KR102583651B1 - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR102583651B1
KR102583651B1 KR1020200128261A KR20200128261A KR102583651B1 KR 102583651 B1 KR102583651 B1 KR 102583651B1 KR 1020200128261 A KR1020200128261 A KR 1020200128261A KR 20200128261 A KR20200128261 A KR 20200128261A KR 102583651 B1 KR102583651 B1 KR 102583651B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
group
layer
added
Prior art date
Application number
KR1020200128261A
Other languages
Korean (ko)
Other versions
KR20210039316A (en
Inventor
김민준
이동훈
차용범
서상덕
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210039316A publication Critical patent/KR20210039316A/en
Application granted granted Critical
Publication of KR102583651B1 publication Critical patent/KR102583651B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다. The present invention provides a novel compound and an organic light-emitting device using the same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same}Novel compound and organic light emitting device comprising the same}

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to novel compounds and organic light-emitting devices containing them.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials. Organic light-emitting devices using the organic light-emitting phenomenon have a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, so much research is being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. Organic light emitting devices generally have a structure including an anode, a cathode, and an organic layer between the anode and the cathode. The organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer. In the structure of this organic light-emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton is When it falls back to the ground state, it glows.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light-emitting devices as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to novel compounds and organic light-emitting devices containing them.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):

[화학식 1][Formula 1]

Figure 112020104985834-pat00001
Figure 112020104985834-pat00001

상기 화학식 1에서, In Formula 1,

A는 인접한 두 개의 고리와 융합된 벤젠 고리이고,A is a benzene ring fused with two adjacent rings,

R1 및 R2는 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이거나, 또는 R1 및 R2가 함께 결합하여 치환 또는 비치환된 C6-60 방향족 고리를 형성하고, R 1 and R 2 are substituted or unsubstituted C 1-60 alkyl; or substituted or unsubstituted C 6-60 aryl, or R 1 and R 2 are combined together to form a substituted or unsubstituted C 6-60 aromatic ring,

R3은 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고, R 3 is substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

L1 및 L2는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고, L 1 and L 2 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,

Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다. Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O, and S.

또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. do.

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by the above-mentioned formula 1 can be used as a material for the organic layer of an organic light-emitting device, and can improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light-emitting device. In particular, the compound represented by the above-mentioned formula 1 can be used as a hole injection, hole transport, hole injection and transport, light emitting, electron transport, or electron injection material.

도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(7), 정공저지층(10), 전자 수송 및 주입송층(12) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
Figure 2 shows an example of an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (7), an electron transport layer (8), and a cathode (4). It was done.
3 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (9), a light emitting layer (7), a hole blocking layer (10), and an electron transport and injection layer. An example of an organic light emitting device consisting of (12) and a cathode (4) is shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding.

본 명세서에서,

Figure 112020104985834-pat00002
는 다른 치환기에 연결되는 결합을 의미한다. In this specification,
Figure 112020104985834-pat00002
means a bond connected to another substituent.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term “substituted or unsubstituted” refers to deuterium; halogen group; Nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or unsubstituted with two or more of the above-exemplified substituents linked. . For example, “a substituent group in which two or more substituents are connected” may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In this specification, the carbon number of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.

Figure 112020104985834-pat00003
Figure 112020104985834-pat00003

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the oxygen of the ester group may be substituted with a straight-chain, branched-chain, or ring-chain alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.

Figure 112020104985834-pat00004
Figure 112020104985834-pat00004

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In this specification, the carbon number of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.

Figure 112020104985834-pat00005
Figure 112020104985834-pat00005

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited to this.

본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group, but is not limited thereto.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In this specification, examples of halogen groups include fluorine, chlorine, bromine, or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of alkyl groups include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n. -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited to these.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited to these.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, Examples include, but are not limited to, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, and cyclooctyl.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, or terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.

본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,

Figure 112020104985834-pat00006
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.In the present specification, the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure. When the fluorenyl group is substituted,
Figure 112020104985834-pat00006
It can be etc. However, it is not limited to this.

본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group containing one or more of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of heterocyclic groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, and acridyl group. , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzooxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia These include, but are not limited to, a zolyl group, a phenothiazinyl group, and a dibenzofuranyl group.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In this specification, the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In this specification, the aralkyl group, alkylaryl group, and alkylamine group are the same as the examples of the alkyl group described above. In the present specification, the description regarding the heterocyclic group described above may be applied to heteroaryl among heteroarylamines. In this specification, the alkenyl group among the aralkenyl groups is the same as the example of the alkenyl group described above. In the present specification, the description of the aryl group described above can be applied, except that arylene is a divalent group. In the present specification, the description of the heterocyclic group described above can be applied, except that heteroarylene is a divalent group. In the present specification, the description of the aryl group or cycloalkyl group described above can be applied, except that the hydrocarbon ring is not monovalent and is formed by combining two substituents. In the present specification, the description of the heterocyclic group described above can be applied, except that the heterocycle is not a monovalent group and is formed by combining two substituents.

상기 화학식 1에서, 하나 이상의 수소는 중수소로 치환될 수 있다. In Formula 1, one or more hydrogens may be replaced with deuterium.

바람직하게는, 상기 화학식 1에서 A의 융합 위치에 따라, 상기 화학식 1은, 하기 화학식 1-1 또는 1-2로 표시된다:Preferably, depending on the fusion position of A in Formula 1, Formula 1 is represented by the following Formula 1-1 or 1-2:

[화학식 1-1][Formula 1-1]

Figure 112020104985834-pat00007
Figure 112020104985834-pat00007

[화학식 1-2][Formula 1-2]

Figure 112020104985834-pat00008
Figure 112020104985834-pat00008

바람직하게는, R1 및 R2는 메틸; 또는 페닐이거나, 또는 R1 및 R2가 함께 결합하여

Figure 112020104985834-pat00009
을 형성한다. Preferably, R 1 and R 2 are methyl; or phenyl, or R 1 and R 2 are bonded together
Figure 112020104985834-pat00009
forms.

바람직하게는, R3은 페닐, 비페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이다. Preferably, R 3 is phenyl, biphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, dibenzofuranyl, or dibenzothiophenyl.

바람직하게는, L1 및 L2는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌이고, 보다 바람직하게는 단일 결합이다. Preferably, L 1 and L 2 are each independently a single bond, phenylene, or naphthylene, and more preferably a single bond.

