WO2019013487A1 - Novel compound and organic light-emitting device using same - Google Patents

Novel compound and organic light-emitting device using same Download PDF

Info

Publication number
WO2019013487A1
WO2019013487A1 PCT/KR2018/007579 KR2018007579W WO2019013487A1 WO 2019013487 A1 WO2019013487 A1 WO 2019013487A1 KR 2018007579 W KR2018007579 W KR 2018007579W WO 2019013487 A1 WO2019013487 A1 WO 2019013487A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
unsubstituted
layer
Prior art date
Application number
PCT/KR2018/007579
Other languages
French (fr)
Korean (ko)
Inventor
강민영
문정욱
박태윤
이정하
정민우
조성미
채미영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880026274.4A priority Critical patent/CN110536887B/en
Publication of WO2019013487A1 publication Critical patent/WO2019013487A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present application claims the benefit of priority based on Korean Patent Application No. 10-201, 0088464, filed on July 12, 2017, and all contents disclosed in the relevant Korean patent application are incorporated herein by reference, As shown in FIG.
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of brightness, driving voltage, and response speed, and much research is proceeding.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer may have a multilayer structure composed of different materials.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula 1 or 2:
  • X is O or S
  • Li and L 2 are each independently a single bond; Substituted or unsubstituted C 6 - 60 Arylene; Or a substituted or unsubstituted C 2 - 60 heteroarylene containing at least one heteroatom selected from the group consisting of O, N, Si and S,
  • Ar is a substituted or unsubstituted C 6 - 60 aryl; Or substituted or unsubstituted C 2 -C 6 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S,
  • al to a5 are each independently an integer of 0 to 2;
  • the present invention also provides a plasma display panel comprising: a first electrode; A second electrode arranged opposite to the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 or 2, to provide.
  • a plasma display panel comprising: a first electrode; A second electrode arranged opposite to the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 or 2, to provide.
  • the compound represented by the above formula (1) or (2) can be used as a material for the organic material layer of the organic light emitting device, and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • Means a bond connected to another substituent, and a single bond means a case where no separate atom exists in the moiety represented by L < 2 >.
  • substituted or unsubstituted A halogen group; Cyano; A nitrile group; A nitro group; A hydroxy group; A carbonyl group; An ester group; Imide; An amino group; Phosphine oxide groups; An alkoxy group; An aryloxy group; An alkyloxy group; Arylthioxy group; An alkylsulfoxy group; Arylsulfoxy group; Silyl group; Boron group; An alkyl group; Cycloalkyl groups; An alkenyl group; An aryl group; Aralkyl groups; An aralkenyl group; An alkylaryl group; An alkylamine group; An aralkylamine group; A heteroarylamine group; An arylamine group; Arylphosphine groups; Or
  • &quot a substituent to which at least two substituents are connected " may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent in which two phenyl groups are connected.
  • the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms.
  • the compound may be a compound having the following structure, but is not limited thereto.
  • the ester group means that the oxygen of the ester group is a straight chain, branched chain or cyclic alkyl group having 1 to 25 carbon atoms, Lt; / RTI > may be substituted with an aryl group having 1 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, One
  • the number of carbon atoms in the imide group is not particularly limited and preferably 1 to 25 carbon atoms. Specifically,
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group phenylsilyl group and the like But is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. Work According to the embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another aspect and an embodiment, the number of carbon atoms of the alkyl group is 1 to 6.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, Propyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, n-heptyl, 1-methylnucleosilyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms.
  • the cycloalkyl group has 3 to 6 carbon atoms.
  • Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3- 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, Cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • polycyclic aryl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
  • the heteroaryl is a heteroaryl containing at least one of 0, N, Si and S as a hetero atom.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heteroaryl examples include a thiophene group, a furane group, a pyrimidyl group, a triazine group, a triazo group, a pyrimidyl group, a pyrimidyl group, a thiazolyl group, A pyridazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, A benzothiazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthrene group, a phenanthro
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group.
  • the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above.
  • the heteroaryl among the heteroarylamines can be applied to the heteroaryl described above.
  • the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group.
  • the description of the aryl group described above can be applied except that arylene is a divalent group.
  • the description of the above-mentioned heteroaryl can be applied except that the heteroarylene is a divalent.
  • the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other.
  • the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and two substituents are bonded to each other.
  • the present invention provides a compound represented by the above formula (1) or (2).
  • Li and L 2 are each independently a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted phenanthrene Substituted or unsubstituted thiophene, thienylene, substituted or unsubstituted anthracenylene, substituted or unsubstituted fluoranthenylene, substituted or unsubstituted triphenylenylene, substituted or unsubstituted pyrenylene, substituted or unsubstituted carbazolylene, Substituted or unsubstituted fluorenylenes, substituted or unsubstituted fluorenylenes, or substituted or unsubstituted spiro-fluorenylenes.
  • L < 2 > may each independently be a single bond, or phenylene.
  • Ar is a substituted or unsubstituted C 6 - 20 aryl; Or a substituted or unsubstituted C 2 containing 1 to 3 hetero atoms 0 or S - 20 may be a heteroaryl.
  • each Ar may be independently selected from the group consisting of:
  • Y is O, S, or CZ 4 Z 5 ,
  • Z each independently represent hydrogen; Hydrogenation; halogen; Cyano; Nitro; Amino; d- 20 alkyl; d- 20 haloalkyl; C 6 - 20 aryl; 20 is a heteroaryl, - C 2 containing zero or one or more heteroatoms of S
  • n1 to n3 each independently represent an integer of 0 to 3; Each independently represent hydrogen, deuterium, phenyl, or biphenyl,
  • Z 4 and Z 5 are each independently methyl or phenyl
  • n1 to n3 each independently represent 0, 1, or 2;
  • Ar may be any one selected from the group consisting of:
  • R 1 to R 5 are each independently hydrogen; heavy hydrogen; halogen; Cyano;
  • Ci-QQ alkyl Or C 6 - 20 may be an aryl group.
  • each of R 1 to R 4 is independently hydrogen, deuterium, halogen, Cyano, methyl, or phenyl
  • al to a5 may each independently be 0 or 1.
  • 3 ⁇ 4 to R 5 may be hydrogen.
  • the number of al indicates the number of al.
  • al is 2 or more, 2 or more may be the same or different from each other.
  • the description of al to a5 and n1 to n3 can be understood with reference to the description of al and the structure of the above formula (1) or (2).
  • the compound may be represented by one of the following formulas 1-1 to 1-4 and 2-1 to 2-4:
  • X and Ar are as defined in the above formulas (1) and (2).
  • the compound may be any one from the group consisting of the following compounds:
  • the compounds represented by the above general formulas (1) and (2) have a structure in which an amino group is linked to the 4-position of fluorene, and the organic light emitting element employing the compound has a structure in which a compound having a structure in which amino groups are connected to other positions of fluorene Compared to a light emitting device, it has a high efficiency, a low driving voltage, a high brightness and a long life have. Meanwhile, the compound represented by the formula (1) or (2) can be prepared, for example, according to the following method. The above production method can be more specific in the production example to be described later.
  • L 2 , Ar, and X are as defined above.
  • the above reaction may include a step of counteracting the compound represented by the formula (1-a) and the compound represented by the formula (1-b) to prepare the compound represented by the formula (1).
  • the reaction is carried out in the presence of a palladium catalyst and a base as an amine substituent, and the reaction time for the amine substitution reaction (for example, X 'is halogen) can be varied as is known in the art.
  • the above production method can be more specific in the production example to be described later.
  • the compound represented by Formula 2 may be prepared by appropriately substituting the starting material according to the structure of the compound to be prepared with reference to the above-mentioned Hanwoi 1. Meanwhile, the present invention provides an organic light emitting device comprising a compound represented by the above formula (1) or (2).
