KR102465241B1 - Novel compound and organic light emitting device comprising the same - Google Patents

Novel compound and organic light emitting device comprising the same Download PDF

Info

Publication number
KR102465241B1
KR102465241B1 KR1020200164530A KR20200164530A KR102465241B1 KR 102465241 B1 KR102465241 B1 KR 102465241B1 KR 1020200164530 A KR1020200164530 A KR 1020200164530A KR 20200164530 A KR20200164530 A KR 20200164530A KR 102465241 B1 KR102465241 B1 KR 102465241B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
group
light emitting
layer
Prior art date
Application number
KR1020200164530A
Other languages
Korean (ko)
Other versions
KR20210067963A (en
Inventor
오중석
김민준
이동훈
서상덕
송종수
박성주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20210067963A publication Critical patent/KR20210067963A/en
Application granted granted Critical
Publication of KR102465241B1 publication Critical patent/KR102465241B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • H01L51/0065
    • H01L51/0067
    • H01L51/0072
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자를 제공한다. The present invention provides a novel compound and an organic light emitting device using the same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same}Novel compound and organic light emitting device using the same

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device comprising the same.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.

유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, it may be made of an electron injection layer, etc. When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons It lights up when it falls back to the ground state.

상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.

한국특허 공개번호 제10-2000-0051826호Korean Patent Publication No. 10-2000-0051826

본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.

본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):

하기 화학식 1로 표시되는 화합물:A compound represented by the following formula (1):

[화학식 1] [Formula 1]

Figure 112020129232173-pat00001
Figure 112020129232173-pat00001

상기 화학식 1에서,In Formula 1,

L1 내지 L3는, 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,L 1 To L 3 are each independently, a single bond, or a substituted or unsubstituted C 6-60 arylene,

Ar1은 하기 화학식 2로 표시되는 치환기이고,Ar 1 is a substituent represented by the following formula (2),

[화학식 2][Formula 2]

Figure 112020129232173-pat00002
Figure 112020129232173-pat00002

상기 화학식 2에서, In Formula 2,

A1은 각각 독립적으로 인접한 오각 고리와 융합된 벤젠 고리, 또는 나프탈렌 고리이고, 단 A1 중 적어도 하나는 나프탈렌 고리이고,A1 is each independently a benzene ring or a naphthalene ring fused with an adjacent pentacyclic ring, provided that at least one of A1 is a naphthalene ring,

Ar2는 하기 화학식 3으로 표시되는 치환기이며,Ar 2 is a substituent represented by the following formula (3),

[화학식 3][Formula 3]

Figure 112020129232173-pat00003
Figure 112020129232173-pat00003

상기 화학식 3에서, In Formula 3,

A2는 인접한 두 개의 고리와 융합된 벤젠 고리이고,A2 is a benzene ring fused with two adjacent rings,

Ar3은 치환 또는 비치환된 C6-60 아릴이다. Ar 3 is substituted or unsubstituted C 6-60 aryl.

또한, 본 발명은 제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is an organic light emitting device comprising a first electrode, a second electrode provided to face the first electrode, and at least one organic material layer provided between the first electrode and the second electrode, the organic material layer At least one of the layers includes the compound represented by Formula 1, and provides an organic light emitting device.

상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. The compound represented by Chemical Formula 1 described above may be used as a material for the organic material layer of the organic light emitting device, and may improve efficiency, low driving voltage and/or lifespan characteristics in the organic light emitting device.

특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.In particular, the compound represented by the above formula (1) may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.

도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a hole transport layer 3 , a light emitting layer 4 , an electron injection and transport layer 5 , and a cathode 6 .
2 is a substrate (1), an anode (2), a hole injection layer (7), a hole transport layer (3), an electron blocking layer (8), a light emitting layer (4), a hole blocking layer (9), an electron injection and transport layer ( 5) and an example of an organic light emitting device comprising a cathode 6 are shown.

이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.

(용어의 정의)(Definition of Terms)

본 명세서에서,

Figure 112020129232173-pat00004
Figure 112020129232173-pat00005
는 다른 치환기에 연결되는 결합을 의미한다.In this specification,
Figure 112020129232173-pat00004
and
Figure 112020129232173-pat00005
means a bond connected to another substituent.

본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소, 할로겐기, 시아노기, 니트로기, 히드록시기, 카보닐기, 에스테르기, 이미드기, 아미노기, 포스핀옥사이드기, 알콕시기, 아릴옥시기, 알킬티옥시기, 아릴티옥시기, 알킬술폭시기, 아릴술폭시기, 실릴기, 붕소기, 알킬기, 사이클로알킬기, 알케닐기, 아릴기, 아르알킬기, 아르알케닐기, 알킬아릴기, 알킬아민기, 아랄킬아민기, 헤테로아릴아민기, 아릴아민기, 아릴포스핀기, 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium, a halogen group, a cyano group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, an alkoxy group, an aryloxy group, an alkyl group Thioxy group, arylthioxy group, alkylsulfoxy group, arylsulfoxy group, silyl group, boron group, alkyl group, cycloalkyl group, alkenyl group, aryl group, aralkyl group, aralkenyl group, alkylaryl group, alkylamine group, aralkylamine substituted or unsubstituted with one or more substituents selected from the group consisting of a group, a heteroarylamine group, an arylamine group, an arylphosphine group, or a heteroaryl containing at least one of N, O and S atoms, or It means substituted or unsubstituted in which two or more substituents among the substituents are connected. For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.

본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.

Figure 112020129232173-pat00006
Figure 112020129232173-pat00006

본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.

Figure 112020129232173-pat00007
Figure 112020129232173-pat00007

본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.

Figure 112020129232173-pat00008
Figure 112020129232173-pat00008

본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.

본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like, but is not limited thereto.

본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.

본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl and the like, but are not limited thereto.

본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.

본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.

본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 방향족성(aromaticity)을 갖는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐이기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난쓰레닐기, 트리페닐레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group having aromaticity. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a triphenylenyl group, a pyrenyl group, a perylenyl group, a chrysenyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 헤테로아릴은 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, heteroaryl is a heteroaryl containing at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms. Examples of heteroaryl include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group, Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group, Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadiazolyl group group, phenothiazinyl group, dibenzofuranyl group, and the like, but is not limited thereto.

본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, the arylamine group, and the arylsilyl group is the same as the examples of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, as for heteroaryl among heteroarylamines, the description regarding heteroaryl described above may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the aforementioned heteroaryl may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied, except that it is formed by combining two substituents.

상기 화학식 1에서, 하나 이상의 수소는 중수소로 치환될 수 있다. In Formula 1, at least one hydrogen may be substituted with deuterium.

바람직하게는, Ar1은 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나이다: Preferably, Ar 1 is any one selected from the group comprising the following formulas:

Figure 112020129232173-pat00009
Figure 112020129232173-pat00009

상기 각 화학식에서, 점선은 상기 화학식 1의 L1과 연결된다.In each of the above formulas, the dotted line is connected to L 1 in the above formula (1).

바람직하게는, Ar2는 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나이다: Preferably, Ar 2 is any one selected from the group comprising the following formulas:

Figure 112020129232173-pat00010
.
Figure 112020129232173-pat00010
.

보다 바람직하게는, Ar2는 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나이다: More preferably, Ar 2 is any one selected from the group comprising the following formulas:

Figure 112020129232173-pat00011
.
Figure 112020129232173-pat00011
.

바람직하게는, Ar3은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 또는 트리페닐레닐이고; 상기 Ar3은 비치환되거나, 하나 이상의 중수소로 치환된다.Preferably, Ar 3 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, or triphenylenyl; Ar 3 is unsubstituted or substituted with one or more deuterium.

바람직하게는, L1 및 L2는 모두 단일 결합이다.Preferably, L 1 and L 2 are both single bonds.