바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이다. 보다 바람직하게는, Ar1 및 Ar2 중 적어도 하나는 페닐이다. Preferably, Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, dibenzofuranyl, or dibenzothiophenyl. More preferably, at least one of Ar 1 and Ar 2 is phenyl.

상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 1 are as follows.

Figure 112020104985834-pat00010
Figure 112020104985834-pat00010

Figure 112020104985834-pat00011
Figure 112020104985834-pat00011

Figure 112020104985834-pat00012
Figure 112020104985834-pat00012

Figure 112020104985834-pat00013
Figure 112020104985834-pat00013

Figure 112020104985834-pat00014
Figure 112020104985834-pat00014

Figure 112020104985834-pat00015
Figure 112020104985834-pat00015

Figure 112020104985834-pat00016
Figure 112020104985834-pat00016

한편, 상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. Meanwhile, the compound represented by Chemical Formula 1 can be prepared by the manufacturing method shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112020104985834-pat00017
Figure 112020104985834-pat00017

상기 반응식 1의 단계 1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 반응식 1의 단계 2는 스즈키 커플링 반응 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. Step 1 of Scheme 1 is an amine substitution reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed according to what is known in the art. Step 2 of Scheme 1 is a Suzuki coupling reaction, and is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed according to what is known in the art. The manufacturing method may be further detailed in the manufacturing examples described later.

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. Additionally, the present invention provides an organic light-emitting device containing the compound represented by Formula 1 above. In one example, the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. do.

본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure that includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited to this and may include fewer organic layers.

또한, 상기 유기물층은 전자억제층을 포함할 수 있고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.Additionally, the organic material layer may include an electron blocking layer, and the electron blocking layer includes the compound represented by Chemical Formula 1.

또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다. Additionally, the organic layer may include a light-emitting layer, and the light-emitting layer includes the compound represented by Chemical Formula 1. In particular, the compound according to the present invention can be used as a dopant in the light-emitting layer.

또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. Additionally, the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or electron injection layer includes the compound represented by Formula 1.

또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the electron transport layer, the electron injection layer, or the layer that simultaneously performs electron transport and electron injection includes the compound represented by Formula 1.

또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. Additionally, the organic layer includes a light-emitting layer and an electron transport layer, and the electron transport layer may include the compound represented by Formula 1.

또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.Additionally, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Additionally, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.

도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In this structure, the compound represented by Formula 1 may be included in the light-emitting layer.

도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. Figure 2 shows an example of an organic light emitting device consisting of a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (7), an electron transport layer (8), and a cathode (4). It was done. In this structure, the compound represented by Formula 1 may be included in one or more of the hole injection layer, hole transport layer, light emitting layer, and electron transport layer.

도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(7), 정공저지층(10), 전자 수송 및 주입송층(12) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 및 전자 수송 및 주입층 중 1층 이상에 포함될 수 있다. 3 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (9), a light emitting layer (7), a hole blocking layer (10), and an electron transport and injection layer. An example of an organic light emitting device consisting of (12) and a cathode (4) is shown. In this structure, the compound represented by Formula 1 may be included in one or more of the hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, and electron transport and injection layer.

본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 above. Additionally, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention can be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, an anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation. It can be manufactured by forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device. Here, the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light-emitting device can be manufactured by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited to this.

일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.

상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.

상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are multi-layer structure materials such as LiF/Al or LiO 2 /Al, but they are not limited to these.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer that injects holes from an electrode. The hole injection material has the ability to transport holes, has an excellent hole injection effect at the anode, a light-emitting layer or a light-emitting material, and has an excellent hole injection effect on the light-emitting layer or light-emitting material. A compound that prevents movement of excitons to the electron injection layer or electron injection material and has excellent thin film forming ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer. Specific examples of hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances. These include organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited to these.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light-emitting layer. It is a hole transport material that can receive holes from the anode or hole injection layer and transfer them to the light-emitting layer, and is a material with high mobility for holes. This is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.

상기 전자억제층은, 음극에서 주입된 전자가 발광층에서 재결합하지 않고 양극 쪽으로 전달되는 것을 억제하여 유기 발광 소자의 효율을 향상시키는 역할을 한다. The electron suppression layer serves to improve the efficiency of the organic light-emitting device by suppressing electrons injected from the cathode from being transferred to the anode without recombining in the light-emitting layer.

상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The light emitting layer may include a host material and a dopant material. Host materials include condensed aromatic ring derivatives or heterocyclic ring-containing compounds. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.

도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, and periplanthene, and styrylamine compounds include substituted or unsubstituted arylamino groups. It is a compound in which at least one arylvinyl group is substituted on the arylamine, and is substituted or unsubstituted with one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group. Specifically, styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc. are included, but are not limited thereto. Additionally, metal complexes include, but are not limited to, iridium complexes and platinum complexes.

상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light-emitting layer. The electron transport material is a material that can easily inject electrons from the cathode and transfer them to the light-emitting layer, and a material with high electron mobility is suitable. do. Specific examples include Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials with a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.

상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light-emitting layer or a light-emitting material, and hole injection of excitons generated in the light-emitting layer. A compound that prevents movement to the layer and has excellent thin film forming ability is preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals. Complex compounds and nitrogen-containing five-membered ring derivatives are included, but are not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.

본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.Additionally, the compound represented by Formula 1 may be included in organic solar cells or organic transistors in addition to organic light-emitting devices.

상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The preparation of the compound represented by Formula 1 and an organic light-emitting device containing the same will be described in detail in the following Examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.

[실시예][Example]

실시예 1: 화합물 1의 제조Example 1: Preparation of Compound 1

Figure 112020104985834-pat00018
Figure 112020104985834-pat00018

질소 분위기에서 화합물 A(10 g, 28 mmol), 화합물 sub1(9.9 g, 30.8 mmol), 소디움 터트-부톡사이드(5.4 g, 55.9 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-1(8.6 g, 수율 56%)을 얻었다. In a nitrogen atmosphere, compound A (10 g, 28 mmol), compound sub1 (9.9 g, 30.8 mmol), and sodium tert-butoxide (5.4 g, 55.9 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subA-1 (8.6 g, yield 56%).

MS: [M+H]+= 548MS: [M+H] + = 548

질소 분위기에서 화합물 subA-1(15 g, 27.4 mmol)와 화합물 G(6.4 g, 30.1 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(15.1 g, 109.5 mmol)를 물(45 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.8 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1(13.9 g, 수율 64%)을 제조하였다. In a nitrogen atmosphere, compound subA-1 (15 g, 27.4 mmol) and compound G (6.4 g, 30.1 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (15.1 g, 109.5 mmol) was dissolved in water (45 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.8 mmol) was added. After reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare Compound 1 (13.9 g, yield 64%).