  • the present invention provides a liquid crystal display comprising: a first electrode; A second electrode facing the first electrode; And at least one layer provided between the first electrode and the second electrode and an organic layer, wherein at least one of the organic layers includes a compound represented by Formula 1 or 2, to provide.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention further includes, as an organic material layer, a hole injection layer and a hole transporting layer between the first electrode and the light emitting layer, and an electron transporting layer and an electron injecting layer between the light emitting layer and the ground electrode . ≪ / RTI >
  • the structure of the organic light emitting device is not limited thereto, and may include fewer or more organic layers.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, at least one organic layer, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which an anode, one or more organic compound layers and an anode are sequentially stacked on a substrate.
  • FIGS. Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • the compound represented by Formula 1 or 2 may be included in the light emitting layer.
  • 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • the compound represented by Formula 1 or 2 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron transporting layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 or 2.
  • the organic light emitting diode when the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate.
  • a metal oxide or a metal oxide having conductivity or an alloy thereof may be formed on the substrate by a PVD (physi cal vapor deposition) method such as a sputtering method or an e-beam evaporation method Depositing a cathode, forming an anode, forming an organic material layer including a hole injecting layer, a hole transporting layer, a light emitting layer and an electron transporting layer on the anode, and depositing a material usable as a cathode thereon.
  • a PVD physi cal vapor deposition
  • the compound represented by Formula 1 or 2 may be formed into an organic layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, ink jet printing, screen printing, spraying, coating, and the like, but is not limited thereto.
  • an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is a cathode.
  • the anode material it is preferable that the hole injection is normally performed smoothly into the organic material layer A material having a large work function is preferable.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (II), indium zinc oxide (IZO); ⁇ : ⁇ 1 SN0 or 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, no.
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnes, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto.
  • the hole injecting layer is a layer for injecting holes from an electrode.
  • the hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material.
  • a compound which prevents migration of the exciton to the electron injection layer or the electron injecting material and is also excellent in the ability to form a thin film is preferred.
  • the HOffi high occupied molecular orbital of the hole injecting material is preferably between the work function of the anode material and the HOMO of the surrounding organic layer .
  • the hole injecting material include organic materials such as porphyrin, oligothiophene, arylamine-based organic materials, quinacridone-based tetraphenylene-based organic materials, quinacridone-based organic materials, perylene ) Organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, But is not limited thereto.
  • the light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence.
  • the light emitting layer may include a host material and a scrim material as described above.
  • the host material may further include a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds.
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and peripherrhene having an arylamino group.
  • styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • the electron-transporting layer receives electrons from the electron-injecting layer and reaches the light-emitting layer
  • a material having high mobility for electrons and electrons is suitable as a material capable of injecting electrons from a cathode well and transferring it to a light emitting layer.
  • the electron transporting layer can be used with any desired cathode material as used according to the prior art.
  • a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically, it is serch, barium, foxtail, ytterbium and samarium, in each case followed by an aluminum layer or silver bush.
  • the electron injection layer is a layer for injecting electrons from the electrode.
  • the electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. It is preferable to use a compound which prevents migration to the layer and is excellent in the ability to form a thin film.
  • a compound which prevents migration to the layer and is excellent in the ability to form a thin film include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, Perylenetetracarboxylic acid, preorenylidene methane, anthrone, and derivatives thereof, metal complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto.
  • the organic light emitting device may be a front emission type And may be a back-light-emitting type or a both-side light-emitting type.
  • the compound represented by Formula 1 or 2 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • the preparation of the compound represented by the above formula (1) or (2) and the organic light emitting device comprising the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto. Manufacturing example
  • the compound 1-1 (20 g, 44 ⁇ ol) and the compound 1-2 (14.2 g, 46.5 ⁇ ol) were dissolved in 200 mL of xylene and added with sodium tertiary-butoxide (18.8 g, 88.6 mmol) Lt; / RTI > (Tris (tert-butylphosphine) palladium (0.23 g, 1 mol%) was added thereto, followed by stirring under reflux for 8 hours.
  • the xylene was concentrated under reduced pressure, and the concentrated residue was dissolved in 400 mL of chloroform and washed twice with water.
  • the glass substrate coated with thin ITO (indium tin oxide) film with a thickness of 1, 300 A was washed with ultrasonic waves in distilled water containing detergent.
  • a detergent a product of Fischer Co.
  • IIT0 was washed for 30 minutes, then repeated twice with distilled water, and sonicated for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • the following HI-1 compound was prepared on the thus prepared ITO transparent electrode
  • the HT-1 compound was thermally vacuum-deposited on the hole injection layer to form a hole-filling solution.
  • the compound 1 synthesized in Example 1 was vacuum-deposited on the HT-1 vapor deposition layer to a thickness of 100 A to form an electron blocking layer .
  • BH and BD were vacuum deposited on the electron blocking layer at a weight ratio of 25: 1 at a film thickness of 300 A to form a light emitting layer.
  • the compound Eq and Liq were vacuum deposited on the light emitting layer at a weight ratio of 1: 1 to form an electron injecting and transporting layer having a thickness of 300A.
  • Lithium fluoride (LiF) and aluminum having a thickness of 2000 A were sequentially deposited on the electron injection and transport layer to a thickness of 12 A to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 to 0.7 A / sec
  • the lithium fluoride at the cathode was maintained at 0.3 A / sec
  • the deposition rate at the aluminum was maintained at 2 A / sec. - 7 to 5 x 10 & lt ; -8 > torr.
  • T95 means the time required for the luminance to decrease from the initial luminance (100o n t) to 953 ⁇ 4.
  • the following HI-1 compound was thermally vacuum-deposited on the ITO transparent electrode prepared in the same manner as in Example 1 to a thickness of 500 A to form a hole injection layer.
  • the HT-2 compound was thermally vacuum-deposited on the hole injection layer to a thickness of 800 A and the HT-3 compound was sequentially vacuum-deposited to a thickness of 500 A to form a hole transport layer.
  • Compound 1 and GH1 of Preparation Example 4 were vapor-deposited at a weight ratio of 50% on the HT-3 vapor-deposited film by simultaneous evaporation to a thickness of 400 A, and the phosphorescent dopant GD-1 was co- .
  • An ET-2 material was vacuum-deposited on the light-emitting layer to a thickness of 50 A to form a hole blocking layer.
  • An ET-3 material and LiQ were vacuum deposited on the hole blocking layer at a weight ratio of 1: 1 to form an electron transport layer of 250 A. Respectively.
  • Lithium fluoride (LiF) 10 A thick was sequentially deposited on the electron transport layer and aluminum was deposited thereon to a thickness of 1000 A to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 to 0.7 A / sec, the lithium fluoride at the cathode was maintained at 0.3 A / sec, and the deposition rate of aluminum was maintained at 2 A / sec. - it was maintained at 7 ⁇ 5 10- 8 torr.
  • Example 5 The organic light emitting devices of Examples 5 to 6 were fabricated in the same manner as in Example 4, except that the phosphorescent host material and the dimple content in the light emitting layer were changed as shown in Table 2 below. Comparative Examples 3 to 4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light-emitting device using same.

