 본 발명의 코어와 유사한 구조를 가지면서 메틸기를 포함하지 않는 비교예 1-3의 화합물을 전자억제층으로 사용하여 제조된 유기 발광 소자는, 효율이 10% 이상, 수명은 3 이상떨어지는 결과를 나타내었다. 상기 표 1의 결과와 같이, 본 발명에 따른 화합물은 전자 차단 능력이 우수하여 유기 발광소자에 적용 가능함을 확인할 수 있었다. 실시예 2-1 내지 2-22 (E-suppression layer) (V @ 10 mA / cm 2 ) (cd / A @ 10 mA / cm 2 ) (x, y) (hr) Example 1-1 Preparation Example 1 4.50 6.31 (0.140, 0.046) 280 Example 1 Example 2 Preparation Example 3 4.33 6.53 (0.141, 0.046) 285 Example 1-3 Preparation Example 4 4.56 6.34 (0.143, 0.047) 295 Example 1-4 Preparation Example 5 4.40 6.45 (0.142, 0.048) 280 Example 1-5 Preparation Example 6 4.53 6.36 (0.140, 0.044) 275 Example 1-6 Preparation Example 7 4.56 6.37 (0.141, 0.046) 285 Example 1-7 Preparation Example 9 4.64 6.29 (0.140, 0.044) 290 Example 1-8 Preparation Example 10 4.46 6.44 (0.141, 0.046) 260 Example 1 One 9 Manufacturing Example 11 4.41 6.42 (0.138, 0.044) 280 Example 1 One 10 Preparation Example 14 4.50 6.33 (0.139, 0.043) 295 Example 1-11 Preparation Example 15 4.53 6.35 (0.140, 0.047) 285 Example 1-12 Preparation 17 4.56 6.31 (0.141, 0.046) 270 Example 1-13 Preparation 18 18.68 6.26 (0.138, 0.044) 265 Example 1-14 Preparation Example 19 4.63 6.28 (0.139, 0.043) 285 Example 1-15 Preparation Example 20 4.62 6.23 (0.142, 0.045) 275 Example 1-16 Preparation Example 21 4.61 6.27 (0.141) , 0.044) 290 Comparative Example 1—1 EB1 5.12 5.84 (0.141, 0.045) 240 Comparative Example 1-2 EB2 4.97 5.86 (0.143, 0.048) 235 Comparative Example 1-3 EB3 4.72 5.43 (0.143, 0.048 As shown in Table 1, the organic light emitting device using the compound of the present invention as an electron suppressing layer exhibited excellent characteristics in terms of efficiency, driving voltage, and stability of the organic light emitting device. In particular, it showed lower voltage, higher efficiency and longer life than the organic light emitting device manufactured by using the compound of Comparative Example 1-2 in which the amine containing carbazole was connected as the electron suppressing layer. In addition, the organic light emitting device manufactured by using the compound of Comparative Example 1-3 having a structure similar to that of the core of the present invention and containing no methyl group as the electron suppressing layer has a efficiency of 10% or more and a lifetime of 3 or more. Indicated. As shown in Table 1, the compound according to the present invention was confirmed that the excellent electron blocking ability can be applied to the organic light emitting device. Examples 2-1 to 2-22
상기 비교예 1-1에서, 화학식 HT1으로 표시되는 화합물 대신 하기 표 2에 기재된 화합물을 사용한 것을 제외하고는, 상기 비교예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다. 비교예 2-1 및 2-2  In Comparative Example 1-1, an organic light emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compound shown in Table 2 was used instead of the compound represented by Chemical Formula HT1. Comparative Examples 2-1 and 2-2
상기 비교예 1-1에서, 화학식 ΗΊΊ으로 표시되는 화합물 대신 하기 표 2에 기재된 화합물을 사용한 것을 제외하고는, 상기 비교예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다. 하기 표 2에서, HT2 및 HT3으로 표시되는 화합물은 하기와 같다. In Comparative Example 1-1, an organic light emitting device was manufactured in the same manner as in Comparative Example 1-1, except that the compound shown in Table 2 was used instead of the compound represented by Formula ΗΊΊ. In Table 2 below, the compounds represented by HT2 and HT3 are as follows.
Figure imgf000056_0001
Figure imgf000056_0001
HT2 HT3 실험예 2  HT2 HT3 Experimental Example 2
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율,'색좌표 및 수명을 측정하고 그 결과를 하기 표Examples and Comparative when applying a current to the organic light emitting device prepared in Example, voltage, efficiency, and, measuring the color coordinate and lifespan and the results table
2에 나타내었다. T95은 휘도가 초기 휘도 (6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다. 2 is shown. T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (6000 nit).