MS: [M+H]+= 793MS: [M+H] + = 793

실시예 2: 화합물 2의 제조Example 2: Preparation of Compound 2

Figure 112020104985834-pat00019
Figure 112020104985834-pat00019

질소 분위기에서 화합물 A(10 g, 28 mmol), 화합물 sub2(11.1 g, 30.8 mmol), 소디움 터트-부톡사이드(5.4 g, 55.9 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-2(9.6 g, 수율 54%)을 얻었다.In a nitrogen atmosphere, compound A (10 g, 28 mmol), compound sub2 (11.1 g, 30.8 mmol), and sodium tert-butoxide (5.4 g, 55.9 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subA-2 (9.6 g, yield 54%).

MS: [M+H]+= 638MS: [M+H] + = 638

질소 분위기에서 화합물 subA-2(15 g, 23.5 mmol)와 화합물 H(3.2 g, 25.9 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(13 g, 94 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2(12.1 g, 수율 76%)를 제조하였다.In a nitrogen atmosphere, compound subA-2 (15 g, 23.5 mmol) and compound H (3.2 g, 25.9 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (13 g, 94 mmol) was dissolved in water (39 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 2 (12.1 g, yield 76%).

MS: [M+H]+= 680MS: [M+H] + = 680

실시예 3: 화합물 3의 제조Example 3: Preparation of Compound 3

Figure 112020104985834-pat00020
Figure 112020104985834-pat00020

질소 분위기에서 화합물 A(10 g, 28 mmol), 화합물 sub3(13.1 g, 30.8 mmol), 소디움 터트-부톡사이드(5.4 g, 55.9 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-3(10 g, 수율 51%)을 얻었다.In a nitrogen atmosphere, compound A (10 g, 28 mmol), compound sub3 (13.1 g, 30.8 mmol), and sodium tert-butoxide (5.4 g, 55.9 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subA-3 (10 g, yield 51%).

MS: [M+H]+= 704MS: [M+H] + = 704

질소 분위기에서 화합물 subA-3(15 g, 21.3 mmol)와 화합물 H(2.9 g, 23.4 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.8 g, 85.2 mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3(6.5 g, 수율 41%)을 제조하였다.In a nitrogen atmosphere, compound subA-3 (15 g, 21.3 mmol) and compound H (2.9 g, 23.4 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.8 g, 85.2 mmol) was dissolved in 35 ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 3 (6.5 g, yield 41%).

MS: [M+H]+= 749MS: [M+H] + = 749

실시예 4: 화합물 4의 제조Example 4: Preparation of Compound 4

Figure 112020104985834-pat00021
Figure 112020104985834-pat00021

질소 분위기에서 화합물 B(10 g, 28 mmol), 화합물 sub4(9.9 g, 30.8 mmol), 소디움 터트-부톡사이드(5.4 g, 55.9 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-1(9.5 g, 수율 57%)을 얻었다.In a nitrogen atmosphere, compound B (10 g, 28 mmol), compound sub4 (9.9 g, 30.8 mmol), and sodium tert-butoxide (5.4 g, 55.9 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subB-1 (9.5 g, yield 57%).

MS: [M+H]+= 598MS: [M+H] + = 598

질소 분위기에서 화합물 subB-1(15 g, 25.1 mmol)와 화합물 H(3.4 g, 27.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(13.9 g, 100.3 mmol)를 물(42 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.8 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4(6 g, 수율 32%)를 제조하였다.In a nitrogen atmosphere, compound subB-1 (15 g, 25.1 mmol) and compound H (3.4 g, 27.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (13.9 g, 100.3 mmol) was dissolved in water (42 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.8 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 4 (6 g, yield 32%).

MS: [M+H]+= 754MS: [M+H] + = 754

실시예 5: 화합물 5의 제조Example 5: Preparation of Compound 5

Figure 112020104985834-pat00022
Figure 112020104985834-pat00022

질소 분위기에서 화합물 B(10 g, 28 mmol), 화합물 sub5(7.5 g, 30.8 mmol), 소디움 터트-부톡사이드(5.4 g, 55.9 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-2(9.3 g, 수율 64%)을 얻었다.In a nitrogen atmosphere, compound B (10 g, 28 mmol), compound sub5 (7.5 g, 30.8 mmol), and sodium tert-butoxide (5.4 g, 55.9 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subB-2 (9.3 g, yield 64%).

MS: [M+H]+= 522MS: [M+H] + = 522

질소 분위기에서 화합물 subB-2(15 g, 28.7 mmol)와 화합물 I(5.4 g, 31.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(15.9 g, 114.9 mmol)를 물(48 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.9 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5(12.3 g, 수율 70%)를 제조하였다.In a nitrogen atmosphere, compound subB-2 (15 g, 28.7 mmol) and compound I (5.4 g, 31.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (15.9 g, 114.9 mmol) was dissolved in water (48 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.9 mmol) was added. After reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 5 (12.3 g, yield 70%).

MS: [M+H]+= 614MS: [M+H] + = 614

실시예 6: 화합물 6의 제조Example 6: Preparation of Compound 6

Figure 112020104985834-pat00023
Figure 112020104985834-pat00023

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub5(5.6 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-1(7.9 g, 수율 59%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub5 (5.6 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-1 (7.9 g, yield 59%).

MS: [M+H]+= 646MS: [M+H] + = 646

질소 분위기에서 화합물 subC-1(15 g, 23.2 mmol)와 화합물 J(5.8 g, 25.5 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.8 g, 92.8 mmol)를 물(38 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6(12.2 g, 수율 66%)을 제조하였다.In a nitrogen atmosphere, compound subC-1 (15 g, 23.2 mmol) and compound J (5.8 g, 25.5 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.8 g, 92.8 mmol) was dissolved in water (38 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 6 (12.2 g, yield 66%).

MS: [M+H]+= 794MS: [M+H] + = 794

실시예 7: 화합물 7의 제조Example 7: Preparation of Compound 7

Figure 112020104985834-pat00024
Figure 112020104985834-pat00024

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub6(6.3 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-2(7.1 g, 수율 51%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub6 (6.3 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-2 (7.1 g, yield 51%).