Description

【발명의 명칭】  Title of the Invention
신규한 화합물 및 이를 이용한 유기발광 소자  Novel compounds and organic light emitting devices using the same
【기술분야】 TECHNICAL FIELD
관련 출원 (들)과의 상호 인용 본 출원은 2017년 7월 12일자 한국 특허 출원 제 10-201교 0088464호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present application claims the benefit of priority based on Korean Patent Application No. 10-201, 0088464, filed on July 12, 2017, and all contents disclosed in the relevant Korean patent application are incorporated herein by reference, As shown in FIG. The present invention relates to a novel compound and an organic light emitting device comprising the same.
【발명의 배경이 되는 기술】 TECHNICAL BACKGROUND OF THE INVENTION
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 액시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. 【선행기술문헌】 In general, organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of brightness, driving voltage, and response speed, and much research is proceeding. The organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic material layer may have a multilayer structure composed of different materials. For example, the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the two electrodes in the structure of such an organic light emitting device, holes are injected in the anode, electrons are injected into the organic layer in the cathode, and an exciton is formed when the injected holes and electrons meet each other. The light is emitted when the axon falls back to the floor. There is a continuing need for the development of new materials for the organic materials used in such organic light emitting devices. [Prior Art Document]
【특허문헌】  [Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호  (Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
【발명의 내용】 DISCLOSURE OF THE INVENTION
【해결하고자 하는 과제】  [Problem to be solved]
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel compound and an organic light emitting device comprising the same.
【과제의 해결 수단】 MEANS FOR SOLVING THE PROBLEMS
본 발명은 하기 화학식 1 또는 2로 표시되는 화합물을 제공한다:  The present invention provides a compound represented by the following formula 1 or 2:
Figure imgf000003_0001
상기 화학식 1 및 2에서,
Figure imgf000003_0001
In the above Formulas 1 and 2,
X는 0또는 S이고,  X is O or S,
Li 및 L2는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 또는 치환 또는 비치환된 0, N, Si 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상을 포함하는 C2-60 헤테로아릴렌이고, Li and L 2 are each independently a single bond; Substituted or unsubstituted C 6 - 60 Arylene; Or a substituted or unsubstituted C 2 - 60 heteroarylene containing at least one heteroatom selected from the group consisting of O, N, Si and S,
Ar은 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된 N, 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이고, Ar is a substituted or unsubstituted C 6 - 60 aryl; Or substituted or unsubstituted C 2 -C 6 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S,
Ri 내지 ¾는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 60 알콕시 ; 치환 또는 비치환된 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2- 60 알케닐; 치환 또는 비치환된 C6-60 아릴 ; 치환 또는 비치환된 C6-60 아릴옥시; 또는 치환 또는 비치환된 N, 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상 포함하는 C2-60 헤테로아릴이고, Each independently represent hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted 60 alkoxy; Substituted or unsubstituted haloalkoxy; Substituted or unsubstituted C 3 - 60 cycloalkyl; A substituted or unsubstituted C 2 - 60 alkenyl; Substituted or unsubstituted C 6 -C 60 aryl; Substituted or unsubstituted C 6 -C 60 aryloxy; Or substituted or unsubstituted C 2 -C 60 heteroaryl containing at least one heteroatom selected from the group consisting of N, O and S,
al 내지 a5는 각각 독립적으로, 0 내지 2의 정수이다. 또한, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 거 12 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 【발명의 효과】  al to a5 are each independently an integer of 0 to 2; The present invention also provides a plasma display panel comprising: a first electrode; A second electrode arranged opposite to the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound represented by Formula 1 or 2, to provide. 【Effects of the Invention】
상술한 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 【도면의 간단한 설명】  The compound represented by the above formula (1) or (2) can be used as a material for the organic material layer of the organic light emitting device, and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device. BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig.
도 2는 기판 (1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
【발명을 실시하기 위한 구체적인 내용】 이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본 명세서에서 , 는 다른 치환기에 연결되는 결합을 의미하고 , 단일 결합은 및 L2로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다. 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나 이에 한정되는 것은 아니다. Means a bond connected to another substituent, and a single bond means a case where no separate atom exists in the moiety represented by L < 2 >. As used herein, the term " substituted or unsubstituted " A halogen group; Cyano; A nitrile group; A nitro group; A hydroxy group; A carbonyl group; An ester group; Imide; An amino group; Phosphine oxide groups; An alkoxy group; An aryloxy group; An alkyloxy group; Arylthioxy group; An alkylsulfoxy group; Arylsulfoxy group; Silyl group; Boron group; An alkyl group; Cycloalkyl groups; An alkenyl group; An aryl group; Aralkyl groups; An aralkenyl group; An alkylaryl group; An alkylamine group; An aralkylamine group; A heteroarylamine group; An arylamine group; Arylphosphine groups; Or heteroaryl containing at least one of N, O and S atoms, or a substituted or unsubstituted one in which at least two of the above-exemplified substituents are linked . For example, " a substituent to which at least two substituents are connected " may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent in which two phenyl groups are connected. In the present specification, the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, the compound may be a compound having the following structure, but is not limited thereto.
Figure imgf000005_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 . 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 한
Figure imgf000005_0001
In the present specification, the ester group means that the oxygen of the ester group is a straight chain, branched chain or cyclic alkyl group having 1 to 25 carbon atoms, Lt; / RTI > may be substituted with an aryl group having 1 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, One
Figure imgf000006_0001
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은
Figure imgf000006_0001
In the present specification, the number of carbon atoms in the imide group is not particularly limited and preferably 1 to 25 carbon atoms. Specifically,
화합물이 The compound
Figure imgf000006_0002
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t—부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수늡 1 내지 10이다. 또 하나와 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸—부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n-핵실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸ᅳ 2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸, 사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2- 프로필펜틸, n-노닐, 2 , 2-디메틸헵틸, 1-에틸-프로필, 1 , 1-디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1, 3-부타디에닐, 알릴, 1-페닐비닐 -1- 일, 2-페닐비닐 -1-일, 2 , 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1-일)비닐 -1-일, 2,2-비스 (디페닐 -1-일)비닐 -1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3-디메틸사이클로펜틸, 사이클로핵실, 3ᅳ메틸사이클로핵실, 4-메틸사이클로핵실, 2 , 3- 디메틸사이클로핵실, 3 , 4,5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우, J나
Figure imgf000006_0002
In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group phenylsilyl group and the like But is not limited thereto. In the present specification, the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group. In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine. In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. Work According to the embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another aspect and an embodiment, the number of carbon atoms of the alkyl group is 1 to 6. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, Propyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, n-heptyl, 1-methylnucleosilyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like. In the present specification, the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, (Diphenyl-1-yl) vinyl-1-yl, stilbenyl, stilenyl, and the like. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3- 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, Cycloheptyl, cyclooctyl, and the like, but are not limited thereto. In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. Examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group. In the present specification, a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure imgf000008_0001