또한, 바람직하게는L3는 단일 결합, 페닐렌 또는 나프틸렌이고; 상기 L3은 비치환되거나, 하나 이상의 중수소 또는 페닐로 치환되다.Also, preferably L 3 is a single bond, phenylene or naphthylene; L 3 is unsubstituted or substituted with one or more deuterium or phenyl.

상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 1 are as follows.

Figure 112020129232173-pat00012
Figure 112020129232173-pat00012

Figure 112020129232173-pat00013
Figure 112020129232173-pat00013

Figure 112020129232173-pat00014
Figure 112020129232173-pat00014

Figure 112020129232173-pat00015
Figure 112020129232173-pat00015

Figure 112020129232173-pat00016
Figure 112020129232173-pat00016

Figure 112020129232173-pat00017
Figure 112020129232173-pat00017

Figure 112020129232173-pat00018
Figure 112020129232173-pat00018

Figure 112020129232173-pat00019
Figure 112020129232173-pat00019

Figure 112020129232173-pat00020
Figure 112020129232173-pat00020

Figure 112020129232173-pat00021
Figure 112020129232173-pat00021

Figure 112020129232173-pat00022
Figure 112020129232173-pat00022

Figure 112020129232173-pat00023
Figure 112020129232173-pat00023

Figure 112020129232173-pat00024
Figure 112020129232173-pat00024

Figure 112020129232173-pat00025
Figure 112020129232173-pat00025

Figure 112020129232173-pat00026
Figure 112020129232173-pat00026

Figure 112020129232173-pat00027
Figure 112020129232173-pat00027

Figure 112020129232173-pat00028
Figure 112020129232173-pat00028

Figure 112020129232173-pat00029
Figure 112020129232173-pat00029

Figure 112020129232173-pat00030
Figure 112020129232173-pat00030

Figure 112020129232173-pat00031
Figure 112020129232173-pat00031

Figure 112020129232173-pat00032
Figure 112020129232173-pat00032

Figure 112020129232173-pat00033
Figure 112020129232173-pat00033

Figure 112020129232173-pat00034
Figure 112020129232173-pat00034

Figure 112020129232173-pat00035
Figure 112020129232173-pat00035

Figure 112020129232173-pat00036
Figure 112020129232173-pat00036

Figure 112020129232173-pat00037
Figure 112020129232173-pat00037

Figure 112020129232173-pat00038
Figure 112020129232173-pat00038

Figure 112020129232173-pat00039
Figure 112020129232173-pat00039

Figure 112020129232173-pat00040
Figure 112020129232173-pat00040

Figure 112020129232173-pat00041
Figure 112020129232173-pat00041

Figure 112020129232173-pat00042
Figure 112020129232173-pat00042

Figure 112020129232173-pat00043
Figure 112020129232173-pat00043

Figure 112020129232173-pat00044
Figure 112020129232173-pat00044

Figure 112020129232173-pat00045
Figure 112020129232173-pat00045

Figure 112020129232173-pat00046
Figure 112020129232173-pat00046

Figure 112020129232173-pat00047
Figure 112020129232173-pat00047

Figure 112020129232173-pat00048
Figure 112020129232173-pat00048

Figure 112020129232173-pat00049
Figure 112020129232173-pat00049

Figure 112020129232173-pat00050
Figure 112020129232173-pat00050

Figure 112020129232173-pat00051
Figure 112020129232173-pat00051

Figure 112020129232173-pat00052
Figure 112020129232173-pat00052

Figure 112020129232173-pat00053
Figure 112020129232173-pat00053

Figure 112020129232173-pat00054
Figure 112020129232173-pat00054

Figure 112020129232173-pat00055
Figure 112020129232173-pat00055

Figure 112020129232173-pat00056
Figure 112020129232173-pat00056

Figure 112020129232173-pat00057
Figure 112020129232173-pat00057

Figure 112020129232173-pat00058
Figure 112020129232173-pat00058

Figure 112020129232173-pat00059
Figure 112020129232173-pat00059

Figure 112020129232173-pat00060
Figure 112020129232173-pat00060

Figure 112020129232173-pat00061
Figure 112020129232173-pat00061

Figure 112020129232173-pat00062
Figure 112020129232173-pat00062

Figure 112020129232173-pat00063
Figure 112020129232173-pat00063

Figure 112020129232173-pat00064
Figure 112020129232173-pat00064

Figure 112020129232173-pat00065
Figure 112020129232173-pat00065

Figure 112020129232173-pat00066
Figure 112020129232173-pat00066

Figure 112020129232173-pat00067
Figure 112020129232173-pat00067

Figure 112020129232173-pat00068
Figure 112020129232173-pat00068

Figure 112020129232173-pat00069
Figure 112020129232173-pat00069

Figure 112020129232173-pat00070
Figure 112020129232173-pat00070

Figure 112020129232173-pat00071
Figure 112020129232173-pat00071

Figure 112020129232173-pat00072
Figure 112020129232173-pat00072

Figure 112020129232173-pat00073
Figure 112020129232173-pat00073

Figure 112020129232173-pat00074
Figure 112020129232173-pat00074

Figure 112020129232173-pat00075
Figure 112020129232173-pat00075

Figure 112020129232173-pat00076
Figure 112020129232173-pat00076

Figure 112020129232173-pat00077
Figure 112020129232173-pat00077

Figure 112020129232173-pat00078
Figure 112020129232173-pat00078

Figure 112020129232173-pat00079
Figure 112020129232173-pat00079

Figure 112020129232173-pat00080
Figure 112020129232173-pat00080

Figure 112020129232173-pat00081
Figure 112020129232173-pat00081

Figure 112020129232173-pat00082
Figure 112020129232173-pat00082

Figure 112020129232173-pat00083
Figure 112020129232173-pat00083

Figure 112020129232173-pat00084
Figure 112020129232173-pat00084

Figure 112020129232173-pat00085
Figure 112020129232173-pat00085

Figure 112020129232173-pat00086
Figure 112020129232173-pat00086

Figure 112020129232173-pat00087
Figure 112020129232173-pat00087

Figure 112020129232173-pat00088
Figure 112020129232173-pat00088

Figure 112020129232173-pat00089
Figure 112020129232173-pat00089

Figure 112020129232173-pat00090
Figure 112020129232173-pat00090

Figure 112020129232173-pat00091
Figure 112020129232173-pat00091

Figure 112020129232173-pat00092
Figure 112020129232173-pat00092

Figure 112020129232173-pat00093
Figure 112020129232173-pat00093

Figure 112020129232173-pat00094
Figure 112020129232173-pat00094

Figure 112020129232173-pat00095
Figure 112020129232173-pat00095

Figure 112020129232173-pat00096
Figure 112020129232173-pat00096

Figure 112020129232173-pat00097
Figure 112020129232173-pat00097

Figure 112020129232173-pat00098
Figure 112020129232173-pat00098

Figure 112020129232173-pat00099
Figure 112020129232173-pat00099

Figure 112020129232173-pat00100
Figure 112020129232173-pat00100

Figure 112020129232173-pat00101
Figure 112020129232173-pat00101

Figure 112020129232173-pat00102
Figure 112020129232173-pat00102

Figure 112020129232173-pat00103
Figure 112020129232173-pat00103

Figure 112020129232173-pat00104
Figure 112020129232173-pat00104

Figure 112020129232173-pat00105
Figure 112020129232173-pat00105

Figure 112020129232173-pat00106
Figure 112020129232173-pat00106

Figure 112020129232173-pat00107
Figure 112020129232173-pat00107

Figure 112020129232173-pat00108
Figure 112020129232173-pat00108

Figure 112020129232173-pat00109
Figure 112020129232173-pat00109

Figure 112020129232173-pat00110
Figure 112020129232173-pat00110

Figure 112020129232173-pat00111
Figure 112020129232173-pat00111

Figure 112020129232173-pat00112
Figure 112020129232173-pat00112

Figure 112020129232173-pat00113
Figure 112020129232173-pat00113

Figure 112020129232173-pat00114
Figure 112020129232173-pat00114

Figure 112020129232173-pat00115
Figure 112020129232173-pat00115

Figure 112020129232173-pat00116
Figure 112020129232173-pat00116

Figure 112020129232173-pat00117
Figure 112020129232173-pat00117

Figure 112020129232173-pat00118
Figure 112020129232173-pat00118

Figure 112020129232173-pat00119
Figure 112020129232173-pat00119

Figure 112020129232173-pat00120
Figure 112020129232173-pat00120

Figure 112020129232173-pat00121
Figure 112020129232173-pat00121

Figure 112020129232173-pat00122
Figure 112020129232173-pat00122

Figure 112020129232173-pat00123
Figure 112020129232173-pat00123

Figure 112020129232173-pat00124
Figure 112020129232173-pat00124

Figure 112020129232173-pat00125
Figure 112020129232173-pat00125

Figure 112020129232173-pat00126
Figure 112020129232173-pat00126

Figure 112020129232173-pat00127
Figure 112020129232173-pat00127

Figure 112020129232173-pat00128
Figure 112020129232173-pat00128

Figure 112020129232173-pat00129
Figure 112020129232173-pat00129

Figure 112020129232173-pat00130
Figure 112020129232173-pat00130

Figure 112020129232173-pat00131