MS: [M+H]+= 676MS: [M+H] + = 676

질소 분위기에서 화합물 subC-2(15 g, 22.2 mmol)와 화합물 K(4.8 g, 24.4 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.3 g, 88.7 mmol)를 물(37 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7(11.4 g, 수율 65%)을 제조하였다.In a nitrogen atmosphere, compound subC-2 (15 g, 22.2 mmol) and compound K (4.8 g, 24.4 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.3 g, 88.7 mmol) was dissolved in water (37 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.7 mmol) was added. After reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 7 (11.4 g, yield 65%).

MS: [M+H]+= 794MS: [M+H] + = 794

실시예 8: 화합물 8의 제조Example 8: Preparation of Compound 8

Figure 112020104985834-pat00025
Figure 112020104985834-pat00025

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub7(5.9 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-3(7 g, 수율 51%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub7 (5.9 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-3 (7 g, yield 51%).

MS: [M+H]+= 660MS: [M+H] + = 660

질소 분위기에서 화합물 subC-3(15 g, 22.7 mmol)와 화합물 H(3 g, 25 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.6 g, 90.9 mmol)를 물(38 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8(6.9 g, 수율 43%)을 제조하였다.In a nitrogen atmosphere, compound subC-3 (15 g, 22.7 mmol) and compound H (3 g, 25 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.6 g, 90.9 mmol) was dissolved in water (38 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.7 mmol) was added. After reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 8 (6.9 g, yield 43%).

MS: [M+H]+= 702MS: [M+H] + = 702

실시예 9: 화합물 9의 제조Example 9: Preparation of Compound 9

Figure 112020104985834-pat00026
Figure 112020104985834-pat00026

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub8(5 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-4(9 g, 수율 70%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub8 (5 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-4 (9 g, yield 70%).

MS: [M+H]+= 620MS: [M+H] + = 620

질소 분위기에서 화합물 subC-4(15 g, 24.2 mmol)와 화합물 H(3.2 g, 26.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(13.4 g, 96.7 mmol)를 물(40 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9(4.8 g, 수율 30%)를 제조하였다.In a nitrogen atmosphere, compound subC-4 (15 g, 24.2 mmol) and compound H (3.2 g, 26.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (13.4 g, 96.7 mmol) was dissolved in water (40 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 9 (4.8 g, yield 30%).

MS: [M+H]+= 662MS: [M+H] + = 662

실시예 10: 화합물 10의 제조Example 10: Preparation of Compound 10

Figure 112020104985834-pat00027
Figure 112020104985834-pat00027

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub9(5.6 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-5(9.4 g, 수율 70%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub9 (5.6 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-5 (9.4 g, yield 70%).

MS: [M+H]+= 646MS: [M+H] + = 646

질소 분위기에서 화합물 subC-5(15 g, 23.2 mmol)와 화합물 L(5.4 g, 25.5 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.8 g, 92.8 mmol)를 물(38 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10(11.4 g, 수율 63%)을 제조하였다.In a nitrogen atmosphere, compound subC-5 (15 g, 23.2 mmol) and compound L (5.4 g, 25.5 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.8 g, 92.8 mmol) was dissolved in water (38 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 10 (11.4 g, yield 63%).

MS: [M+H]+= 778MS: [M+H] + = 778

실시예 11: 화합물 11의 제조Example 11: Preparation of Compound 11

Figure 112020104985834-pat00028
Figure 112020104985834-pat00028

질소 분위기에서 화합물 C(10 g, 20.8 mmol), 화합물 sub4(7.3 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-6(8.5 g, 수율 57%)을 얻었다.In a nitrogen atmosphere, compound C (10 g, 20.8 mmol), compound sub4 (7.3 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subC-6 (8.5 g, yield 57%).

MS: [M+H]+= 722MS: [M+H] + = 722

질소 분위기에서 화합물 subC-6(15 g, 20.8 mmol)와 화합물 H(2.8 g, 22.8 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.5 g, 83.1 mmol)를 물(34 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11(9.7 g, 수율 61%)을 제조하였다.In a nitrogen atmosphere, compound subC-6 (15 g, 20.8 mmol) and compound H (2.8 g, 22.8 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.5 g, 83.1 mmol) was dissolved in water (34 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 11 (9.7 g, yield 61%).

MS: [M+H]+= 764MS: [M+H] + = 764

실시예 12: 화합물 12의 제조Example 12: Preparation of Compound 12

Figure 112020104985834-pat00029
Figure 112020104985834-pat00029

질소 분위기에서 화합물 D(10 g, 20.8 mmol), 화합물 sub10(8.1 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-1(10.4 g, 수율 68%)을 얻었다.In a nitrogen atmosphere, compound D (10 g, 20.8 mmol), compound sub10 (8.1 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subD-1 (10.4 g, yield 68%).

MS: [M+H]+= 736MS: [M+H] + = 736

질소 분위기에서 화합물 subD-1(15 g, 20.4 mmol)와 화합물 H(2.7 g, 22.4 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.3 g, 81.5 mmol)를 물(34 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12(11.9 g, 수율 75%)를 제조하였다.In a nitrogen atmosphere, compound subD-1 (15 g, 20.4 mmol) and compound H (2.7 g, 22.4 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.3 g, 81.5 mmol) was dissolved in water (34 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 12 (11.9 g, yield 75%).

MS: [M+H]+= 778MS: [M+H] + = 778

실시예 13: 화합물 13의 제조Example 13: Preparation of Compound 13

Figure 112020104985834-pat00030
Figure 112020104985834-pat00030

질소 분위기에서 화합물 D(10 g, 20.8 mmol), 화합물 sub11(6.7 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-2(8.9 g, 수율 62%)을 얻었다.In a nitrogen atmosphere, compound D (10 g, 20.8 mmol), compound sub11 (6.7 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subD-2 (8.9 g, yield 62%).

MS: [M+H]+= 696MS: [M+H] + = 696

질소 분위기에서 화합물 subD-2(15 g, 21.5 mmol)와 화합물 G(5 g, 23.7 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.9 g, 86.2 mmol)를 물(36 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 13(9.6 g, 수율 54%)을 얻었다.In a nitrogen atmosphere, compound subD-2 (15 g, 21.5 mmol) and compound G (5 g, 23.7 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.9 g, 86.2 mmol) was dissolved in water (36 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound 13 (9.6 g, yield 54%).