Figure imgf000008_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로아릴은 이종 원소로 0, N , Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 (phenanthro l ine) , 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 한편, 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 제공한다. 상기 화학식 1 및 2에서, Li 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 바이페닐릴렌, 치환 또는 비치환된 나프틸렌, 치환 또는 비치환된 페난트레닐렌, 치환 또는 비치환된 안트라세닐렌, 치환 또는 비치환된 플루오란테닐렌, 치환 또는 비치환된 트리페닐레닐렌, 치환 또는 비치환된 파이레닐렌, 치환 또는 비치환된 카바졸일렌, 치환 또는 비치환된 플루오레닐렌, 또는 치환 또는 비치환된 스파이로-플루오레닐렌일 수 있다. 예를 들어, 및 L2는 각각 독립적으로, 단일 결합, 또는 페닐렌일 수 있다. 또한, Ar은 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 0 또는 S의 헤테로원자를 1개 내지 3개 포함하는 C2-20 헤테로아릴일 수 있다. 예를 들어, Ar은 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다: And the like. However, the present invention is not limited thereto. In the present specification, the heteroaryl is a heteroaryl containing at least one of 0, N, Si and S as a hetero atom. The number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of the heteroaryl include a thiophene group, a furane group, a pyrimidyl group, a triazine group, a triazo group, a pyrimidyl group, a pyrimidyl group, a thiazolyl group, A pyridazinyl group, a pyrazinopyrazinyl group, an isoquinoline group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, A benzothiazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthrene group, a phenanthroline group, a thiazole group, a thiophene group, An isoxazolyl group, an oxadiazolyl group, A thiadiazolyl group, a benzothiazolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but is not limited thereto. In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group. In the present specification, the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above. In the present specification, the heteroaryl among the heteroarylamines can be applied to the heteroaryl described above. In the present specification, the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group. In the present specification, the description of the aryl group described above can be applied except that arylene is a divalent group. In this specification, the description of the above-mentioned heteroaryl can be applied except that the heteroarylene is a divalent. In the present specification, the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other. In the present specification, the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and two substituents are bonded to each other. Meanwhile, the present invention provides a compound represented by the above formula (1) or (2). In the above Formulas 1 and 2, Li and L 2 are each independently a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted phenanthrene Substituted or unsubstituted thiophene, thienylene, substituted or unsubstituted anthracenylene, substituted or unsubstituted fluoranthenylene, substituted or unsubstituted triphenylenylene, substituted or unsubstituted pyrenylene, substituted or unsubstituted carbazolylene, Substituted or unsubstituted fluorenylenes, substituted or unsubstituted fluorenylenes, or substituted or unsubstituted spiro-fluorenylenes. For example, and L < 2 > may each independently be a single bond, or phenylene. Also, Ar is a substituted or unsubstituted C 6 - 20 aryl; Or a substituted or unsubstituted C 2 containing 1 to 3 hetero atoms 0 or S - 20 may be a heteroaryl. For example, each Ar may be independently selected from the group consisting of:
Figure imgf000010_0001
상기에 ^ ,
Figure imgf000010_0001
In the above,
Υ은 0, S , 또는 CZ4Z5이고, Y is O, S, or CZ 4 Z 5 ,
Z: 내지 는 각각 독립적으로, 수소; 증수소; 할로겐; 시아노; 니트로; 아미노; d-20 알킬; d-20 할로알킬; C6-20 아릴; 0 또는 S의 헤테로원자를 1개 이상 포함하는 C2-20 헤테로아릴이고, Z: each independently represent hydrogen; Hydrogenation; halogen; Cyano; Nitro; Amino; d- 20 alkyl; d- 20 haloalkyl; C 6 - 20 aryl; 20 is a heteroaryl, - C 2 containing zero or one or more heteroatoms of S
nl 내지 n3는 각각 독립적으로, 0 내지 3의 정수이다. 이때, 내지 ¾은 각각 독립적으로, 수소, 중수소, 페닐, 또는 바이페닐이고,  n1 to n3 each independently represent an integer of 0 to 3; Each independently represent hydrogen, deuterium, phenyl, or biphenyl,
Z4 및 Z5는 각각 독립적으로, 메틸 또는 페닐이고, Z 4 and Z 5 are each independently methyl or phenyl,
nl 내지 n3는 각각 독립적으로, 0, 1, 또는 2이다. 구체적으로 예를 들어, Ar은 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다: n1 to n3 each independently represent 0, 1, or 2; Specifically, for example, Ar may be any one selected from the group consisting of:
Figure imgf000011_0001
또한, Ri 내지 R5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노;
Figure imgf000011_0001
R 1 to R 5 are each independently hydrogen; heavy hydrogen; halogen; Cyano;
Ci-!Q 알킬 ; 또는 C6-20아릴일 수 있다. Ci-QQ alkyl; Or C 6 - 20 may be an aryl group.
예를 들어, Ri 내지 ¾는 각각 독립적으로, 수소, 중수소, 할로겐, 시아노, 메틸, 또는 페닐일 수 있고, al 내지 a5는 각각 독립적으로, 0 또는 1일 수 있다. 구체적 ^로 예를 들어, ¾ 내지 R5는 수소일 수 있다. 이때, al은 의 개수를 나타낸 것으로서, al이 2 이상일 경우, 2 이상의 ^은 서로 동일하거나 상이할 수 있다. al 내지 a5 및 nl 내지 n3에 대한 설명은 상기 al에 대한 설명 및 상기 화학식 1 또는 2의 구조를 참조하여 이해될 수 있다. 한편, 상기 화합물은 하기 화학식 1-1 내지 1—4 및 2-1 내지 2-4 중 하나로 표시될 수 있다: For example, each of R 1 to R 4 is independently hydrogen, deuterium, halogen, Cyano, methyl, or phenyl, and al to a5 may each independently be 0 or 1. Specifically, for example, ¾ to R 5 may be hydrogen. In this case, the number of al indicates the number of al. When al is 2 or more, 2 or more may be the same or different from each other. The description of al to a5 and n1 to n3 can be understood with reference to the description of al and the structure of the above formula (1) or (2). On the other hand, the compound may be represented by one of the following formulas 1-1 to 1-4 and 2-1 to 2-4:
Figure imgf000012_0001
Figure imgf000012_0001
[화학식 1-3] [화학식 1-4] [Chemical Formula 1-3] [Chemical Formula 1-4]
Figure imgf000012_0002
Figure imgf000012_0002
[화학식 2-1] [화학식 2-2] [Formula 2-1] [Formula 2-2]
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0002
상기 화학식 1-1 내지 1-4 및 2-1 내지 2-4에서,  In Formulas 1-1 to 1-4 and 2-1 to 2-4,
X 및 Ar에 대한 설명은 상기 화학식 1 및 2에서 정의한 바와 같다. 예를 들어, 상기 화합물은 하기 화합물로 구성되는 군으로부터 어느 하나일 수 있다: X and Ar are as defined in the above formulas (1) and (2). For example, the compound may be any one from the group consisting of the following compounds:
£1 £ 1
Figure imgf000014_0001
.SZ.OO/8lOra¾/X3d .81-Π0/6Τ0Ζ OAV
Figure imgf000014_0001
.SZ.OO / 8lOra¾ / X3d .81-Π0 / 6Τ0Ζ OAV
Figure imgf000015_0001
Z.SZ.00/8T0ZaM/X3d Z.817C10/610Z OAV
Figure imgf000015_0001
Z.SZ.00 / 8T0ZaM / X3d Z.817C10 / 610Z OAV
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 1 및 2로 표시되는 화합물은, 플루오렌의 4번 위치에 아미노기가 연결된 구조를 가집으로써, 이를 채용한 유기 발광 소자는 플루오렌의 다른 위치에 아미노기가 연결된 구조를 갖는 화합물을 채용한 유기 발광 소자에 비하여, 고효율, 저 구동 전압, 고휘도 및 장수명 등을 가질 수 있다. 한편, 상기 화학식 1 또는 2로 표시되는 화합물은 일례로 하기 반웅식 1 과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. The compounds represented by the above general formulas (1) and (2) have a structure in which an amino group is linked to the 4-position of fluorene, and the organic light emitting element employing the compound has a structure in which a compound having a structure in which amino groups are connected to other positions of fluorene Compared to a light emitting device, it has a high efficiency, a low driving voltage, a high brightness and a long life have. Meanwhile, the compound represented by the formula (1) or (2) can be prepared, for example, according to the following method. The above production method can be more specific in the production example to be described later.
Figure imgf000017_0001
Figure imgf000017_0001
1-a 1-b 상기 반웅식 1에서, , L2 , Ar , 및 X는 앞서 정의한 바와 같다. 1-a 1-b In Formula 1, L 2 , Ar, and X are as defined above.
상기 반응은, 상기 화학식 1-a로 표시되는 화합물과 상기 화학식 1- b로 표시되는 화합물을 반웅시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 단계를 포함할 수 있다. 상기 반웅은 아민 치환 반웅으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 아민 치환 반웅을 위한 반웅기 (예를 들어, X' 는 할로겐)는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 상기 화학식 2로 표시되는 화합물은 상기 반웅식 1을 참고하여 제조하고자 하는 화합물의 구조에 맞추어 출발 물질을 적절히 대체하여 제조할 수 있다. 한편, 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 게 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상와 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물층 은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층 으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제 1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 거 12전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. 도 1은 기판 (1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 ( 1), 양극 (2), 정공주입층 (5) , 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 제 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자빔 증발법 (e— beam evaporat ion)과 같은 PVD(physi cal Vapor Depos i t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 게 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 게 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금 ; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( ΠΌ) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ :Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜), 폴리 [3 , 4- (에틸렌— 1 , 2-디옥시 )티오펜] (PED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슴, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다ᅳ 정공 주입 물질의 HOffiXhighest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAlq ; 10-히드록시벤조 퀴놀린- 금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P- 페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spi ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 상술한 바와 같이 호스트 재료 및 도편트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서ᅳ, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슴, 바륨, 칼슴, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층또는실버충이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다ᅳ 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토) ( 0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른유기 발광 소자는사용되는 재료에 따라 전면 발광형 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1 또는 2로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. 