Figure imgf000056_0002
비교예 2-1 HT2 5.07 5.86 (0. 143, 0.048) 235 비교예 2-2 HT3 4.92 5.43 (0. 143 , 0.048) 220 상기 표 2에 나타난 바와 같이, 본 발명의 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자의 경우에 유기 발광 소자의 효율, 구동전압 및 /또는 안정성 면에서 우수한 특성을 나타내었다. 특히, 실시예의 유기 발광 소자는, 카바졸이 포함된 아민이 연결된 화학식 HT2로 표시되는 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 내었다. 또한, 본 발명의 코어와 유사한 구조를 가지면서 메틸기를 포함하지 않는 화학식 HT3으로 표시되는 화합물을 사용하여 제조된 유기 발광 소자는 효율이 5% 이상, 수명은 20% 이상 떨어지는 결과를 나타내었다. 실시예 3-1
Figure imgf000056_0002
Comparative Example 2-1 HT2 5.07 5.86 (0.143, 0.048) 235 Comparative Example 2-2 HT3 4.92 5.43 (0.143, 0.048) 220 As shown in Table 2, the compound of the present invention was used as a hole transport layer. In the case of the manufactured organic light emitting diode, the organic light emitting diode exhibited excellent characteristics in terms of efficiency, driving voltage, and / or stability. In particular, the organic light emitting device of the embodiment exhibited lower voltage, higher efficiency, and longer life than the organic light emitting device manufactured by using the compound represented by Formula HT2 to which an amine containing carbazole is connected as a hole transport layer. In addition, the organic light emitting device manufactured using the compound represented by the formula HT3 having a structure similar to that of the core of the present invention and not containing a methyl group showed a result of 5% or more efficiency and 20% or more lifetime drop. Example 3-1
ITOGndium t in oxi de)가 Ι , ΟΟΟΑ의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fi scher Co . ) 제품을 사용하였으며, 증류수로는 밀러포어사 (Mi l l ipore Co . ) 제품의 필터 (Fi l ter )로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ΠΌ 투명 전극 위에 정공주입층으로 하기 HI 1 화합물을 1100 A의 두께로 형성하되 하기 A-1 화합물을 2% 농도로 p-doping 하였다. 상기 정공주입층 위에 앞서 제조한 화합물 1을 진공 증착하여 막 두께 350A으로 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150 A으로 하기 EB1 화합물을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 EB1 증착막 위에, 하기 YGH-1 화합물과 하기 YGH-2 화합물을 6 : 4의 중량비로 흔합한 호스트 조성물과, 호스트 조성물 대비 6 중량 %으로 인광 도펀트인 하기 YGD-1 화합물을 함깨 진공 증착하여 350A 두께의 녹색 발광층을 형성하였다. 상기 발광층 위에 막 두께 50A으로 하기 HB1 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서ᅳ 상기 정공저지층 위에 하기 ET1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300A의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12A 두께로 리튬플로라이드 (LiF)와 Ι,ΟΟΟΑ 두깨로 알루미늄을 증착하여 음극을 ITOGndium t in oxi de) Ι, ΟΟΟΑ The thin film-coated glass substrate was placed in distilled water in which detergent was dissolved and ultrasonically cleaned. At this time, Fischer Co. product was used as a detergent, and distilled water was filtered secondly with a filter (Fi lter) manufactured by Miller Pore Co., Ltd. (Mill ipore Co.). After ITO was washed for 30 minutes, ultrasonic washing was performed twice with distilled water for 10 minutes. After washing the distilled water, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. The HI 1 compound was formed to a thickness of 1100 A as a hole injection layer on the πΌ transparent electrode thus prepared, and the following A-1 compound was p-doped at a concentration of 2%. Compound 1 prepared above was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 350A. Subsequently, the following EB1 compound was vacuum deposited on the hole transport layer to a film thickness of 150 A to form an electron suppression layer. Subsequently, on the EB1 deposited film, a host composition in which the following YGH-1 compound and the following YGH-2 compound are mixed at a weight ratio of 6: 4, and the host composition The following YGD-1 compound, which is a phosphorescent dopant, was vacuum-deposited at 6% by weight, to form a green light emitting layer having a thickness of 350A. A hole blocking layer was formed by vacuum depositing the following HB1 compound on the light emitting layer with a thickness of 50 A. Subsequently, the following ET1 compound and the following LiQ compound were vacuum deposited on the hole blocking layer in a weight ratio of 2: 1 to form an electron injection and transport layer at a thickness of 300 A. The cathode was deposited by sequentially depositing aluminum with lithium fluoride (LiF) and Ι, ΟΟΟΑ at a thickness of 12 A on the electron injection and transport layer.
Figure imgf000058_0001
Figure imgf000058_0001
상기의 과정에서 유기물의 증착속도는 0.4~0.7A/sec를 유지하였고, 음극의 리튬플로라이드는 0.3A/sec, 알루미늄은 2A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2X10—7 ~ 5X10-6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 3-2 내지 실시예 3-16 Was maintained at the deposition rate was 0.4 ~ 0.7A / sec for organic material in the above process, the lithium fluoride of the cathode was deposited at a rate of 0.3A / sec, aluminum 2A / sec, the degree of vacuum upon deposition 2X10- 7 ~ 5X10 -6 torr, organic A light emitting device was produced. Example 3-2 to Example 3-16
제조예 1의 화합물 대신 하기 표 3에 기재된 화합물을 사용하는 것을 제외하고는, 상기 질시예 3-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교예 3-1 내지 3-3  An organic light-emitting device was manufactured in the same manner as in Example 1-1, except that the compound shown in Table 3 was used instead of the compound of Preparation Example 1. Comparative Examples 3-1 to 3-3
제조예 1의 화합물 대신 하기 표 3에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 3-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 3에서 사용한 EB4 , EB5 및 EB6의 화합물을 하기와 같다.  An organic light-emitting device was manufactured in the same manner as in Example 3-1, except for using the compound shown in Table 3 below instead of the compound of Preparation Example 1. The compounds of EB4, EB5 and EB6 used in Table 3 below are as follows.