MS: [M+H]+= 829MS: [M+H] + = 829

실시예 14: 화합물 14의 제조Example 14: Preparation of Compound 14

Figure 112020104985834-pat00031
Figure 112020104985834-pat00031

질소 분위기에서 화합물 D(10 g, 20.8 mmol), 화합물 sub8(5 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-3(7.6 g, 수율 59%)을 얻었다.In a nitrogen atmosphere, compound D (10 g, 20.8 mmol), compound sub8 (5 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subD-3 (7.6 g, yield 59%).

MS: [M+H]+= 620MS: [M+H] + = 620

질소 분위기에서 화합물 subD-3(15 g, 24.2 mmol)와 화합물 M(5.3 g, 26.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(13.4 g, 96.7 mmol)를 물(40 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14(7.5 g, 수율 42%)를 제조하였다.In a nitrogen atmosphere, compound subD-3 (15 g, 24.2 mmol) and compound M (5.3 g, 26.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (13.4 g, 96.7 mmol) was dissolved in water (40 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 14 (7.5 g, yield 42%).

MS: [M+H]+= 738MS: [M+H] + = 738

실시예 15: 화합물 15의 제조Example 15: Preparation of Compound 15

Figure 112020104985834-pat00032
Figure 112020104985834-pat00032

질소 분위기에서 화합물 D(10 g, 20.8 mmol), 화합물 sub5(5.6 g, 22.8 mmol), 소디움 터트-부톡사이드(4 g, 41.5 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-4(8.2 g, 수율 61%)을 얻었다.In a nitrogen atmosphere, compound D (10 g, 20.8 mmol), compound sub5 (5.6 g, 22.8 mmol), and sodium tert-butoxide (4 g, 41.5 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subD-4 (8.2 g, yield 61%).

MS: [M+H]+= 646MS: [M+H] + = 646

질소 분위기에서 화합물 subD-4(15 g, 23.2 mmol)와 화합물 G(5.4 g, 25.5 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.8 g, 92.8 mmol)를 물(38 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15(12.1 g, 수율 67%)를 제조하였다.In a nitrogen atmosphere, compound subD-4 (15 g, 23.2 mmol) and compound G (5.4 g, 25.5 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.8 g, 92.8 mmol) was dissolved in water (38 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 15 (12.1 g, yield 67%).

MS: [M+H]+= 778MS: [M+H] + = 778

실시예 16: 화합물 16의 제조Example 16: Preparation of Compound 16

Figure 112020104985834-pat00033
Figure 112020104985834-pat00033

질소 분위기에서 화합물 E(10 g, 20.8 mmol), 화합물 sub4(7.4 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-1(7.5 g, 수율 50%)을 얻었다.In a nitrogen atmosphere, compound E (10 g, 20.8 mmol), compound sub4 (7.4 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-1 (7.5 g, yield 50%).

MS: [M+H]+= 720MS: [M+H] + = 720

질소 분위기에서 화합물 subE-1(15 g, 20.8 mmol)와 화합물 H(2.8 g, 22.8 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.5 g, 83.1 mmol)를 물(34 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16(12.5 g, 수율 79%)을 제조하였다.In a nitrogen atmosphere, compound subE-1 (15 g, 20.8 mmol) and compound H (2.8 g, 22.8 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.5 g, 83.1 mmol) was dissolved in water (34 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 16 (12.5 g, yield 79%).

MS: [M+H]+= 762MS: [M+H] + = 762

실시예 17: 화합물 17의 제조Example 17: Preparation of Compound 17

Figure 112020104985834-pat00034
Figure 112020104985834-pat00034

질소 분위기에서 화합물 E(10 g, 20.8 mmol), 화합물 sub5(5.6 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-2(9.4 g, 수율 70%)을 얻었다.In a nitrogen atmosphere, compound E (10 g, 20.8 mmol), compound sub5 (5.6 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-2 (9.4 g, yield 70%).

MS: [M+H]+= 645MS: [M+H] + = 645

질소 분위기에서 화합물 subE-2(15 g, 23.3 mmol)와 화합물 I(4.4 g, 25.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.9 g, 93.1 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17(12.7 g, 수율 74%)을 제조하였다.In a nitrogen atmosphere, compound subE-2 (15 g, 23.3 mmol) and compound I (4.4 g, 25.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.9 g, 93.1 mmol) was dissolved in water (39 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 17 (12.7 g, yield 74%).

MS: [M+H]+= 736MS: [M+H] + = 736

실시예 18: 화합물 18의 제조Example 18: Preparation of Compound 18

Figure 112020104985834-pat00035
Figure 112020104985834-pat00035

질소 분위기에서 화합물 subE-3(15 g, 23.3 mmol)와 화합물 J(5.8 g, 25.6 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(12.9 g, 93.1 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18(6.6 g, 수율 36%)을 제조하였다.In a nitrogen atmosphere, compound subE-3 (15 g, 23.3 mmol) and compound J (5.8 g, 25.6 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (12.9 g, 93.1 mmol) was dissolved in water (39 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 18 (6.6 g, yield 36%).

MS: [M+H]+= 792MS: [M+H] + = 792

실시예 19: 화합물 19의 제조Example 19: Preparation of Compound 19

Figure 112020104985834-pat00036
Figure 112020104985834-pat00036

질소 분위기에서 화합물 E(10 g, 20.8 mmol), 화합물 sub12(6.8 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-4(8.5 g, 수율 59%)을 얻었다.In a nitrogen atmosphere, compound E (10 g, 20.8 mmol), compound sub12 (6.8 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-4 (8.5 g, yield 59%).

MS: [M+H]+= 694MS: [M+H] + = 694

질소 분위기에서 화합물 subE-4(15 g, 21.6 mmol)와 화합물 J(5.4 g, 23.8 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.9 g, 86.4 mmol)를 물(36 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19(6.7 g, 수율 37%)를 제조하였다.In a nitrogen atmosphere, compound subE-4 (15 g, 21.6 mmol) and compound J (5.4 g, 23.8 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.9 g, 86.4 mmol) was dissolved in water (36 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 19 (6.7 g, yield 37%).

MS: [M+H]+= 842MS: [M+H] + = 842

실시예 20: 화합물 20의 제조Example 20: Preparation of Compound 20

Figure 112020104985834-pat00037
Figure 112020104985834-pat00037

질소 분위기에서 화합물 E(10 g, 20.8 mmol), 화합물 sub13(7.7 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-5(7.6 g, 수율 50%)을 얻었다.In a nitrogen atmosphere, compound E (10 g, 20.8 mmol), compound sub13 (7.7 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-5 (7.6 g, yield 50%).