제조예 The above reaction may include a step of counteracting the compound represented by the formula (1-a) and the compound represented by the formula (1-b) to prepare the compound represented by the formula (1). Preferably, the reaction is carried out in the presence of a palladium catalyst and a base as an amine substituent, and the reaction time for the amine substitution reaction (for example, X 'is halogen) can be varied as is known in the art. The above production method can be more specific in the production example to be described later. The compound represented by Formula 2 may be prepared by appropriately substituting the starting material according to the structure of the compound to be prepared with reference to the above-mentioned Hanwoi 1. Meanwhile, the present invention provides an organic light emitting device comprising a compound represented by the above formula (1) or (2). In one embodiment, the present invention provides a liquid crystal display comprising: a first electrode; A second electrode facing the first electrode; And at least one layer provided between the first electrode and the second electrode and an organic layer, wherein at least one of the organic layers includes a compound represented by Formula 1 or 2, to provide. The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention further includes, as an organic material layer, a hole injection layer and a hole transporting layer between the first electrode and the light emitting layer, and an electron transporting layer and an electron injecting layer between the light emitting layer and the ground electrode . ≪ / RTI > However, the structure of the organic light emitting device is not limited thereto, and may include fewer or more organic layers. The organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, at least one organic layer, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which an anode, one or more organic compound layers and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig. In such a structure, the compound represented by Formula 1 or 2 may be included in the light emitting layer. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is. In such a structure, the compound represented by Formula 1 or 2 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron transporting layer. The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 or 2. In addition, when the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate. At this time, a metal oxide or a metal oxide having conductivity or an alloy thereof may be formed on the substrate by a PVD (physi cal vapor deposition) method such as a sputtering method or an e-beam evaporation method Depositing a cathode, forming an anode, forming an organic material layer including a hole injecting layer, a hole transporting layer, a light emitting layer and an electron transporting layer on the anode, and depositing a material usable as a cathode thereon. In addition to such a method, an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate. In addition, the compound represented by Formula 1 or 2 may be formed into an organic layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, ink jet printing, screen printing, spraying, coating, and the like, but is not limited thereto. In addition to such a method, an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto. In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is a cathode. As the anode material, it is preferable that the hole injection is normally performed smoothly into the organic material layer A material having a large work function is preferable. Specific examples of the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (II), indium zinc oxide (IZO); ΖηΟ: Α1 SN0 or 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, no. The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnes, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto. The hole injecting layer is a layer for injecting holes from an electrode. The hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material. A compound which prevents migration of the exciton to the electron injection layer or the electron injecting material and is also excellent in the ability to form a thin film is preferred. The HOffi high occupied molecular orbital of the hole injecting material is preferably between the work function of the anode material and the HOMO of the surrounding organic layer . Specific examples of the hole injecting material include organic materials such as porphyrin, oligothiophene, arylamine-based organic materials, quinacridone-based tetraphenylene-based organic materials, quinacridone-based organic materials, perylene ) Organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer. The hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer. The material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, But is not limited thereto. The light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; Compounds of the benzoxazole, benzothiazole and benzimidazole series; Poly (P-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto. The light emitting layer may include a host material and a scrim material as described above. The host material may further include a condensed aromatic ring derivative or a heterocyclic compound. Specific examples of the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds. Examples of the heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specific examples of the aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, and examples thereof include pyrene, anthracene, chrysene, and peripherrhene having an arylamino group. Examples of the styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like. Examples of the metal complex include iridium complex, platinum complex, and the like, but are not limited thereto. The electron-transporting layer receives electrons from the electron-injecting layer and reaches the light-emitting layer As an electron transporting material, a material having high mobility for electrons and electrons is suitable as a material capable of injecting electrons from a cathode well and transferring it to a light emitting layer. Specific examples include the A1 complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transporting layer can be used with any desired cathode material as used according to the prior art. In particular, an example of a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically, it is serch, barium, foxtail, ytterbium and samarium, in each case followed by an aluminum layer or silver bush. The electron injection layer is a layer for injecting electrons from the electrode. The electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. It is preferable to use a compound which prevents migration to the layer and is excellent in the ability to form a thin film. Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, Perylenetetracarboxylic acid, preorenylidene methane, anthrone, and derivatives thereof, metal complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto. The organic light emitting device according to the present invention may be a front emission type And may be a back-light-emitting type or a both-side light-emitting type. The compound represented by Formula 1 or 2 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. The preparation of the compound represented by the above formula (1) or (2) and the organic light emitting device comprising the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto. Manufacturing example
Figure imgf000023_0001
Figure imgf000023_0001
A  A
단계 1) 화합물 A-1의 제조 Step 1) Preparation of Compound A-1
에틸 2-브로모벤조에이트 (15g, 65.5mmol)와 (2-메록시페닐)보로닉 에시드 (10.5g, 68.8mmol)를 테트라하이드로퓨란 (200 ml)에 분산시킨 후, 2M 탄산칼륨 수용액 (aq. K2C03)(65 ml, 130 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4] (760 mg, 1 mol%)을 넣은 다음, 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 분리하고, 유기층을 다시 물로 1회 더 세척하여 층분리하여 유기층을 분리하였다. 모아진 유기층에 무수황산마그네슴을 투입하여 슬러리 후 여과하여 감압 농축하였다. 오일상태의 화합물을 핵산과 에틸아세테이트 조합으로 실리카 컬럼을 통해 분리하여 흰색의 고체 상태로 화합물 A-K13.6 g, 수율 8 )를 제조하였다. 단계 2) 화합물 A-2의 제조 After dissolving ethyl 2-bromobenzoate (15 g, 65.5 mmol) and (2-methoxyphenyl) boronic acid (10.5 g, 68.8 mmol) in tetrahydrofuran (200 ml), a 2M aqueous potassium carbonate solution . K 2 CO 3 ) (65 ml, 130 mmol) was added Tetrakistriphenylphosphine palladium into the Pinot [Pd (PPh 3) 4] (760 mg, 1 mol%) was then stirred for 6 hours under reflux. The temperature was lowered to room temperature, the water layer was separated, and the organic layer was further washed with water once more to separate the layers. Anhydrous magnesium sulfate was added to the collected organic layer, followed by slurry filtration and concentration under reduced pressure. The compound in oil state was separated through a silica column using a combination of nucleic acid and ethyl acetate to prepare 13.6 g of compound A-K (yield 8) as a white solid. Step 2) Preparation of Compound A-2
화합물 A-l(16g, 62 mmol )을 무수테트라하이드로퓨란 (175raL) 용액에 투입한 후, 얼음조 ( icebath)를 사용하여 상기 용액의 은도를 낮추고, 1 M 브롬화 메틸 마그네슘 테트라하이드로퓨란 용액 (190mL)을 첨가해 실온에서 5시간 교반 했다. 반웅 완결 후 물을 첨가하여 에틸아세테이트로 추출을 하고, 유기층을 다시 물로 세척 한 후, 무수황산마그네슘으로 처리하여 여과 후 감압 농축하였다. 얻어진 화합물을 핵산과 에틸아세테이트 조합으로 실리카 컬럼을 통해 분리하여 목적 화합물 A-2(13.0 g, 수율 86%)를 제조하였다. 단계 3) 화합물 A-3의 제조  Compound Al (16 g, 62 mmol) was added to a solution of anhydrous tetrahydrofuran (175 ml), then the solution was lowered in the ice using an icebath, and a solution of 1 M methylmagnesium bromide in tetrahydrofuran (190 ml) And the mixture was stirred at room temperature for 5 hours. After completion of the addition of water, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, treated with anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The obtained compound was separated through a silica column using a combination of a nucleic acid and ethyl acetate to obtain objective compound A-2 (13.0 g, yield 86%). Step 3) Preparation of Compound A-3