Figure imgf000059_0001
실험예 3
Figure imgf000059_0001
Experimental Example 3
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하가표 3에 나타내었다. T98은 휘도가 초기 휘도 (6000 ni t )에서 98%로 감소되는데 소요되는 시간을의미한다. When the current was applied to the organic light emitting diodes manufactured in Examples and Comparative Examples, voltage, efficiency, color coordinates, and lifetime were measured, and the results are shown in Table 3 below. T98 means the time at which the luminance is required there is reduced from the initial luminance (6000 ni t) by 98%.
【표 3】  Table 3
화합물 전압 효을 색좌표 T98 Compound voltage effect color coordinate T98
(정공수송충) (V@10mA/cm2) (cd/A@10mA/cm2) (x , y) (hr ) 실시예 3-1 제조예 1 3.58 145.92 (0.254, 0.711) 240 실시예 3-2 제조예 2 3.56 146.11 (0.255 , 0.712) 235 실시예 3-3 제조예 3 3.62 145.25 (0.256 , 0.711) 235 실시예 3-4 제조예 4 3.63 145.34 (0.256, 0.713) 230 실시예 3-5 - 제조예 5 4.35 136.13 (0.262, 0.705) 170 실시예 3-6 제조예 6 4.36 136.39 (0.264 0.706) 165 실시예 3-7 제조예 7 4.38 135.91 (0.262 , 0.707) 160 실시예 3-8 제조예 8 4.37 135.73 (0.263 , 0.705) 175 실시예 3-9 제조예 11 4. 12 137.97 (0.261, 0.706) 170 실시예 3-10 제조예 12 4. 10 138.62 (0.265 , 0.702) 175 실시예 3—11 제조예 14 3.82 143.50 220 실시예 3一 12 제조예 15 3.86 142.44 215 실시예 3-13 제조예 17 4. 18 138.97 (0.261 , 0.705) 150 실시예 3-14 제조예 18 4. 17 139.62 (0.263 , 0.708) 145 실시예 3一 15 제조예 20 4.35 136.13 (0.266 , 0.709) 180 실시예 3-16 제조예 21 4.36 136.39 (0.267 , 0.708) 195 비교예 3-1 EB4 4.61 126.94 (0.263 , 0.704) 60 비교예 3-2 EB5 4.77 125.66 (0.262 , 0.707) 115 비교예 3-3 EB6 4.52 127.43 (0.261 0.706) 85 상기 표 3에 나타난 바와 같이, 본 발명의 화합물을 녹색 발광 소자 (인광)의 정공수송층으로 사용한 유기 발광 소자는, 유기 발광 소자의 효을, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다. 카바졸이 포함된 아민이 직접 연결된 비교예 1-2의 화합물을 정공수송층으로(Hole transport) (V @ 10mA / cm 2 ) (cd / A @ 10mA / cm 2 ) (x, y) (hr) Example 3-1 Preparation Example 1 3.58 145.92 (0.254, 0.711) 240 Example 3- 2 Preparation Example 2 3.56 146.11 (0.255, 0.712) 235 Example 3-3 Preparation Example 3 3.62 145.25 (0.256, 0.711) 235 Example 3-4 Preparation Example 4 3.63 145.34 (0.256, 0.713) 230 Example 3-5- Preparation 5 5.35 136.13 (0.262, 0.705) 170 Example 3-6 Preparation 6 4.36 136.39 (0.264 0.706) 165 Example 3-7 Preparation 7 4.38 135.91 (0.262, 0.707) 160 Example 3-8 Preparation 8 4.37 135.73 (0.263, 0.705) 175 Example 3 -9 Preparation Example 11 4.12 137.97 (0.261, 0.706) 170 Example 3-10 Preparation Example 12 4. 10 138.62 (0.265, 0.702) 175 Example 3—11 Preparation Example 14 3.82 143.50 220 Example 3 One 12 Preparation Example 15 3.86 142.44 215 Example 3-13 Preparation 17 17 18 138.97 (0.261, 0.705) 150 Example 3-14 Preparation 18 18 17 17 139.62 (0.263, 0.708) 145 Example 3 One 15 Preparation 20 4.35 136.13 (0.266, 0.709) 180 Example 3-16 Preparation 21 4.36 136.39 (0.267, 0.708) 195 Comparative Example 3-1 EB4 4.61 126.94 (0.263, 0.704) 60 Comparative Example 3-2 EB5 4.77 125.66 (0.262, 0.707) 115 Comparative Example 3-3 EB6 4.52 127.43 (0.261 0.706) 85 As shown in Table 3, an organic light emitting device using the compound of the present invention as a hole transport layer of a green light emitting device (phosphorescent) drives the effect of the organic light emitting device. Voltage and stability In the exhibited excellent characteristics. Carbazole-containing amine is directly connected to the compound of Comparative Example 1-2 as a hole transport layer
_ _
사용하여 제조된 유기 발광 소자보다 저전압, 고효율 및 o o 장수명의 특성을 나타내었다. 또한, 본 발명의 코어와 유사한 구조를 가지면서 메틸기를 ο o It showed lower voltage, higher efficiency and longer life than the organic light emitting device manufactured using. In addition, while having a structure similar to the core of the present invention, a methyl group ο o
포함하지 않는 비교예 3-1 및 3-3의 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자는 수명은 50~60% 이상 떨어지는 결과를 나타내었다. 실시예 3-1 내지 3-4 와 실시예 3-5 내지 3-8를 비교하면 직접결합보다 페닐기가 링커로 연결된 물질들이 가장 좋은 특성을 나타내었다 (특히 수명) . 실시예 3-9 내지 3-12를 비교하면 본 발명의 화합물에 3번 방향으로 페닐 링커를 포함하는 물질들도 같은 경향을 보였다. 실시예 3—13 내지 3- 16에서 본원발명의 코어가 메틸기 대신 페닐기로 구성된 물질은 직접 결합이지만 수명특성이 상대적으로 더 좋다는 것을 알 수 있었다. 상기 표 3의 결과와 같이, 본 발명에 따른 화합물은 인광 녹색 발광층을 사용한 소자에서 정공 수송능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다. 실시예 4-1 I T0( indium tin oxide)가 Ι,ΟΟΟΑ의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 이렇게 준비된 ΠΌ 투명 전극 위에 정공주입층으로 하기 HI1 화합물을 1150 A의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 P— doping 하였다. 