Figure 112020129232173-pat00131

Figure 112020129232173-pat00132
Figure 112020129232173-pat00132

Figure 112020129232173-pat00133
Figure 112020129232173-pat00133

Figure 112020129232173-pat00134
Figure 112020129232173-pat00134

Figure 112020129232173-pat00135
Figure 112020129232173-pat00135

Figure 112020129232173-pat00136
Figure 112020129232173-pat00136

Figure 112020129232173-pat00137
Figure 112020129232173-pat00137

Figure 112020129232173-pat00138
Figure 112020129232173-pat00138

Figure 112020129232173-pat00139
Figure 112020129232173-pat00139

Figure 112020129232173-pat00140
Figure 112020129232173-pat00140

Figure 112020129232173-pat00141
Figure 112020129232173-pat00141

Figure 112020129232173-pat00142
Figure 112020129232173-pat00142

Figure 112020129232173-pat00143
Figure 112020129232173-pat00143

Figure 112020129232173-pat00144
Figure 112020129232173-pat00144

Figure 112020129232173-pat00145
Figure 112020129232173-pat00145

Figure 112020129232173-pat00146
Figure 112020129232173-pat00146

Figure 112020129232173-pat00147
Figure 112020129232173-pat00147

Figure 112020129232173-pat00148
Figure 112020129232173-pat00148

Figure 112020129232173-pat00149
Figure 112020129232173-pat00149

Figure 112020129232173-pat00150
Figure 112020129232173-pat00150

Figure 112020129232173-pat00151
Figure 112020129232173-pat00151

Figure 112020129232173-pat00152
Figure 112020129232173-pat00152

Figure 112020129232173-pat00153
Figure 112020129232173-pat00153

Figure 112020129232173-pat00154
Figure 112020129232173-pat00154

Figure 112020129232173-pat00155
Figure 112020129232173-pat00155

Figure 112020129232173-pat00156
.
Figure 112020129232173-pat00156
.

한편, 상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. Meanwhile, the compound represented by Chemical Formula 1 may be prepared by a preparation method as shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112020129232173-pat00157
Figure 112020129232173-pat00157

상기 반응식 1에서 L1 내지 L3 및 Ar1 내지 Ar3는 앞서 정의한 바와 같으며, 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. In Scheme 1, L 1 to L 3 and Ar 1 to Ar 3 are as defined above, and the manufacturing method may be more specific in Preparation Examples to be described later.

또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light emitting device including the compound represented by the formula (1). In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Formula 1 above. do.

본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.

또한, 상기 유기물층은 전자억제층을 포함할 수 있고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.In addition, the organic material layer may include an electron blocking layer, and the electron blocking layer includes a compound represented by Formula 1 above.

또한, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 적색 발광층의 호스트 재료로 사용할 수 있다. In addition, the organic material layer may include a light emitting layer, and the light emitting layer includes the compound represented by Formula 1 above. In particular, the compound according to the present invention can be used as a host material for the red light emitting layer.

또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes the compound represented by Formula 1 above.

또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the electron transport layer, the electron injection layer, or the layer that simultaneously transports and injects electrons includes the compound represented by Formula 1 above.

또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic layer may include a light emitting layer and an electron transport layer, and the electron transport layer may include a compound represented by Formula 1 above.

또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Also, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .

도 1은 기판(1), 양극(2), 정공수송층(3), 발광층(4), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공수송층에 포함될 수 있다. FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a hole transport layer 3 , a light emitting layer 4 , an electron injection and transport layer 5 , and a cathode 6 . In such a structure, the compound represented by Formula 1 may be included in the hole transport layer.

도 2는 기판(1), 양극(2), 정공주입층(7), 정공수송층(3), 전자억제층(8), 발광층(4), 정공저지층(9), 전자주입 및 수송층(5) 및 음극(6)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 또는 전자억제층에 포함될 수 있다.2 is a substrate (1), an anode (2), a hole injection layer (7), a hole transport layer (3), an electron blocking layer (8), a light emitting layer (4), a hole blocking layer (9), an electron injection and transport layer ( 5) and an example of an organic light emitting device composed of a cathode 6 are shown. In such a structure, the compound represented by Formula 1 may be included in the hole injection layer, the hole transport layer, or the electron suppression layer.

본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.

예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. and, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.

이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.

일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.

상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.

상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.

상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.

상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. A material capable of transporting holes from the anode or hole injection layer to the light emitting layer as a hole transport material. A material with high hole mobility. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.

상기 전자억제층은, 음극에서 주입된 전자가 발광층에서 재결합하지 않고 양극 쪽으로 전달되는 것을 억제하여 유기 발광 소자의 효율을 향상시키는 역할을 한다. The electron suppression layer serves to improve the efficiency of the organic light emitting device by suppressing electrons injected from the cathode from being transferred to the anode without recombination in the light emitting layer.

상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.

상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. The host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.

도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Examples of the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group. As the styrylamine compound, a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.

상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes comprising Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.

상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. A compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.

상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. However, the present invention is not limited thereto.

본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.

또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.

상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The compound represented by Formula 1 and the preparation of an organic light emitting device including the same will be described in detail in Examples below. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

합성예 1Synthesis Example 1

Figure 112020129232173-pat00158
Figure 112020129232173-pat00158

질소 분위기에서 sub1 (10 g, 46mmol), 화학식a (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물1 15.7g을 얻었다. (수율 58%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula a (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.7 g of Compound 1. (Yield 58%, MS: [M+H]+=590)

합성예 2Synthesis Example 2

Figure 112020129232173-pat00159
Figure 112020129232173-pat00159

질소 분위기에서 sub1 (10 g, 46mmol), 화학식b (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물2 16.5g을 얻었다. (수율 61%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula b (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.5 g of Compound 2. (Yield 61%, MS: [M+H]+=590)

합성예 3Synthesis Example 3

Figure 112020129232173-pat00160
Figure 112020129232173-pat00160

질소 분위기에서 sub1 (10 g, 46mmol), 화학식c (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물3 15.4g을 얻었다. (수율 57%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula c (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.4 g of Compound 3. (Yield 57%, MS: [M+H]+=590)