화합물 A-2 (15g, 62隱 ol )를 아세트산 150mL에 투입한 후 진한 황산 3mL를 투입하여 60°C로 가온하여 3시간 교반하였다. 반웅이 완결되면 실온으로 넁각하고 석출된 고체를 여과하였다. 여과한 고체를 에틸아세테이트에 녹이고, 소듐바이카보네이트 포화 수용액으로 세척하여 유기층을 모으고, 무수황산마그네슘으로 건조하여 여과 후 감압 농축하였다. 농축한 화합물에 에탄올과 핵산을 첨가하여 고체를 석출시켜 슬러리화 한 후 여과하여' 목적화합물 A-3(10.1g, 수율 73¾ 을 제조하였다. 단계 4) 화합물 A-4의 제조 Compound A-2 (15 g, 62  ol) was added to 150 mL of acetic acid, and then 3 mL of concentrated sulfuric acid was added. The mixture was heated at 60 ° C and stirred for 3 hours. When the reaction was completed, the solid precipitated at room temperature and filtered. The filtered solid was dissolved in ethyl acetate and washed with saturated sodium bicarbonate aqueous solution. The organic layer was collected, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The screen by the addition of ethanol and the nucleic acid in a concentrated compound to precipitate a solid after the slurry (to prepare a 10.1g, yield 73¾. Step 4) and filtered to 'the desired compound A-3 Preparation of Compound A-4
화합물 A-3(13.8g, 61.5 mmol )을 테트라하이드로퓨란 (140mL)에 투입하여 온도를 -70°C로 낮추고, 1.6M n-부틸 리륨 핵산 용액 (44mL)을 천천히 첨가하여 1시간 교반했다. 흔합물에 트리아이소프로필보레이트 (12.3, 61.7 誦 ol )를 적가하고 실온으로 온도를 올려 5시간 교반했다. 얻어진 반웅액에 2 M 염산을 더해 실온에서 3시간 교반했다. 흔합물을 에틸아세테이트로 추출 하고, 유기층을 물로 2회 세척하고 무수 황산 나트륨으로 건조하고 용매를 감압 농축하였다. 농축한 화합물을 핵산과 에탄올로 슬러리화 하여, 생성물을 여과 후 목적화합물 A-4U1.6 g, 수율 70¾>)를 제조하였다. 단계 5) 화합물 A-5의 제조 Compound A-3 (13.8 g, 61.5 mmol) was added to tetrahydrofuran (140 mL), the temperature was lowered to -70 ° C, 1.6M n-butyllithium nucleic acid solution (44 mL) was slowly added and stirred for 1 hour. Triisopropyl borate (12.3, 61.7 ㏖ ol) was added dropwise to the mixture, and the mixture was stirred at room temperature for 5 hours. 2M hydrochloric acid was added to the obtained filtrate, and the mixture was stirred at room temperature for 3 hours. A mixture Extracted with ethyl acetate, the organic layer was washed twice with water, dried over anhydrous sodium sulfate and the solvent was concentrated under reduced pressure. The concentrated compound was slurried with nucleic acid and ethanol, and the product was filtered to obtain the desired compound A-4U (1.6 g, yield: 70.4 g). Step 5) Preparation of compound A-5
화합물 A-4 (15g, 56mmoO와 1-브로모 -2-플루오로 -3- 아이오도벤젠 (16.8g, 56誦 ol )을 테트라하이드로퓨란 (150 ml )에 분산시킨 후, 2M 탄산칼륨 수용액 (aq. K2C03) (56 ml , 112 面 ol )을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4] (650 mg, 1 mol¾0을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 분리하고, 유기층을 다시 물로 1회 더 세척하여 유기층을 분리하였다. 모아진 유기층에 무수황산마그네슘을 투입하여 슬러리화 한 후 여과하여 감압 농축하였다. 얻어진 화합물을 에틸아세테이트와 에탄올로 재결정하여 목적 화합물 A-5(15.7 g , 수율 77%)를 제조하였다. 단계 6) 화합물 A-6의 제조 Compound A-4 (15 g, 56 mmoO) and 1-bromo-2-fluoro-3-iodobenzene (16.8 g, 56  ol) were dispersed in tetrahydrofuran (150 ml) aq. K 2 C0 3) ( 56 ml, 112面ol) was added and tetrakis triphenyl phosphino palladium [Pd (PPh 3) 4] a (after inserting the 650 mg, 1 mol¾0 was refluxed and stirred for 6 hours at room temperature The organic layer was washed with water once more to separate the water layer, and the organic layer was separated. The organic layer was combined with anhydrous magnesium sulfate for slurrying, followed by filtration and concentration under reduced pressure. The resulting compound was dissolved in ethyl acetate and ethanol The objective compound A-5 (15.7 g, yield 77%) was prepared by recrystallization. Step 6) Preparation of Compound A-6
화합물 A-5( 15 g, 37.8 mmol )을 디클로로메탄 150 mL용액에 투입하여, 용액의 온도를 -70°C로 넁각하고, 1M의 삼브롬화붕소 디클로로 메탄용액 50mL를 천천히 적가하여 실온까지 승온 후 5시간 교반하였다. 반응 완결 후 흔합물에 물을 추가하고 디클로로메탄으로 추출하여, 유기층을 물로 세척하였다. 유기층을 무수 황산마그네슘으로 건조하고, 여과하여 감압 농축하였다. 얻어진 농축액을 에틸아세테이트 소량으로 슬러리화 한 후 여과하여 목적화합물 A-6(12 g, 수율 83%)을 얻었다. 단계 7) 중간체 A의 제조 Compound A-5 (15 g, 37.8 mmol) was added to 150 mL of dichloromethane, the temperature of the solution was reduced to -70 ° C, 50 mL of 1M boron tribromodichloromethane solution was slowly added dropwise, And the mixture was stirred for 5 hours. After completion of the reaction, water was added to the residue, extracted with dichloromethane, and the organic layer was washed with water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The resulting concentrate was slurried with a small amount of ethyl acetate and then filtered to obtain the target compound A-6 (12 g, yield 83%). Step 7) Preparation of intermediate A
화합물 A-6C24 g, 63 mmol )를 N-메틸 -2-피롤리돈 120mL에 희석하고 포타슘카보네이트 ( 17.3 g, 63 mmol )를 투입하여 14CTC로 가은하였다. 약 1시간 후 반웅물을 실온으로 식혀서 물 1.2L에 천천히 투입하였다. 석출된 고체를 여과하고, 이를 테트라하이드로퓨란에 녹인 후 무수황산마그네슘으로 처리하여 여과 후 감압농축 하였다. 농축한 화합물을 소량의 테트라하이드로퓨란과 과량의 핵산으로 슬러리화 하여 여과하였다. 여과한 화합물을 정제하기 위해 핵산과 에틸아세테이트로 실리카 컬럼을 통해 분리하여 중간체 M 14.7 g , 수율 65%, MS : [M+H]+=364)를 제조하였다. Compound A-6C (24 g, 63 mmol) was diluted in 120 mL of N-methyl-2-pyrrolidone and potassium carbonate (17.3 g, 63 mmol) was added thereto and the mixture was poured into 14 CTC. After about 1 hour, the reaction mixture was cooled to room temperature and slowly added to 1.2 L of water. The precipitated solid was filtered, dissolved in tetrahydrofuran, treated with anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The concentrated compound was dissolved in a small amount of tetrahydrofuran Slurried with an excess of nucleic acid and filtered. To purify the filtered compound, 14.7 g of intermediate M, 65% yield, MS: [M + H] < + > = 364) was prepared by separating through a silica column with nucleic acid and ethyl acetate.
Figure imgf000026_0001
중간체 A 제조예의 화합물 A-5의 합성예에서 1-브로모 -2-플루오로 -3- 아이오도벤젠 대신 1-브로모 -3-플루오로 -2-아이오도벤젠을 사용하는 것을 제외하고 중간체 A의 합성예와동일하게 실험하여 증간체 B를 제조하였다.
Figure imgf000026_0001
Intermediate A In the synthesis example of the compound A-5 of the production example A, except that 1-bromo-3-fluoro-2-iodobenzene was used instead of 1-bromo-2- A similar preparation was conducted in the same manner as in Synthesis Example A.
Figure imgf000026_0002
단계 1) 화합물 C-1의 제조
Figure imgf000026_0002
Step 1) Preparation of Compound C-1
화합물 methyl 2-br omo-5-ch 1 or obenzoat e ( 25 g, 100 mmol )와 d i benzo [b, d] fur an— 4-yl boron ic acid(21.2 g, 100 mmol)를 사용하여 중간체 A-The compound methyl 2-bromo-5-chlorobenzoate (25 g, 100 mmol) and di benzo [b, d] furan-4-yl boronic acid (21.2 g, 100 mmol)
1의 제조예와 동일하게 실험하여 화합물 C-l(27 g, 80%)을 제조하였다. 단계 2) 화합물 C-2의 제조 1, the compound C-1 (27 g, 80%) was prepared. Step 2) Preparation of compound C-2
화합물 C-l(25 g, 74 隱 ol)을 사용하여 화합물 A-2의 제조예와 동일하게 실험하여 화합물 C-2(18 g, 7 )를 제조하였다. 단계 3) 중간체 C의 제조 Compound C-2 (18 g, 7) was prepared in the same manner as in the preparation example of Compound A-2, using Compound C-1 (25 g, 74 隱 ol). Step 3) Preparation of intermediate C
화합물 C-2(15 g, 44.5 隱 ol)를 사용하여 화합물 A—3의 제조예와 동일하게 실험하여 중간체 C(10.4 g, 73%, MS:[M+H]+=319)를 제조하였다. (10.4 g, 73%, MS: [M + H] < + > = 319) was prepared in the same manner as in the preparation example of Compound A-3 using Compound C-2 (15 g, 44.5  ol) .
Figure imgf000027_0001
단계 1) 화합물 1—1의 제조
Figure imgf000027_0001
Step 1) Preparation of Compound 1-1
중간체 A(20 g, 55 mmol)와 [1, 1'-바이페닐] -4-아민 (9.8 g, 58 隱 ol)을 를루엔 200mL에 투입하여 녹이고, 나트륨 터셔리—부톡사이드 (10.5 g, 110 mmol)를 첨가하여 가온하였다. 비스 (트리 터셔리-부틸포스핀)팔라듐 (0.3g, lmol%)을 투입하여 3시간 환류 교반 시켰다. 반웅이 완결되면 를루엔을 감압 농축하고, 농축된 흔합물을 클로로포름 300mL에 녹이고, 물로 2회 세척하였다. 유기층을 분리하여, 무수황산마그네슴을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 컬럼크로마토그래피를 통해 정제하여 화합물 1-1(18.1 g, 수율 73%)을 제조하였다. 단계 2) 화합물 1-2의 제조 (9.8 g, 58  ol) was added to 200 mL of toluene to dissolve the intermediate A (20 g, 55 mmol) and [1,1'-biphenyl] -4-amine, and sodium tertiary- 110 mmol) was added and warmed. And palladium (0.3 g, 1 mol%) of bis (tritiated-butylphosphine) was added thereto, followed by reflux stirring for 3 hours. When the reaction was completed, the mixture was concentrated under reduced pressure, and the concentrated product was dissolved in chloroform (300 mL) and washed twice with water. The organic layer was separated, anhydrous magnesium sulfate was added and stirred, and the filtrate was distilled off under reduced pressure. The concentrated compound was purified by silica column chromatography to obtain Compound 1-1 (18.1 g, yield 73%). Step 2) Preparation of Compound 1-2
4-브로모—9, 9-디메틸 -9H-플루오렌 (20 g, 73.2 mmol)과 (4- 클로로페닐)보로닉 에시드 (12.6 g, 80.5 mmol)를 테트라하이드로퓨란 (200 ml)에 분산시킨 후, 2M 탄산칼륨수용액 (aq. K2C03)(73 ml, 143 醒 ol)을 첨가하고 테트라키스트리페닐포스피노팔라듐 [Pd(PPh3)4](850 mg, 1 η )1¾)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물충을 분리하고, 유기층올 다시 물로 1회 더 세척하여 유기층을 분리하였다. 모아진 유기층에 무수황산마그네슴을 투입하여 슬러리 후 여과하여 감압 농축하였다. 얻어진 화합물을 에탄올로 재결정하여 화합물 1-2(18.0 g, 81%)를 제조하였다. 단계 3) 화합물 1의 제조 A solution of 4-bromo-9,9-dimethyl-9H-fluorene (20 g, 73.2 mmol) and (4-chlorophenyl) boronic acid (12.6 g, 80.5 mmol) in tetrahydrofuran then, a 2M potassium carbonate aqueous solution (aq. K 2 C0 3) was added (73 ml, 143醒ol) and tetrakis triphenyl phosphino palladium [Pd (PPh 3) 4] (850 mg, 1 η) 1¾) And the mixture was refluxed with stirring for 6 hours. The temperature was lowered to room temperature, the water bug was separated, and the organic layer was further washed once more with water to separate the organic layer. Anhydrous magnesium sulfate was added to the collected organic layer, followed by slurry filtration and concentration under reduced pressure. The resulting compound was recrystallized from ethanol to obtain Compound 1-2 (18.0 g, 81%). Step 3) Preparation of Compound 1
화합물 1-1(20 g, 44 瞧 ol)과 화합물 1—2(14.2 g, 46.5 匪 ol)을 자일렌 200mL에 투입하여 녹이고, 나트륨 터셔리 -부톡사이드 (18.8 g, 88.6 mmol)를 첨가하여 가온하였다. 비스 (트리 터셔리-부틸포스핀)팔라듐 (0.23g, lmol%)을 투입하여 8시간 환류 교반 시켰다. 반응이 완결되면 자일렌을 감압 농축하고, 농축된 흔합물을 클로로포름 400mL에 녹이고, 물로 2회 세척하였다. 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 컬럼크로마토그래피를 통해 정제하여 화합물 l(23.4g, 수율 74%, MS:[M+H]+=720)을 제조하였다. The compound 1-1 (20 g, 44 瞧 ol) and the compound 1-2 (14.2 g, 46.5 匪 ol) were dissolved in 200 mL of xylene and added with sodium tertiary-butoxide (18.8 g, 88.6 mmol) Lt; / RTI > (Tris (tert-butylphosphine) palladium (0.23 g, 1 mol%) was added thereto, followed by stirring under reflux for 8 hours. When the reaction was completed, the xylene was concentrated under reduced pressure, and the concentrated residue was dissolved in 400 mL of chloroform and washed twice with water. The organic layer was separated, and anhydrous magnesium sulfate was added and stirred, followed by filtration, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica column chromatography to obtain Compound 1 (23.4 g, yield 74%, MS: [M + H] + = 720).