상기 정공주입층 위에 앞서 제조한 화합물 1을 진공 증착하여 막 두께 800A 의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150 A으로 하기 EB1 화합물을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 EB1 증착막 위에 하기 RH-1 화합물과 하기 RD-1 화합물을 98 :2의 중량비로 진공 증착하여 360 A 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30 A으로 하기 HB1 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 ΕΊΊ 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300A의 두깨로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12A 두께로 리튬플로라이드 (LiF)와 1,000 A 두께로 알루미늄을 증착하여 음극을 형성하였다. The organic light emitting device manufactured by using the compounds of Comparative Examples 3-1 and 3-3, which were not included, as the hole transport layer showed a result that the lifespan decreased by 50 to 60% or more. Comparing Examples 3-1 to 3-4 with Examples 3-5 to 3-8, the materials in which the phenyl group was linked with the linker than the direct bonds showed the best properties (particularly life). Comparing Examples 3-9 to 3-12, the materials including the phenyl linker in the third direction in the compound of the present invention also showed the same tendency. In Examples 3 to 13 to 16, it can be seen that the core of the present invention is composed of a phenyl group instead of a methyl group, which is a direct bond, but has a relatively better lifespan. As shown in Table 3, the compound according to the present invention was found to be excellent in the hole transport capacity in the device using the phosphorescent green light emitting layer can be applied to the organic light emitting device. Example 4-1 A glass substrate coated with a thin film of I indium tin oxide (ITO) having a thickness of Ι, ΟΟΟΑΑ was placed in distilled water in which detergent was dissolved and ultrasonically cleaned. In this case, Fischer Co. product was used as the detergent, and distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water. After washing IT0 for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes. After washing the distilled water, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. The HI1 compound was formed to a thickness of 1150 A as a hole injection layer on the ΠΌ transparent electrode thus prepared, but the P-1 doping was performed at the concentration of 1.5% of the following A-1 compound. Compound 1 prepared above was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800A. Subsequently, the following EB1 compound was vacuum deposited on the hole transport layer to a film thickness of 150 A to form an electron suppression layer. Subsequently, the following RH-1 compound and the following RD-1 compound were vacuum deposited on the EB1 deposition film at a weight ratio of 98: 2 to form a red light emitting layer having a thickness of 360 A. A hole blocking layer was formed by vacuum depositing the following HB1 compound at a film thickness of 30 A on the light emitting layer. Subsequently, the following ΕΊΊ compound and the following LiQ compound were vacuum deposited on the hole blocking layer in a weight ratio of 2: 1 to form an electron injection and transport layer with a thickness of 300A. Lithium fluoride (LiF) and aluminum in a thickness of 1,000 A were sequentially deposited on the electron injection and transport layer to form a cathode.
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
Figure imgf000062_0003
ET1 LiQ 상기의 과정에서 유기물의 증착속도는 0.4 0.7 A/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 A/sec 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 Χ ΚΓ7 ~ 5 10"6 torr를 유지하여, 유기 발광 소자를 제작하였다. 실시예 4-2내지 실시예 4-16 ET1 LiQ In the above process, the deposition rate of organic material was maintained at 0.4 0.7 A / sec, the lithium fluoride of the cathode was maintained at a deposition rate of 0.3 A / sec aluminum at 2 A / sec, and the vacuum degree was 2 Χ ΚΓ during deposition. The organic light emitting device was manufactured by maintaining 7 to 5 10 "6 torr. Example 4-2 to Example 4-16
제조예 1의 화합물 대신 하기 표 4에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 4-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 비교예 4-1 내지 4-3 An organic light-emitting device was manufactured in the same manner as in Example 4-1, except for using the compound shown in Table 4 instead of the compound of Preparation Example 1. Comparative Examples 4-1 to 4-3
제조예 1의 화합물 대신 하기 표 4에 기재된 화합물을 사용하는 .것을 제외하고는, 상기 실시예 4-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 4에서 사용한 HT5 , HT6 및 HT7의 화합물을 하기와 같다.  An organic light-emitting device was manufactured in the same manner as in Example 4-1, except for using the compound shown in Table 4 instead of the compound of Preparation Example 1. The compounds of HT5, HT6 and HT7 used in Table 4 below are as follows.