합성예 4Synthesis Example 4

Figure 112020129232173-pat00161
Figure 112020129232173-pat00161

질소 분위기에서 sub1 (10 g, 46mmol), 화학식d (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물4 17.1g을 얻었다. (수율 63%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula d (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.1 g of Compound 4. (Yield 63%, MS: [M+H]+=590)

합성예 5Synthesis Example 5

Figure 112020129232173-pat00162
Figure 112020129232173-pat00162

질소 분위기에서 sub1 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물5 18.2g을 얻었다. (수율 67%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.2 g of compound 5. (Yield 67%, MS: [M+H]+=590)

합성예 6Synthesis Example 6

Figure 112020129232173-pat00163
Figure 112020129232173-pat00163

질소 분위기에서 sub2 (10 g, 46mmol), 화학식a (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물6 16.8g을 얻었다. (수율 62%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula a (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.8 g of compound 6. (Yield 62%, MS: [M+H]+=590)

합성예 7Synthesis Example 7

Figure 112020129232173-pat00164
Figure 112020129232173-pat00164

질소 분위기에서 sub2 (10 g, 46mmol), 화학식b (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물7 15.7g을 얻었다. (수율 58%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula b (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.7 g of Compound 7. (Yield 58%, MS: [M+H]+=590)

합성예 8Synthesis Example 8

Figure 112020129232173-pat00165
Figure 112020129232173-pat00165

질소 분위기에서 sub2 (10 g, 46mmol), 화학식c (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물8 14.9g을 얻었다. (수율 55%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula c (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.9 g of compound 8. (Yield 55%, MS: [M+H]+=590)

합성예 9Synthesis Example 9

Figure 112020129232173-pat00166
Figure 112020129232173-pat00166

질소 분위기에서 sub2 (10 g, 46mmol), 화학식d (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물9 19g을 얻었다. (수율 70%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula d (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19 g of compound 9. (Yield 70%, MS: [M+H]+=590)

합성예 10Synthesis Example 10

Figure 112020129232173-pat00167
Figure 112020129232173-pat00167

질소 분위기에서 sub2 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물10 16.3g을 얻었다. (수율 60%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.3 g of compound 10. (Yield 60%, MS: [M+H]+=590)

합성예 11Synthesis Example 11

Figure 112020129232173-pat00168
Figure 112020129232173-pat00168

질소 분위기에서 sub3 (10 g, 46mmol), 화학식a (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물11 16.2g을 얻었다. (수율 55%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula a (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.2 g of compound 11. (Yield 55%, MS: [M+H]+=640)

합성예 12Synthesis Example 12

Figure 112020129232173-pat00169
Figure 112020129232173-pat00169

질소 분위기에서 sub3 (10 g, 46mmol), 화학식b (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물12 16.2g을 얻었다. (수율 55%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula b (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.2 g of compound 12. (Yield 55%, MS: [M+H]+=640)

합성예 13Synthesis Example 13

Figure 112020129232173-pat00170
Figure 112020129232173-pat00170

질소 분위기에서 sub3 (10 g, 46mmol), 화학식c (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물13 17.9g을 얻었다. (수율 61%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula c (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.9 g of compound 13. (Yield 61%, MS: [M+H]+=640)

합성예 14Synthesis Example 14

Figure 112020129232173-pat00171
Figure 112020129232173-pat00171

질소 분위기에서 sub3 (10 g, 46mmol), 화학식d (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물14 17.3g을 얻었다. (수율 59%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula d (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.3 g of compound 14. (yield 59%, MS: [M+H]+=640)

합성예 15Synthesis Example 15

Figure 112020129232173-pat00172
Figure 112020129232173-pat00172

질소 분위기에서 sub3 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물15 16.8g을 얻었다. (수율 57%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.8 g of compound 15. (Yield 57%, MS: [M+H] + = 640)

합성예 16Synthesis Example 16

Figure 112020129232173-pat00173
Figure 112020129232173-pat00173

질소 분위기에서 sub4 (10 g, 46mmol), 화학식a (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물16 15.3g을 얻었다. (수율 52%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub4 (10 g, 46 mmol), formula a (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.3 g of compound 16. (Yield 52%, MS: [M+H] + = 640)

합성예 17Synthesis Example 17

Figure 112020129232173-pat00174
Figure 112020129232173-pat00174

질소 분위기에서 sub4 (10 g, 46mmol), 화학식b (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물17 19.1g을 얻었다. (수율 65%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub4 (10 g, 46 mmol), formula b (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.1 g of compound 17. (Yield 65%, MS: [M+H]+=640)

합성예 18Synthesis Example 18

Figure 112020129232173-pat00175
Figure 112020129232173-pat00175

질소 분위기에서 sub4 (10 g, 46mmol), 화학식c (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물18 18.8g을 얻었다. (수율 64%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub4 (10 g, 46 mmol), formula c (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.8 g of compound 18. (Yield 64%, MS: [M+H]+=640)

합성예 19Synthesis Example 19

Figure 112020129232173-pat00176
Figure 112020129232173-pat00176

질소 분위기에서 sub4 (10 g, 46mmol), 화학식d (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물19 14.7g을 얻었다. (수율 50%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub4 (10 g, 46 mmol), formula d (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.7 g of compound 19. (Yield 50%, MS: [M+H]+= 640)

합성예 20Synthesis Example 20

Figure 112020129232173-pat00177
Figure 112020129232173-pat00177

질소 분위기에서 sub4 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물20 18.2g을 얻었다. (수율 62%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub4 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.2 g of compound 20. (Yield 62%, MS: [M+H]+=640)

합성예 21Synthesis Example 21

Figure 112020129232173-pat00178
Figure 112020129232173-pat00178

질소 분위기에서 sub5 (10 g, 46mmol), 화학식a (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물21 20g을 얻었다. (수율 68%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub5 (10 g, 46 mmol), formula a (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20 g of compound 21. (Yield 68%, MS: [M+H] + = 640)

합성예 22Synthesis Example 22

Figure 112020129232173-pat00179
Figure 112020129232173-pat00179

질소 분위기에서 sub5 (10 g, 46mmol), 화학식b (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물22 19.7g을 얻었다. (수율 67%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub5 (10 g, 46 mmol), formula b (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.7 g of compound 22. (Yield 67%, MS: [M+H]+=640)

합성예 23Synthesis Example 23

Figure 112020129232173-pat00180
Figure 112020129232173-pat00180

질소 분위기에서 sub5 (10 g, 46mmol), 화학식c (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물23 15.6g을 얻었다. (수율 53%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub5 (10 g, 46 mmol), formula c (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.6 g of compound 23. (Yield 53%, MS: [M+H]+=640)

합성예 24Synthesis Example 24

Figure 112020129232173-pat00181
Figure 112020129232173-pat00181

질소 분위기에서 sub5 (10 g, 46mmol), 화학식d (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물24 18.5g을 얻었다. (수율 63%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub5 (10 g, 46 mmol), formula d (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.5 g of Compound 24. (Yield 63%, MS: [M+H]+= 640)

합성예 25Synthesis Example 25

Figure 112020129232173-pat00182
Figure 112020129232173-pat00182

질소 분위기에서 sub5 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물25 17.6g을 얻었다. (수율 60%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub5 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.6 g of compound 25. (Yield 60%, MS: [M+H]+=640)

합성예 26Synthesis Example 26

Figure 112020129232173-pat00183
Figure 112020129232173-pat00183

질소 분위기에서 sub1 (10 g, 46mmol), 화학식e (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물26 16.3g을 얻었다. (수율 60%, MS: [M+H]+= 590)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula e (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 16.3 g of compound 26. (Yield 60%, MS: [M+H]+=590)