Figure imgf000028_0001
단계 1) 화합물 2-1의 제조
Figure imgf000028_0001
Step 1) Preparation of compound 2-1
중간체 B를 사용하여 화합물 1-1의 제조예와 동일하게 실험하여 화합물 2-1을 제조하였다. 단계 2) 화합물 2의 제조 Using the intermediate B, an experiment was conducted in the same manner as in the production example of the compound 1-1 Compound 2-1 was prepared. Step 2) Preparation of compound 2
화합물 2-1을 사용하여' 화합물 1의 제조예와 동일하게 실험하여 화합물 2를 제조하였다. (MS:[M+H]+=644) Compound 2-1 was used in the same manner as in the preparation of Compound 1 to prepare Compound 2. (MS: [M + H] < + > = 644)
Figure imgf000029_0001
Figure imgf000029_0001
3 단계 1) 화합물 3-1의 제조  Step 3 1) Preparation of Compound 3-1
4-브로모아닐린 (25 g, 145 mmol)과 디벤조 [b,d]푸란 -4-일보로닉 에시드 (30.8 g, 145 mmol)를 사용하여 화합물 1-2의 제조예와 동일하게 실험하여 화합물 3-1(25.6 g, 68%)을 제조하였다. 단계 2) 화합물 3-2의 제조  The same procedure as in the preparation example 1-2 was conducted using 4-bromoaniline (25 g, 145 mmol) and dibenzo [b, d] furan-4-ylboronic acid (30.8 g, Compound 3-1 (25.6 g, 68%) was prepared. Step 2) Preparation of compound 3-2
화합물 3-1(20 g, 77 mmol)과 중간체 C(24.6 g, 77 mmol)를 사용하여 화합물 1의 제조예와 동일하게 실험하여 화합물 3-2(30.5 g, 73W를 제조하였다. 단계 3) 화합물 3의 제조 화합물 3-2(18 g, 33 mmol )와 화합물 4-브로모 -9,9-디메틸-9H- 플루오렌(9.1 g, 33 mmol )을 사용하여 화합물 1-1의 제조예외 동일하게 실험하여 화합물 3(18.3 g, 75%, MS: [M+H]+=734)를 제조하였다. 실시예 1 Compound 3-2 (30.5 g, 73 W) was prepared using Compound 3-1 (20 g, 77 mmol) and Intermediate C (24.6 g, 77 mmol) Preparation of Compound 3 Preparation of Compound 1-1 Using Compound 3-2 (18 g, 33 mmol) and compound 4-bromo-9,9-dimethyl-9H-fluorene (9.1 g, 33 mmol) 3 (18.3 g, 75%, MS: [M + H] < + > = 734). Example 1
IT0( indium t in oxide)가 1 ,300 A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fi scher Co . ) 제품을 사용하였으며, 증류수로는 밀리포어사 (Mi 1 1 ipore Co . ) 제품의 필터 (Fi l ter)로 2차로 걸러진 증류수를 사용하였다. ΙΤ0를 30분간 세척한 후 증류수로 2회 반복하여 .초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 ΙΤ0 투명 전극 위에 하기와 같은 HI-1 화합물을 The glass substrate coated with thin ITO (indium tin oxide) film with a thickness of 1, 300 A was washed with ultrasonic waves in distilled water containing detergent. As a detergent, a product of Fischer Co. was used. Distilled water, which was filtered by a filter (Fi l ter) manufactured by Mi 1 1 ipore Co., was used as distilled water. IIT0 was washed for 30 minutes, then repeated twice with distilled water, and sonicated for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator. The following HI-1 compound was prepared on the thus prepared ITO transparent electrode
500A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 HT-1 화합물을 300 A의 두께로 열 진공 증착하여 정공 수송충을 형성하고, HT-1 증착막 위에 100A 두께로 상기 실시예 1에서 합성한 화합물 1을 진공 증착하여 전자 저지층을 형성하였다. 이어서, 상기 전자저지층 위에 막 두께 300 A 으로 BH와 BD를 25 : 1의 중량비로 진공증착하여 발광층을 형성하였다. 500A to form a hole injection layer. The HT-1 compound was thermally vacuum-deposited on the hole injection layer to form a hole-filling solution. The compound 1 synthesized in Example 1 was vacuum-deposited on the HT-1 vapor deposition layer to a thickness of 100 A to form an electron blocking layer . Subsequently, BH and BD were vacuum deposited on the electron blocking layer at a weight ratio of 25: 1 at a film thickness of 300 A to form a light emitting layer.
상기 발광층 위에 상기 화합물 ΕΊΊ과 Liq를 1 : 1의 중량비로 진공층착하여 300A의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12 A 두께로 리튬플로라이드 (LiF)와 2000 A 두께로 알루미늄을 증착하여 음극을 형성하였다. The compound Eq and Liq were vacuum deposited on the light emitting layer at a weight ratio of 1: 1 to form an electron injecting and transporting layer having a thickness of 300A. Lithium fluoride (LiF) and aluminum having a thickness of 2000 A were sequentially deposited on the electron injection and transport layer to a thickness of 12 A to form a cathode.
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0002
Figure imgf000031_0003
Figure imgf000031_0003
ET1 상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A/sec를 유지하였고 음극의 리튬플로라이드는 0.3A/sec , 알루미늄은 2 A/sec의 증착 속도를 유지하였으며 , 증착시 진공도는 1 X 10— 7 ~ 5 X 10"8 torr를 유지하였다. 실시예 2 In the above process, the deposition rate of the organic material was maintained at 0.4 to 0.7 A / sec, the lithium fluoride at the cathode was maintained at 0.3 A / sec, and the deposition rate at the aluminum was maintained at 2 A / sec. - 7 to 5 x 10 & lt ; -8 > torr. Example 2
제조예 4의 화합물 1 대신 제조예 5의 화합물 2를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 유기 발광 소자를 제작하였다. 실시예 6 An organic light emitting device was prepared in the same manner as in Example 1, except that the compound 2 of Preparation Example 5 was used instead of the compound 1 of Production Example 4. Example 6
제조예 4의 화합물 1 대신 제조예 6의 화합물 3을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 유기 발광 소자를 제작하였다. 비교예 1 및 2  An organic light emitting device was prepared in the same manner as in Example 1, except that the compound 3 of Preparation Example 6 was used instead of the compound 1 of Production Example 4. Comparative Examples 1 and 2
제조예 4의 화합물 1 대신 하기 화합물 D 및 E를 사용한 것을 였다.  And that the following compounds D and E were used in place of the compound 1 of Production Example 4.
Figure imgf000032_0001
Figure imgf000032_0001
[실험예 1] [Experimental Example 1]
상기 실시예 1 내지 3 및 비교예 1 내지 2에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, T95은 휘도가 초기휘도 (lOOOni t )에서 95¾>로 감소되는데 소요되는 시간:을 의미한다.  The current, voltage, efficiency, color coordinates and lifetime of the organic light-emitting device fabricated in Examples 1 to 3 and Comparative Examples 1 and 2 were measured, and the results are shown in Table 1 below. In this case, T95 means the time required for the luminance to decrease from the initial luminance (100o n t) to 95¾.
【표 1] [Table 1]
Figure imgf000032_0002
실시예 4
Figure imgf000032_0002
Example 4
상기 실시예 1과 같이 준비된 ITO 투명 전극 위에 하기와 같은 HI-1 화합물을 500A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 HT— 2 화합물을 800 A의 두께로 열 진공증착하고, 순차적으로 HT-3 화합물을 500 A 두께로 진공 증착하여 정공 수송층을 형성하였다. 이어서, 상기 HT-3 증착막 위에 상기 제조예 4의 화합물 1과 GH1을 50% 중량비로 동시증발에 의해 400 A 두께로 증착하고, 6 )의 중량비로 인광 도편트 GD-1을 공증착하여 발광층을 형성하였다.  The following HI-1 compound was thermally vacuum-deposited on the ITO transparent electrode prepared in the same manner as in Example 1 to a thickness of 500 A to form a hole injection layer. The HT-2 compound was thermally vacuum-deposited on the hole injection layer to a thickness of 800 A and the HT-3 compound was sequentially vacuum-deposited to a thickness of 500 A to form a hole transport layer. Subsequently, Compound 1 and GH1 of Preparation Example 4 were vapor-deposited at a weight ratio of 50% on the HT-3 vapor-deposited film by simultaneous evaporation to a thickness of 400 A, and the phosphorescent dopant GD-1 was co- .
상기 발광층 위에 ET-2 물질을 50 A의 두께로 진공 증착하여 정공저지층을 형성하고, 상기 정공저지층 위에 ET-3 물질 및 LiQ를 1: 1의 중량비로 진공증착하여 250A의 전자 수송층을 형성하였다. 상기 전자 수송층 위에 순차적으로 10 A 두께의 리튬 프루라이드 (LiF)를 증착하고, 이위에 1000A 두께로 알루미늄을 증착하여 음극을 형성하였다.  An ET-2 material was vacuum-deposited on the light-emitting layer to a thickness of 50 A to form a hole blocking layer. An ET-3 material and LiQ were vacuum deposited on the hole blocking layer at a weight ratio of 1: 1 to form an electron transport layer of 250 A. Respectively. Lithium fluoride (LiF) 10 A thick was sequentially deposited on the electron transport layer and aluminum was deposited thereon to a thickness of 1000 A to form a cathode.
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 A/sec, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10— 7 ~ 5 10— 8 torr를 유지하였다. The deposition rate of the organic material was maintained at 0.4 to 0.7 A / sec, the lithium fluoride at the cathode was maintained at 0.3 A / sec, and the deposition rate of aluminum was maintained at 2 A / sec. - it was maintained at 7 ~ 5 10- 8 torr.
Figure imgf000034_0001
Figure imgf000034_0001
Figure imgf000034_0002
실시예 5 내지 6
Figure imgf000034_0002
Examples 5 to 6
발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실시예 4와 동일한 방법을 이용하여 실시예 5 내지 6의 유기 발광 소자를 각각 제작하였다. 비교예 3 내지 4  The organic light emitting devices of Examples 5 to 6 were fabricated in the same manner as in Example 4, except that the phosphorescent host material and the dimple content in the light emitting layer were changed as shown in Table 2 below. Comparative Examples 3 to 4
발광층 형성시 인광 호스트 물질 및 도편트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실시예 4와 동일한 방법을 이용하여 비교예 3 내지 4의 유기 발광 소자를 각각 제작하였다. [실험예 2] The organic light emitting devices of Comparative Examples 3 to 4 were fabricated in the same manner as in Example 4, except that the phosphorescent host material and the dimple content in the light emitting layer were changed as shown in Table 2 below. [Experimental Example 2]
상기 실시예 4 내지 6 및 비교예 3 내지 4에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 2 에 나타내었다. 이때, T95은 밀도 20mA/cm2 에서의 초기 휘도를The current, voltage, efficiency, color coordinates and lifetime of the organic light-emitting device fabricated in Examples 4 to 6 and Comparative Examples 3 to 4 were measured, and the results are shown in Table 2 below. At this time, T95 shows the initial luminance at a density of 20 mA / cm 2
100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 시간을 의미한다. 100%, it means the time required for the luminance to be reduced to 95%.
【표 2】  [Table 2]
Figure imgf000035_0001
Figure imgf000035_0001
【부호의 설명】 , 1 : 기판 2: 양극 DESCRIPTION OF REFERENCE NUMERALS 1: substrate 2: anode
3: 발광층 4: 음극 3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층 5: Hole injection layer 6: Hole transport layer
7: 발광층 8: 전자수송층 7: light emitting layer 8: electron transporting layer