MS: [M+H]+= 734MS: [M+H] + = 734

질소 분위기에서 화합물 subE-5(15 g, 20.4 mmol)와 화합물 H(2.7 g, 22.5 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.3 g, 81.7 mmol)를 물(34 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20(10 g, 수율 63%)을 제조하였다.In a nitrogen atmosphere, compound subE-5 (15 g, 20.4 mmol) and compound H (2.7 g, 22.5 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.3 g, 81.7 mmol) was dissolved in water (34 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 20 (10 g, yield 63%).

MS: [M+H]+= 776MS: [M+H] + = 776

실시예 21: 화합물 21의 제조Example 21: Preparation of Compound 21

Figure 112020104985834-pat00038
Figure 112020104985834-pat00038

질소 분위기에서 화합물 F(10 g, 20.8 mmol), 화합물 sub14(8.8 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-1(9.1 g, 수율 56%)을 얻었다.In a nitrogen atmosphere, compound F (10 g, 20.8 mmol), compound sub14 (8.8 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-1 (9.1 g, yield 56%).

MS: [M+H]+= 784MS: [M+H] + = 784

질소 분위기에서 화합물 subF-1(15 g, 19.1 mmol)와 화합물 N(4.2 g, 21 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(10.6 g, 76.5 mmol)를 물 32ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21(11.7 g, 수율 68%)을 제조하였다.In a nitrogen atmosphere, compound subF-1 (15 g, 19.1 mmol) and compound N (4.2 g, 21 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (10.6 g, 76.5 mmol) was dissolved in 32 ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 21 (11.7 g, yield 68%).

MS: [M+H]+= 902MS: [M+H] + = 902

실시예 22: 화합물 22의 제조Example 22: Preparation of Compound 22

Figure 112020104985834-pat00039
Figure 112020104985834-pat00039

질소 분위기에서 화합물 F(10 g, 20.8 mmol), 화합물 sub8(5 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-2(8.7 g, 수율 68%)을 얻었다.In a nitrogen atmosphere, compound F (10 g, 20.8 mmol), compound sub8 (5 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-2 (8.7 g, yield 68%).

MS: [M+H]+= 618MS: [M+H] + = 618

질소 분위기에서 화합물 subF-2(15 g, 24.3 mmol)와 화합물 O(6.4 g, 26.7 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(13.4 g, 97.1 mmol)를 물(40 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22(11.9 g, 수율 63%)를 제조하였다.In a nitrogen atmosphere, compound subF-2 (15 g, 24.3 mmol) and compound O (6.4 g, 26.7 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (13.4 g, 97.1 mmol) was dissolved in water (40 ml), stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added. After reacting for 10 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 22 (11.9 g, yield 63%).

MS: [M+H]+= 776MS: [M+H] + = 776

실시예 23: 화합물 23의 제조Example 23: Preparation of Compound 23

Figure 112020104985834-pat00040
Figure 112020104985834-pat00040

질소 분위기에서 화합물 F(10 g, 20.8 mmol), 화합물 sub15(8.1 g, 22.9 mmol), 소디움 터트-부톡사이드(4 g, 41.7 mmol)을 톨루엔(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘으로 처리한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subE-3(9.4 g, 수율 60%)을 얻었다.In a nitrogen atmosphere, compound F (10 g, 20.8 mmol), compound sub15 (8.1 g, 22.9 mmol), and sodium tert-butoxide (4 g, 41.7 mmol) were added to toluene (200 ml), stirred, and refluxed. Afterwards, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure. Afterwards, the compound was completely dissolved in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain compound subE-3 (9.4 g, yield 60%).

MS: [M+H]+= 750MS: [M+H] + = 750

질소 분위기에서 화합물 subF-3(15 g, 20 mmol)와 화합물 H(3.8 g, 22 mmol)를 다이옥산(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 포스페이트(11.1 g, 80 mmol)를 물 33ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23(5.2 g, 수율 33%)를 제조하였다.In a nitrogen atmosphere, compound subF-3 (15 g, 20 mmol) and compound H (3.8 g, 22 mmol) were added to dioxane (300 ml), stirred, and refluxed. Afterwards, potassium phosphate (11.1 g, 80 mmol) was dissolved in 33 ml of water, stirred sufficiently, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 9 hours of reaction, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare compound 23 (5.2 g, yield 33%).

MS: [M+H]+= 792MS: [M+H] + = 792

[실험예][Experimental example]

실험예 1Experimental Example 1

ITO(indium tin oxide)가 1,000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 Å was placed in distilled water with a detergent dissolved in it and washed with ultrasonic waves. At this time, a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water. After washing the ITO for 30 minutes, ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After washing with distilled water, it was ultrasonic washed with solvents of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Additionally, the substrate was cleaned for 5 minutes using oxygen plasma and then transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 상기 정공수송층 위에 앞서 제조한 화합물 1을 진공 증착하여 막 두께 150 Å의 전자억제층을 형성하였다. 상기 전자억제층 위에 하기 RH-1 화합물과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 적색 발광층을 형성하였다. 상기 발광층 위에 하기 HB-1 화합물을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 막 두께 300 Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1,000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다. On the ITO transparent electrode prepared in this way, the following HI-1 compound was formed as a hole injection layer to a thickness of 1150 Å, and the following A-1 compound was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum deposited on the hole injection layer to form a hole transport layer with a film thickness of 800 Å. Compound 1 prepared previously was vacuum deposited on the hole transport layer to form an electron blocking layer with a thickness of 150 Å. On the electron suppression layer, the following RH-1 compound and the following Dp-7 compound were vacuum deposited at a weight ratio of 98:2 to form a red light-emitting layer with a film thickness of 400 Å. The following HB-1 compound was vacuum deposited on the light emitting layer to form a hole blocking layer with a thickness of 30 Å. On the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 to form an electron injection and transport layer with a film thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.

Figure 112020104985834-pat00041
Figure 112020104985834-pat00041

상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.In the above process, the deposition rate of organic materials was maintained at 0.4~0.7 Å/sec, the deposition rate of lithium fluoride of the cathode was maintained at 0.3 Å/sec, and the deposition rate of aluminum was maintained at 2 Å/sec, and the vacuum degree during deposition was 2×10. An organic light emitting device was manufactured by maintaining -7 to 5×10 -6 torr.