합성예 27Synthesis Example 27

Figure 112020129232173-pat00184
Figure 112020129232173-pat00184

질소 분위기에서 sub1 (10 g, 46mmol), 화학식f (23.2g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물27 20.6g을 얻었다. (수율 70%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula f (23.2 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 20.6 g of compound 27. (Yield 70%, MS: [M+H]+=640)

합성예 28Synthesis Example 28

Figure 112020129232173-pat00185
Figure 112020129232173-pat00185

질소 분위기에서 sub1 (10 g, 46mmol), 화학식g (24.5g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물28 17.7g을 얻었다. (수율 58%, MS: [M+H]+= 666)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), chemical formula g (24.5 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.7 g of compound 28. (Yield 58%, MS: [M+H]+=666)

합성예 29Synthesis Example 29

Figure 112020129232173-pat00186
Figure 112020129232173-pat00186

질소 분위기에서 sub1 (10 g, 46mmol), 화학식h (25.7g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물29 19g을 얻었다. (수율 60%, MS: [M+H]+= 690)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula h (25.7 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19 g of compound 29. (Yield 60%, MS: [M+H]+= 690)

합성예 30Synthesis Example 30

Figure 112020129232173-pat00187
Figure 112020129232173-pat00187

질소 분위기에서 sub1 (10 g, 46mmol), 화학식i (27g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물30 19.1g을 얻었다. (수율 58%, MS: [M+H]+= 716)In a nitrogen atmosphere, sub1 (10 g, 46 mmol), formula i (27 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.1 g of compound 30. (Yield 58%, MS: [M+H]+= 716)

합성예 31Synthesis Example 31

Figure 112020129232173-pat00188
Figure 112020129232173-pat00188

질소 분위기에서 sub2 (10 g, 46mmol), 화학식j (28.3g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물31 23.8g을 얻었다. (수율 70%, MS: [M+H]+= 740)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula j (28.3 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 23.8 g of compound 31. (Yield 70%, MS: [M+H]+= 740)

합성예 32Synthesis Example 32

Figure 112020129232173-pat00189
Figure 112020129232173-pat00189

질소 분위기에서 sub2 (10 g, 46mmol), 화학식k (23.2g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물32 18.5g을 얻었다. (수율 63%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula k (23.2 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.5 g of compound 32. (Yield 63%, MS: [M+H]+= 640)

합성예 33Synthesis Example 33

Figure 112020129232173-pat00190
Figure 112020129232173-pat00190

질소 분위기에서 sub2 (10 g, 46mmol), 화학식l (24.5g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물33 17.1g을 얻었다. (수율 56%, MS: [M+H]+= 666)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula I (24.5 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 17.1 g of compound 33. (Yield 56%, MS: [M+H]+=666)

합성예 34Synthesis Example 34

Figure 112020129232173-pat00191
Figure 112020129232173-pat00191

질소 분위기에서 sub2 (10 g, 46mmol), 화학식m (28.4g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물34 21.8g을 얻었다. (수율 64%, MS: [M+H]+= 742)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), chemical formula m (28.4 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 21.8 g of compound 34. (Yield 64%, MS: [M+H]+= 742)

합성예 35Synthesis Example 35

Figure 112020129232173-pat00192
Figure 112020129232173-pat00192

질소 분위기에서 sub2 (10 g, 46mmol), 화학식n (28.4g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물35 22.8g을 얻었다. (수율 67%, MS: [M+H]+= 742)In a nitrogen atmosphere, sub2 (10 g, 46 mmol), formula n (28.4 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 22.8 g of compound 35. (Yield 67%, MS: [M+H]+= 742)

합성예 36Synthesis Example 36

Figure 112020129232173-pat00193
Figure 112020129232173-pat00193

질소 분위기에서 sub3 (10 g, 46mmol), 화학식o (27g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물36 24.3g을 얻었다. (수율 69%, MS: [M+H]+= 766)In a nitrogen atmosphere, sub3 (10 g, 46 mmol), formula o (27 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 24.3 g of compound 36. (yield 69%, MS: [M+H]+= 766)

합성예 37Synthesis Example 37

Figure 112020129232173-pat00194
Figure 112020129232173-pat00194

질소 분위기에서 sub6 (10 g, 46mmol), 화학식p (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물37 19.7g을 얻었다. (수율 67%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub6 (10 g, 46 mmol), formula p (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.7 g of compound 37. (Yield 67%, MS: [M+H]+=640)

합성예 38Synthesis Example 38

Figure 112020129232173-pat00195
Figure 112020129232173-pat00195

질소 분위기에서 sub6 (10 g, 46mmol), 화학식q (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물38 18.5g을 얻었다. (수율 63%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub6 (10 g, 46 mmol), formula q (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.5 g of compound 38. (Yield 63%, MS: [M+H]+= 640)

합성예 39Synthesis Example 39

Figure 112020129232173-pat00196
Figure 112020129232173-pat00196

질소 분위기에서 sub6 (10 g, 46mmol), 화학식r (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물39 18.5g을 얻었다. (수율 63%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub6 (10 g, 46 mmol), formula r (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.5 g of compound 39. (Yield 63%, MS: [M+H]+= 640)

합성예 40Synthesis Example 40

Figure 112020129232173-pat00197
Figure 112020129232173-pat00197

질소 분위기에서 sub6 (10 g, 46mmol), 화학식s (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물40 18.5g을 얻었다. (수율 63%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub6 (10 g, 46 mmol), chemical formulas (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 2 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 18.5 g of compound 40. (Yield 63%, MS: [M+H]+= 640)

합성예 41Synthesis Example 41

Figure 112020129232173-pat00198
Figure 112020129232173-pat00198

질소 분위기에서 sub6 (10 g, 46mmol), 화학식t (20.6g, 50.6 mmol), sodium tert-butoxide (8.8 g, 92.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물41 19.1g을 얻었다. (수율 65%, MS: [M+H]+= 640)In a nitrogen atmosphere, sub6 (10 g, 46 mmol), formula t (20.6 g, 50.6 mmol), and sodium tert-butoxide (8.8 g, 92.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.5 g, 0.9 mmol) was added. After 3 hours, the reaction was terminated, and the solvent was removed by cooling to room temperature and reducing the pressure. After that, the compound was completely dissolved again in chloroform, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 19.1 g of compound 41. (Yield 65%, MS: [M+H]+=640)

<비교예 1><Comparative Example 1>

ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-도핑 하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자저지층을 형성하였다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-39 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다. The following HI-1 compound was formed as a hole injection layer on the thus prepared ITO transparent electrode to a thickness of 1150 Å, but the following compound A-1 was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Then, the following EB-1 compound was vacuum-deposited to a thickness of 150 Å on the hole transport layer to form an electron blocking layer. Then, the following RH-1 compound and the following Dp-39 compound were vacuum-deposited on the EB-1 deposited film in a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.

상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.In the above process, the deposition rate of organic material was maintained at 0.4~0.7Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3Å/sec, and the deposition rate of aluminum was maintained at 2Å/sec, and the vacuum degree during deposition was 2×10-7 ~ By maintaining 5×10-6 torr, an organic light-emitting device was manufactured.

Figure 112020129232173-pat00199
Figure 112020129232173-pat00199

<비교예 2 내지 8><Comparative Examples 2 to 8>

적색 발광층 호스트 재료로서 RH-1 대신 하기 화합물 RH-2 내지 RH-10 를 각각 사용한 것을 제외하고는 비교예 1과 동일하게 실시하고 소자 성능을 측정하였다.Device performance was measured in the same manner as in Comparative Example 1, except that the following compounds RH-2 to RH-10 were respectively used instead of RH-1 as a host material for the red light emitting layer.