Figure imgf000063_0001
실험예 4
Figure imgf000063_0001
Experimental Example 4
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 4에 나타내었다. T98은 휘도가 초기 휘도 (4500 ni t )에서 98%로 감소되는데 소요되는 시간을 의미한다.  When the current was applied to the organic light emitting diodes manufactured in Examples and Comparative Examples, voltage, efficiency, color coordinates, and lifetime were measured, and the results are shown in Table 4 below. T98 means the time it takes for the luminance to decrease to 98% from the initial luminance (4500 ni t).
【표 4】  Table 4
화합물 전압 효율 T98 Compound Voltage Efficiency T98
(정공수송층) (V@10mA/cm2) (cd/A@10mA/cm2) (x ,y) (hr ) 실시예 4-1 제조예 1 4.08 47.21 (0.685 , 0.315) 340 실시예 4-2 제조예 2 4.09 47. 10 (0.686 , 0.314) 335 실시예 4-3 제조예 3 4.04 46.55 (0.685, 0.315) 335 실시예 4-4 제조예 4 4.07 45.96 (0.686 , 0.316) 330 실시예 4-5 제조예 5 4.45 42. 17 (0.688 , 0.318) 270 실시예 4-6 제조예 6 4.49 42.39 (0.689, 0.319) 265 실시예 4—7 제조예 7 4.41 42.71 (0.687, 0.317) 260 실시예 4-8 제조예 8 4.43 42.62 (0.688, 0.321) 275 실시예 4-9 제조예 11 4.32 43.83 (0.687, 0.323) 270 실시예 4-10 제조예 12 4.37 43.94 (0.688, 0.320) 275 실시예 4-11 제조예 14 4. 15 44.45 (0.686, 0.316) 320 실시예 4-12 제조예 15 4. 13 44.70 (0.686 , 0.317) 315 실시예 4-13 제조예 17 4.36 43.72 (0.690 , 0.318) 250 실시예 4-14 제조예 18 4.37 43.56 (0.689, 0.319) 245 실시예 4 15 제조예 20 4.01 45.64 (0.690 , 0.320) 280 실시예 4-16 제조예 21 4.05 45.61 (0.685, 0.315) 295 비교예 4-1 HT5 5.32 38.69 (0.692 , 0.324) 145 비교예 4-2 HT6 4.87 45.63 (0.687, 0.319) 190 비교예 4-3 HT7 5. 13 41.05 (0.693 , 0.323) 160 상기 표 4에 나타난 바와 같이, 본 발명의 화합물을 녹색발광소자 (인광)의 정공수송층으로 사용한 유기 발광 소자는, 유기 발광 소자의 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다. 카바졸이 포함된 아민이 직접 연결된 비교예 4-2의 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 나타내었다. 또한, 본 발명의 코어와 유사한 구조를 가지면서 메틸기를 포함하지 않고 아민이 직접 연결된 비교예 4-1 및 4-3의 화합물을 정공수송층으로 사용하여 제조된 유기 발광 소자는 전압이 2OT 이상 증가하고, 효을은 5~10% 떨어지며, 수명은 60~70% 이상 떨어지는 결과를 나타내었다. 이는 앞서 실험예 3에서 녹색발광층의 정공수송층으로 300 A의 두께로 증착시킨 소자에 비하여 적색발촹층의 정공수송층으로는 800A을 사용하기 때문이다. 따라서 본 발명의 코어가 hol e mobi l i ty 능력이 비교예 4-1 및 4-3 물질보다 상대적으로 높다고 판단할 수 있다. 실시예 4-1 내지 4-4 와 실시예 4-5 내지 4-8를 비교하면 직접결합보다 페닐기가 링커로 연결된 물질들이 가장 좋은 특성을 나타내었다 (특히 수명) . 실시예 4-9 내지 4-12를 비교하면 본 발명의 화합물에 3번 방향으로 페닐 링커를 포함하는 물질들도 같은 경향을 보였다. 실시예 4-13 내지 4-16에서 본원발명의 코어가 메틸기 대신 페닐기로 구성된 물질은 직접 결합이지만 수명특성이 상대적으로 더 좋다는 것을 알 수 있었다. 상기 표 4의 결과와 같이, 본 발명에 따른 화합물은 인광 녹색 발광층을 사용한 소자에서 정공 수송능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다. (Hole transport layer) (V @ 10 mA / cm 2 ) (cd / A @ 10 mA / cm 2 ) (x, y) (hr) Example 4-1 Preparation Example 1 4.08 47.21 (0.685, 0.315) 340 Example 4- 2 Preparation Example 2 4.09 47.10 (0.686, 0.314) 335 Example 4-3 Preparation Example 3 4.04 46.55 (0.685, 0.315) 335 Example 4-4 Preparation Example 4 4.07 45.96 (0.686, 0.316) 330 Example 4- 5 Preparation 5 4.45 42.17 (0.688, 0.318) 270 Example 4-6 Preparation 6 4.49 42.39 (0.689, 0.319) 265 Example 4—7 Preparation 7 4.41 42.71 (0.687, 0.317) 260 Example 4- 8 Preparation 8 4.43 42.62 (0.688, 0.321) 275 Example 4-9 Preparation 11 4.32 43.83 (0.687, 0.323) 270 Example 4-10 Preparation 12 4.37 43.94 (0.688, 0.320) 275 Example 4-11 Preparation Example 14 4. 15 44.45 (0.686, 0.316) 320 Example 4-12 Preparation Example 15 4. 13 44.70 (0.686, 0.317) 315 Example 4-13 Preparation 17 4.36 43.72 (0.690, 0.318) 250 Example 4- 14 Preparation 18 4.37 43.56 (0.689, 0.319) 245 Example 4 15 Preparation 20 4.01 45.64 (0.690, 0.320) 280 Example 4-16 Preparation 21 4.05 45.61 (0.685, 0.315) 29 5 Comparative Example 4-1 HT5 5.32 38.69 (0.692, 0.324) 145 Comparative Example 4-2 HT6 4.87 45.63 (0.687, 0.319) 190 Comparative Example 4-3 HT7 5. 