실험예 2 내지 23Experimental Examples 2 to 23

화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compounds listed in Table 1 below were used instead of Compound 1.

비교실험예 1 내지 13Comparative Experiment Examples 1 to 13

화합물 1 대신 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 2에 기재된 화합물은 각각 하기와 같다. An organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compounds listed in Table 2 below were used instead of Compound 1. The compounds listed in Table 2 below are respectively as follows.

Figure 112020104985834-pat00042
Figure 112020104985834-pat00042

상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 및 수명(T95)을 측정(10 mA/cm2)하고 그 결과를 하기 표 1 및 2에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When current was applied to the organic light-emitting device manufactured in the above experimental and comparative experimental examples, the voltage, efficiency, and lifespan (T95) were measured (10 mA/cm 2 ), and the results are shown in Tables 1 and 2 below. Lifespan T95 refers to the time it takes for luminance to decrease from the initial luminance (6000 nit) to 95%.

화합물
(전자억제층)
compound
(electron suppression layer)
구동전압
(V@10mA/cm2)
driving voltage
(V@10mA/cm 2 )
효율
(cd/A@10mA/cm2)
efficiency
(cd/A@10mA/cm 2 )
수명 T95
(hr@10mA/cm2)
Life T95
(hr@10mA/cm 2 )
발광색Luminous color
실험예 1Experimental Example 1 화합물 1Compound 1 3.673.67 24.524.5 174174 적색Red 실험예 2Experimental Example 2 화합물 2compound 2 3.683.68 24.124.1 187187 적색Red 실험예 3Experimental Example 3 화합물 3Compound 3 3.693.69 24.424.4 179179 적색Red 실험예 4Experimental Example 4 화합물 4Compound 4 3.613.61 25.325.3 184184 적색Red 실험예 5Experimental Example 5 화합물 5Compound 5 3.633.63 24.724.7 173173 적색Red 실험예 6Experimental Example 6 화합물 6Compound 6 3.703.70 24.524.5 204204 적색Red 실험예 7Experimental Example 7 화합물 7Compound 7 3.693.69 25.825.8 185185 적색Red 실험예 8Experimental Example 8 화합물 8Compound 8 3.733.73 23.523.5 190190 적색Red 실험예 9Experimental Example 9 화합물 9Compound 9 3.643.64 25.425.4 177177 적색Red 실험예 10Experimental Example 10 화합물 10Compound 10 3.613.61 26.126.1 184184 적색Red 실험예 11Experimental Example 11 화합물 11Compound 11 3.713.71 23.823.8 171171 적색Red 실험예 12Experimental Example 12 화합물 12Compound 12 3.693.69 24.724.7 203203 적색Red 실험예 13Experimental Example 13 화합물 13Compound 13 3.503.50 23.123.1 184184 적색Red 실험예 14Experimental Example 14 화합물 14Compound 14 3.633.63 24.924.9 171171 적색Red 실험예 15Experimental Example 15 화합물 15Compound 15 3.693.69 25.325.3 198198 적색Red 실험예 16Experimental Example 16 화합물 16Compound 16 3.633.63 24.224.2 187187 적색Red 실험예 17Experimental Example 17 화합물 17Compound 17 3.523.52 23.823.8 208208 적색Red 실험예 18Experimental Example 18 화합물 18Compound 18 3.703.70 24.724.7 171171 적색Red 실험예 19Experimental Example 19 화합물 19Compound 19 3.683.68 25.225.2 194194 적색Red 실험예 20Experimental Example 20 화합물 20Compound 20 3.593.59 24.524.5 185185 적색Red 실험예 21Experimental Example 21 화합물 21Compound 21 3.553.55 25.425.4 203203 적색Red 실험예 22Experimental Example 22 화합물 22Compound 22 3.583.58 23.623.6 185185 적색Red 실험예 23Experimental Example 23 화합물 23Compound 23 3.633.63 23.723.7 194194 적색Red

화합물
(전자억제층)
compound
(electron suppression layer)
구동전압
(V@10mA/cm2)
driving voltage
(V@10mA/cm 2 )
효율
(cd/A@10mA/cm2)
efficiency
(cd/A@10mA/cm 2 )
수명 T95
(hr@10mA/cm2)
Life T95
(hr@10mA/cm 2 )
발광색Luminous color
비교실험예 1Comparative Experiment Example 1 EB-1EB-1 4.114.11 20.820.8 148148 적색Red 비교실험예 2Comparative Experiment Example 2 C-1C-1 3.883.88 19.719.7 9999 적색Red 비교실험예 3Comparative Experiment Example 3 C-2C-2 3.893.89 19.519.5 8787 적색Red 비교실험예 4Comparative Experiment Example 4 C-3C-3 3.833.83 18.918.9 9393 적색Red 비교실험예 5Comparative Experiment Example 5 C-4C-4 3.823.82 18.718.7 9393 적색Red 비교실험예 6Comparative Experiment Example 6 C-5C-5 4.054.05 20.020.0 121121 적색Red 비교실험예 7Comparative Experiment Example 7 C-6C-6 4.074.07 21.321.3 133133 적색Red 비교실험예 8Comparative Experiment Example 8 C-7C-7 3.923.92 20.720.7 130130 적색Red 비교실험예 9Comparative Experiment Example 9 C-8C-8 3.903.90 20.820.8 141141 적색Red 비교실험예 10Comparative Experiment Example 10 C-9C-9 3.883.88 21.121.1 122122 적색Red 비교실험예 11Comparative Experiment Example 11 C-10C-10 3.933.93 20.220.2 138138 적색Red 비교실험예 12Comparative Experiment Example 12 C-11C-11 3.903.90 21.521.5 127127 적색Red 비교실험예 13Comparative Experiment Example 13 C-12C-12 3.943.94 20.920.9 144144 적색Red

표 1 및 2에 나타난 바와 같이, 본 발명의 화합물을 전자억제층으로 사용하였을 때 비교예 화합물에 비해서 구동 전압이 크게 낮아졌으며, 효율 측면에도 크게 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었으며, 본 발명의 화합물이 전자와 정공에 대한 안정도가 높은 것에 기인한다. 따라서, 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. As shown in Tables 1 and 2, when the compound of the present invention was used as an electron suppression layer, the driving voltage was significantly lowered compared to the comparative example compound, and efficiency was also significantly increased, indicating that energy transfer from the host to the red dopant I could see that this was working well. In addition, it was found that the lifespan characteristics can be greatly improved while maintaining high efficiency, and this is due to the high stability of the compound of the present invention to electrons and holes. Therefore, it can be confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of an organic light-emitting device can be improved when the compound of the present invention is used as a host for a red light-emitting layer.