Figure 112020129232173-pat00200
Figure 112020129232173-pat00200

<실시예 1 내지 40><Examples 1 to 40>

적색 발광층 호스트 재료로서 비교예 1 대신 합성예에 의해 제조된 화합물 1 내지 40을 각각 사용한 것을 제외하고는 비교예 1과 동일하게 실시하고 소자 성능을 측정하였다.Except for using each of the compounds 1 to 40 prepared by Synthesis Example instead of Comparative Example 1 as the host material for the red light emitting layer, it was carried out in the same manner as in Comparative Example 1, and device performance was measured.

상기 비교예 1 내지 10 및 실시예 1 내지 26과 같이 각각의 화합물을 적색 호스트 물질로 사용하여 제조한 유기 발광 소자에 대하여 구동전압, 전류효율 및 수명을 측정하였고, 그 결과를 하기 표 1에 나타내었다.As in Comparative Examples 1 to 10 and Examples 1 to 26, driving voltage, current efficiency, and lifespan were measured for the organic light emitting devices prepared using each compound as a red host material, and the results are shown in Table 1 below. It was.

실험예Experimental example 호스트 물질host material 구동 전압
(V)
drive voltage
(V)
전류 효율
(cd/A)
current efficiency
(cd/A)
수명
(T95%@10mA)
life span
(T95%@10mA)
비교예 1Comparative Example 1 RH-1RH-1 5.525.52 15.3515.35 7979 비교예 2Comparative Example 2 RH-2RH-2 5.415.41 14.1514.15 6868 비교예 3Comparative Example 3 RH-3RH-3 5.355.35 14.6214.62 8484 비교예 4Comparative Example 4 RH-4RH-4 5.155.15 14.9014.90 5959 비교예 5Comparative Example 5 RH-5RH-5 5.525.52 14.0714.07 6363 비교예 6Comparative Example 6 RH-6RH-6 5.145.14 15.0815.08 8080 비교예 7Comparative Example 7 RH-7RH-7 5.165.16 13.7613.76 5959 비교예 8Comparative Example 8 RH-8RH-8 5.435.43 15.1315.13 8080 비교예 9Comparative Example 9 RH-9RH-9 5.325.32 16.1716.17 5858 비교예 10Comparative Example 10 RH-10RH-10 5.335.33 13.8013.80 9898 실시예 1Example 1 화합물 1compound 1 4.424.42 26.4126.41 169169 실시예 2Example 2 화합물 2compound 2 4.324.32 25.2525.25 184184 실시예 3Example 3 화합물 3compound 3 4.704.70 25.3625.36 170170 실시예 4Example 4 화합물 4compound 4 4.584.58 23.3423.34 175175 실시예 5Example 5 화합물 5compound 5 4.544.54 26.1226.12 189189 실시예 6Example 6 화합물 6compound 6 4.414.41 23.4923.49 172172 실시예 7Example 7 화합물 7compound 7 4.494.49 24.1224.12 175175 실시예 8Example 8 화합물 8compound 8 4.204.20 23.8223.82 179179 실시예 9Example 9 화합물 9compound 9 4.424.42 23.1423.14 182182 실시예 10Example 10 화합물 10compound 10 4.394.39 25.1125.11 181181 실시예 11Example 11 화합물 11compound 11 4.374.37 20.9920.99 171171 실시예 12Example 12 화합물 12compound 12 4.444.44 21.8821.88 177177 실시예 13Example 13 화합물 13compound 13 4.584.58 22.2922.29 190190 실시예 14Example 14 화합물 14compound 14 4.504.50 25.2425.24 181181 실시예 15Example 15 화합물 15compound 15 4.444.44 25.1525.15 167167 실시예 16Example 16 화합물 16compound 16 4.324.32 23.1123.11 171171 실시예 17Example 17 화합물 17compound 17 4.234.23 22.2522.25 180180 실시예 18Example 18 화합물 18compound 18 4.594.59 23.2323.23 194194 실시예 19Example 19 화합물 19compound 19 4.294.29 24.6124.61 186186 실시예 20Example 20 화합물 20compound 20 4.424.42 23.8223.82 172172 실시예 21Example 21 화합물 21compound 21 4.224.22 23.42323.423 173173 실시예 22Example 22 화합물 22compound 22 4.444.44 24.2824.28 182182 실시예 23Example 23 화합물 23compound 23 4.634.63 26.3326.33 170170 실시예 24Example 24 화합물 24compound 24 4.504.50 24.8124.81 172172 실시예 25Example 25 화합물 25compound 25 4.134.13 22.1022.10 180180 실시예 26Example 26 화합물 26compound 26 4.524.52 24.3324.33 169169 실시예 27Example 27 화합물 27compound 27 4.674.67 21.3821.38 175175 실시예 28Example 28 화합물 28compound 28 4.574.57 21.6821.68 169169 실시예 29Example 29 화합물 29compound 29 4.584.58 22.2222.22 175175 실시예 30Example 30 화합물 30compound 30 4.394.39 21.2221.22 185185 실시예 31Example 31 화합물 31compound 31 4.194.19 24.2524.25 169169 실시예 32Example 32 화합물 32compound 32 4.204.20 23.8723.87 168168 실시예 33Example 33 화합물 33compound 33 4.214.21 23.5923.59 170170 실시예 34Example 34 화합물 34compound 34 4.384.38 23.1123.11 197197 실시예 35Example 35 화합물 35compound 35 4.084.08 23.0023.00 188188 실시예 36Example 36 화합물 36compound 36 4.294.29 24.1024.10 187187 실시예 37Example 37 화합물 37compound 37 4.064.06 22.4922.49 179179 실시예 38Example 38 화합물 38compound 38 4.184.18 22.6922.69 180180 실시예 39Example 39 화합물 39compound 39 4.284.28 21.1621.16 176176 실시예 40Example 40 화합물 40compound 40 4.324.32 20.9820.98 198198 실시예 41Example 41 화합물 41compound 41 4.554.55 24.2224.22 168168

상기 표 1에 나타난 바와 같이, 상기 화학식 1로 표시되는 화합물을 적책 발광층의 호스트 재로로서 사용한 실시예의 유기 발광 소자는, 구동 전압, 발광 효율 및 수명 측면 모두에서 우수한 특성을 나타내었다. As shown in Table 1, the organic light emitting device of the Example using the compound represented by Formula 1 as a host material for the red light emitting layer exhibited excellent properties in terms of driving voltage, luminous efficiency, and lifespan.

일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때, 본 발명의 화합물을 채용한 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타냄을 알 수 있다.Considering that the luminous efficiency and lifespan characteristics of the organic light emitting device have a trade-off relationship with each other in general, the organic light emitting device employing the compound of the present invention exhibits significantly improved device characteristics compared to the comparative example device. can be found

1: 기판 2: 양극
3: 정공수송층 4: 발광층
5: 전자주입 및 수송층 6: 음극
7: 정공주입층 8: 전자억제층
9: 정공저지층
1: Substrate 2: Anode
3: hole transport layer 4: light emitting layer
5: Electron injection and transport layer 6: Cathode
7: hole injection layer 8: electron suppression layer
9: hole blocking layer

Claims (10)

하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure 112022082718318-pat00201

상기 화학식 1에서,
L1 내지 L3는, 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar1은 하기 화학식 2로 표시되는 치환기이고,
[화학식 2]
Figure 112022082718318-pat00202

상기 화학식 2에서,
A1은 각각 독립적으로 인접한 오각 고리와 융합된 벤젠 고리, 또는 나프탈렌 고리이고, 단 A1 중 적어도 하나는 나프탈렌 고리이고,
Ar2는 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나이고,
Figure 112022082718318-pat00354

Ar3은 치환 또는 비치환된 C6-60 아릴이다.
A compound represented by the following formula (1):
[Formula 1]
Figure 112022082718318-pat00201

In Formula 1,
L 1 To L 3 are each independently, a single bond, or a substituted or unsubstituted C 6-60 arylene,
Ar 1 is a substituent represented by the following formula (2),
[Formula 2]
Figure 112022082718318-pat00202