13 41.05 (0.693, 0.323) 160 As shown in Table 4 above. Similarly, the organic light emitting device using the compound of the present invention as the hole transport layer of the green light emitting device (phosphorescence) exhibited excellent characteristics in terms of efficiency, driving voltage and stability of the organic light emitting device. The compounds of Comparative Example 4-2 in which carbazole-containing amines were directly connected to each other exhibited lower voltage, higher efficiency, and longer life than organic light-emitting devices manufactured using the compound as the hole transport layer. In addition, the organic light emitting device manufactured by using the compounds of Comparative Examples 4-1 and 4-3 having a structure similar to that of the core of the present invention and not directly containing a methyl group and directly connected to an amine was used as the hole transport layer, and the voltage was increased by 2OT or more. , Hyoil is reduced by 5 ~ 10%, and life span is reduced by more than 60 ~ 70%. This is because 800 A is used as the hole transport layer of the red light emitting layer as compared with the device deposited in the thickness of 300 A as the hole transport layer of the green light emitting layer in Experimental Example 3. Therefore, it can be determined that the core of the present invention has a relatively high hol e mobi li ty capability than the materials of Comparative Examples 4-1 and 4-3. Comparing Examples 4-1 to 4-4 with Examples 4-5 to 4-8, the materials in which the phenyl group was linked with the linker showed the best properties (particularly the lifetime) than the direct bonds. Comparing Examples 4-9 to 4-12, the materials including the phenyl linker in the third direction of the compound of the present invention also showed the same tendency. In Examples 4-13 to 4-16, it was found that the core of the present invention is composed of a phenyl group instead of a methyl group, which is a direct bond, but has a relatively better lifespan. As shown in Table 4, the compound according to the present invention was found to be excellent in the hole transport capacity in the device using the phosphorescent green light emitting layer can be applied to the organic light emitting device.
【부호의 설명】  [Explanation of code]
1 : 기판 2 : 양극 3 : 유기물층 4 : 음극 Reference Signs List 1 substrate 2 anode 3 organic layer 4 cathode
5: 정공주입층 6 : 정공수송층 7: 전자억제층 8 : 발광층5: hole injection layer 6: hole transport layer 7: electron suppression layer 8: light emitting layer
9: 전자수송층 10 : 전자주입층 9 : electron transport layer 10: electron injection layer

Claims

【특허청구범위】  [Patent Claims]
【청구항 11  [Claim 11
하기 화학식 1로 표시되는 화합물:  Compound represented by the following formula (1):
Figure imgf000065_0001
Figure imgf000065_0001
상기 화학식 1에서,  In Chemical Formula 1,
Ri 및 R2는 각각 독립적으로, 메틸 또는 페닐이고, Ri and R 2 are each independently methyl or phenyl,
및 L2는 각각 독립적으로, 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고, And L 2 are each independently a bond; Or substituted or unsubstituted C 6 -60 arylene,
An 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 0또는 S를 포함하는 C2-60 헤테로아릴이다. An and Ar 2 are each independently, substituted or unsubstituted C 6 -60 aryl; Or C 2 -60 heteroaryl comprising 0 or S.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1은 하기 화학식 1-1, 1-2, 또는 1-3으로 표시되는 화합물:  Formula 1 is a compound represented by the following formula 1-1, 1-2, or 1-3:
Figure imgf000065_0002
Figure imgf000065_0002
[화학식 1-2] [Formula 1-2]
Figure imgf000066_0001
Figure imgf000066_0001
Figure imgf000066_0002
Figure imgf000066_0002
【청구항 3】 [Claim 3]
거 U항에 있어서,  In U,
Li 및. L2는 각각 독립적으로, 결합, 페닐렌, 비페닐디일, 터페닐디일, 쿼터페닐디일, 나프탈렌디일, 안트라센디일, 디메틸플루오렌디일, 페난쓰렌디일, 피렌디일, 또는 트리페닐렌디일인, Li and. L 2 is each independently a bond, phenylene, biphenyldiyl, terphenyldiyl, quarterphenyldiyl, naphthalenediyl, anthracenediyl, dimethylfluorenediyl, phenanthrendiyl, pyrendiyl, or triphenylenediyl,
화합물.  compound.
【청구항 4] [Claim 4]
게 1항에 있어서, According to claim 1,
은 결합이고,  Is a bond,
L2은 결합, 또는 페닐렌인, L 2 is a bond or phenylene
화합물. compound.