1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자수송층
9: 전자억제층 10: 정공저지층
11: 전자 수송 및 주입층
1: Substrate 2: Anode
3: light emitting layer 4: cathode
5: hole injection layer 6: hole transport layer
7: light emitting layer 8: electron transport layer
9: electron blocking layer 10: hole blocking layer
11: Electron transport and injection layer

Claims (9)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112023075643701-pat00043

상기 화학식 1에서,
A는 인접한 두 개의 고리와 융합된 벤젠 고리이고,
R1 및 R2는 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이거나, 또는 R1 및 R2가 함께 결합하여 치환 또는 비치환된 C6-60 방향족 고리를 형성하고,
R3은 페닐, 비페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
L1 및 L2는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.
Compound represented by Formula 1:
[Formula 1]
Figure 112023075643701-pat00043

In Formula 1,
A is a benzene ring fused with two adjacent rings,
R 1 and R 2 are substituted or unsubstituted C 1-60 alkyl; or substituted or unsubstituted C 6-60 aryl, or R 1 and R 2 are combined together to form a substituted or unsubstituted C 6-60 aromatic ring,
R 3 is phenyl, biphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, dibenzofuranyl, or dibenzothiophenyl,
L 1 and L 2 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; or a C 2-60 heteroarylene containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O, and S.
제1항에 있어서,
상기 화학식 1은, 하기 화학식 1-1 또는 1-2로 표시되는,
화합물:
[화학식 1-1]
Figure 112020104985834-pat00044

[화학식 1-2]
Figure 112020104985834-pat00045
.
According to paragraph 1,
Formula 1 is represented by the following formula 1-1 or 1-2,
compound:
[Formula 1-1]
Figure 112020104985834-pat00044

[Formula 1-2]
Figure 112020104985834-pat00045
.
제1항에 있어서,
R1 및 R2는 메틸; 또는 페닐이거나, 또는 R1 및 R2가 함께 결합하여
Figure 112020104985834-pat00046
을 형성하는,
화합물.
According to paragraph 1,
R 1 and R 2 are methyl; or phenyl, or R 1 and R 2 are bonded together
Figure 112020104985834-pat00046
forming,
compound.
삭제delete 제1항에 있어서,
L1 및 L2는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌인,
화합물.
According to paragraph 1,
L 1 and L 2 are each independently a single bond, phenylene, or naphthylene,
compound.
제1항에 있어서,
Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐인,
화합물.
According to paragraph 1,
Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, dibenzofuranyl, or dibenzothiophenyl,
compound.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112020104985834-pat00047

Figure 112020104985834-pat00048

Figure 112020104985834-pat00049

Figure 112020104985834-pat00050

Figure 112020104985834-pat00051

Figure 112020104985834-pat00052

Figure 112020104985834-pat00053

According to paragraph 1,
The compound represented by Formula 1 is any one selected from the group consisting of:
compound:
Figure 112020104985834-pat00047

Figure 112020104985834-pat00048

Figure 112020104985834-pat00049

Figure 112020104985834-pat00050

Figure 112020104985834-pat00051

Figure 112020104985834-pat00052

Figure 112020104985834-pat00053

제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제3항 및 제5항 내지 제7항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
first electrode; a second electrode provided opposite to the first electrode; And an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer is any of claims 1 to 3 and 5 to 7. An organic light-emitting device comprising the compound according to one clause.
제8항에 있어서,
상기 화합물을 포함하는 유기물층은 전자억제층인,
유기 발광 소자.
According to clause 8,
The organic material layer containing the compound is an electron suppression layer,
Organic light emitting device.
KR1020200128261A 2019-10-01 2020-10-05 Novel compound and organic light emitting device comprising the same KR102583651B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190121788 2019-10-01
KR20190121788 2019-10-01

Publications (2)

Publication Number Publication Date
KR20210039316A KR20210039316A (en) 2021-04-09
KR102583651B1 true KR102583651B1 (en) 2023-09-27

Family

ID=75444092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200128261A KR102583651B1 (en) 2019-10-01 2020-10-05 Novel compound and organic light emitting device comprising the same

Country Status (1)

Country Link
KR (1) KR102583651B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220134103A (en) 2021-03-26 2022-10-05 주식회사 엘지에너지솔루션 Positive electrode and lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530886B1 (en) * 2015-02-09 2015-06-24 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR102048920B1 (en) * 2017-08-18 2019-11-27 삼성디스플레이 주식회사 Amine-based compound and organic light-emitting device comprising the same
KR20200089885A (en) * 2019-01-18 2020-07-28 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530886B1 (en) * 2015-02-09 2015-06-24 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Also Published As

Publication number Publication date
KR20210039316A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
KR20210056940A (en) Organic light emitting device
KR102602156B1 (en) Novel compound and organic light emitting device comprising the same
KR20210034528A (en) Novel compound and organic light emitting device comprising the same
KR20210019969A (en) Novel compound and organic light emitting device comprising the same
KR102486517B1 (en) Novel compound and organic light emitting device comprising the same
KR102469106B1 (en) Novel compound and organic light emitting device comprising the same
KR102500849B1 (en) Novel compound and organic light emitting device comprising the same
KR102578741B1 (en) Novel compound and organic light emitting device comprising the same
KR20210023774A (en) Novel compound and organic light emitting device comprising the same
KR20200115159A (en) Novel compound and organic light emitting device comprising the same
KR102583651B1 (en) Novel compound and organic light emitting device comprising the same
KR102629456B1 (en) Novel compound and organic light emitting device comprising the same
KR102576736B1 (en) Organic light emitting device
KR102486518B1 (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102462985B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102412131B1 (en) Novel compound and organic light emitting device comprising the same
KR102413613B1 (en) Novel compound and organic light emitting device comprising the same
KR102612008B1 (en) Novel compound and organic light emitting device comprising the same
KR102639657B1 (en) Novel compound and organic light emitting device comprising the same
KR102633769B1 (en) Novel compound and organic light emitting device comprising the same
KR20210039315A (en) Organic light emitting device
KR102602155B1 (en) Novel compound and organic light emitting device comprising the same
KR102465241B1 (en) Novel compound and organic light emitting device comprising the same
KR102463816B1 (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right