In Formula 2,
A1 is each independently a benzene ring or a naphthalene ring fused with an adjacent pentacyclic ring, provided that at least one of A1 is a naphthalene ring,
Ar 2 is any one selected from the group comprising the following formulas,
Figure 112022082718318-pat00354

Ar 3 is substituted or unsubstituted C 6-60 aryl.
제1항에 있어서,
Ar1은 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112020129232173-pat00204

상기 각 화학식에서, 점선은 상기 화학식 1의 L1과 연결된다.
According to claim 1,
Ar 1 is any one selected from the group comprising the following formulas,
compound:
Figure 112020129232173-pat00204

In each of the above formulas, the dotted line is connected to L 1 in the above formula (1).
삭제delete 제1항에 있어서,
Ar2는 하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112022082718318-pat00355

According to claim 1,
Ar 2 is any one selected from the group comprising the following formulas,
compound:
Figure 112022082718318-pat00355

제1항에 있어서,
Ar3은 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 또는 트리페닐레닐이고,
상기 Ar3은 비치환되거나, 하나 이상의 중수소로 치환되는,
화합물.
According to claim 1,
Ar 3 is phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, or triphenylenyl,
Wherein Ar 3 is unsubstituted or substituted with one or more deuterium,
compound.
제1항에 있어서,
L1 및 L2는 모두 단일 결합인,
화합물.
According to claim 1,
L 1 and L 2 are both single bonds;
compound.
제1항에 있어서,
L3는 단일 결합, 페닐렌 또는 나프틸렌이고,
상기 L3은 비치환되거나, 하나 이상의 중수소 또는 페닐로 치환되는,
화합물.
According to claim 1,
L 3 is a single bond, phenylene or naphthylene,
The L 3 is unsubstituted or substituted with one or more deuterium or phenyl,
compound.
제1항에 있어서,
하기 화학식들을 포함하는 군으로부터 선택되는 어느 하나인,
화합물:
Figure 112022082718318-pat00207

Figure 112022082718318-pat00208

Figure 112022082718318-pat00209

Figure 112022082718318-pat00210

Figure 112022082718318-pat00211

Figure 112022082718318-pat00212

Figure 112022082718318-pat00213

Figure 112022082718318-pat00214

Figure 112022082718318-pat00215

Figure 112022082718318-pat00216

Figure 112022082718318-pat00217

Figure 112022082718318-pat00218

Figure 112022082718318-pat00219

Figure 112022082718318-pat00220

Figure 112022082718318-pat00221

Figure 112022082718318-pat00222

Figure 112022082718318-pat00223

Figure 112022082718318-pat00224

Figure 112022082718318-pat00225

Figure 112022082718318-pat00226

Figure 112022082718318-pat00227

Figure 112022082718318-pat00228

Figure 112022082718318-pat00229

Figure 112022082718318-pat00230

Figure 112022082718318-pat00231

Figure 112022082718318-pat00232

Figure 112022082718318-pat00233

Figure 112022082718318-pat00234

Figure 112022082718318-pat00235

Figure 112022082718318-pat00236

Figure 112022082718318-pat00237

Figure 112022082718318-pat00238

Figure 112022082718318-pat00239

Figure 112022082718318-pat00240

Figure 112022082718318-pat00241

Figure 112022082718318-pat00242

Figure 112022082718318-pat00243

Figure 112022082718318-pat00244

Figure 112022082718318-pat00245

Figure 112022082718318-pat00246

Figure 112022082718318-pat00247

Figure 112022082718318-pat00248

Figure 112022082718318-pat00249

Figure 112022082718318-pat00250

Figure 112022082718318-pat00251

Figure 112022082718318-pat00252

Figure 112022082718318-pat00253

Figure 112022082718318-pat00254

Figure 112022082718318-pat00255

Figure 112022082718318-pat00256

Figure 112022082718318-pat00257

Figure 112022082718318-pat00258

Figure 112022082718318-pat00259

Figure 112022082718318-pat00260

Figure 112022082718318-pat00261

Figure 112022082718318-pat00262

Figure 112022082718318-pat00263

Figure 112022082718318-pat00264

Figure 112022082718318-pat00265

Figure 112022082718318-pat00266

Figure 112022082718318-pat00267

Figure 112022082718318-pat00268

Figure 112022082718318-pat00269

Figure 112022082718318-pat00270

Figure 112022082718318-pat00271

Figure 112022082718318-pat00272

Figure 112022082718318-pat00273

Figure 112022082718318-pat00274

Figure 112022082718318-pat00275

Figure 112022082718318-pat00276

Figure 112022082718318-pat00277

Figure 112022082718318-pat00278

Figure 112022082718318-pat00279

Figure 112022082718318-pat00280

Figure 112022082718318-pat00281

Figure 112022082718318-pat00282

Figure 112022082718318-pat00283

Figure 112022082718318-pat00284

Figure 112022082718318-pat00285

Figure 112022082718318-pat00286

Figure 112022082718318-pat00287

Figure 112022082718318-pat00288

Figure 112022082718318-pat00289

Figure 112022082718318-pat00290

Figure 112022082718318-pat00291

Figure 112022082718318-pat00292

Figure 112022082718318-pat00293

Figure 112022082718318-pat00294

Figure 112022082718318-pat00295

Figure 112022082718318-pat00296

Figure 112022082718318-pat00297

Figure 112022082718318-pat00298

Figure 112022082718318-pat00299

Figure 112022082718318-pat00300

Figure 112022082718318-pat00301

Figure 112022082718318-pat00302

Figure 112022082718318-pat00303

Figure 112022082718318-pat00304

Figure 112022082718318-pat00305

Figure 112022082718318-pat00306

Figure 112022082718318-pat00307

Figure 112022082718318-pat00308

Figure 112022082718318-pat00309

Figure 112022082718318-pat00310

Figure 112022082718318-pat00311

Figure 112022082718318-pat00312

Figure 112022082718318-pat00313

Figure 112022082718318-pat00314

Figure 112022082718318-pat00315

Figure 112022082718318-pat00316

Figure 112022082718318-pat00317

Figure 112022082718318-pat00318

Figure 112022082718318-pat00319

Figure 112022082718318-pat00320

Figure 112022082718318-pat00321

Figure 112022082718318-pat00322

Figure 112022082718318-pat00323

Figure 112022082718318-pat00324

Figure 112022082718318-pat00325

Figure 112022082718318-pat00326

Figure 112022082718318-pat00327

Figure 112022082718318-pat00328

Figure 112022082718318-pat00329

Figure 112022082718318-pat00330

Figure 112022082718318-pat00331

Figure 112022082718318-pat00332

Figure 112022082718318-pat00356

According to claim 1,
Any one selected from the group comprising the following formulas,
compound:
Figure 112022082718318-pat00207