【청구항 5】 [Claim 5]
저 U항에 있어서,  In that U term,
An 및 Ar2는 각각 독립적으로, 비치환되거나, 또는 d-4 알킬, 할로겐, 시아노, 및 트리 (d-4 알킬)실릴로 구성되는 군으로부터 선택되는 어느 하나의 치환기로 치환된 페닐; 비페닐릴; 터페닐릴; 쿼터페닐릴; 나프틸; 안트라세닐; 페난쓰레닐; 트리페닐레닐; 디메틸플루오레닐; 디페닐플루오레닐; 디벤조퓨라닐; 또는 디벤조티오페닐인, An and Ar 2 are each independently phenyl unsubstituted or substituted with any substituent selected from the group consisting of d- 4 alkyl, halogen, cyano, and tri (d- 4 alkyl) silyl; Biphenylyl; Terphenylyl; Quarterphenylyl; Naphthyl; Anthracenyl; Phenanthrenyl; Triphenylenyl; Dimethyl fluorenyl; Diphenylfluorenyl; Dibenzofuranyl; Or dibenzothiophenyl;
화합물.  compound.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,  The compound represented by Formula 1 is any one selected from the group consisting of
화합물: compound:
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000075_0001
74 74
Figure imgf000076_0001
Figure imgf000076_0001
75 75
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000077_0003
Figure imgf000077_0003
76 76
Figure imgf000078_0001
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0002
Figure imgf000078_0003
Figure imgf000078_0003
77 77
Figure imgf000079_0001
Figure imgf000079_0001
Figure imgf000079_0002
Figure imgf000079_0002
78 78
Figure imgf000080_0001
Figure imgf000080_0001
Figure imgf000080_0002
Figure imgf000080_0003
Figure imgf000080_0004
Figure imgf000080_0002
Figure imgf000080_0003
Figure imgf000080_0004
Figure imgf000080_0005
Figure imgf000080_0005
79 08 79 08
Figure imgf000081_0001
ε069ΪΖ/8ΐ0Ζ OAV
Figure imgf000081_0001
ε069ΪΖ / 8ΐ0Ζ OAV
Figure imgf000082_0001
Figure imgf000082_0001
Figure imgf000082_0002
Figure imgf000082_0002
81 81
Figure imgf000083_0001
Figure imgf000083_0001
Figure imgf000083_0002
Figure imgf000083_0002
Figure imgf000083_0003
Figure imgf000083_0004
Figure imgf000083_0003
Figure imgf000083_0004
82 82
Figure imgf000084_0001
Figure imgf000084_0001
Figure imgf000084_0002
Figure imgf000084_0002
83 83
Figure imgf000085_0001
Figure imgf000085_0001
Figure imgf000085_0002
Figure imgf000085_0002
84 84
Figure imgf000086_0001
Figure imgf000086_0002
Figure imgf000086_0001
Figure imgf000086_0002
Figure imgf000086_0003
Figure imgf000086_0003
85 85
Figure imgf000087_0001
Figure imgf000087_0001
Figure imgf000087_0002
Figure imgf000087_0002
Figure imgf000087_0003
Figure imgf000087_0003
86 86
Figure imgf000088_0001
Figure imgf000088_0001
Figure imgf000088_0002
Figure imgf000088_0002
87 87
Figure imgf000089_0001
Figure imgf000089_0001
88 88
Figure imgf000090_0001
Figure imgf000090_0001
Figure imgf000090_0002
Figure imgf000090_0002
【청구항 7】 [Claim 7]
제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 게 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 게 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자. .  A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound according to any one of claims 1 to 6. That is, an organic light emitting device. .
【청구항 8] [Claim 8]
제 7항에 있어서,  The method of claim 7, wherein
상기 유기물층은 정공주입층을 포함하고, 상기 정공주입층이 제 1항 내지 게 6항 중 어느 하나의 항에 따른 화합물을 포함하는,  The organic material layer includes a hole injection layer, the hole injection layer comprises a compound according to any one of claims 1 to 6,
유기 발광소자.  Organic light emitting device.
【청구항 9】 제 7항에 있어서, [Claim 9] The method of claim 7,
상기 유기물층은 정공수송층을 포함하고, 상기 정공수송층이 게 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는,  The organic material layer comprises a hole transport layer, the hole transport layer comprises a compound according to any one of claims 1 to 6,
유기 발광 소자.  Organic light emitting device.
[청구항 10】 [Claim 10]
제 7항에 있어서,  The method of claim 7, wherein
상기 유기물층은 전자억제층을 포함하고, 상기 전자억제층이 제 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는,  The organic material layer comprises an electron suppression layer, the electron suppression layer comprises a compound according to any one of claims 1 to 6,
유기 발광 소자.  Organic light emitting device.