Claims

【청구범위】 Claims:
【청구항 1】 [Claim 1]
하기 화학식 1 또는 2로 표시되는 화합물:  A compound represented by the following formula (1) or (2):
Figure imgf000036_0001
상기 화학식 1 및 2에서,
Figure imgf000036_0001
In the above Formulas 1 and 2,
X는 0또는 S이고,  X is O or S,
Li 및 L2는 각각 독립적으로, 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 또는 치환 또는 비치환된 0, N, Si 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상을 포함하는 C2-60 헤테로아릴렌이고, Li and L 2 are each independently a single bond; Substituted or unsubstituted C 6 - 60 arylene; Or a substituted or unsubstituted C 2 - 60 heteroarylene containing at least one heteroatom selected from the group consisting of O, N, Si and S,
Ar은 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된 N, 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이고, Ar is a substituted or unsubstituted C 6 - 60 aryl; Or substituted or unsubstituted C 2 -C 6 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S,
Ri 내지 R5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 d-60 알콕시 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2- 60 알케닐; 치환 또는 비치환된 C6-60 아릴 ; 치환 또는 비치환된 C6-60 아릴옥시; 또는 치환 또는 비치환된 N , 0 및 ≤로 구성되는 군으로부터 선택되는 헤테로원자를 1개 이상 포함하는 C2-60 헤테로아릴이고, Ri to R 5 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d- 60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted d-60 alkoxy; Substituted or unsubstituted d-60 haloalkoxy; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 2 - 60 alkenyl; Substituted or unsubstituted C 6 -C 60 aryl; Substituted or unsubstituted C 6 -C 60 aryloxy; Or substituted or unsubstituted C 2 -C 60 heteroaryl containing at least one heteroatom selected from the group consisting of N,
al 내지 a5는 각각 독립적으로, 0 내지 2의 정수이다.  al to a5 are each independently an integer of 0 to 2;
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
및 L2는 각각 독립적으로, 단일 결합, 또는 페닐렌인, 화합물. And L < 2 > are each independently a single bond, or phenylene.
【청구항 3】 [Claim 3]
게 1항에 있어서,  In Item 1,
Ar은 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물  Ar is any one selected from the group consisting of
Figure imgf000037_0001
상기에서,
Figure imgf000037_0001
In the above,
Y은 0 , S , 또는 CZ4Z5이고, Y is O, S, or CZ 4 Z 5 ,
lx 내지 ζ5는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 알킬 ; d-20 할로알킬 ; C6-20 아릴 ; 0 또는 S의 헤테로원자를 1개 이상 포함하는 C2-20 헤테로아릴이고, lx to < RTI ID = 0.0 > 5 < / RTI > heavy hydrogen; halogen; Cyano; Nitro; Amino; Alkyl; d-20 haloalkyl; C 6 - 20 aryl; 20 is a heteroaryl, - C 2 containing zero or one or more heteroatoms of S
nl 내지 n3는 각각 독립적으로, 0 내지 3의 정수이다. n1 to n3 each independently represent an integer of 0 to 3;
【청구항 4】 Claim 4
제 3항에 있어서,
Figure imgf000038_0001
The method of claim 3,
Figure imgf000038_0001
【청구항 5】 제 1항에 있어서, [Claim 5] The method according to claim 1,
Ri 내지 ¾는 수소; 중수소; 할로겐; 시아노; d-10 알킬; 또는 C6-20 아릴인, 화합물. R < 1 > heavy hydrogen; halogen; Cyano; d- 10 alkyl; Or C 6 - 20 aryl, compound.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 화합물은 하기 화학식 1-1 내지 1-4 및 2-1 내지 2-4 중 하나로 표시되는, 화합물:  Wherein said compound is represented by one of the following formulas 1-1 to 1-4 and 2-1 to 2-4:
Figure imgf000039_0001
Figure imgf000039_0001
[화학식 2-3] [화학식 2-4]
Figure imgf000040_0001
[Chemical Formula 2-3] [Chemical Formula 2-4]
Figure imgf000040_0001
상기 화학식 1-1 내지 1-4 및 2-1 내지 2-4에서  In Formulas 1-1 to 1-4 and 2-1 to 2-4,
X 및 Ar에 대한 설명은 게 1항에서 정의한 바와 같다.  The definitions of X and Ar are as defined in Scheme 1 above.
【청구항 7] [7]
제 1항에 있어서,  The method according to claim 1,
상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인, 화합물: Wherein said compound is any one selected from the group consisting of the following compounds:
Figure imgf000041_0001
Z.SZ.00/8T0ZaM/X3d Z.817C10/610Z OAV
Figure imgf000041_0001
Z.SZ.00 / 8T0ZaM / X3d Z.817C10 / 610Z OAV
Figure imgf000042_0001
Z.SZ.00/8T0ZaM/X3d Z.817C10/610Z OAV
Figure imgf000042_0001
Z.SZ.00 / 8T0ZaM / X3d Z.817C10 / 610Z OAV
Figure imgf000043_0001
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0002
【청구항 8】 8.
거 U 전극; 상기 계 1 전극과 대향하여 구비된 게 2 전극; 및 상기 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 7항 중 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.  Gau electrode; A second electrode provided opposite to the first electrode; And at least one organic compound layer provided between the electrode and the second electrode, wherein at least one of the organic compound layers comprises a compound according to any one of claims 1 to 7. Organic light emitting device.
PCT/KR2018/007579 2017-07-12 2018-07-04 Novel compound and organic light-emitting device using same WO2019013487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880026274.4A CN110536887B (en) 2017-07-12 2018-07-04 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0088464 2017-07-12
KR1020170088464A KR102078301B1 (en) 2017-07-12 2017-07-12 Novel compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2019013487A1 true WO2019013487A1 (en) 2019-01-17

Family

ID=65001307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007579 WO2019013487A1 (en) 2017-07-12 2018-07-04 Novel compound and organic light-emitting device using same

Country Status (3)

Country Link
KR (1) KR102078301B1 (en)
CN (1) CN110536887B (en)
WO (1) WO2019013487A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149711A1 (en) * 2019-01-18 2020-07-23 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device therefor
CN111793001A (en) * 2019-04-02 2020-10-20 材料科学有限公司 Organic compound and organic electroluminescent element comprising same
CN112913042A (en) * 2019-05-02 2021-06-04 株式会社Lg化学 Organic light emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171221A1 (en) * 2019-02-22 2020-08-27 保土谷化学工業株式会社 Arylamine compound having benzoazole ring structure, and organic electroluminescent element
KR20230165979A (en) * 2022-05-27 2023-12-06 엘티소재주식회사 Heterocyclic compound and organic light emitting device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087883A (en) * 2012-12-31 2014-07-09 제일모직주식회사 Organic optoelectronic device and display including the same
KR20150034390A (en) * 2013-09-26 2015-04-03 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20150099192A (en) * 2014-02-21 2015-08-31 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20160051133A (en) * 2014-10-31 2016-05-11 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20160050700A (en) * 2014-10-30 2016-05-11 삼성에스디아이 주식회사 Organic optoelectric device and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR20120011445A (en) * 2010-07-29 2012-02-08 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087883A (en) * 2012-12-31 2014-07-09 제일모직주식회사 Organic optoelectronic device and display including the same
KR20150034390A (en) * 2013-09-26 2015-04-03 롬엔드하스전자재료코리아유한회사 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20150099192A (en) * 2014-02-21 2015-08-31 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20160050700A (en) * 2014-10-30 2016-05-11 삼성에스디아이 주식회사 Organic optoelectric device and display device
KR20160051133A (en) * 2014-10-31 2016-05-11 삼성에스디아이 주식회사 Organic optoelectric device and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149711A1 (en) * 2019-01-18 2020-07-23 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device therefor
KR20200089891A (en) * 2019-01-18 2020-07-28 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102654688B1 (en) * 2019-01-18 2024-04-04 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN111793001A (en) * 2019-04-02 2020-10-20 材料科学有限公司 Organic compound and organic electroluminescent element comprising same
CN111793001B (en) * 2019-04-02 2023-12-22 材料科学有限公司 Organic compound and organic electroluminescent element comprising same
CN112913042A (en) * 2019-05-02 2021-06-04 株式会社Lg化学 Organic light emitting device
CN112913042B (en) * 2019-05-02 2023-11-14 株式会社Lg化学 Organic light emitting device

Also Published As

Publication number Publication date
CN110536887B (en) 2024-01-23
KR20190007257A (en) 2019-01-22
KR102078301B1 (en) 2020-02-17
CN110536887A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
KR101961334B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101885900B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
CN110709403B (en) Novel heterocyclic compound and organic light emitting device using the same
KR102111149B1 (en) Organic light emitting device
KR101978453B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101929448B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102469107B1 (en) Organic light emitting device
KR20160126792A (en) Multicyclic compound including nitrogen and organic light emitting device using the same
KR102192691B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
JP7124260B2 (en) Organometallic compound and organic light-emitting device containing the same
KR101891263B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
CN110536887B (en) Novel compound and organic light emitting device comprising the same
WO2019017734A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR102206482B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2019017702A1 (en) Novel heterocyclic compound and organic light-emitting diode using same
KR20200085232A (en) Novel compound and organic light emitting device comprising the same
JP2020502088A (en) Novel heterocyclic compound and organic light emitting device using the same
KR20190009211A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101868516B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2019083122A1 (en) Novel compound and organic light emitting element using same
WO2019093623A1 (en) Novel heterocyclic compound and organic light-emitting diode using same
JP2018513110A (en) Heterocyclic compound and organic light emitting device including the same
WO2019004612A1 (en) Novel heterocyclic compound and organic light-emitting device using same
WO2019017730A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR20180104579A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832627

Country of ref document: EP

Kind code of ref document: A1