Figure 112022082718318-pat00208

Figure 112022082718318-pat00209

Figure 112022082718318-pat00210

Figure 112022082718318-pat00211

Figure 112022082718318-pat00212

Figure 112022082718318-pat00213

Figure 112022082718318-pat00214

Figure 112022082718318-pat00215

Figure 112022082718318-pat00216

Figure 112022082718318-pat00217

Figure 112022082718318-pat00218

Figure 112022082718318-pat00219

Figure 112022082718318-pat00220

Figure 112022082718318-pat00221

Figure 112022082718318-pat00222

Figure 112022082718318-pat00223

Figure 112022082718318-pat00224

Figure 112022082718318-pat00225

Figure 112022082718318-pat00226

Figure 112022082718318-pat00227

Figure 112022082718318-pat00228

Figure 112022082718318-pat00229

Figure 112022082718318-pat00230

Figure 112022082718318-pat00231

Figure 112022082718318-pat00232

Figure 112022082718318-pat00233

Figure 112022082718318-pat00234

Figure 112022082718318-pat00235

Figure 112022082718318-pat00236

Figure 112022082718318-pat00237

Figure 112022082718318-pat00238

Figure 112022082718318-pat00239

Figure 112022082718318-pat00240

Figure 112022082718318-pat00241

Figure 112022082718318-pat00242

Figure 112022082718318-pat00243

Figure 112022082718318-pat00244

Figure 112022082718318-pat00245

Figure 112022082718318-pat00246

Figure 112022082718318-pat00247

Figure 112022082718318-pat00248

Figure 112022082718318-pat00249

Figure 112022082718318-pat00250

Figure 112022082718318-pat00251

Figure 112022082718318-pat00252

Figure 112022082718318-pat00253

Figure 112022082718318-pat00254

Figure 112022082718318-pat00255

Figure 112022082718318-pat00256

Figure 112022082718318-pat00257

Figure 112022082718318-pat00258

Figure 112022082718318-pat00259

Figure 112022082718318-pat00260

Figure 112022082718318-pat00261

Figure 112022082718318-pat00262

Figure 112022082718318-pat00263

Figure 112022082718318-pat00264

Figure 112022082718318-pat00265

Figure 112022082718318-pat00266

Figure 112022082718318-pat00267

Figure 112022082718318-pat00268

Figure 112022082718318-pat00269

Figure 112022082718318-pat00270

Figure 112022082718318-pat00271

Figure 112022082718318-pat00272

Figure 112022082718318-pat00273

Figure 112022082718318-pat00274

Figure 112022082718318-pat00275

Figure 112022082718318-pat00276

Figure 112022082718318-pat00277

Figure 112022082718318-pat00278

Figure 112022082718318-pat00279

Figure 112022082718318-pat00280

Figure 112022082718318-pat00281

Figure 112022082718318-pat00282

Figure 112022082718318-pat00283

Figure 112022082718318-pat00284

Figure 112022082718318-pat00285

Figure 112022082718318-pat00286

Figure 112022082718318-pat00287

Figure 112022082718318-pat00288

Figure 112022082718318-pat00289

Figure 112022082718318-pat00290

Figure 112022082718318-pat00291

Figure 112022082718318-pat00292

Figure 112022082718318-pat00293

Figure 112022082718318-pat00294

Figure 112022082718318-pat00295

Figure 112022082718318-pat00296

Figure 112022082718318-pat00297

Figure 112022082718318-pat00298

Figure 112022082718318-pat00299

Figure 112022082718318-pat00300

Figure 112022082718318-pat00301

Figure 112022082718318-pat00302

Figure 112022082718318-pat00303

Figure 112022082718318-pat00304

Figure 112022082718318-pat00305

Figure 112022082718318-pat00306

Figure 112022082718318-pat00307

Figure 112022082718318-pat00308

Figure 112022082718318-pat00309

Figure 112022082718318-pat00310

Figure 112022082718318-pat00311

Figure 112022082718318-pat00312

Figure 112022082718318-pat00313

Figure 112022082718318-pat00314

Figure 112022082718318-pat00315

Figure 112022082718318-pat00316

Figure 112022082718318-pat00317

Figure 112022082718318-pat00318

Figure 112022082718318-pat00319

Figure 112022082718318-pat00320

Figure 112022082718318-pat00321

Figure 112022082718318-pat00322

Figure 112022082718318-pat00323

Figure 112022082718318-pat00324

Figure 112022082718318-pat00325

Figure 112022082718318-pat00326

Figure 112022082718318-pat00327

Figure 112022082718318-pat00328

Figure 112022082718318-pat00329

Figure 112022082718318-pat00330

Figure 112022082718318-pat00331

Figure 112022082718318-pat00332

Figure 112022082718318-pat00356

제1 전극, 상기 제1 전극과 대향하여 구비된 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항, 제2항 및 제4항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는, 유기 발광 소자.
An organic light emitting device comprising a first electrode, a second electrode provided to face the first electrode, and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises: An organic light emitting device comprising the compound according to any one of claims 1, 2, and 4 to 8.
제9항에 있어서,
상기 화합물을 포함하는 유기물층은 발광층인,
유기 발광 소자.
10. The method of claim 9,
The organic material layer containing the compound is a light emitting layer,
organic light emitting device.
KR1020200164530A 2019-11-29 2020-11-30 Novel compound and organic light emitting device comprising the same KR102465241B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190157645 2019-11-29
KR1020190157645 2019-11-29

Publications (2)

Publication Number Publication Date
KR20210067963A KR20210067963A (en) 2021-06-08
KR102465241B1 true KR102465241B1 (en) 2022-11-09

Family

ID=76399586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200164530A KR102465241B1 (en) 2019-11-29 2020-11-30 Novel compound and organic light emitting device comprising the same

Country Status (1)

Country Link
KR (1) KR102465241B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (en) 1999-01-27 2004-05-10 주식회사 엘지화학 New organomattalic complex molecule for the fabrication of organic light emitting diodes
KR20180063708A (en) * 2016-12-02 2018-06-12 (주)피엔에이치테크 An electroluminescent compound and an electroluminescent device comprising the same
KR102146792B1 (en) * 2017-08-01 2020-08-21 삼성에스디아이 주식회사 Compound for organic optoelectronic device, and organic optoelectronic device and display device
KR102508374B1 (en) * 2018-04-17 2023-03-10 엘티소재주식회사 Heterocyclic compound and organic light emitting device comprising the same
TW202033740A (en) * 2018-12-27 2020-09-16 南韓商Lt素材股份有限公司 Multicyclic compound and organic light emitting device comprising the same
KR102237410B1 (en) * 2019-07-19 2021-04-07 엘티소재주식회사 Organic light emitting device and composition for organic layer of organic light emitting device
KR102411143B1 (en) * 2019-10-17 2022-06-20 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same

Also Published As

Publication number Publication date
KR20210067963A (en) 2021-06-08

Similar Documents

Publication Publication Date Title
KR102486517B1 (en) Novel compound and organic light emitting device comprising the same
KR102500849B1 (en) Novel compound and organic light emitting device comprising the same
KR102420146B1 (en) Novel compound and organic light emitting device comprising the same
KR102465242B1 (en) Novel compound and organic light emitting device comprising the same
KR102441471B1 (en) Novel compound and organic light emitting device comprising the same
KR102469106B1 (en) Novel compound and organic light emitting device comprising the same
KR102441472B1 (en) Novel compound and organic light emitting device comprising the same
KR102511932B1 (en) Novel compound and organic light emitting device comprising the same
KR102486518B1 (en) Novel compound and organic light emitting device comprising the same
KR102583651B1 (en) Novel compound and organic light emitting device comprising the same
KR102413613B1 (en) Novel compound and organic light emitting device comprising the same
KR102412131B1 (en) Novel compound and organic light emitting device comprising the same
KR102437747B1 (en) Novel compound and organic light emitting device comprising the same
KR20220049965A (en) Novel compound and organic light emitting device comprising the same
KR20210139047A (en) Organic light emitting device
KR102465241B1 (en) Novel compound and organic light emitting device comprising the same
KR102463816B1 (en) Novel compound and organic light emitting device comprising the same
KR102441470B1 (en) Novel compound and organic light emitting device comprising the same
KR102415264B1 (en) Novel compound and organic light emitting device comprising the same
KR102602155B1 (en) Novel compound and organic light emitting device comprising the same
KR102549460B1 (en) Novel compound and organic light emitting device comprising the same
KR102511933B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102465752B1 (en) Novel compound and organic light emitting device comprising the same
KR20240027566A (en) Novel compound and organic light emitting device comprising the same
KR20230148771A (en) Novel compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right