PCT/KR2018/004249 2017-05-22 2018-04-11 Novel compound and organic light-emitting device using same WO2018216903A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18805701.2A EP3567026B1 (en) 2017-05-22 2018-04-11 Novel compound and organic light-emitting device using same
JP2019546159A JP6818998B2 (en) 2017-05-22 2018-04-11 New compounds and organic light emitting devices using them
US16/487,404 US11459290B2 (en) 2017-05-22 2018-04-11 Compound and organic light emitting device using the same
CN201880012821.3A CN110382457B (en) 2017-05-22 2018-04-11 Novel compound and organic light emitting device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0063091 2017-05-22
KR20170063091 2017-05-22
KR10-2018-0002356 2018-01-08
KR1020180002356A KR102080288B1 (en) 2017-05-22 2018-01-08 Novel compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2018216903A1 true WO2018216903A1 (en) 2018-11-29

Family

ID=64395734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004249 WO2018216903A1 (en) 2017-05-22 2018-04-11 Novel compound and organic light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2018216903A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521280A1 (en) * 2017-12-19 2019-08-07 Samsung Display Co., Ltd Organic electroluminescence device and amine compound for organic electroluminescence device
WO2020220942A1 (en) * 2019-04-30 2020-11-05 北京鼎材科技有限公司 Compound, organic electroluminescent device containing same, and application thereof
WO2020256431A1 (en) * 2019-06-21 2020-12-24 두산솔루스 주식회사 Organic electroluminescent element
CN112745229A (en) * 2019-10-31 2021-05-04 南京高光半导体材料有限公司 Hole transport material with excellent performance and organic electroluminescent device containing same
US20210143327A1 (en) * 2018-04-16 2021-05-13 Doosan Solus Co., Ltd. Organic light-emitting compound and organic electroluminescent device using the same
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20160102949A (en) * 2016-08-22 2016-08-31 (주) 에프엔지리서치 Novel compounds for organic electroluminescent device
KR20160131887A (en) * 2015-05-08 2016-11-16 머티어리얼사이언스 주식회사 Organic electroluminescent device
KR20160141361A (en) * 2015-05-27 2016-12-08 삼성디스플레이 주식회사 Organic light-emitting device
KR101695270B1 (en) * 2015-11-17 2017-01-12 머티어리얼사이언스 주식회사 Spyro-typed organic materials and organic electroluminescent device utilizing the same
CN106588674A (en) * 2015-10-16 2017-04-26 晶宜科技股份有限公司 Organic electroluminescent devices and material thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
KR20160131887A (en) * 2015-05-08 2016-11-16 머티어리얼사이언스 주식회사 Organic electroluminescent device
KR20160141361A (en) * 2015-05-27 2016-12-08 삼성디스플레이 주식회사 Organic light-emitting device
CN106588674A (en) * 2015-10-16 2017-04-26 晶宜科技股份有限公司 Organic electroluminescent devices and material thereof
KR101695270B1 (en) * 2015-11-17 2017-01-12 머티어리얼사이언스 주식회사 Spyro-typed organic materials and organic electroluminescent device utilizing the same
KR20160102949A (en) * 2016-08-22 2016-08-31 (주) 에프엔지리서치 Novel compounds for organic electroluminescent device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521280A1 (en) * 2017-12-19 2019-08-07 Samsung Display Co., Ltd Organic electroluminescence device and amine compound for organic electroluminescence device
US11101442B2 (en) 2017-12-19 2021-08-24 Samsung Display Co., Ltd. Organic electroluminescence device and amine compound for organic electroluminescence device
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same
US20210143327A1 (en) * 2018-04-16 2021-05-13 Doosan Solus Co., Ltd. Organic light-emitting compound and organic electroluminescent device using the same
WO2020220942A1 (en) * 2019-04-30 2020-11-05 北京鼎材科技有限公司 Compound, organic electroluminescent device containing same, and application thereof
WO2020256431A1 (en) * 2019-06-21 2020-12-24 두산솔루스 주식회사 Organic electroluminescent element
CN112745229A (en) * 2019-10-31 2021-05-04 南京高光半导体材料有限公司 Hole transport material with excellent performance and organic electroluminescent device containing same
CN112745229B (en) * 2019-10-31 2023-12-05 南京高光半导体材料有限公司 Hole transport material with excellent performance and organic electroluminescent device containing same

Similar Documents

Publication Publication Date Title
WO2019031679A1 (en) Organic light emitting device
KR102017790B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2018074845A1 (en) Organic light-emitting element
EP3567026B1 (en) Novel compound and organic light-emitting device using same
WO2018016898A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2018216903A1 (en) Novel compound and organic light-emitting device using same
KR102064992B1 (en) Novel hetero ring compound and organic light emitting device comprising the same
EP3369718B1 (en) Spiro-type compound and organic light emitting element comprising same
WO2018216887A1 (en) Novel compound and organic light-emitting device using same
JP7124260B2 (en) Organometallic compound and organic light-emitting device containing the same
KR20190121283A (en) Organic light emitting device
KR102081473B1 (en) Nitrogen-containing compound and organic electronic device using the same
WO2018190522A1 (en) Novel compound and organic light emitting device comprising same
WO2018199466A1 (en) Novel compound and organic light-emitting element including same
KR102623893B1 (en) Novel compound and organic light emitting device comprising the same
WO2018135798A1 (en) Novel heterocyclic compound and organic light emitting element using same
WO2018212435A1 (en) Organic light emitting device
KR102032954B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
WO2019212325A1 (en) Novel compound and organic light emitting diode using same
WO2018084426A1 (en) Novel heterocyclic compound, and organic light-emitting device using same
KR102612008B1 (en) Novel compound and organic light emitting device comprising the same
KR102474920B1 (en) Novel compound and organic light emitting device comprising the same
KR101952399B1 (en) Novel compound and organic light emitting device comprising the same
KR20200088172A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018805701

Country of ref document: EP

Effective date: 20190805

ENP Entry into the national phase

Ref document number: 2019546159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE