WO2018128144A1 - Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer - Google Patents

Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer Download PDF

Info

Publication number
WO2018128144A1
WO2018128144A1 PCT/JP2017/046914 JP2017046914W WO2018128144A1 WO 2018128144 A1 WO2018128144 A1 WO 2018128144A1 JP 2017046914 W JP2017046914 W JP 2017046914W WO 2018128144 A1 WO2018128144 A1 WO 2018128144A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
wavelength conversion
conversion layer
ether
phosphor
Prior art date
Application number
PCT/JP2017/046914
Other languages
French (fr)
Japanese (ja)
Inventor
慶友 保田
英行 神井
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020197015110A priority Critical patent/KR20190098130A/en
Priority to JP2018560386A priority patent/JPWO2018128144A1/en
Publication of WO2018128144A1 publication Critical patent/WO2018128144A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a phosphor particle-containing composition, a wavelength conversion layer, and a method for producing the wavelength conversion layer.
  • phosphor particles are used for display devices using an electroluminescence (EL) element or the like.
  • a wavelength conversion layer containing phosphor particles is used.
  • QD quantum dots
  • the light emitting layer (wavelength conversion layer) having phosphor particles that constitute the display device is also required to be thin.
  • the amount of phosphor in the layer is reduced accordingly, making it difficult to secure a desired light emission amount.
  • Patent Document 1 discloses a reflective material selected from the group consisting of QD, barium sulfate, titanium dioxide, polytetrafluoroethylene, aluminum silicate, and yttrium aluminum garnet (YAG). And a composition comprising:
  • the characteristics of the wavelength conversion layer are affected by moisture.
  • the wavelength conversion layer is sealed with a sealing member, or the wavelength conversion layer is used.
  • a method of providing a barrier layer on at least one of these is disclosed (Patent Documents 2 and 3).
  • One embodiment of the present invention provides a composition capable of easily forming a film or a molded body having high luminous efficiency.
  • One embodiment of the present invention provides a wavelength conversion layer having high luminous efficiency and low moisture absorption.
  • the phosphor particles (A) contain In, Phosphor particle-containing composition.
  • the hollow particles (B) are organic hollow particles.
  • Phosphor particle-containing composition
  • the phosphor particles (A) include an InP / ZnS compound, an InP / ZnSe compound, an InP / ZnSe / ZnS compound, an InP / (ZnS / ZnSe) solid solution compound, an InP / ZnSeS compound, a CuInS 2 / ZnS compound,
  • the organic solvent (C) is 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, 3-methoxybutanol, 1, 2-propylene glycol-1-methyl ether, 1,2-propylene glycol-1-ethyl ether, diethylene glycol monopropyl ether, di (1,3-propylene glycol) -1-monomethyl ether, cyclohexanone, 3-ethoxybutanol, 3 Selected from the group consisting of -hydroxypropionic acid-1-ethyl ester-3-ethyl ether, 3-hydroxypropionic acid-1-methyl ether-1-methyl ester, diethylene glycol dimethyl ether and diethylene glycol methyl ethyl ether Even without a one composition according to any one of [1] to [7].
  • the average values of the respective transmittances when measured from the vertical direction of the wavelength conversion layer are both 70% or more, [9] to [9] 12].
  • the wavelength conversion layer according to any one of [12].
  • a film, a molded product, and a wavelength conversion layer (hereinafter also referred to as “film etc.”) having low toxicity and high luminous efficiency can be easily formed. It is possible to easily form a film having high luminous efficiency and having excellent durability and capable of maintaining the luminous efficiency even after heating.
  • a film having high luminous efficiency can be formed. Therefore, even if the film is thinned, the amount of phosphor particles in the film is reduced. However, it is possible to secure a light emission amount corresponding to an increase in the amount of light incident on the phosphor particles.
  • a wavelength conversion layer having high luminous efficiency and low moisture absorption can be easily obtained, and furthermore, a wavelength conversion layer having excellent bending resistance can be easily obtained. be able to.
  • the phosphor particle-containing composition (hereinafter also referred to as “the present composition”) according to an embodiment of the present invention includes phosphor particles (A), hollow particles (B), and an organic solvent (C), The composition A, wherein the phosphor particles (A) contain In, or The hollow particle (B) is an organic hollow particle, which is a composition B.
  • Such a composition has the above-mentioned effects, and when QD is used as the phosphor particles (A), the QD is an expensive material. It is possible to simultaneously achieve two trade-off requirements that one wants to secure.
  • the phosphor particles (A), in particular, the QD emission amount depends on the incident light amount, so that the increase in the incident light amount is desired. Since the hollow particles (B) are used, the amount of light incident on the phosphor particles (A) can be increased by the light diffusing effect of the particles (B). Further, the hollow particles (B) can emit light. It is conceivable that the light can be diffused efficiently.
  • the phosphor particles (A) (hereinafter also referred to as “particles (A1)”) used in the composition B and the following main layer are not particularly limited, and conventionally known phosphor particles can be used.
  • the phosphor particles (A) used for the product A (hereinafter also referred to as “particles (A2)”) are not particularly limited as long as In is included, and conventionally known phosphor particles can be used.
  • the particle (A) used in the present composition may be one type or two or more types.
  • Examples of the particles (A1) include particles used for wavelength conversion of light-emitting devices such as LEDs. Specifically, (Sr, Ca) S: Eu, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Ce, CaGa 2 S 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, SrSiO 2 N 2 : Eu, CaSiN 2 : Eu, Ca 3 sc 2 Si 3 O 12: Ce , CaGa 2 S 4: Eu, 2SiO 4: particles made of Eu and the like.
  • the average particle diameter of the particles (A) is preferably 1 to 1000 nm from the viewpoint that a film having high luminous efficiency can be easily obtained, and the specific surface area is increased to improve the fluorescence characteristics.
  • the thickness is more preferably 3 to 300 nm from the viewpoint that it can be suitably used for a thin film.
  • the particle (A) is preferably a so-called QD which is a small lump of about several tens of nanometers in which several hundred or more semiconductor atoms are gathered, and is a semiconductor formed using a semiconductor material. More preferably, it is a quantum dot.
  • QD can easily change the energy state of electrons by changing its size, can freely control the emission wavelength, has higher photostability (long life) than existing dyes, has a fluorescence wavelength of Because it is sharp and has little overlapping of wavelengths, it is suitable for multiple staining, and it has a broad absorption spectrum and is continuous, so it can be excited at any wavelength shorter than the fluorescence wavelength. Therefore, it is preferable.
  • the QD is not particularly limited as long as it is a particle that emits fluorescence when irradiated with light, but includes a group 2 element, a group 11 element, a group 12 element, a group 13 element, a group 14 element, a group 15 element or a group 16 element. Is preferred.
  • Such elements include Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Cu (copper), Ag (silver), and gold (Au ), Zinc (Zn), Cd (cadmium), Hg (mercury), B (boron), Al (aluminum), Ga (gallium), In (indium), Tl (thallium), C (carbon), Si (silicon) ), Ge (germanium), Sn (tin), Pb (lead), N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), O (oxygen), S (sulfur) ), Se (selenium), Te (tellurium), Po (polonium).
  • QD containing In as a constituent element is preferable from the viewpoint that it is low toxic, safe, and can easily form a film having excellent light emission characteristics.
  • the QD more preferably contains at least two elements selected from the above elements.
  • the II-VI group semiconductor compound that can be used as the particles (A1) is selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, and mixtures thereof.
  • Examples of the group III-V semiconductor compound that can be used as the particles (A1) and (A2) include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and mixtures thereof.
  • IV-VI group semiconductor compound that can be used as the particles (A1) include binary compounds selected from the group consisting of SnS, SnSe, SnTe, PbS, PbSe, PbTe, and mixtures thereof; SnSeS, SnSeTe, SnSTe Ternary compounds selected from the group consisting of PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe and mixtures thereof; and quaternary compounds selected from the group consisting of SnPbSSSe, SnPbSeTe, SnPbSTe and mixtures thereof, etc. Can be mentioned.
  • the group IV element that can be used as the particles (A1) or a compound containing the same is selected from the group consisting of Si, Ge and mixtures thereof; and the group consisting of SiC, SiGe and mixtures thereof Binary compounds selected from the above.
  • QD is a QD that does not use Cd or Pb as a constituent element, for example, In or Si, etc., particularly In. QD contained as is preferred.
  • phosphor particles containing Cd have been used from the standpoint that a layer having excellent luminous efficiency can be obtained.
  • phosphor particles containing toxic Cd Is not required.
  • phosphor particles containing In tend to have lower luminous efficiency of the resulting film or the like than phosphor particles containing Cd.
  • the composition A a film having a luminous efficiency comparable to or higher than that of the conventional film can be obtained while having low toxicity. I found it.
  • the QD includes a compound (a) having a fluorescence maximum in a wavelength region of 490 to 600 nm, particularly 520 to 560 nm and / or a compound (b) having a fluorescence maximum in a wavelength region of 600 to 750 nm, particularly 600 to 700 nm. It is preferable.
  • the present composition displays an image using a device that efficiently converts the wavelength of light from a light source, for example, visible light. It can be suitably used as a composition for forming a light emitting layer of a light emitting display element, a color tone adjusting layer of LED or fluorescent lamp illumination, a light receiving conversion layer of a photovoltaic power generation panel, and the like.
  • the structure of QD is not particularly limited, but may be a core-shell structure type composed of two or more compounds, or a homogeneous structure type composed of one compound such as AgInS 2 and Zn-doped AgInS 2.
  • the core-shell structure type is preferable.
  • the core-shell structure type QD for example, by covering a core semiconductor with a semiconductor having a larger band gap, excitons (electron-hole pairs) generated by photoexcitation can be confined in the core.
  • excitons electron-hole pairs
  • the core material in the core-shell structure type QD is not particularly limited, but InP, CuInS 2 , (ZnS / AgInS 2 ) solid solution, CdSe, CdS, ZnS, ZnSe, CdTe, CdSeTe, CdZnS, PbSe, AgInZn 2 , AgInZnS And one or more selected from ZnO and the like.
  • a core material containing In is preferable because it is low in toxicity, safe, and can easily form a film having excellent light emission characteristics.
  • the material of the shell in the core-shell structure type QD is not particularly limited, but one type selected from CdSe, ZnSe, ZnS, (ZnS / ZnSe) solid solution, ZnSeS, ZnTe, CdTe, PbS, TiO, SrSe, and HgSe. Or 2 or more types are mentioned.
  • core-shell structure type QD examples include InP / ZnS compounds, InP / ZnSe compounds, InP / ZnSe / ZnS compounds, InP / (ZnS / ZnSe) solid solution compounds, InP / ZnSeS compounds, and CuInS 2 / ZnS compounds. And (ZnS / AgInS 2 ) solid solution / ZnS compounds are preferred, and InP / ZnS and InP / ZnSe / ZnS compounds are more preferred.
  • InP / ZnSe / ZnS compound or the like since ZnSe has a smaller lattice constant difference than InP, ZnS can be prevented from causing defects in the core-shell structure by providing ZnSe as an intermediate layer.
  • InP / ZnS is QD with InP as the core and ZnS as the shell. The same applies to other core-shell structure type QDs.
  • the InP / ZnS compound, InP / ZnSe compound, InP / ZnSe / ZnS compound, InP / (ZnS / ZnSe) solid solution compound, InP / ZnSeS compounds, CuInS 2 / ZnS compounds, AgInS 2 compounds, (ZnS / AgInS 2 ) solid solution / ZnS compounds and Zn-doped AgInS 2 compounds are preferred.
  • QD may be obtained by synthesis by a conventionally known method, or a commercially available product may be used.
  • the QD synthesis method is not particularly limited.
  • a precursor for forming a shell in the obtained reaction system is added to the core surface. It can be obtained by forming a shell.
  • InP / ZnS which is a core-shell structure type QD, can also be synthesized by referring to the method described in “Chem. Mater., 2015, 27 (13), pp 4893-4898”, for example. .
  • QD obtained by a conventionally known method is usually a particle composed of an inorganic component such as InP / ZnS and an organic component stabilizing the component.
  • the average particle diameter of QD may be appropriately selected according to the desired fluorescence wavelength, but can be easily synthesized, and in particular, a film having high luminous efficiency can be easily obtained.
  • the thickness is preferably 2 to 10 nm, and more preferably 2 to 8 nm from the viewpoint that particles having a fluorescence peak wavelength in the visible light range can be easily obtained.
  • the QD having such an average particle diameter can be obtained, for example, by adjusting the reaction temperature, reaction time, etc. when synthesizing QD.
  • the average particle diameter of the QD is measured by observation with a transmission electron microscope.
  • the maximum fluorescence wavelength (wavelength at the peak top in the fluorescence spectrum) of the particles (A) is preferably 350 to 800 nm, more preferably 490 to 750 nm, or 520 to 560 nm and 600 to 700 nm.
  • the half width of the particle (A) is preferably from the viewpoint that the fluorescence wavelength is sharp, the wavelength overlap is small, and suitable for multiple staining. It is 30 to 80 nm, and more preferably 30 to 60 nm. Specifically, the maximum fluorescence wavelength and the full width at half maximum are measured by the methods described in Examples below.
  • the content of the particles (A) with respect to the solid content in the composition can secure a light emission amount by increasing the amount of light incident on the particles (A) by using a small amount of the particles (A), and reducing the thickness. From the standpoint that it can be suitably used for a coated film, etc., it is preferably 0.1 to 30% by mass, more preferably 1 to 30% by mass, further preferably 2 to 25% by mass, and particularly preferably 5 to 20% by mass. %.
  • the content of the particles (A) is preferably 10 to 6000 parts by mass, more preferably 10 to 300 parts by mass, further preferably 20 to 300 parts by mass, and more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the particles (B). 200 parts by mass, particularly preferably 50 to 200 parts by mass.
  • a film or the like in which physical properties such as light emission efficiency and shape are hardly changed even in a severe environment such as high temperature and high humidity can be easily obtained. .
  • the amount of light emitted by the amount of light incident on the particles (A) can be secured, so the content of the particles (A) is in the above range.
  • the hollow particles (B) used in the composition A are not particularly limited as long as they have pores therein, and the hollow particles used in the composition B ( B) (hereinafter also referred to as “particle (B2)”) is not particularly limited as long as it is an organic hollow particle having pores therein.
  • the amount of light incident on the particles (A) can be increased, and further, the emitted light from the particles (A) can be efficiently diffused, which is high.
  • a film having luminous efficiency can be easily obtained. Even if the film is thinned or the amount of phosphor particles in the film is reduced, the amount of light incident on the particles (A) is increased. A light emission amount can be secured.
  • membrane etc. which are excellent in bending resistance can be easily obtained by using particle
  • the particle (B) used in the present composition may be one type or two or more types.
  • the particles (B1) are not particularly limited and may be inorganic hollow particles or organic hollow particles, but organic hollow particles are preferable.
  • the particles (B) are preferably mixed with other organic components (such as an organic solvent (C) and a binder used as necessary) to maintain a uniform dispersed state as a composition, and maintain a uniform dispersed state. From the standpoint that the composition can be easily obtained, organic hollow particles are preferred. Furthermore, the organic hollow particles are preferable because they have a high degree of freedom in adjustment such as molecular design and synthesis in accordance with other constituent materials in the composition.
  • organic hollow particles having a high toluene insoluble content (90% by mass or more) have the same degree of hardness as inorganic hollow particles, and therefore have the above characteristics and retain voids when subjected to deformation due to thermal stress or the like. Excellent in properties.
  • the inorganic hollow particles are not particularly limited, and inorganic particles composed of Al 2 O 3 , SiO 2 , ZnO, ZrO 2 , TiO 2 , ITO, ATO, SnO, CeO 2 , CaCO 3 , polyorganosiloxane compounds, and the like From the standpoint of particles having low hygroscopicity and excellent dispersibility in an organic solvent, particles obtained by subjecting at least a part of the surface to surface treatment, particularly hydrophobic treatment, are preferable. As such inorganic hollow particles, commercially available products may be used, or they may be synthesized by a conventionally known method, for example, the method described in Japanese Patent No. 5078620.
  • the organic hollow particles are not particularly limited, and examples thereof include organic crosslinked particles such as acrylic or styrene.
  • organic hollow particles commercially available products may be used, and conventionally known methods such as JP-A-62-2127336, JP-A-01-315454, JP-A-4-126771, They may be synthesized by the methods described in JP-A No. 2002-241448, JP-A No. 2007-112935, and Japanese Patent No. 5439102.
  • organic hollow particles particles having high light diffusibility, excellent organic solvent resistance and shape retention are obtained, the present composition having excellent long-term stability is obtained, and a film having high luminous efficiency is further obtained.
  • crosslinked hollow polymer particles obtained by the following method specifically, the method described in Japanese Patent No. 4844850 are preferred.
  • the following polymerizable monomer ( ⁇ ) is emulsion-polymerized in an aqueous medium to prepare a dispersion of first polymer particles, and then the surface layer of the first polymer particles is a second polymer derived from the following polymerizable monomer ( ⁇ ) and A core-shell particle dispersion coated with a shell layer containing an unreacted polymerizable monomer ( ⁇ ) is prepared, and then the pH of the core-shell particle dispersion is set to 7 or more (25 ° C. converted value) with a volatile base such as ammonia. ) And neutralizing and swelling the core-shell particles to prepare crosslinked hollow polymer particles (aqueous dispersion).
  • polymerizable monomer ( ⁇ ) an unsaturated carboxylic acid ( ⁇ -1), a radical polymerizable monomer ( ⁇ -2), or the like is used.
  • Examples of the unsaturated carboxylic acid ( ⁇ -1) include mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid, and acid anhydrides of the dicarboxylic acid.
  • Examples of the monomer ( ⁇ -2) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like, styrene , Aromatic monomers such as ⁇ -methylstyrene, (meth) acrylonitrile, vinyl acetate, N, N-dimethyl (meth) acrylamide and the like.
  • the method for preparing the core-shell particle dispersion can be specifically performed based on the following method.
  • 100 parts by mass of the polymerizable monomer ( ⁇ ) is emulsion-polymerized in an aqueous solvent, and the surface layer of the first polymer particles is converted into the second polymerizable monomer ( ⁇ ).
  • the polymerizable monomer ( ⁇ ) is 10 to 80% by mass of a crosslinkable radical polymerizable monomer ( ⁇ -1), 0 to 20% by mass of an unsaturated carboxylic acid ( ⁇ -2), and 0 to 90% by mass.
  • the other radical polymerizable monomer ( ⁇ -3) copolymerizable with the monomer ( ⁇ -1) is used.
  • Examples of the monomer ( ⁇ -1) include polyethylenic compounds such as divinylbenzene, trivinylbenzene, dicyclopentadiene, butadiene, isoprene, and ethylene glycol di (meth) acrylate.
  • Examples of the monomer ( ⁇ -2) include the same compounds as the unsaturated carboxylic acid ( ⁇ -1) described above. Among them, (meth) acrylic acid, itacone is preferable from the viewpoint of the stability of the obtained particles. An acid or the like is preferable.
  • Examples of the monomer ( ⁇ -3) include monoethylenic aromatic compounds such as styrene and ⁇ -methylstyrene, compounds similar to the unsaturated carboxylic acid ester in the above ( ⁇ -2), stearyl (meth) acrylate, dodecyl Non-crosslinking radically polymerizable monomers such as unsaturated carboxylic acid esters such as (meth) acrylate and 2-ethylhexyl (meth) acrylate, (meth) acrylonitrile, vinyl acetate and N, N-dimethyl (meth) acrylamide Of these, monoethylenic aromatic compounds such as styrene are preferred.
  • the particle (B) has a carboxy group, a thiol group, an amino group or the like on its surface, the interaction with the particle (A), in particular, QD is increased, and this composition having excellent stability can be easily obtained. Further, it is considered that oxygen, moisture, residual monomers and the like that cause a decrease in QD fluorescence quantum yield can be prevented from adhering to the surface.
  • the particles (B) having such a surface may synthesize particles having these groups using a monomer having a carboxy group, a thiol group or an amino group as the polymerizable monomer ( ⁇ ), You may surface-treat the surface of the particle
  • Particles (B) have voids inside, but the number of voids may be plural, but is preferably one, and more preferably has one void at the approximate center.
  • the average particle diameter (outer diameter) of the particles (B) is preferably 0.02 to 5 ⁇ m, more preferably 0.02 to 3 ⁇ m from the viewpoint that a film having high luminous efficiency can be easily obtained. From the point that it can be suitably used for a thinned film or the like, it is preferably 0.1 to 2 ⁇ m, more preferably 0.1 to 1 ⁇ m, still more preferably 0.3 to 1 ⁇ m, and particularly preferably 0.8. 3 to 0.5 ⁇ m.
  • the diameter (inner diameter) of the largest void contained in the particles (B) is preferably 0.01 ⁇ m or more, more preferably 0 from the viewpoint that a film having high luminous efficiency can be easily obtained. 0.02 to 2 ⁇ m.
  • the inner diameter is measured by the method described in the following example, but when the particle (B) has a plurality of voids, the void portion of the particle in the TEM photograph And the diameter (inner diameter) of the void is obtained by regarding the particle as one particle having one void having this area.
  • the average film thickness of the shell of the particles (B) (average film thickness of the substance surrounding the void) is high in light diffusibility, and particles excellent in organic solvent resistance and shape retention are obtained, and have high luminous efficiency. Moreover, the thickness is preferably 0.005 to 0.1 ⁇ m, more preferably 0.01 to 0.1 ⁇ m, from the viewpoint that a film that can maintain the luminous efficiency for a long time can be easily obtained.
  • the particle shell refers to a portion other than the internal void in the cut surface when the particle is cut.
  • the average film thickness of the shell is measured by the method described in the following example, but when the particle (B) has a plurality of voids, After determining the total area of the voids of the particles, assuming that the particles have one void having this area, and determining the diameter (inner diameter) of the voids, the outer diameter measured by the method described in the examples below The average film thickness of the shell is calculated from the difference between this and the inner diameter.
  • the value of the shell thickness / outer diameter of the particles (B) is preferably 0.05 to 1 and more preferably 0.1 to 0.3 from the viewpoint of retention stability of voids.
  • the porosity of the particles (B) is preferably 4 to 70%, more preferably 40 to 40% from the viewpoint that particles having high light diffusibility can be obtained and a film having high luminous efficiency can be easily obtained. 65%, more preferably 40-60%.
  • the outer diameter, CV, inner diameter, shell thickness and porosity can be measured by the methods described in the following examples.
  • the toluene-insoluble content of the particles (B) is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and particularly preferably 94 from the viewpoint that a film having high luminous efficiency can be easily obtained. To 100% by mass. When the toluene insoluble content is less than 80% by mass, deformation of the hollow particles occurs, and foreign matters are easily generated. Therefore, a film having high luminous efficiency cannot be obtained, and the obtained film or the like is optical. Unevenness (bright spot) tends to occur.
  • the toluene-insoluble content refers to the amount that remains without being dissolved when the particles (B) are immersed in toluene, and specifically, is measured by the method described in the examples below.
  • toluene was used as the organic solvent for measuring the insolubility of the particles (B) is that toluene was generally used in the composition containing the phosphor particles, and its reproducibility was good.
  • the heat resistance temperature (5% mass reduction temperature) of the particles (B) can provide a film having excellent heat resistance, and can retain its shape (void) sufficiently even when the temperature rises depending on the molding and application.
  • the temperature is preferably 180 to 400 ° C., more preferably 250 to 350 ° C. from the viewpoint that a film that can maintain high luminous efficiency over a long period of time can be easily obtained.
  • the heat-resistant temperature can be measured by the method described in the following examples.
  • the content of the particles (B) is preferably with respect to 100% by mass of the present composition from the viewpoints of having a high luminous efficiency and easily obtaining a film that can maintain the luminous efficiency over a long period of time. Is 0.1 to 20% by mass, more preferably 0.5 to 10% by mass.
  • Organic solvent (C) is used.
  • the organic solvent in this dispersion liquid is the organic solvent (C) in this composition.
  • grains (B) is preferable.
  • the solvent (C) used in the present composition may be one type or two or more types.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as pentane, hexane, i-hexane, heptane, octane, cyclohexane, and methylcyclohexane; aromatic carbonized solvents such as benzene, toluene, xylene, mesitylene, ethylbenzene, and methylethylbenzene. Examples thereof include hydrogen-based solvents.
  • ether solvent examples include diethyl ether, dipropyl ether, 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, and 3-methoxybutanol.
  • ester solvent examples include carbonates such as diethyl carbonate and propylene carbonate; lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; acetates such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, benzyl acetate, and cyclohexyl acetate; And propionic acid esters such as ethyl propionate and butyl propionate.
  • carbonates such as diethyl carbonate and propylene carbonate
  • lactones such as ⁇ -butyrolactone and ⁇ -valerolactone
  • acetates such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, benzyl acetate, and cyclohexyl acetate
  • propionic acid esters such as ethyl propionate and butyl propionate.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-i-butyl ketone, trimethylnonanone, 2,4-pentanedione, and acetonyl acetone; cyclic ketones such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, and acetophenone System solvents and the like.
  • Examples of the solvent (C) include 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, from the viewpoint of coating properties and dispersibility effects.
  • the average boiling point of the solvent (C) at normal pressure is preferably 100 to 250 ° C. from the viewpoint that a desired film or the like can be easily formed from the present composition.
  • the average boiling point is synonymous with the boiling point of the solvent when one kind of solvent is used as the solvent (C).
  • solvent 1 and solvent 2 are used. Is a value calculated by the following equation. The same applies when three or more solvents are used.
  • Average boiling point ⁇ boiling point of solvent 1 ⁇ content of solvent 1 / (sum of contents of solvents 1 and 2) + boiling point of solvent 2 ⁇ content of solvent 2 / (sum of contents of solvents 1 and 2) ⁇ / 2
  • the content of the solvent (C) may be appropriately selected according to the formation method when forming a film or the like from the present composition, but the particles (A) and particles (B) can be sufficiently dispersed. From this point, the amount is preferably 100 to 30000 parts by mass, more preferably 500 to 20000 parts by mass with respect to 100 parts by mass of the particles (B).
  • the present composition preferably contains a binder from the viewpoint that a film or the like that can sufficiently hold the particles (A) and (B) can be formed.
  • 1 type may be used for a binder and 2 or more types may be used for it.
  • the binder is not particularly limited, and may be a monomer or a resin, but is preferably a component that is cured by light or heat, and a component that hardly undergoes curing shrinkage during the curing. It is more preferable that For this reason, the binder may be an ion curable component, but is preferably a radical curable component, and a compound having an alkyl chain having 5 or more carbon atoms is preferable.
  • a compound having an acidic functional group such as a carboxy group or a phenolic hydroxyl group from the standpoint that the present composition having an enhanced interaction with the particles (A), in particular, QD, and excellent stability can be easily obtained.
  • a binder excellent in transparency, curability, co-dispersibility with the particles (A) and (B), and hollow retention of the particles (B) (does not fill the voids in the particles (B)) is preferable.
  • a binder capable of imparting water or oxygen barrier properties to the film or the like is preferable.
  • the binder even when a film or the like obtained from the composition is used in a high-temperature environment, it is possible to easily obtain a film or the like that can maintain a sufficient shape (void) and maintain high luminous efficiency over a long period of time.
  • a component capable of forming a crosslinked structure and (meth) acrylate binders and epoxy binders are preferred.
  • any of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer may be used, but it is preferable to use a bifunctional or higher (meth) acrylic ester. .
  • Examples of the monofunctional monomer include 2- (meth) acryloyloxyethyl succinic acid, nonylphenyl carbitol acrylate, 2-ethylhexyl carbitol acrylate, isostearyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate (trade name “ New Frontier PGA ", manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • bifunctional monomer examples include 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 9,9-bis [4- (2- (meth) acryloyl).
  • Oxyethoxy) phenyl] fluorene tricyclodecane dimethanol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, bis ((meth) acryloyloxyethyl) ether of bisphenol A, 3-ethylpentanediol di (Meth) acrylate, phenylglycidyl ether acrylate, hexamethylene diisocyanate, urethane prepolymer, bis (2- (meth) acryloyloxyethyl) acid phosphate (trade name “KAYAMER PM-2”, manufactured by Nippon Kayaku Co., Ltd.) Is given.
  • polyfunctional monomer examples include ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, and dipentaerythritol tris.
  • R is a hydrogen atom or an acryloyl group having 3 to 6 carbon atoms.
  • an epoxy binder an aliphatic compound having a three-membered ring epoxy group, an alicyclic compound having a three-membered ring epoxy group, an aromatic compound having a three-membered ring epoxy group, a four-membered ring epoxy group (oxetanyl group) Any of the compounds may be used.
  • Examples of the aliphatic compound having a three-membered ring epoxy group include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and trimethylolpropane triglycidyl ether. It is done.
  • Examples of commercially available products include SR-NPG and SR-TMP (manufactured by Sakamoto Pharmaceutical Co., Ltd.).
  • Examples of alicyclic compounds having a three-membered ring epoxy group include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro.
  • Examples of commercially available alicyclic compounds having a three-membered ring epoxy group include Adeka Resin EP-4085S, EP-4088S (above, manufactured by ADEKA Corporation), Celoxide 2021, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide. 2085, Epolide GT-300, Epolide GT-301, Epolide GT-302, Epolide GT-400, Epolide 401, Epolide 403 (manufactured by Daicel Corporation).
  • Examples of the aromatic compound having a three-membered ring epoxy group include compounds having an aromatic ring structure in the skeleton and having two or more three-membered ring epoxy groups.
  • Examples of the aromatic ring structure of such a compound include a bisphenol A structure, a bisphenol F structure, and a naphthalene skeleton.
  • Examples of aromatic compounds having a three-membered ring epoxy group include bis (4-glycidylphenoxy) methane, bis (4-glycidylphenoxy) ethane, bis (4-glycidylnaphthoxy) methane, and bis (4-glycidylnaphthoxy). Ethane and the like can be mentioned.
  • Examples of commercially available aromatic compounds having a three-membered ring epoxy group include YL980, YL983U (manufactured by Mitsubishi Chemical Corporation), EPICLON® HP-7200, EXA-4850-150, HP-4770, (and DIC Corporation).
  • Examples of the compound having a four-membered ring epoxy group include compounds having one or more oxetanyl groups in the molecule.
  • Examples of the compound having one oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 3- (meth) allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy) methylbenzene, 4-fluoro- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, 4-methoxy- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, [1- (3-ethyl- 3-oxetanylmethoxy) methyl] benzene, [1- (3-ethyl- 3-oxetanylmethoxy) ethyl] phenyl ether, isobutoxymethyl (3-ethy
  • Examples of the compound having two or more oxetanyl groups include 3,7-bis (3-oxetanyl) -5-oxa-nonane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycol bis (3-ethyl-3- Oxetanylmethyl) ether, dicyclopentenyl bis (3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis (3-ethyl-3-oxetanylmethyl) ) Ether, Tricyclodecanediyldimethylenebis (3-ethy
  • the binder may be a binder resin.
  • the binder resin is preferably a transparent resin in the visible light region or a resin capable of forming the resin.
  • an organic resin such as a (meth) acrylic resin, an inorganic resin such as polysiloxane, and a (meth) acrylsiloxane
  • Organic / inorganic hybrid resins such as resins and epoxy silicon resins can be used.
  • the resin include resins described in JP2008-260930A, JP2009-102514A, and the like.
  • the binder resin is preferably a resin having an acidic functional group such as a carboxy group or a phenolic hydroxyl group.
  • a polymer having a carboxy group (hereinafter also referred to as “carboxy group-containing polymer”) is preferable.
  • an ethylenically unsaturated monomer having one or more carboxy groups (hereinafter referred to as “unsaturated monomer”).
  • unsaturated monomer (c2) ethylenically unsaturated monomers having one or more carboxy groups
  • copolymer of the unsaturated monomer (c1) and the unsaturated monomer (c2) include, for example, JP-A-7-140654, JP-A-8-259876, and JP-A-10-31308. No. 10, JP-A-10-300902, JP-A-11-174224, JP-A-11-258415, JP-A-2000-56118, JP-A-2004-101728, etc. Coalescence can be mentioned.
  • the copolymerization ratio of the unsaturated monomer (c1) in the copolymer is preferably 5 to 70% by mass. More preferably, it is 10 to 60% by mass.
  • binder resin examples include JP-A-5-19467, JP-A-6-230212, JP-A-7-207211, JP-A-9-325494, JP-A-11-140144, As disclosed in JP 2008-181095 A or the like, a carboxy group-containing polymer having a polymerizable unsaturated bond such as a (meth) acryloyl group in the side chain may be used.
  • the weight average molecular weight (Mw) measured by GPC of the binder resin is preferably 1,000 to 100,000, more preferably 3,000 to 50,000.
  • the molecular weight distribution (Mw / Mn) is preferably 1.0 to 5.0, more preferably 1.0 to 3.0.
  • the binder resin can be produced by a known method.
  • the binder resin can be produced by a method disclosed in JP2003-222717A, JP2006-259680A, International Publication No. 2007/029871, etc.
  • the structure, Mw, and Mw / Mn can also be controlled.
  • an alkali-soluble resin described in JP-A No. 2015-166840 may be used from the viewpoint that a film having a desired shape can be easily obtained by development or the like.
  • a reaction diluent described in International Publication No. 2005/071014 can be used.
  • the content of the binder has a high luminous efficiency, and can be easily formed into a film having a desired (surface) shape.
  • it is preferably 0.5 to 50% by mass, more preferably 1 to 40% by mass with respect to 100% by mass of the present composition.
  • other components conventionally known in the field other than the particles (A), particles (B), solvent (C) and binder may be blended within a range not impairing the effects of the present invention.
  • the other components include fillers, antioxidants, polymerization initiators, acid generators, base generators, viscosity modifiers, and dispersants.
  • Each of the other components may be used alone or in combination of two or more.
  • the filler is not particularly limited, and a conventionally known filler can be used. However, there is a possibility that the particles (A) can be adsorbed and stabilized, and it is expected to obtain a film having stable luminous efficiency over a long period of time. From the standpoint of being able to obtain a filler capable of adsorbing or fixing the particles (A), particularly QD, a film having better luminous efficiency, and the like, a high refractive index filler is preferred. Examples of such fillers include sols such as porous silica, titania, and zirconia.
  • antioxidant It does not restrict
  • QD when QD is used as the particles (A), it suppresses the generation of free radicals, which causes a reduction in the QD fluorescence quantum yield, and suppresses oxygen, moisture, or residual monomers from adhering to the QD surface.
  • an antioxidant containing a phosphorus and / or sulfur atom is preferable, a compound having a phosphine structure, a compound having a phosphite structure, a compound having a thioether structure, and a compound having a thiol group are more preferable.
  • antioxidant containing a phosphorus atom examples include a compound having a phosphine structure, a compound having a phosphite structure, and the like.
  • Compound having phosphine structure Compounds having a phosphine structure include tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-2,5-xylylphosphine, tri-3,5-xylylphosphine, tri Examples thereof include phenylphosphine and diphenyl (p-vinylphenyl) phosphine.
  • Examples of the compound having a phosphite structure include tris (nonylphenyl) phosphite, tris (pt-octylphenyl) phosphite, tris [2,4,6-tris ( ⁇ -phenylethyl)] phosphite, tris ( p-2-butenylphenyl) phosphite, bis (p-nonylphenyl) cyclohexyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, di (2,4-di-t-butylphenyl) ) Pentaerystol diphosphite, 2,2′-methylenebis (4,6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, distearyl pentaerythritol dip
  • ADK STAB series As a commercial product of a compound having a phosphite structure, ADEKA Corporation's ADK STAB series, specifically, “PEP-4C”, “PEP-8”, “PEP-8W”, “PEP-24G” , “PEP-36”, “HP-10”, “2112”, “260”, “522A”, “1178”, “1500”, “C”, “135A”, “3010” and “TPP”, BASF Examples thereof include “IRGAFOS168” manufactured by Japan Corporation.
  • antioxidant containing a phosphorus atom examples include compounds having a phosphine structure from the viewpoint of more effectively suppressing generation of free radicals that cause a decrease in the fluorescence quantum yield of particles (A), particularly QD.
  • Tri-o-tolylphosphine, tri-2,5-xylylphosphine and triphenylphosphine are more preferable.
  • antioxidant containing a sulfur atom examples include a compound having a thioether structure and a compound having a thiol group.
  • Compound having thioether structure examples include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate), Pentaerythritol tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol tetrakis (3-stearylthiopropionate), 4,4-thiobis (3-methyl-6) -T-butylphenol) and the like.
  • ADEKA Corporation's ADK STAB series specifically “AO-412S” and “AO-503”, Sumitomo Chemical Co., Ltd.
  • TPL-R "TPM”, “TPS”, “TP-D” and “MB”
  • IRGANOXPS800FD and "IRGANOXPS802FD” manufactured by BASF Japan K.K., manufactured by API Corporation.
  • DLTP “DLTP”, “DSTP”, “DMTP”, “DTTP” and the like can be mentioned.
  • 4,4-thiobis (3- (3) is more preferable in terms of more effectively suppressing generation of free radicals that cause a decrease in the fluorescence quantum yield of the particles (A), particularly QD.
  • Methyl-6-t-butylphenol), tetrakis [3- (dodecylthio) propionic acid] pentaerythritol, ditridecyl 3,3′-thiobispropionate, “IRGANOX 1520 L” and “IRGANOX 1726” manufactured by BASF are preferred.
  • a compound having a thiol group has oxygen, moisture, residual monomers, etc. that cause a decrease in the fluorescence quantum yield of QD by effectively binding to the surface of particles (A), particularly QD, by the thiol group. It can suppress adhering to the surface. Furthermore, when a compound having two or more thiol groups is used, one thiol group can be bonded to the surface of the particle (A), particularly QD, while another thiol group is bonded to the binder, and the binder and The particles (A), particularly QD, can be brought close to each other, and the adhesion of the oxygen, moisture, residual monomer, etc. to the particles (A), particularly the QD surface, can be more significantly suppressed.
  • the lower limit of the number of thiol groups in the compound having a thiol group is usually 1, preferably 2, preferably 3, more preferably 4, and the upper limit of the number of thiol groups is preferably 8, more preferably 6. preferable.
  • grains (A) especially QD is preferable.
  • the use of a chain transfer agent having a thiol group makes it easier to maintain the fluorescence intensity from the particles (A), and it is possible to more easily and reliably maintain high color reproducibility.
  • compound (I) a compound represented by the following formula (1) (hereinafter also referred to as “compound (I)”) is preferable.
  • X is an n-valent organic group having 1 to 20 carbon atoms.
  • R 1 is independently an alkanediyl group having 1 to 10 carbon atoms.
  • n is an integer of 1 to 8.
  • R1 may be the same and may differ.
  • Examples of the organic group represented by X include an n-valent hydrocarbon group having 1 to 20 carbon atoms, a group having a divalent heteroatom-containing group between carbon-carbon of the hydrocarbon group, a hydrocarbon group, and a hetero group. Examples include a group in which part or all of the hydrogen atoms of a group having an atom-containing group are substituted with a monovalent heteroatom-containing group.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This “hydrocarbon group” may be saturated or unsaturated.
  • the “chain hydrocarbon group” may be linear or branched.
  • the “alicyclic hydrocarbon group” may be monocyclic or polycyclic. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Alkanes such as methane, ethane, propane, n-butane, isobutane; Alkenes such as ethene, propene, 1-butene, 2-butene, 2-methylpropene; Chain hydrocarbons such as alkynes such as ethyne, propyne, 1-butyne and 2-butyne; Monocyclic cycloalkanes such as cyclobutane, cyclopentane, cyclohexane; Monocyclic cycloalkenes such as cyclobutene, cyclopentene, cyclohexene; Polycyclic cycloalkanes such as norbornane, tricyclodecane and adamantane; Alicyclic hydrocarbons such as polycyclic cycloalkenes such as norbornene and tricyclodecene; Aromatic hydrocarbons such as benzene, toluene, xy
  • Examples of the divalent hetero atom-containing group which may be contained between the carbon atoms include —O—, —S—, —NR′—, —CO—, —CS— and the like.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the divalent heteroatom-containing group is preferably —O—.
  • Examples of the monovalent hetero atom-containing group that may substitute for the hydrogen atom include —OH, —SH, —NHR ′, —COR ′, —CSR ′, and the like.
  • the lower limit of the carbon number of the organic group represented by X is usually 1, preferably 3 and more preferably 4, and the upper limit is preferably 15, more preferably 10, and still more preferably 6.
  • n is usually 1, 2 is preferable, 3 is more preferable, 4 is more preferable, and 6 is preferable as the upper limit.
  • Examples of the organic group represented by X include a group represented by the following formula (X-1), a group represented by the following formula (X-2), and a group represented by the following formula (X-3). preferable.
  • * represents a binding site with —O— in the formula (1).
  • m is an integer of 1 to 5.
  • alkanediyl group represented by R 1 examples include methanediyl group, 1,2-ethanediyl group, 1,1-ethanediyl group, 1,3-propanediyl group, 1,2-propanediyl group, 1,1- Examples thereof include a propanediyl group and a 2,2-propanediyl group.
  • R 1 is preferably an alkanediyl group having 1 to 3 carbon atoms, more preferably a 1,2-ethanediyl group and a 1,2-propanediyl group.
  • M is preferably an integer of 1 to 4, more preferably an integer of 2 to 4, and still more preferably 3.
  • Compound (I) is a compound represented by the following formula from the viewpoint of more effectively suppressing the adhesion of oxygen, moisture, residual monomer, etc. to the surface of particles (A), particularly QD. Is preferred.
  • the peroxide decomposer containing phosphorus and sulfur examples include trilauryl trithiophosphite, tributyl trithiophosphite, triphenyl trithiophosphite and the like.
  • Phenolic antioxidants examples include styrenated phenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-p-ethylphenol, 2,4,6-tri-t-butylphenol, butylhydroxyanisole, 1-hydroxy-3-methyl-4-isopropylbenzene, mono-t-butyl-p-cresol, mono-t-butyl-m-cresol, 2 , 4-Dimethyl-6-t-butylphenol, Butylated bisphenol A, 2,2'-methylene-bis- (4-methyl-6-t-butylphenol), 2,2'-methylene-bis- (4-ethyl -6-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-nonylphenol), 2,2'-isobutylidene-bis (4,6-dimethylphenol), 4,4'-butylidene-bis-bis- (3-methyl-6-t-
  • the content of the antioxidant can further suppress the adhesion of oxygen, moisture, residual monomers and the like to the particles (A), particularly QD, and can more effectively suppress the generation of free radicals.
  • the polymerization initiator, acid generator, and base generator are not particularly limited, and for example, compounds described in JP-A-2016-130809 can be used.
  • the viscosity modifier is not particularly limited, and examples thereof include various thickeners and leveling agents in order to adjust the viscosity according to the molding method of the present composition.
  • As the viscosity modifier it is preferable to use a low-polarity compound for the purpose of blocking oxygen and water.
  • composition may be prepared by mixing the particles (A), the particles (B), the solvent (C), and, if necessary, the binder and other components. Can be prepared.
  • the viscosity (25 ° C.) of the present composition may be appropriately selected depending on the desired application, application method, etc.
  • the present composition is ink-jet printed, it is preferably about 1 to 20 mPa ⁇ s.
  • When screen-printing the composition it is preferably about 100 to 5000 mPa ⁇ s.
  • This composition having such a viscosity can be obtained by appropriately adjusting the amount of the solvent (C) used or by adding a viscosity modifier.
  • This composition is a device that efficiently converts the wavelength of light from a light source, for example, a light emitting layer of a light emitting display element that displays an image using visible light, a color tone adjusting layer of LED or fluorescent lamp illumination, and a light guide. It can be suitably used as a composition for forming a layer, a light receiving conversion layer of a photovoltaic power generation panel, and the like. Specifically, a film or a molded body is formed from the present composition by a conventionally known method, in particular, a film is formed and used for these applications.
  • the wavelength conversion layer (hereinafter also referred to as “main layer”) according to an embodiment of the present invention is: A layer formed using the present composition (hereinafter also referred to as “layer 1”), or A layer containing the phosphor particles (A) and the light diffusing material (B ′) and having a moisture absorption of 0.01 to 3% (hereinafter also referred to as “layer 2”).
  • a main layer has a low moisture absorption and a high luminous efficiency.
  • the moisture absorption amount of the layer itself is low, the characteristics of the phosphor particles (A), in particular, the light emission efficiency and the like are hardly lowered, and the layer changes when the wavelength conversion layer is used or when the layer is used in a device.
  • QD quantum dots
  • the light diffusing material (B ′) is not particularly limited as long as it is a material capable of diffusing light, and a conventionally known material can be used, but particles capable of diffusing light are preferable.
  • the light diffusing material (B ′) contained in the layer 2 may be one type or two or more types.
  • Examples of the light diffusing material (B ′) include particles and voids (eg, bubbles).
  • the particles may be solid particles, but are preferably the hollow particles (B) having pores therein.
  • the hollow particles (B) as the light diffusing material (B ′)
  • the amount of light incident on the particles (A) can be increased, and the emitted light from the particles (A) can be efficiently diffused.
  • the wavelength conversion layer having high luminous efficiency can be easily obtained, and even if the thickness of the layer 2 is reduced or the amount of the particles (A) in the layer 2 is reduced, the particles ( The amount of light emitted can be ensured by the increase in the amount of light incident on A).
  • the hollow particles (B) as the light diffusing material (B ′) a wavelength conversion layer having excellent bending resistance can be easily obtained.
  • Examples of the hollow particles include particles similar to the particles described in the column of the present composition.
  • the content of the light diffusing material (B ′) in this layer has a low moisture absorption, a high luminous efficiency, and a wavelength conversion layer that can maintain the luminous efficiency over a long period of time can be easily obtained. From this point, it is preferably 0.1 to 50% by mass, more preferably 0.3 to 30% by mass, and further preferably 0.5 to 25% by mass.
  • this layer in addition to the particles (A) and the light diffusing material (B ′), one or more of the binders or cured products thereof, one or more of the compositions described in the column of the present composition Other components may be included.
  • this layer contains a binder (C)
  • the binder (C) content is low in moisture absorption, has high luminous efficiency, and easily forms a wavelength conversion layer having a desired (surface) shape. In view of the transmittance of the obtained wavelength conversion layer, it is preferably 50 to 95% by mass, more preferably 60 to 90% by mass with respect to 100% by mass of the main layer.
  • composition C a composition containing the particles (A) and the component (B′1).
  • composition C may be a composition containing the particles (A) and the component (B′1).
  • the composition C may contain the composition containing the particles (A) and the component (B′1). Two or more types of compositions, such as a composition containing, may be sufficient.
  • the finally obtained layer may be a layer containing the particles (A) and the light diffusing material (B ′).
  • the composition C includes the particles (A) and / or the component (B′1), and if necessary, the binder component, the other components, and the like.
  • Conventionally known arbitrary components may be included within a range not impairing the effects of the present invention.
  • the optional component include an organic solvent, a polymerization initiator, an acid generator, a base generator, and a viscosity modifier.
  • Each of the optional components may be used alone or in combination of two or more.
  • the component (B′1) may be the particle (B), and the composition and the like change at the stage of forming the wavelength conversion layer, and the changed component has a light diffusing ability. It may be a component. Examples of the latter include foaming agents such as p, p′-oxybisbenzenesulfonylhydrazide, sodium hydrogen carbonate, dinitrosopentamethylenetetramine, azodicarbonamide, and inorganic foaming agent P-5 (manufactured by Otsuka Chemical Co., Ltd.). Is mentioned.
  • foaming agents such as p, p′-oxybisbenzenesulfonylhydrazide, sodium hydrogen carbonate, dinitrosopentamethylenetetramine, azodicarbonamide, and inorganic foaming agent P-5 (manufactured by Otsuka Chemical Co., Ltd.). Is mentioned.
  • the method for forming a layer using the composition is not particularly limited, and includes a step 1 for applying the composition on a substrate to form a coating film and a step 2 for curing the obtained coating film.
  • a method comprising is preferred.
  • the substrate is not particularly limited, and a conventionally known substrate made of metal, resin, or glass can be used, and the member itself on which the phosphor particle-containing film is to be formed may be used as the substrate.
  • the base material may be subjected to a surface treatment.
  • the coating method is not particularly limited, and a conventionally known method can be appropriately selected according to a desired application. For example, spin coating method, slit coating method, dipping method, gravure printing, inkjet printing, screen printing. And a nozzle printing method.
  • the ink-jet ink can be more easily obtained from the point that it is possible to more easily obtain the light-diffusing effect by the light-diffusing material (B ′) and the fluorescent light-emitting effect by the particles (A). Printing is preferred.
  • this composition when apply
  • the step 2 is not particularly limited as long as the coating film is cured, and the conditions may be appropriately adjusted depending on the composition to be used. However, when the photocurable component is used as the binder component, a heating step is performed. Next, a method of performing a light irradiation step is preferable.
  • the heating may be one-stage heating or two-stage heating or more.
  • the heating temperature is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and the upper limit is preferably 200 ° C. in consideration of the heat resistance of the substrate.
  • a foaming agent as a component used as a light-diffusion material (B ') in the layer obtained, it is preferable to heat at the temperature more than the temperature which this foaming agent foams.
  • the light irradiation conditions are not particularly limited, and examples include conditions in which ultraviolet rays are used as exposure light and the exposure amount is 0.05 to 5 J / cm 2 .
  • a film having a desired shape can be obtained by performing pattern exposure and subsequent development step before or after the step 2.
  • the obtained wavelength conversion layer may be used after being peeled from the base material, or may be used without being peeled from the base material when the member itself on which the wavelength conversion layer is to be formed is used as the base material.
  • This layer is characterized in that the characteristics of the particles (A), in particular, luminous efficiency and the like are hardly deteriorated, dimensional change is difficult to occur, the luminous efficiency is high, and a layer having excellent long-term stability can be easily obtained.
  • the moisture absorption is preferably 0.01 to 3%, more preferably 0.01 to 2%, and particularly preferably 0.01 to 1%.
  • the moisture absorption can be specifically measured by the method described in the following examples.
  • Such a wavelength conversion layer having a moisture absorption amount can be obtained by adjusting the type and amount of the light diffusing material (B ′), the amount of the binder (C), and the like.
  • the wavelength conversion layer may be required to have bending resistance, and a wavelength conversion layer having excellent bending resistance is required.
  • a wavelength conversion layer having excellent bending resistance is required.
  • the diameter (mm) of the mandrel where the crack occurs there is a relationship between the diameter (mm) of the mandrel where the crack occurs and the thickness ( ⁇ m) of the wavelength conversion layer. It is preferable to satisfy the following requirements (i) or (ii).
  • the right side of the expression of the requirement (i) is preferably 0. .14, more preferably 0.1.
  • the wavelength conversion layer having such bending resistance uses hollow particles as the light diffusion material (B ′), the amount of the light diffusion material (B ′) in the wavelength conversion layer, the amount of the binder (C), It can be obtained by adjusting the porosity of the layer.
  • This layer is a layer that converts the wavelength of light incident from the light source, and the wavelength of the light after conversion may be appropriately selected depending on the desired application.
  • the wavelength is in the range of 520 to 560 nm and the wavelength is 600 to 600. Often includes light in the 700 nm range. Therefore, this layer preferably has a high light transmittance in these wavelength regions.
  • the average value of the respective transmittances when measured from the vertical direction of the wavelength conversion layer is preferably 70% or more. More preferably, it is 75% or more, More preferably, it is 80% or more. In particular, when this layer is used in a visible light display device, it is preferable that the transmittance is satisfied.
  • This layer preferably has a haze (average haze) measured by the method described in the following examples of 1 to 80%, more preferably 3 to 60%. Since the haze is an index of the light scattering degree, when the haze is in the above range, the light use efficiency increases due to the effect of light diffusion, so that a film with high light emission efficiency can be easily obtained.
  • This layer has a standard deviation of haze measured by the method described in the following examples, preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less. Since the standard deviation of the haze is an index representing the uniformity of the coating film surface, a film having uniform light emission characteristics without unevenness can be obtained when the standard deviation is within the above range.
  • This layer has a porosity of preferably 1 to 50 vol% observed in a cross section when the layer is cut from the viewpoint that the layer is excellent in balance due to luminous efficiency, bending resistance, light transmission, and the like. More preferably, it is 5 to 50 vol%, and further preferably 10 to 40 vol%.
  • the porosity can be specifically measured by the method described in the following examples.
  • the thickness of this layer may be appropriately selected according to the desired application, but is usually 0.5 to 200 ⁇ m, and is more preferable from the viewpoint that it can be suitably used for a device that is required to be light and thin. Is 1 to 100 ⁇ m.
  • This layer is a device that efficiently converts the wavelength of light from a light source, for example, a light emitting layer of a light emitting display element that displays an image using visible light, a color tone adjusting layer and a light guiding layer of LED or fluorescent lamp illumination. It can be suitably used as a light receiving conversion layer of a photovoltaic power generation panel.
  • this layer is not particularly limited and may be appropriately selected according to the desired application.
  • the optical switch examples thereof include an element substrate, a light guide member in the device (out-cell structure), a display screen member in a projection display device, a photoelectric conversion element, a photovoltaic power generation panel, and a light guide member constituting a lighting fixture.
  • the flask containing the obtained reaction solution was transferred into a glove box, and the content solution was transferred to a beaker.
  • Toluene was added to the beaker, ethanol was added to settle the particles, and then centrifugation was performed.
  • the obtained particles were redispersed in toluene, and the operation of adding ethanol and centrifuging was repeated 5 times, and then toluene was added to the obtained particles and redispersed so that the inorganic component content was 3% by mass.
  • solid content concentration after carrying out the heat drying (90 degreeC, 20 minutes) of fluorescent substance a1 dispersion liquid was 7.5 mass%, and the organic content was included in addition to the inorganic component.
  • Quantaurus-QY manufactured by Hamamatsu Photonics Co., Ltd.
  • the wavelength at the peak top (maximum fluorescence wavelength) of the obtained spectrum was 648 nm, and the half-width of the peak (width at the half height of the peak) was 50 nm.
  • the particle diameter of the phosphor a1 was measured with a transmission electron microscope (“JEM-2010F”, manufactured by JEOL Ltd.). When the average particle diameter was determined by averaging the outer diameters of any 20 particles in the observation field, it was 4.5 nm.
  • TGA thermal mass
  • Phosphor a2 Dispersion Using a propylene glycol monomethyl ether acetate (PGMEA) dispersion of RE-316 (manufactured by Denka Co., Ltd., inorganic fluorescent particles), and a bead mill (rotation speed: 1500 rpm) using zirconia beads
  • PMEA propylene glycol monomethyl ether acetate
  • the phosphor a2 dispersion (solid content concentration: 7.5% by mass) was obtained by pulverizing so that the average particle size of RE-316 in the dispersion was 200 nm.
  • the average particle diameter was measured by a dynamic light scattering method using a nanoparticle analyzer “Delsa Nano S” manufactured by Beckman Coulter.
  • Fluorescent substance a3 is obtained by dry-pulverizing Aronbright GR-MW540H manufactured by Denka Co., Ltd. using dry bead mill Sigma Dry SDA5 (manufactured by Ashizawa Finetech Co., Ltd.) until the average particle size becomes 300 nm. It was. The maximum fluorescence wavelength was measured in the same manner as described above using a dispersion liquid (solid content concentration: 7.5 mass%) in which the phosphor a3 was dispersed in toluene, and it was 544 nm.
  • methyl methacrylate 10 parts by mass of methacrylic acid, 2.5 parts by mass of octylthioglycol as a molecular weight regulator, 0.1 part by mass of an emulsifier (F65, manufactured by Kao Corporation) and 40 parts by mass of water are mixed.
  • An aqueous dispersion 1 of the monomer mixture was prepared by stirring.
  • aqueous dispersion 1 of the monomer mixture 20% by mass of the obtained aqueous dispersion 1 of the monomer mixture was put into the reaction vessel, and the temperature was raised to 75 ° C. while stirring the liquid in the reaction vessel to conduct a polymerization reaction for 1 hour. While maintaining the temperature at 75 ° C., the remaining 80 mass% of the aqueous dispersion 1 of the monomer mixture was continuously added to the reaction vessel over 2 hours. Furthermore, the seed particle aqueous dispersion (solid content: 40% by mass) was obtained by aging for 2 hours.
  • aqueous dispersion 2 of a monomer mixture was prepared by mixing and stirring parts by mass and 40 parts by mass of water.
  • Aqueous dispersion 3 was prepared.
  • aqueous dispersion 3 Approximately 15 minutes after the completion of the addition of the aqueous dispersion 3, 5 parts by mass of a 20% aqueous ammonia solution was added all at once to the reaction vessel while stirring, the temperature was raised to 90 ° C., and the mixture was aged and stirred for 2 hours. Thereafter, 0.3 part by mass of t-butyl hydroperoxide and 0.1 part by mass of formaldehyde resin were added, and the mixture was allowed to stand for 1 hour as it was, whereby an aqueous dispersion of spherical hollow particles b1 having single pores. Em1 (solid content 26.5% by mass) was obtained.
  • the obtained aqueous dispersion of hollow particles b1 is centrifuged at 15000 rpm for 30 minutes using a centrifuge to obtain a precipitate of hollow particles, and this precipitate is obtained at 25 ° C. for 24 hours using a vacuum dryer.
  • the hollow particles b1 were obtained by drying.
  • Production of hollow particles b2 In Production Example 1, the amount of sodium dodecylbenzenesulfonate used in each stage of the reaction was increased to twice the amount of Production Example 1 in the same manner as in Production Example 1. Hollow particles b2 were obtained.
  • the shell thickness (average film thickness) was calculated from the outer diameter and inner diameter data, and the shell thickness / outer diameter (shell / outer diameter) was calculated. Furthermore, the void volume was calculated from the inner diameter, the particle volume was calculated from the outer diameter, and the porosity was determined from the ratio.
  • Example 1 In a container, 933 parts by mass of the phosphor a1 dispersion was weighed, and particles b1 (100 parts by mass) and mesitylene (10149 parts by mass) were added and mixed, and then dipentaerythritol hexaacrylate (382 parts by mass) and Irgacure 184 (20 parts by mass) was added, ultrasonically irradiated for 30 minutes, dispersed and mixed, and coarse solids were removed with a 1 ⁇ m filter to obtain a phosphor particle-containing composition.
  • Examples 2 to 10 and Comparative Example 1 A phosphor particle-containing composition was obtained in the same manner as in Example 1 except that the components shown in Table 2 were used in the amounts shown in Table 2. In addition, the numerical value in the bracket
  • the mixture was added dropwise and polymerized for 1 hour while maintaining this temperature. Thereafter, the temperature of the reaction solution was raised to 90 ° C., and further polymerized for 1 hour to obtain a PGMEA solution of polymer D (solid content concentration: 33 mass%).
  • the obtained polymer D had Mw of 10,800, Mn of 5,900, and Mw / Mn of 1.83.
  • ⁇ Luminous efficiency> The compositions obtained in Examples and Comparative Examples were coated on a 0.7 mm thick, 150 mm ⁇ 180 mm glass substrate so that the resulting coating film thickness was 3 ⁇ m.
  • the following three types of coating films were each cut into a size of 1 cm ⁇ 1 cm, and luminescence characteristics were measured at an excitation light wavelength of 450 nm using Quantaurus-QY (manufactured by Hamamatsu Photonics Co., Ltd.) to evaluate luminous efficiency.
  • Luminous efficiency is the coating film when the coating film is formed on the glass substrate (during film formation), the coating film is heated on a hot plate at 180 ° C. for 10 minutes and cooled for 5 minutes (after heating) And the coating film at the time of film-forming was measured using each of the coating film (after immersion) after being immersed in toluene for 1 hour and then immersed in water for 1 hour and then dried at 90 ° C. for 5 minutes.
  • Table 2 shows the results of the luminous efficiency when the luminous efficiency of the coating film (during film formation) obtained using the composition of Comparative Example 1 is taken as 100.
  • This composition can be used by forming a wavelength conversion layer such as an LED from the composition. Layers other than the wavelength conversion layer are also laminated on the LED and the like, and in that case, usually a heating or dipping process is included. Accordingly, since it is desired that the film (phosphor particle-containing film) obtained from the present composition does not change in properties even after such heating and immersion processes, as described above, after heating and after immersion. The luminous efficiency of the film was also measured.
  • Haze was measured with a haze meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.) using a coating film (during film formation) prepared for measuring luminous efficiency. The measurement was performed at 20 arbitrary locations on a 150 mm ⁇ 180 mm glass substrate, and an average value and a standard deviation were calculated from the obtained haze values. The haze value was determined according to JIS K7136 and used as an index of light scattering degree. The standard deviation was an index representing the uniformity of the coating surface. When the standard deviation was 2% or less, it was judged that the coating film had no unevenness and was a good coating film.
  • the composition obtained in the example could form a film showing high luminous efficiency.
  • the composition obtained in Example 1 was used, no unevenness was visually observed and a good coating film could be formed.
  • the average haze value was 50%, and the haze value was The standard deviation was 1%. This is presumably because the CV value of the particle b1 is small and the uniformity of film formation is good.
  • the numerical value of the lower stage in Table 3 represents the mixing ratio (mass part) of the solid content in each component, and in Table 3, the numerical value described under the phosphor a1 dispersion is the mass of the phosphor a1. This shows that the dispersion was used.
  • the numerical value of the lower stage in Table 4 represents the mixing ratio (mass part) of the solid content in each component.
  • Examples 11 to 19, Examples 22 to 23, and Comparative Examples 2 to 4 Using the composition shown in Table 5, according to each film-forming method shown in Table 5, the thickness of the layer obtained on the PET film substrate (Teijin Tetron Film G2, Teijin DuPont Films Co., Ltd., 100 ⁇ m thickness) The wavelength conversion layer was formed so as to have the thickness shown in FIG. When the wavelength conversion layer obtained in the Example was visually confirmed, the film formation state was good, and the light emission efficiency exceeded 100, and an efficient wavelength conversion layer was confirmed.
  • Example 20 1 mm surrounded by a polyimide film (made by Toray DuPont, Kapton 200H / V, thickness: 50 ⁇ m) with a polyimide tape (polyimide adhesive tape for heat-resistant insulation No. 360A, manufactured by Nitto Denko Corporation, thickness: 50 ⁇ m) A substrate having corner sections and a recess having a depth of 50 ⁇ m was prepared. After applying the aqueous composition of Preparation Example 15 to this recess using an inkjet apparatus (DotView), the obtained substrate was heated at 90 ° C. for 5 minutes, and then heated to 230 ° C. over 5 minutes. And calcination at 230 ° C. for 5 minutes.
  • DotView inkjet apparatus
  • a cured film having a thickness of 40 ⁇ m was formed in the recess.
  • a layer was formed by the following Method 4 using Preparation Example 12.
  • a wavelength conversion layer having a size of 1 mm square and a height of 50 ⁇ m was obtained.
  • Example 21 A wavelength conversion layer was formed in the same manner as in Example 20 except that the aqueous composition of Preparation Example 16 was used instead of the aqueous composition of Preparation Example 15.
  • Method 1 screen printing Using a screen printing machine (HP-320 type screen printing machine, manufactured by Neurong Seimitsu Kogyo Co., Ltd.), the composition is printed on the substrate in a pattern of 5 mm square, 90 ° C After drying in an oven for 20 minutes, the pattern was cured by UV irradiation (UV conveyor QRM-2288, manufactured by Oak Manufacturing Co., Ltd., exposure amount: 0.5 J / cm 2 ).
  • UV irradiation UV conveyor QRM-2288, manufactured by Oak Manufacturing Co., Ltd., exposure amount: 0.5 J / cm 2 ).
  • Method 2 Nozzle printing Using a nozzle printing device (NP-750G, manufactured by Screen), the composition was applied onto the substrate so as to be 5 mm square, and dried in an oven at 90 ° C for 20 minutes. The composition was cured by UV irradiation (UV conveyor QRM-2288, exposure amount: 0.5 J / cm 2 ).
  • Method 3 Slit coat Using a slit coater (LC-R300G, manufactured by Screen), the composition was coated on the entire surface, dried in an oven at 90 ° C for 20 minutes, and then irradiated with UV (UV Conveyor QRM-2288, exposure amount: 0.5 J / cm 2 ), the composition was cured.
  • UV UV Conveyor QRM-2288, exposure amount: 0.5 J / cm 2
  • Method 4 Inkjet Inkjet apparatus DotView was used to apply the composition onto the substrate, and after drying in an oven at 90 ° C. for 20 minutes, UV irradiation (UV conveyor QRM-2288, exposure: 0. 5 J / cm 2 ) to cure the composition.
  • ⁇ Mandrel bending test> In accordance with JIS-K5600-5-1: 1999 (cylindrical mandrel method), using a test piece prepared with a wavelength conversion layer with a PET film or polyimide film having a size of 100 mm ⁇ 50 mm according to the above-mentioned examples and comparative examples. The test was performed with a type 1 test apparatus, and the bending resistance test of the wavelength conversion layer was performed. The case where the white line was visually recognized in the wavelength conversion layer was evaluated as having cracked. Table 5 shows the diameter of the mandrel when the crack occurs. In Table 5, “ ⁇ 2” indicates that no crack was generated even when a mandrel having a diameter of 2 mm was used.
  • a wavelength conversion layer with a PET film or a polyimide film was prepared in a size of 30 mm square according to Examples and Comparative Examples, and each wavelength range of green wavelength (520 to 560 nm) and red wavelength (600 to 700 nm) was measured with a spectrophotometer. The transmittance was measured. In addition, the transmittance
  • ⁇ Porosity> The wavelength conversion layer with PET film or polyimide film obtained in Examples and Comparative Examples was embedded with an epoxy resin (Cosmo Bio Co., Ltd., using Quetol 651 Kit), and after curing the epoxy resin, with a microtome Ultrathin sections were cut out, and any 10 samples were observed with TEM using JEM-1400Plus (manufactured by JEOL Ltd.). Twenty voids in the observation field were arbitrarily selected, and the maximum diameter (gap size) of each of the 20 voids was measured. Table 5 shows the average of a total of 200 voids.
  • the void ratio (vol%) in the wavelength conversion layer was calculated from the ratio of the total area of the voids in the observation visual field in each sample and the observation visual field area, assuming that the voids were true spheres.
  • Table 5 shows the average porosity calculated for 10 samples.
  • ⁇ Luminous efficiency> A wavelength conversion layer with a PET film or a polyimide film was prepared in a size of 1 cm ⁇ 1 cm according to the examples and comparative examples, and using Quantaaus-QY (manufactured by Hamamatsu Photonics Co., Ltd.), the luminous efficiency was obtained at an excitation light wavelength of 450 nm. Measured. Table 5 shows the luminous efficiency in each test when the luminous efficiency of Comparative Example 2 is 100.

Abstract

The present invention relates to a composition containing fluorescent particles, a wavelength conversion layer and a production method for a wavelength conversion layer. The composition containing fluorescent particles either: includes fluorescent particles (A), hollow particles (B) and an organic solvent (C), wherein the fluorescent particles (A) include In; or includes fluorescent particles (A), hollow particles (B) and an organic solvent (C), wherein the hollow particles (B) are hollow organic particles.

Description

蛍光体粒子含有組成物、波長変換層および波長変換層の製造方法Phosphor particle-containing composition, wavelength conversion layer, and method for producing wavelength conversion layer
 本発明は、蛍光体粒子含有組成物、波長変換層および波長変換層の製造方法に関する。 The present invention relates to a phosphor particle-containing composition, a wavelength conversion layer, and a method for producing the wavelength conversion layer.
 エレクトロルミネッセンス(EL)素子等を用いた表示デバイスには、蛍光体粒子が用いられており、例えば、蛍光体粒子を含む波長変換層が用いられている。
 この蛍光体粒子としては、サイズを制御することで発光波長を自在に制御できる等の特徴から、近年、量子ドット(以下「QD」ともいう。)が注目されており、該QDの表示デバイスへの応用や、発光波長の自由度を活用した照明への応用等について、検討が進められている。
For display devices using an electroluminescence (EL) element or the like, phosphor particles are used. For example, a wavelength conversion layer containing phosphor particles is used.
As the phosphor particles, in recent years, quantum dots (hereinafter also referred to as “QD”) have been attracting attention due to the feature that the emission wavelength can be freely controlled by controlling the size, and to the display device of the QD. Studies are underway for applications such as, and for applications that utilize the degree of freedom of the emission wavelength.
 近年、表示デバイスには、軽薄短小化が求められ、該表示デバイスを構成する、蛍光体粒子を有する発光層(波長変換層)等についても、薄膜化が求められている。しかしながら、このような発光層等を薄膜化すると、それに伴い、該層中の蛍光体量も減少するため所望の発光量を確保することが困難となっている。 In recent years, display devices have been required to be light and thin, and the light emitting layer (wavelength conversion layer) having phosphor particles that constitute the display device is also required to be thin. However, when such a light emitting layer or the like is thinned, the amount of phosphor in the layer is reduced accordingly, making it difficult to secure a desired light emission amount.
 このような問題に対し、例えば、特許文献1には、QDと、硫酸バリウム、二酸化チタン、ポリテトラフルオロエチレン、ケイ酸アルミニウムおよびイットリウム・アルミニウム・ガーネット(YAG)からなる群より選択される反射材料とを含む組成物が記載されている。 For such a problem, for example, Patent Document 1 discloses a reflective material selected from the group consisting of QD, barium sulfate, titanium dioxide, polytetrafluoroethylene, aluminum silicate, and yttrium aluminum garnet (YAG). And a composition comprising:
 また、前記波長変換層は、水分によりその特性が影響を受けることが知られており、このような影響を低減する方法として、例えば、波長変換層を密閉部材で封止したり、波長変換層の少なくとも一方にバリア層を設ける方法が開示されている(特許文献2および3)。 In addition, it is known that the characteristics of the wavelength conversion layer are affected by moisture. As a method for reducing such influence, for example, the wavelength conversion layer is sealed with a sealing member, or the wavelength conversion layer is used. A method of providing a barrier layer on at least one of these is disclosed (Patent Documents 2 and 3).
特表2015-522668号公報Special table 2015-522668 gazette 特開2012-4567号公報JP 2012-4567 A 国際公開第2016/75950号International Publication No. 2016/75950
 しかしながら、前記特許文献1に記載の組成物などの従来の組成物を用いた場合には、得られる層などにおける発光効率が十分ではなかった。
 本発明の一実施形態は、高い発光効率を有する膜や成形体を容易に形成することのできる組成物を提供する。
However, when a conventional composition such as the composition described in Patent Document 1 is used, the luminous efficiency in the resulting layer is not sufficient.
One embodiment of the present invention provides a composition capable of easily forming a film or a molded body having high luminous efficiency.
 また、前記特許文献2や3に記載の方法では、密閉部材やバリア層などの波長変換層以外の他の層を設ける必要があり、軽薄短小化が求められている、近年のデバイスに対する要求を満足することはできず、また、製造コストが増大するなどの点で改良の余地があった。
 本発明の一実施形態は、高い発光効率を有し、吸湿量が少ない波長変換層を提供する。
Further, in the methods described in Patent Documents 2 and 3, it is necessary to provide layers other than the wavelength conversion layer such as a sealing member and a barrier layer, and there is a demand for recent devices that are required to be light and thin. There was room for improvement in that it was not satisfactory and the manufacturing cost increased.
One embodiment of the present invention provides a wavelength conversion layer having high luminous efficiency and low moisture absorption.
 本発明者は前記課題を解決するため鋭意研究を行った結果、下記構成例によれば、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved according to the following configuration example, and has completed the present invention.
 [1] 蛍光体粒子(A)、中空粒子(B)および有機溶媒(C)を含み、
 蛍光体粒子(A)がInを含む、
蛍光体粒子含有組成物。
[1] including phosphor particles (A), hollow particles (B) and an organic solvent (C),
The phosphor particles (A) contain In,
Phosphor particle-containing composition.
 [2] 蛍光体粒子(A)、中空粒子(B)および有機溶媒(C)を含み、
 中空粒子(B)が、有機中空粒子である、
蛍光体粒子含有組成物。
[2] including phosphor particles (A), hollow particles (B) and an organic solvent (C),
The hollow particles (B) are organic hollow particles.
Phosphor particle-containing composition.
 [3] 前記中空粒子(B)のトルエン不溶分が90~100質量%である、[1]または[2]に記載の組成物。 [3] The composition according to [1] or [2], wherein the hollow particles (B) have a toluene insoluble content of 90 to 100% by mass.
 [4] 2官能以上の(メタ)アクリル酸エステルを含む、[1]~[3]のいずれかに記載の組成物。
 [5] バインダー樹脂を含む、[1]~[4]のいずれかに記載の組成物。
[4] The composition according to any one of [1] to [3], comprising a bifunctional or higher functional (meth) acrylic acid ester.
[5] The composition according to any one of [1] to [4], comprising a binder resin.
 [6] 前記中空粒子(B)の殻の平均膜厚が0.005~0.1μmである、[1]~[5]のいずれかに記載の組成物。 [6] The composition according to any one of [1] to [5], wherein an average film thickness of the shell of the hollow particles (B) is 0.005 to 0.1 μm.
 [7] 前記蛍光体粒子(A)が、InP/ZnS化合物、InP/ZnSe化合物、InP/ZnSe/ZnS化合物、InP/(ZnS/ZnSe)固溶体化合物、InP/ZnSeS化合物、CuInS2/ZnS化合物、AgInS2化合物、(ZnS/AgInS2)固溶体/ZnS化合物およびZnドープAgInS2化合物よりなる群から選ばれる少なくとも1種の量子ドットを含む、[1]~[6]のいずれかに記載の組成物。 [7] The phosphor particles (A) include an InP / ZnS compound, an InP / ZnSe compound, an InP / ZnSe / ZnS compound, an InP / (ZnS / ZnSe) solid solution compound, an InP / ZnSeS compound, a CuInS 2 / ZnS compound, The composition according to any one of [1] to [6], comprising at least one quantum dot selected from the group consisting of an AgInS 2 compound, a (ZnS / AgInS 2 ) solid solution / ZnS compound, and a Zn-doped AgInS 2 compound .
 [8] 前記有機溶媒(C)が、1,2-プロピレングリコール-1-メチルエーテル-2-アセテート、1,3-ブタンジオール-1-アセテート-3-メチルエーテル、3-メトキシブタノール、1,2-プロピレングリコール-1-メチルエーテル、1,2-プロピレングリコール-1-エチルエーテル、ジエチレングリコールモノプロピルエーテル、ジ(1,3-プロピレングリコール)-1-モノメチルエーテル、シクロヘキサノン、3-エトキシブタノール、3-ヒドロキシプロピオン酸-1-エチルエステル-3-エチルエーテル、3-ヒドロキシプロピオン酸-1-メチルエーテル-1-メチルエステル、ジエチレングリコールジメチルエーテルおよびジエチレングリコールメチルエチルエーテルよりなる群から選ばれる少なくとも1種である、[1]~[7]のいずれかに記載の組成物。 [8] The organic solvent (C) is 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, 3-methoxybutanol, 1, 2-propylene glycol-1-methyl ether, 1,2-propylene glycol-1-ethyl ether, diethylene glycol monopropyl ether, di (1,3-propylene glycol) -1-monomethyl ether, cyclohexanone, 3-ethoxybutanol, 3 Selected from the group consisting of -hydroxypropionic acid-1-ethyl ester-3-ethyl ether, 3-hydroxypropionic acid-1-methyl ether-1-methyl ester, diethylene glycol dimethyl ether and diethylene glycol methyl ethyl ether Even without a one composition according to any one of [1] to [7].
 [9] [1]~[8]のいずれかに記載の蛍光体粒子含有組成物を用いて形成された波長変換層。 [9] A wavelength conversion layer formed using the phosphor particle-containing composition according to any one of [1] to [8].
 [10] 吸湿量が0.01~3%である、[9]に記載の波長変換層。 [10] The wavelength conversion layer according to [9], wherein the moisture absorption is 0.01 to 3%.
 [11] 蛍光体粒子(A)および光拡散材(B')を含み、吸湿量が0.01~3%である、波長変換層。 [11] A wavelength conversion layer containing phosphor particles (A) and a light diffusing material (B ′) and having a moisture absorption of 0.01 to 3%.
 [12] JIS-K5600-5-1:1999に準拠した円筒形マンドレル法による耐屈曲性試験において、クラックが生じるマンドレルの直径(mm)と波長変換層の厚み(μm)との関係が以下の要件(i)または(ii)を満たす、[9]~[11]のいずれかに記載の波長変換層。
 要件(i):波長変換層の厚みが11.8μm以上の場合、下記式を満たす
 クラックが生じるマンドレルの直径(mm)/波長変換層の厚み(μm)≦0.17
 要件(ii):波長変換層の厚みが11.8μm未満の場合、直径が2mmであるマンドレルを用いても波長変換層にクラックが生じない
[12] In the bending resistance test by the cylindrical mandrel method according to JIS-K5600-5-1: 1999, the relationship between the diameter (mm) of the mandrel where the crack occurs and the thickness (μm) of the wavelength conversion layer is as follows. The wavelength conversion layer according to any one of [9] to [11], which satisfies the requirement (i) or (ii).
Requirement (i): When the thickness of the wavelength conversion layer is 11.8 μm or more, the diameter of the mandrel (mm) where the crack that satisfies the following formula is satisfied / the thickness of the wavelength conversion layer (μm) ≦ 0.17 is satisfied.
Requirement (ii): When the thickness of the wavelength conversion layer is less than 11.8 μm, no crack occurs in the wavelength conversion layer even when a mandrel having a diameter of 2 mm is used.
 [13] 波長520~560nmの範囲および波長600~700nmの範囲において、波長変換層の垂直方向から測定した場合のそれぞれの透過率の平均値が、共に70%以上である、[9]~[12]のいずれかに記載の波長変換層。 [13] In the wavelength range of 520 to 560 nm and the wavelength range of 600 to 700 nm, the average values of the respective transmittances when measured from the vertical direction of the wavelength conversion layer are both 70% or more, [9] to [9] 12]. The wavelength conversion layer according to any one of [12].
 [14] 蛍光体粒子(A)および得られる層において光拡散材(B')となる成分を用いて層を形成する工程を含む、
 [11]~[13]のいずれかに記載の波長変換層の製造方法。
[14] including a step of forming a layer using the phosphor particles (A) and a component that becomes the light diffusing material (B ′) in the resulting layer,
[11] The method for producing a wavelength conversion layer according to any one of [13].
 本発明の一実施形態によれば、毒性が低く、かつ、高い発光効率を有する膜、成形体および波長変換層(以下「膜等」ともいう。)を容易に形成することができ、さらには、高い発光効率を有し、かつ、加熱後等においても、その発光効率を維持できる、耐久性に優れる膜等を容易に形成することができる。
 特に、本発明の一実施形態によれば、前記のように、高い発光効率を有する膜等を形成できるため、膜等を薄肉化しても、また、膜等中の蛍光体粒子量を低減しても、蛍光体粒子に入射する光量が増した分発光量を確保することができる。
According to one embodiment of the present invention, a film, a molded product, and a wavelength conversion layer (hereinafter also referred to as “film etc.”) having low toxicity and high luminous efficiency can be easily formed. It is possible to easily form a film having high luminous efficiency and having excellent durability and capable of maintaining the luminous efficiency even after heating.
In particular, according to an embodiment of the present invention, as described above, a film having high luminous efficiency can be formed. Therefore, even if the film is thinned, the amount of phosphor particles in the film is reduced. However, it is possible to secure a light emission amount corresponding to an increase in the amount of light incident on the phosphor particles.
 また、本発明の一実施形態によれば、高い発光効率を有し、吸湿量が少ない波長変換層を容易に得ることができ、さらには、耐屈曲性にも優れる波長変換層を容易に得ることができる。 In addition, according to an embodiment of the present invention, a wavelength conversion layer having high luminous efficiency and low moisture absorption can be easily obtained, and furthermore, a wavelength conversion layer having excellent bending resistance can be easily obtained. be able to.
≪蛍光体粒子含有組成物≫
 本発明の一実施形態に係る蛍光体粒子含有組成物(以下「本組成物」ともいう。)は、蛍光体粒子(A)、中空粒子(B)および有機溶媒(C)を含み、
 蛍光体粒子(A)がInを含むことを特徴とする組成物A、または、
 中空粒子(B)が、有機中空粒子であることを特徴とする組成物Bである。
 このような本組成物は、前記効果を奏し、また、蛍光体粒子(A)としてQDを用いる場合、該QDは、高価な材料であることから、使用量をなるべく抑えたいが、発光量は確保したいという、2つのトレードオフの関係にある要求を同時に達成することができる。
≪Phosphor particle-containing composition≫
The phosphor particle-containing composition (hereinafter also referred to as “the present composition”) according to an embodiment of the present invention includes phosphor particles (A), hollow particles (B), and an organic solvent (C),
The composition A, wherein the phosphor particles (A) contain In, or
The hollow particle (B) is an organic hollow particle, which is a composition B.
Such a composition has the above-mentioned effects, and when QD is used as the phosphor particles (A), the QD is an expensive material. It is possible to simultaneously achieve two trade-off requirements that one wants to secure.
 本組成物によれば前記効果が得られる一因として、蛍光体粒子(A)、特に、QDの発光量は入射光量に依存するため、入射光量の増加が望まれるが、本組成物では、前記中空粒子(B)を用いるため、該粒子(B)の光拡散効果により、蛍光体粒子(A)に入射する光量を増加させることができ、さらに、該中空粒子(B)により、発光光を効率的に光拡散できることが考えられる。 According to the present composition, the phosphor particles (A), in particular, the QD emission amount depends on the incident light amount, so that the increase in the incident light amount is desired. Since the hollow particles (B) are used, the amount of light incident on the phosphor particles (A) can be increased by the light diffusing effect of the particles (B). Further, the hollow particles (B) can emit light. It is conceivable that the light can be diffused efficiently.
<蛍光体粒子(A)>
 前記組成物Bおよび下記本層に用いる蛍光体粒子(A)(以下「粒子(A1)」ともいう。)としては特に制限されず、従来公知の蛍光体の粒子を用いることができ、前記組成物Aに用いる蛍光体粒子(A)(以下「粒子(A2)」ともいう。)としてはInを含めば特に制限されず、従来公知の蛍光体の粒子を用いることができる。
 本組成物で用いられる粒子(A)は、1種でもよく、2種以上でもよい。
<Phosphor particles (A)>
The phosphor particles (A) (hereinafter also referred to as “particles (A1)”) used in the composition B and the following main layer are not particularly limited, and conventionally known phosphor particles can be used. The phosphor particles (A) used for the product A (hereinafter also referred to as “particles (A2)”) are not particularly limited as long as In is included, and conventionally known phosphor particles can be used.
The particle (A) used in the present composition may be one type or two or more types.
 粒子(A1)としては、例えば、LEDなどの発光装置の波長変換用に用いられる粒子が挙げられ、具体的には、(Sr,Ca)S:Eu、Y3(Al,Ga)512:Ce、(Y,Gd)3l512:Ce、CaGa24:Eu、(Ca,Sr)2Si58:Eu、SrSiO22:Eu、CaSiN2:Eu、Ca3Sc2Si312:Ce、CaGa24:Eu、2SiO4:Euなどからなる粒子が挙げられる。 Examples of the particles (A1) include particles used for wavelength conversion of light-emitting devices such as LEDs. Specifically, (Sr, Ca) S: Eu, Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd) 3 Al 5 O 12 : Ce, CaGa 2 S 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, SrSiO 2 N 2 : Eu, CaSiN 2 : Eu, Ca 3 sc 2 Si 3 O 12: Ce , CaGa 2 S 4: Eu, 2SiO 4: particles made of Eu and the like.
 粒子(A)の平均粒径は、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは1~1000nmであり、比表面積が増加し、蛍光特性が向上する点や、薄肉化した膜等により好適に用いることができるなどの点から、より好ましくは3~300nmである。 The average particle diameter of the particles (A) is preferably 1 to 1000 nm from the viewpoint that a film having high luminous efficiency can be easily obtained, and the specific surface area is increased to improve the fluorescence characteristics. The thickness is more preferably 3 to 300 nm from the viewpoint that it can be suitably used for a thin film.
 前記粒子(A)の中でも、粒子(A)としては、半導体原子が数百個以上集まった数10nm程度の小さな塊である、いわゆるQDであることが好ましく、半導体材料を用いて構成された半導体量子ドットであることがより好ましい。
 QDは、その大きさを変えることで電子のエネルギー状態を簡単に変えることができ、発光波長を自在に制御できる、既存の色素よりも高い光安定性(長寿命性)を有する、蛍光波長がシャープで波長の重なりが少ないため、多重染色に適している、吸収スペクトルが広くて連続的であるため、蛍光波長よりも短い波長であればあらゆる波長で励起が可能である、などの特徴を有するため好ましい。
Among the particles (A), the particle (A) is preferably a so-called QD which is a small lump of about several tens of nanometers in which several hundred or more semiconductor atoms are gathered, and is a semiconductor formed using a semiconductor material. More preferably, it is a quantum dot.
QD can easily change the energy state of electrons by changing its size, can freely control the emission wavelength, has higher photostability (long life) than existing dyes, has a fluorescence wavelength of Because it is sharp and has little overlapping of wavelengths, it is suitable for multiple staining, and it has a broad absorption spectrum and is continuous, so it can be excited at any wavelength shorter than the fluorescence wavelength. Therefore, it is preferable.
 QDとしては、光照射により、蛍光を発する粒子であれば特に制限されないが、2族元素、11族元素、12族元素、13族元素、14族元素、15族元素または16族元素を含むことが好ましい。 The QD is not particularly limited as long as it is a particle that emits fluorescence when irradiated with light, but includes a group 2 element, a group 11 element, a group 12 element, a group 13 element, a group 14 element, a group 15 element or a group 16 element. Is preferred.
 このような元素としては、具体的には、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Cu(銅)、Ag(銀)、金(Au)、亜鉛(Zn)、Cd(カドミウム)、Hg(水銀)、B(ホウ素)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Tl(タリウム)、C(炭素)、Si(珪素)、Ge(ゲルマニウム)、Sn(錫)、Pb(鉛)、N(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、Bi(ビスマス)、O(酸素)、S(硫黄)、Se(セレン)、Te(テルル)、Po(ポロニウム)が挙げられる。これらの中でも、低毒性であり、安全で、優れた発光特性を有する膜を容易に形成できる等の点から、Inを構成元素として含むQDが好ましい。 Specific examples of such elements include Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Cu (copper), Ag (silver), and gold (Au ), Zinc (Zn), Cd (cadmium), Hg (mercury), B (boron), Al (aluminum), Ga (gallium), In (indium), Tl (thallium), C (carbon), Si (silicon) ), Ge (germanium), Sn (tin), Pb (lead), N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), O (oxygen), S (sulfur) ), Se (selenium), Te (tellurium), Po (polonium). Among these, QD containing In as a constituent element is preferable from the viewpoint that it is low toxic, safe, and can easily form a film having excellent light emission characteristics.
 また、QDとしては、前記元素から選ばれる少なくとも2種以上の元素を含むことがより好ましく、例えば、II-VI族半導体化合物、III-V族半導体化合物、IV-VI族半導体化合物、IV族元素またはこれを含む化合物、およびこれらの組合せ等を含むことがより好ましい。 The QD more preferably contains at least two elements selected from the above elements. For example, a group II-VI semiconductor compound, a group III-V semiconductor compound, a group IV-VI semiconductor compound, a group IV element Or it is more preferable that the compound containing this, the combination of these, etc. are included.
 粒子(A1)として用いることのできる前記II-VI族半導体化合物としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTeおよびこれらの混合物からなる群より選択される二元化合物;CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTeおよびこれらの混合物からなる群より選択される三元化合物;ならびに、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTeおよびこれらの混合物からなる群より選択される四元化合物等が挙げられる。 The II-VI group semiconductor compound that can be used as the particles (A1) is selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, and mixtures thereof. Original compound: CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, H Original compounds; and CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnST And quaternary compounds selected from the group consisting of mixtures thereof.
 粒子(A1)や(A2)として用いることのできる前記III-V族半導体化合物としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSbおよびこれらの混合物からなる群より選択される二元化合物;GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSbおよびこれらの混合物からなる群より選択される三元化合物;ならびに、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSbおよびこれらの混合物からなる群より選択される四元化合物等が挙げられる。 Examples of the group III-V semiconductor compound that can be used as the particles (A1) and (A2) include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and mixtures thereof. A binary compound selected from the group consisting of: selected from the group consisting of GNP, GNAs, GNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb and mixtures thereof As well as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlN s, InAlNSb, InAlPAs, InAlPSb and quaternary compounds selected from the group consisting of mixtures thereof.
 粒子(A1)として用いることのできる前記IV-VI族半導体化合物としては、SnS、SnSe、SnTe、PbS、PbSe、PbTeおよびこれらの混合物からなる群より選択される二元化合物;SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTeおよびこれらの混合物からなる群より選択される三元化合物;ならびに、SnPbSSe、SnPbSeTe、SnPbSTeおよびこれらの混合物からなる群より選択される四元化合物等が挙げられる。 Examples of the IV-VI group semiconductor compound that can be used as the particles (A1) include binary compounds selected from the group consisting of SnS, SnSe, SnTe, PbS, PbSe, PbTe, and mixtures thereof; SnSeS, SnSeTe, SnSTe Ternary compounds selected from the group consisting of PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe and mixtures thereof; and quaternary compounds selected from the group consisting of SnPbSSSe, SnPbSeTe, SnPbSTe and mixtures thereof, etc. Can be mentioned.
 粒子(A1)として用いることのできる前記IV族元素またはこれを含む化合物としては、Si、Geおよびこれらの混合物からなる群より選択される元素化合物;ならびに、SiC、SiGeおよびこれらの混合物からなる群より選択される二元化合物等が挙げられる。 The group IV element that can be used as the particles (A1) or a compound containing the same is selected from the group consisting of Si, Ge and mixtures thereof; and the group consisting of SiC, SiGe and mixtures thereof Binary compounds selected from the above.
 QDとしては、安全で、優れた発光特性を有する膜を容易に形成できる等の点から、CdやPbを構成元素とせず、例えばInやSi等を構成元素とするQD、特にInを構成元素として含むQDが好ましい。
 従来は、発光効率に優れる層等が得られるなどの点から、Cdを含む蛍光体粒子が用いられてきたが、近年の安全性への要求の高まりにより、毒性のあるCdを含む蛍光体粒子を用いないことが要求されている。しかしながら、例えば、Inを含む蛍光体粒子は、Cdを含む蛍光体粒子を用いた場合に比べ、得られる膜等の発光効率が低くなる傾向にあることが分かった。このような問題に対し本発明者が鋭意検討したところ、前記組成物Aによれば、低毒性でありながらも、従来と同程度または従来以上の発光効率を有する膜等を得ることができることを見出した。
QD is a QD that does not use Cd or Pb as a constituent element, for example, In or Si, etc., particularly In. QD contained as is preferred.
Conventionally, phosphor particles containing Cd have been used from the standpoint that a layer having excellent luminous efficiency can be obtained. However, due to the recent increase in safety requirements, phosphor particles containing toxic Cd. Is not required. However, for example, it has been found that phosphor particles containing In tend to have lower luminous efficiency of the resulting film or the like than phosphor particles containing Cd. As a result of intensive studies by the present inventor on such problems, it is found that according to the composition A, a film having a luminous efficiency comparable to or higher than that of the conventional film can be obtained while having low toxicity. I found it.
 また、QDは、490~600nm、特に520~560nmの波長領域に蛍光極大を有する化合物(a)および/または600~750nm、特に600~700nmの波長領域に蛍光極大を有する化合物(b)を含むことが好ましい。
 QDが前記化合物(a)および/または化合物(b)を含むことで、本組成物は、光源からの光を効率よく波長変換して用いるデバイス、例えば、可視光を用いて画像の表示を行う発光表示素子の発光層、LEDや蛍光灯照明の色調調整層、太陽光発電パネルの受光変換層などを形成するための組成物として好適に用いることができる。
QD includes a compound (a) having a fluorescence maximum in a wavelength region of 490 to 600 nm, particularly 520 to 560 nm and / or a compound (b) having a fluorescence maximum in a wavelength region of 600 to 750 nm, particularly 600 to 700 nm. It is preferable.
When the QD contains the compound (a) and / or the compound (b), the present composition displays an image using a device that efficiently converts the wavelength of light from a light source, for example, visible light. It can be suitably used as a composition for forming a light emitting layer of a light emitting display element, a color tone adjusting layer of LED or fluorescent lamp illumination, a light receiving conversion layer of a photovoltaic power generation panel, and the like.
 QDの構造は特に制限されないが、2種以上の化合物からなるコアシェル構造型であってもよいし、AgInS2およびZnドープAgInS2などの1種の化合物からなる均質構造型であってもよいが、コアシェル構造型であることが好ましい。
 コアシェル構造型のQDでは、例えば、バンドギャップのより大きい半導体を用いてコアの半導体を被覆することにより、光励起によって生じる励起子(電子-正孔対)をコア内に閉じ込めることができる。その結果、コアシェル構造型のQDを用いることで、QD表面での無輻射遷移の確率が減少し、発光効率が高く、発光特性の安定性(長寿命性)に優れる膜等を容易に得るこができる。
The structure of QD is not particularly limited, but may be a core-shell structure type composed of two or more compounds, or a homogeneous structure type composed of one compound such as AgInS 2 and Zn-doped AgInS 2. The core-shell structure type is preferable.
In the core-shell structure type QD, for example, by covering a core semiconductor with a semiconductor having a larger band gap, excitons (electron-hole pairs) generated by photoexcitation can be confined in the core. As a result, by using the core-shell structure type QD, the probability of non-radiative transition on the surface of the QD is reduced, and a film having high luminous efficiency and excellent stability of light emission characteristics (long life) can be easily obtained. Can do.
 コアシェル構造型のQDにおけるコアの材料としては、特に制限されないが、InP、CuInS2、(ZnS/AgInS2)固溶体、CdSe、CdS、ZnS、ZnSe、CdTe、CdSeTe、CdZnS、PbSe、AgInS2、AgInZnSおよびZnO等から選択される1種または2種以上が挙げられる。これらの中でも、低毒性であり、安全で、優れた発光特性を有する膜を容易に形成できる等の点から、Inを含むコア材料が好ましい。 The core material in the core-shell structure type QD is not particularly limited, but InP, CuInS 2 , (ZnS / AgInS 2 ) solid solution, CdSe, CdS, ZnS, ZnSe, CdTe, CdSeTe, CdZnS, PbSe, AgInZn 2 , AgInZnS And one or more selected from ZnO and the like. Among these, a core material containing In is preferable because it is low in toxicity, safe, and can easily form a film having excellent light emission characteristics.
 コアシェル構造型のQDにおけるシェルの材料としては、特に制限されないが、CdSe、ZnSe、ZnS、(ZnS/ZnSe)固溶体、ZnSeS、ZnTe、CdTe、PbS、TiO、SrSeおよびHgSe等から選択される1種または2種以上が挙げられる。 The material of the shell in the core-shell structure type QD is not particularly limited, but one type selected from CdSe, ZnSe, ZnS, (ZnS / ZnSe) solid solution, ZnSeS, ZnTe, CdTe, PbS, TiO, SrSe, and HgSe. Or 2 or more types are mentioned.
 コアシェル構造型のQDとしては、具体的には、InP/ZnS化合物、InP/ZnSe化合物、InP/ZnSe/ZnS化合物、InP/(ZnS/ZnSe)固溶体化合物、InP/ZnSeS化合物、CuInS2/ZnS化合物および(ZnS/AgInS2)固溶体/ZnS化合物が好ましく、InP/ZnSおよびInP/ZnSe/ZnS化合物がより好ましい。
 InP/ZnSe/ZnS化合物等において、ZnSeはInPとの格子定数の差がZnSより小さいため、ZnSeを中間層として設けることで、コアシェル構造に欠陥が生じることを抑制することができる。
 なお、InP/ZnSは、InPをコアとし、ZnSをシェルとするQDである。その他のコアシェル構造型のQDも同様である。
Specific examples of the core-shell structure type QD include InP / ZnS compounds, InP / ZnSe compounds, InP / ZnSe / ZnS compounds, InP / (ZnS / ZnSe) solid solution compounds, InP / ZnSeS compounds, and CuInS 2 / ZnS compounds. And (ZnS / AgInS 2 ) solid solution / ZnS compounds are preferred, and InP / ZnS and InP / ZnSe / ZnS compounds are more preferred.
In an InP / ZnSe / ZnS compound or the like, since ZnSe has a smaller lattice constant difference than InP, ZnS can be prevented from causing defects in the core-shell structure by providing ZnSe as an intermediate layer.
InP / ZnS is QD with InP as the core and ZnS as the shell. The same applies to other core-shell structure type QDs.
 粒子(A)としては、前記効果がより容易に発揮される等の点から、InP/ZnS化合物、InP/ZnSe化合物、InP/ZnSe/ZnS化合物、InP/(ZnS/ZnSe)固溶体化合物、InP/ZnSeS化合物、CuInS2/ZnS化合物、AgInS2化合物、(ZnS/AgInS2)固溶体/ZnS化合物およびZnドープAgInS2化合物が好ましい。 As the particles (A), the InP / ZnS compound, InP / ZnSe compound, InP / ZnSe / ZnS compound, InP / (ZnS / ZnSe) solid solution compound, InP / ZnSeS compounds, CuInS 2 / ZnS compounds, AgInS 2 compounds, (ZnS / AgInS 2 ) solid solution / ZnS compounds and Zn-doped AgInS 2 compounds are preferred.
 QDは、従来公知の方法で合成して得てもよく、市販品を用いてもよい。
 QDの合成方法としては特に制限されないが、例えば、コアシェル構造型のQDは、例えば、コアを合成した後、得られた反応系内にシェルを形成するための前駆体を添加し、コア表面にシェルを形成することで得ることができる。
 また、コアシェル構造型のQDであるInP/ZnSは、例えば、「Chem. Mater., 2015, 27 (13), pp 4893-4898」に記載されている方法等を参照して合成することもできる。
QD may be obtained by synthesis by a conventionally known method, or a commercially available product may be used.
The QD synthesis method is not particularly limited. For example, in the core-shell structure type QD, for example, after synthesizing the core, a precursor for forming a shell in the obtained reaction system is added to the core surface. It can be obtained by forming a shell.
InP / ZnS, which is a core-shell structure type QD, can also be synthesized by referring to the method described in “Chem. Mater., 2015, 27 (13), pp 4893-4898”, for example. .
 なお、従来公知の方法で得られるQDは、通常、InP/ZnS等の無機分と、これを安定化している有機分とからなる粒子である。 In addition, QD obtained by a conventionally known method is usually a particle composed of an inorganic component such as InP / ZnS and an organic component stabilizing the component.
 QDの平均粒径は、所望の蛍光波長に応じて適宜選択すればよいが、容易に合成することができ、特に、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは2~10nmであり、可視光域に蛍光ピーク波長を有する粒子を容易に得ることができるなどの点から、より好ましくは2~8nmである。
 このような平均粒径のQDは、例えば、QDを合成する際の反応温度や反応時間等を調整することで得られる。
 なお、前記QDの平均粒径は、透過型電子顕微鏡観察により測定される。
The average particle diameter of QD may be appropriately selected according to the desired fluorescence wavelength, but can be easily synthesized, and in particular, a film having high luminous efficiency can be easily obtained. The thickness is preferably 2 to 10 nm, and more preferably 2 to 8 nm from the viewpoint that particles having a fluorescence peak wavelength in the visible light range can be easily obtained.
The QD having such an average particle diameter can be obtained, for example, by adjusting the reaction temperature, reaction time, etc. when synthesizing QD.
The average particle diameter of the QD is measured by observation with a transmission electron microscope.
 粒子(A)の最大蛍光波長(蛍光スペクトルにおけるピークトップにおける波長)は、好ましくは350~800nmであり、より好ましくは490~750nm、または、520~560nmおよび600~700nmである。
 このような粒子(A)を含む膜等を用いることで、表示品位に優れるデバイスを容易に得ることができる。
The maximum fluorescence wavelength (wavelength at the peak top in the fluorescence spectrum) of the particles (A) is preferably 350 to 800 nm, more preferably 490 to 750 nm, or 520 to 560 nm and 600 to 700 nm.
By using a film containing such particles (A), a device having excellent display quality can be easily obtained.
 粒子(A)の半値幅(蛍光スペクトルにおけるピークトップを有するピークの半分の高さにおける幅)は、蛍光波長がシャープで波長の重なりが少なく、多重染色に適している等の点から、好ましくは30~80nmであり、より好ましくは30~60nmである。
 前記最大蛍光波長および半値幅は、具体的には、下記実施例に記載の方法で測定される。
The half width of the particle (A) (width at half height of the peak having a peak top in the fluorescence spectrum) is preferably from the viewpoint that the fluorescence wavelength is sharp, the wavelength overlap is small, and suitable for multiple staining. It is 30 to 80 nm, and more preferably 30 to 60 nm.
Specifically, the maximum fluorescence wavelength and the full width at half maximum are measured by the methods described in Examples below.
 本組成物中の固形分に対する粒子(A)の含量は、少ない量の粒子(A)の使用で、粒子(A)に入射する光量が増した分発光量を確保することができ、薄肉化した膜等により好適に用いることができるなどの点から、好ましくは0.1~30質量%、より好ましくは1~30質量%、さらに好ましくは2~25質量%、特に好ましくは5~20質量%である。 The content of the particles (A) with respect to the solid content in the composition can secure a light emission amount by increasing the amount of light incident on the particles (A) by using a small amount of the particles (A), and reducing the thickness. From the standpoint that it can be suitably used for a coated film, etc., it is preferably 0.1 to 30% by mass, more preferably 1 to 30% by mass, further preferably 2 to 25% by mass, and particularly preferably 5 to 20% by mass. %.
 粒子(A)の含有量は、粒子(B)100質量部に対し、好ましくは10~6000質量部、より好ましくは10~300質量部、さらに好ましくは20~300質量部、より好ましくは20~200質量部、特に好ましくは50~200質量部である。
 粒子(A)の含有量が前記範囲にあることで、高温高湿などの過酷な環境下であっても、発光効率などの物性や形状等が変化し難い膜等を容易に得ることができる。また、粒子(A)の含有量が前記範囲にあっても、粒子(A)に入射する光量が増した分発光量を確保することができるため、粒子(A)の含有量が前記範囲にあることで、コストと発光量の要求を同時に満足できる。
 なお、粒子(A)の含有量が多すぎると、得られる膜等の透過率が低下する傾向にあり、含有量が少なすぎると、得られる膜等の発光量が少なすぎる傾向にある。
The content of the particles (A) is preferably 10 to 6000 parts by mass, more preferably 10 to 300 parts by mass, further preferably 20 to 300 parts by mass, and more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the particles (B). 200 parts by mass, particularly preferably 50 to 200 parts by mass.
When the content of the particles (A) is in the above range, a film or the like in which physical properties such as light emission efficiency and shape are hardly changed even in a severe environment such as high temperature and high humidity can be easily obtained. . Moreover, even if the content of the particles (A) is in the above range, the amount of light emitted by the amount of light incident on the particles (A) can be secured, so the content of the particles (A) is in the above range. As a result, the requirements of the cost and the amount of light emission can be satisfied simultaneously.
In addition, when there is too much content of particle | grains (A), it exists in the tendency for the transmittance | permeability of the film | membrane etc. which are obtained to fall, and when there is too little content, it exists in the tendency for light emission amounts, such as a film | membrane obtained, to be too little.
<中空粒子(B)>
 前記組成物Aに用いる中空粒子(B)(以下「粒子(B1)」ともいう。)としては、内部に空孔を有していれば特に制限されず、前記組成物Bに用いる中空粒子(B)(以下「粒子(B2)」ともいう。)としては、内部に空孔を有している有機中空粒子であれば特に制限されない。
 このような粒子(B)を用いることで、粒子(A)に入射する光量を増加させることができ、さらに、粒子(A)からの発光光を効率的に光拡散することができるため、高い発光効率を有する膜等を容易に得ることができ、膜等を薄肉化しても、また、膜等中の蛍光体粒子量を低減しても、粒子(A)に入射する光量が増した分発光量を確保することができる。さらに、粒子(B)を用いることで、耐屈曲性に優れる膜等を容易に得ることができる。
 本組成物で用いられる粒子(B)は、1種でもよく、2種以上でもよい。
<Hollow particles (B)>
The hollow particles (B) used in the composition A (hereinafter also referred to as “particles (B1)”) are not particularly limited as long as they have pores therein, and the hollow particles used in the composition B ( B) (hereinafter also referred to as “particle (B2)”) is not particularly limited as long as it is an organic hollow particle having pores therein.
By using such particles (B), the amount of light incident on the particles (A) can be increased, and further, the emitted light from the particles (A) can be efficiently diffused, which is high. A film having luminous efficiency can be easily obtained. Even if the film is thinned or the amount of phosphor particles in the film is reduced, the amount of light incident on the particles (A) is increased. A light emission amount can be secured. Furthermore, the film | membrane etc. which are excellent in bending resistance can be easily obtained by using particle | grains (B).
The particle (B) used in the present composition may be one type or two or more types.
 粒子(B1)としては特に制限されず、無機中空粒子であってもよく、有機中空粒子であってもよいが、有機中空粒子であることが好ましい。
 粒子(B)は他の有機成分(有機溶媒(C)や必要に用いられるバインダー等)と混合し、組成物として均一な分散状態を保持していることが好ましく、均一な分散状態を保持する組成物を容易に得ることができる等の点から、有機中空粒子が好ましい。さらに、有機中空粒子は、本組成物中の他の構成材料に合わせて分子設計-合成といった調整自由度が高いことからも好ましい。また、高いトルエン不溶分(90質量%以上)の有機中空粒子は、無機中空粒子と同程度の硬度を有するため、前記特徴を備えたうえで、熱応力などによる変形を受けた際の空隙保持性にも優れる。
The particles (B1) are not particularly limited and may be inorganic hollow particles or organic hollow particles, but organic hollow particles are preferable.
The particles (B) are preferably mixed with other organic components (such as an organic solvent (C) and a binder used as necessary) to maintain a uniform dispersed state as a composition, and maintain a uniform dispersed state. From the standpoint that the composition can be easily obtained, organic hollow particles are preferred. Furthermore, the organic hollow particles are preferable because they have a high degree of freedom in adjustment such as molecular design and synthesis in accordance with other constituent materials in the composition. In addition, organic hollow particles having a high toluene insoluble content (90% by mass or more) have the same degree of hardness as inorganic hollow particles, and therefore have the above characteristics and retain voids when subjected to deformation due to thermal stress or the like. Excellent in properties.
 前記無機中空粒子としては特に制限されず、Al23、SiO2、ZnO、ZrO2、TiO2、ITO、ATO、SnO、CeO2、CaCO3およびポリオルガノシロキサン系化合物などからなる無機粒子等が挙げられ、吸湿性が低く、有機溶媒中への分散性に優れる粒子となる等の点から、その表面の少なくとも一部を表面処理、特に疎水化処理した粒子であることが好ましい。
 このような無機中空粒子としては、市販品を用いてもよく、従来公知の方法、例えば、特許第5078620号公報に記載の方法で合成して得てもよい。
The inorganic hollow particles are not particularly limited, and inorganic particles composed of Al 2 O 3 , SiO 2 , ZnO, ZrO 2 , TiO 2 , ITO, ATO, SnO, CeO 2 , CaCO 3 , polyorganosiloxane compounds, and the like From the standpoint of particles having low hygroscopicity and excellent dispersibility in an organic solvent, particles obtained by subjecting at least a part of the surface to surface treatment, particularly hydrophobic treatment, are preferable.
As such inorganic hollow particles, commercially available products may be used, or they may be synthesized by a conventionally known method, for example, the method described in Japanese Patent No. 5078620.
 前記有機中空粒子としては特に制限されず、アクリル系またはスチレン系などの有機架橋粒子等が挙げられる。
 このような有機中空粒子としては、市販品を用いてもよく、従来公知の方法、例えば、特開昭62-127336号公報、特開平01-315454号公報、特開平04-126771号公報、特開2002-241448号公報、特開2007-112935号公報、特許第5439102号公報に記載の方法で合成して得てもよい。
The organic hollow particles are not particularly limited, and examples thereof include organic crosslinked particles such as acrylic or styrene.
As such organic hollow particles, commercially available products may be used, and conventionally known methods such as JP-A-62-2127336, JP-A-01-315454, JP-A-4-126771, They may be synthesized by the methods described in JP-A No. 2002-241448, JP-A No. 2007-112935, and Japanese Patent No. 5439102.
 前記有機中空粒子としては、光拡散性が高く、耐有機溶媒性および形状保持性に優れる粒子が得られ、長期安定性に優れる本組成物が得られ、さらに、高い発光効率を有する膜等を容易に得ることができるなどの点から、下記方法、具体的には、特許第4843850号公報に記載の方法で得られる架橋中空ポリマー粒子であることが好ましい。 As the organic hollow particles, particles having high light diffusibility, excellent organic solvent resistance and shape retention are obtained, the present composition having excellent long-term stability is obtained, and a film having high luminous efficiency is further obtained. From the viewpoint that it can be easily obtained, crosslinked hollow polymer particles obtained by the following method, specifically, the method described in Japanese Patent No. 4844850 are preferred.
 (方法)
 下記重合性モノマー(α)を水性媒体中で乳化重合させて第1ポリマー粒子の分散体を調製し、次いで、第1ポリマー粒子の表層を下記重合性モノマー(β)に由来する第2ポリマーと未反応の重合性モノマー(β)とを含むシェル層で被覆させたコアシェル粒子分散体を調製し、次いで、コアシェル粒子分散体のpHを、アンモニア等の揮発性塩基によって7以上(25℃換算値)に調整し、コアシェル粒子を中和膨潤させて、架橋中空ポリマー粒子(水分散体)を調製する方法。
(Method)
The following polymerizable monomer (α) is emulsion-polymerized in an aqueous medium to prepare a dispersion of first polymer particles, and then the surface layer of the first polymer particles is a second polymer derived from the following polymerizable monomer (β) and A core-shell particle dispersion coated with a shell layer containing an unreacted polymerizable monomer (β) is prepared, and then the pH of the core-shell particle dispersion is set to 7 or more (25 ° C. converted value) with a volatile base such as ammonia. ) And neutralizing and swelling the core-shell particles to prepare crosslinked hollow polymer particles (aqueous dispersion).
 前記重合性モノマー(α)は、不飽和カルボン酸(α-1)およびラジカル重合性モノマー(α-2)等を用いる。 As the polymerizable monomer (α), an unsaturated carboxylic acid (α-1), a radical polymerizable monomer (α-2), or the like is used.
 不飽和カルボン酸(α-1)としては、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノまたはジカルボン酸、前記ジカルボン酸の酸無水物等が挙げられる。 Examples of the unsaturated carboxylic acid (α-1) include mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid, and acid anhydrides of the dicarboxylic acid.
 前記モノマー(α-2)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどの不飽和カルボン酸エステル、スチレン、α-メチルスチレンなどの芳香族モノマー、(メタ)アクリロニトリル、酢酸ビニル、N,N-ジメチル(メタ)アクリルアミド等が挙げられる。 Examples of the monomer (α-2) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like, styrene , Aromatic monomers such as α-methylstyrene, (meth) acrylonitrile, vinyl acetate, N, N-dimethyl (meth) acrylamide and the like.
 前記コアシェル粒子分散体を調製する方法については、具体的には、以下の方法に基づいて行うことができる。
 前記第1ポリマー粒子5~1000質量部の存在下で、重合性モノマー(β)100質量部を水性溶媒中で乳化重合させて、第1ポリマー粒子の表層を第2重合性モノマー(β)に由来する第2ポリマーと未反応の重合性モノマー(β)とを含むシェル層で被覆する方法。
The method for preparing the core-shell particle dispersion can be specifically performed based on the following method.
In the presence of 5 to 1000 parts by mass of the first polymer particles, 100 parts by mass of the polymerizable monomer (β) is emulsion-polymerized in an aqueous solvent, and the surface layer of the first polymer particles is converted into the second polymerizable monomer (β). A method of coating with a shell layer containing the derived second polymer and an unreacted polymerizable monomer (β).
 前記重合性モノマー(β)は、10~80質量%の架橋性ラジカル重合性モノマー(β-1)、0~20質量%の不飽和カルボン酸(β-2)、および、0~90質量%のモノマー(β-1)と共重合可能な他のラジカル重合性モノマー(β-3)を用いる。 The polymerizable monomer (β) is 10 to 80% by mass of a crosslinkable radical polymerizable monomer (β-1), 0 to 20% by mass of an unsaturated carboxylic acid (β-2), and 0 to 90% by mass. The other radical polymerizable monomer (β-3) copolymerizable with the monomer (β-1) is used.
 前記モノマー(β-1)としては、ジビニルベンゼン、トリビニルベンゼン、ジシクロペンタジエン、ブタジエン、イソプレン、エチレングリコールジ(メタ)アクリレートなどの多価エチレン性化合物等が挙げられる。 Examples of the monomer (β-1) include polyethylenic compounds such as divinylbenzene, trivinylbenzene, dicyclopentadiene, butadiene, isoprene, and ethylene glycol di (meth) acrylate.
 前記モノマー(β-2)としては、前述の不飽和カルボン酸(α-1)と同様の化合物等が挙げられ、中でも、得られる粒子の安定性等の点から、(メタ)アクリル酸、イタコン酸等が好ましい。 Examples of the monomer (β-2) include the same compounds as the unsaturated carboxylic acid (α-1) described above. Among them, (meth) acrylic acid, itacone is preferable from the viewpoint of the stability of the obtained particles. An acid or the like is preferable.
 前記モノマー(β-3)としては、スチレン、α-メチルスチレンなどのモノエチレン性芳香族化合物、前述の(α-2)における不飽和カルボン酸エステルと同様の化合物、ステアリル(メタ)アクリレート、ドデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどの不飽和カルボン酸エステル、(メタ)アクリロニトリル、酢酸ビニル、N,N-ジメチル(メタ)アクリルアミドなどの非架橋性ラジカル重合性モノマー等が挙げられ、中でも、スチレン等のモノエチレン性芳香族化合物が好ましい。 Examples of the monomer (β-3) include monoethylenic aromatic compounds such as styrene and α-methylstyrene, compounds similar to the unsaturated carboxylic acid ester in the above (α-2), stearyl (meth) acrylate, dodecyl Non-crosslinking radically polymerizable monomers such as unsaturated carboxylic acid esters such as (meth) acrylate and 2-ethylhexyl (meth) acrylate, (meth) acrylonitrile, vinyl acetate and N, N-dimethyl (meth) acrylamide Of these, monoethylenic aromatic compounds such as styrene are preferred.
 粒子(B)は、その表面に、カルボキシ基、チオール基またはアミノ基等を有していると、粒子(A)、特に、QDとの相互作用が高まり、安定性に優れる本組成物を容易に得ることができ、さらに、QDの蛍光量子収率を低下させる原因となる酸素、水分、残存モノマー等がその表面に付着することを抑制できると考えられる。
 このような表面を有する粒子(B)は、前記重合性モノマー(β)として、カルボキシ基、チオール基またはアミノ基等を有するモノマーを用い、これらの基を有する粒子を合成してもよいし、市販品や前記(従来公知の)方法で得られた粒子の表面を、これらの基を有する化合物を用い、従来公知の方法で表面処理してもよい。
When the particle (B) has a carboxy group, a thiol group, an amino group or the like on its surface, the interaction with the particle (A), in particular, QD is increased, and this composition having excellent stability can be easily obtained. Further, it is considered that oxygen, moisture, residual monomers and the like that cause a decrease in QD fluorescence quantum yield can be prevented from adhering to the surface.
The particles (B) having such a surface may synthesize particles having these groups using a monomer having a carboxy group, a thiol group or an amino group as the polymerizable monomer (β), You may surface-treat the surface of the particle | grains obtained by the commercial item or the said (previously well-known) method by the conventionally well-known method using the compound which has these groups.
 粒子(B)の内部には、空隙を有するが、該空隙の数は複数であってもよいが、好ましくは1つであり、略中心に1つの空隙を有することがより好ましい。 Particles (B) have voids inside, but the number of voids may be plural, but is preferably one, and more preferably has one void at the approximate center.
 粒子(B)の平均粒径(外径)は、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは0.02~5μm、より好ましくは0.02~3μmであり、薄肉化した膜等により好適に用いることができるなどの点から、好ましくは0.1~2μm、より好ましくは0.1~1μm、さらに好ましくは0.3~1μm、特に好ましくは0.3~0.5μmである。 The average particle diameter (outer diameter) of the particles (B) is preferably 0.02 to 5 μm, more preferably 0.02 to 3 μm from the viewpoint that a film having high luminous efficiency can be easily obtained. From the point that it can be suitably used for a thinned film or the like, it is preferably 0.1 to 2 μm, more preferably 0.1 to 1 μm, still more preferably 0.3 to 1 μm, and particularly preferably 0.8. 3 to 0.5 μm.
 粒子(B)中に含まれる最大の空隙の直径(内径)は、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは0.01μm以上であり、より好ましくは0.02~2μmである。
 なお、粒子(B)が1つの空隙を有する場合は、下記実施例に記載の方法で内径を測定するが、粒子(B)が複数の空隙を有する場合には、TEM写真における粒子の空隙部の合計面積を求め、この面積を有する1つの空隙を有する粒子であるとみなして、該空隙の直径(内径)を求める。
The diameter (inner diameter) of the largest void contained in the particles (B) is preferably 0.01 μm or more, more preferably 0 from the viewpoint that a film having high luminous efficiency can be easily obtained. 0.02 to 2 μm.
When the particle (B) has one void, the inner diameter is measured by the method described in the following example, but when the particle (B) has a plurality of voids, the void portion of the particle in the TEM photograph And the diameter (inner diameter) of the void is obtained by regarding the particle as one particle having one void having this area.
 粒子(B)の粒子径変動係数(CV=標準偏差/外径)は、均一な発光特性を有する膜等を、高い生産性で容易に得ることができる等の点から、好ましくは10%以下であり、より好ましくは5%以下であり、さらに好ましくは3%以下である。なお、CV値は、小さいほど好ましいため、その下限は、特に制限されないが、例えば、1%である。 The particle diameter variation coefficient (CV = standard deviation / outer diameter) of the particles (B) is preferably 10% or less from the viewpoint that a film having uniform light emission characteristics can be easily obtained with high productivity. More preferably, it is 5% or less, and more preferably 3% or less. In addition, since a CV value is so preferable that it is small, the minimum in particular is not restrict | limited, For example, it is 1%.
 粒子(B)の殻の平均膜厚(空隙を取り囲む物質の平均膜厚)は、光拡散性が高く、耐有機溶媒性および形状保持性に優れる粒子が得られ、高い発光効率を有し、しかも、その発光効率を長期にわたり維持できる膜等を容易に得ることができるなどの点から、好ましくは0.005~0.1μmであり、より好ましくは0.01~0.1μmである。
 粒子の殻とは、該粒子を切断した時に、切断面において、内部空隙以外の部分のことをいう。
 なお、粒子(B)が1つの空隙を有する場合は、下記実施例に記載の方法で殻の平均膜厚を測定するが、粒子(B)が複数の空隙を有する場合には、TEM写真における粒子の空隙部の合計面積を求め、この面積を有する1つの空隙を有する粒子であるとみなして、該空隙の直径(内径)を求めた後、下記実施例に記載の方法で測定した外径と該内径との差から、殻の平均膜厚を算出する。
The average film thickness of the shell of the particles (B) (average film thickness of the substance surrounding the void) is high in light diffusibility, and particles excellent in organic solvent resistance and shape retention are obtained, and have high luminous efficiency. Moreover, the thickness is preferably 0.005 to 0.1 μm, more preferably 0.01 to 0.1 μm, from the viewpoint that a film that can maintain the luminous efficiency for a long time can be easily obtained.
The particle shell refers to a portion other than the internal void in the cut surface when the particle is cut.
In addition, when the particle (B) has one void, the average film thickness of the shell is measured by the method described in the following example, but when the particle (B) has a plurality of voids, After determining the total area of the voids of the particles, assuming that the particles have one void having this area, and determining the diameter (inner diameter) of the voids, the outer diameter measured by the method described in the examples below The average film thickness of the shell is calculated from the difference between this and the inner diameter.
 粒子(B)の殻の厚さ/外径の値は、空隙の保持安定性等の点から、好ましくは0.05~1であり、より好ましくは0.1~0.3である。 The value of the shell thickness / outer diameter of the particles (B) is preferably 0.05 to 1 and more preferably 0.1 to 0.3 from the viewpoint of retention stability of voids.
 粒子(B)の空隙率は、光拡散性の高い粒子が得られ、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは4~70%、より好ましくは40~65%、さらに好ましくは40~60%である。 The porosity of the particles (B) is preferably 4 to 70%, more preferably 40 to 40% from the viewpoint that particles having high light diffusibility can be obtained and a film having high luminous efficiency can be easily obtained. 65%, more preferably 40-60%.
 前記外径、CV、内径、殻の厚さおよび空隙率は、下記実施例に記載の方法で測定できる。 The outer diameter, CV, inner diameter, shell thickness and porosity can be measured by the methods described in the following examples.
 粒子(B)のトルエン不溶分は、高い発光効率を有する膜等を容易に得ることができるなどの点から、好ましくは80~100質量%、より好ましくは90~100質量%、特に好ましくは94~100質量%である。
 トルエン不溶分が80質量%未満の場合、中空粒子の変形等が起こり、また、異物が生じやすくなるため、高い発光効率を有する膜等を得ることができず、得られる膜等に光学的なムラ(輝点)が生じやすくなる。
 なお、トルエン不溶分とは、粒子(B)をトルエンに浸漬させたときに、溶解せずに残存する量のことをいい、具体的には、下記実施例に記載の方法で測定される。
The toluene-insoluble content of the particles (B) is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and particularly preferably 94 from the viewpoint that a film having high luminous efficiency can be easily obtained. To 100% by mass.
When the toluene insoluble content is less than 80% by mass, deformation of the hollow particles occurs, and foreign matters are easily generated. Therefore, a film having high luminous efficiency cannot be obtained, and the obtained film or the like is optical. Unevenness (bright spot) tends to occur.
The toluene-insoluble content refers to the amount that remains without being dissolved when the particles (B) are immersed in toluene, and specifically, is measured by the method described in the examples below.
 なお、粒子(B)の不溶性を測る有機溶媒として、トルエンを用いたのは、蛍光体粒子を含む組成物において、トルエンが一般的に使用されており、かつ、その再現性がよかったことによる。 Incidentally, the reason why toluene was used as the organic solvent for measuring the insolubility of the particles (B) is that toluene was generally used in the composition containing the phosphor particles, and its reproducibility was good.
 粒子(B)の耐熱温度(5%質量減少温度)は、耐熱性に優れる膜等が得られ、成形の際や、用途によって、高温になったとしても、十分に形状(空隙)を保持でき、高い発光効率を長期にわたり維持できる膜等を容易に得ることができるなどの点から、有機中空粒子の場合、好ましくは180~400℃であり、より好ましくは250~350℃である。
 該耐熱温度は、下記実施例に記載の方法で測定できる。
The heat resistance temperature (5% mass reduction temperature) of the particles (B) can provide a film having excellent heat resistance, and can retain its shape (void) sufficiently even when the temperature rises depending on the molding and application. In the case of organic hollow particles, the temperature is preferably 180 to 400 ° C., more preferably 250 to 350 ° C. from the viewpoint that a film that can maintain high luminous efficiency over a long period of time can be easily obtained.
The heat-resistant temperature can be measured by the method described in the following examples.
 粒子(B)の含有量は、高い発光効率を有し、しかも、その発光効率を長期にわたり維持できる膜等を容易に得ることができるなどの点から、本組成物100質量%に対し、好ましくは0.1~20質量%であり、より好ましくは0.5~10質量%である。 The content of the particles (B) is preferably with respect to 100% by mass of the present composition from the viewpoints of having a high luminous efficiency and easily obtaining a film that can maintain the luminous efficiency over a long period of time. Is 0.1 to 20% by mass, more preferably 0.5 to 10% by mass.
<有機溶媒(C)>
 本組成物から所望の厚さなどの膜等を容易に形成できる点、また、粒子(A)および粒子(B)が共に良好な分散状態を保持できる等の点から、本組成物では、有機溶媒(C)を用いる。なお、粒子(A)や粒子(B)として、有機溶媒を含む分散液を用いる場合、該分散液中の有機溶媒は、本組成物における有機溶媒(C)である。
 前記有機溶媒(C)としては特に制限されないが、粒子(A)および粒子(B)(の表面)を溶解せず、粒子(A)および粒子(B)を分散させることができる溶媒が好ましい。
 本組成物で用いられる溶媒(C)は、1種でもよく、2種以上でもよい。
<Organic solvent (C)>
From the point that a film having a desired thickness or the like can be easily formed from the composition, and from the viewpoint that both the particles (A) and the particles (B) can maintain a good dispersion state, Solvent (C) is used. In addition, when using the dispersion liquid containing an organic solvent as particle | grains (A) and particle | grains (B), the organic solvent in this dispersion liquid is the organic solvent (C) in this composition.
Although it does not restrict | limit especially as said organic solvent (C), The solvent which does not melt | dissolve particle | grains (A) and particle | grains (B) (surface), but can disperse | distribute particle | grains (A) and particle | grains (B) is preferable.
The solvent (C) used in the present composition may be one type or two or more types.
 溶媒(C)としては特に制限されないが、粒子(A)および粒子(B)の分散性に優れ、粒子(B)を変形させにくい等の点から、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒およびケトン系溶媒が好ましい。 Although it does not restrict | limit especially as a solvent (C), From the point of being excellent in the dispersibility of particle | grains (A) and particle | grains (B), and being hard to deform | transform particle | grains (B), a hydrocarbon solvent, an ether solvent, ester type | system | group. Solvents and ketone solvents are preferred.
 前記炭化水素系溶媒としては、ペンタン、ヘキサン、i-ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、メチルエチルベンゼンなどの芳香族炭化水素系溶媒等が挙げられる。 Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents such as pentane, hexane, i-hexane, heptane, octane, cyclohexane, and methylcyclohexane; aromatic carbonized solvents such as benzene, toluene, xylene, mesitylene, ethylbenzene, and methylethylbenzene. Examples thereof include hydrogen-based solvents.
 前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、1,2-プロピレングリコール-1-メチルエーテル-2-アセテート、1,3-ブタンジオール-1-アセテート-3-メチルエーテル、3-メトキシブタノール、1,2-プロピレングリコール-1-メチルエーテル、1,2-プロピレングリコール-1-エチルエーテル、ジエチレングリコールモノプロピルエーテル、ジ(1,3-プロピレングリコール)-1-モノメチルエーテル、3-エトキシブタノール、3-ヒドロキシプロピオン酸-1-エチルエステル-3-エチルエーテル、3-ヒドロキシプロピオン酸-1-メチルエーテル-1-メチルエステル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテルなどの脂肪族エーテル;アニソール、フェニルエチルエーテルなどの芳香族-脂肪族エーテル;ジフェニルエーテルなどのジ芳香族エーテル;テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環状エーテル等が挙げられる。 Examples of the ether solvent include diethyl ether, dipropyl ether, 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, and 3-methoxybutanol. 1,2-propylene glycol-1-methyl ether, 1,2-propylene glycol-1-ethyl ether, diethylene glycol monopropyl ether, di (1,3-propylene glycol) -1-monomethyl ether, 3-ethoxybutanol, Fats such as 3-hydroxypropionic acid-1-ethyl ester-3-ethyl ether, 3-hydroxypropionic acid-1-methyl ether-1-methyl ester, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether Family ethers; anisole, aromatic such as phenyl ether - aliphatic ethers; di aromatic ethers such as diphenyl ether; tetrahydrofuran, tetrahydropyran, cyclic ethers such as dioxane and the like.
 前記エステル系溶媒としては、ジエチルカーボネート、プロピレンカーボネートなどのカーボネート;γ-ブチロラクトン、γ-バレロラクトン等のラクトン;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ベンジル、酢酸シクロヘキシルなどの酢酸エステル;プロピオン酸エチル、プロピオン酸ブチルなどのプロピオン酸エステル等が挙げられる。 Examples of the ester solvent include carbonates such as diethyl carbonate and propylene carbonate; lactones such as γ-butyrolactone and γ-valerolactone; acetates such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, benzyl acetate, and cyclohexyl acetate; And propionic acid esters such as ethyl propionate and butyl propionate.
 前記ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、2,4-ペンタンジオン、アセトニルアセトンなどの鎖状ケトン系溶媒;シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、アセトフェノンなどの環状ケトン系溶媒等が挙げられる。 Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-i-butyl ketone, trimethylnonanone, 2,4-pentanedione, and acetonyl acetone; cyclic ketones such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, and acetophenone System solvents and the like.
 溶媒(C)としては、塗布性・分散性効果等の点から、1,2-プロピレングリコール-1-メチルエーテル-2-アセテート、1,3-ブタンジオール-1-アセテート-3-メチルエーテル、3-メトキシブタノール、1,2-プロピレングリコール-1-メチルエーテル、1,2-プロピレングリコール-1-エチルエーテル、ジエチレングリコールモノプロピルエーテル、ジ(1,3-プロピレングリコール)-1-モノメチルエーテル、シクロヘキサノン、3-エトキシブタノール、3-ヒドロキシプロピオン酸-1-エチルエステル-3-エチルエーテル、3-ヒドロキシプロピオン酸-1-メチルエーテル-1-メチルエステル、ジエチレングリコールジメチルエーテルおよびジエチレングリコールメチルエチルエーテルが好ましい。 Examples of the solvent (C) include 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, from the viewpoint of coating properties and dispersibility effects. 3-methoxybutanol, 1,2-propylene glycol-1-methyl ether, 1,2-propylene glycol-1-ethyl ether, diethylene glycol monopropyl ether, di (1,3-propylene glycol) -1-monomethyl ether, cyclohexanone 3-ethoxybutanol, 3-hydroxypropionic acid-1-ethyl ester-3-ethyl ether, 3-hydroxypropionic acid-1-methyl ether-1-methyl ester, diethylene glycol dimethyl ether and diethylene glycol methyl ethyl ether Masui.
 溶媒(C)の常圧における平均沸点は、本組成物から、所望の膜等を容易に形成することができる等の点から、好ましくは100~250℃である。なお、平均沸点とは、溶媒(C)として、1種類の溶媒を用いる場合には、該溶媒の沸点と同義であるが、例えば、2種類の溶媒(溶媒1と溶媒2)を用いる場合には、下記式で算出される値である。3種類以上の溶媒を用いた時も同様である。
  平均沸点={溶媒1の沸点×溶媒1の含有量/(溶媒1と2の含有量の合計)+溶媒2の沸点×溶媒2の含有量/(溶媒1と2の含有量の合計)}/2
The average boiling point of the solvent (C) at normal pressure is preferably 100 to 250 ° C. from the viewpoint that a desired film or the like can be easily formed from the present composition. The average boiling point is synonymous with the boiling point of the solvent when one kind of solvent is used as the solvent (C). For example, when two kinds of solvents (solvent 1 and solvent 2) are used. Is a value calculated by the following equation. The same applies when three or more solvents are used.
Average boiling point = {boiling point of solvent 1 × content of solvent 1 / (sum of contents of solvents 1 and 2) + boiling point of solvent 2 × content of solvent 2 / (sum of contents of solvents 1 and 2)} / 2
 溶媒(C)の含有量は、本組成物から膜等を形成する際の形成方法に応じて適宜選択すればよいが、粒子(A)および粒子(B)を十分に分散させることができる等の点から、粒子(B)100質量部に対し、好ましくは100~30000質量部であり、より好ましくは500~20000質量部である。 The content of the solvent (C) may be appropriately selected according to the formation method when forming a film or the like from the present composition, but the particles (A) and particles (B) can be sufficiently dispersed. From this point, the amount is preferably 100 to 30000 parts by mass, more preferably 500 to 20000 parts by mass with respect to 100 parts by mass of the particles (B).
<バインダー>
 本組成物は、粒子(A)および(B)を十分に保持することができる膜等を形成できる等の点から、バインダーを含むことが好ましい。
 バインダーは、1種を用いてもよく、2種以上を用いてもよい。
<Binder>
The present composition preferably contains a binder from the viewpoint that a film or the like that can sufficiently hold the particles (A) and (B) can be formed.
1 type may be used for a binder and 2 or more types may be used for it.
 該バインダーとしては特に制限されず、単量体であってもよく、樹脂であってもよいが、光や熱により硬化する成分であることが好ましく、該硬化の際に硬化収縮が起こりにくい成分であることがより好ましい。このため、バインダーとしては、イオン硬化性の成分であってもよいが、ラジカル硬化性の成分であることが好ましく、炭素数5以上のアルキル鎖を有する化合物が好ましい。また、粒子(A)、特に、QDとの相互作用が高まり、安定性に優れる本組成物を容易に得ることができる等の点から、カルボキシ基、フェノール性水酸基等の酸性官能基を有する化合物であることが好ましい。
 さらに、バインダーとしては、透明性、硬化性、粒子(A)および(B)との共分散性、粒子(B)の中空保持性(粒子(B)の空隙を埋めない)に優れるバインダーが好ましく、膜等に水や酸素バリア性を付与できるバインダーが好ましい。
The binder is not particularly limited, and may be a monomer or a resin, but is preferably a component that is cured by light or heat, and a component that hardly undergoes curing shrinkage during the curing. It is more preferable that For this reason, the binder may be an ion curable component, but is preferably a radical curable component, and a compound having an alkyl chain having 5 or more carbon atoms is preferable. In addition, a compound having an acidic functional group such as a carboxy group or a phenolic hydroxyl group from the standpoint that the present composition having an enhanced interaction with the particles (A), in particular, QD, and excellent stability can be easily obtained. It is preferable that
Further, as the binder, a binder excellent in transparency, curability, co-dispersibility with the particles (A) and (B), and hollow retention of the particles (B) (does not fill the voids in the particles (B)) is preferable. A binder capable of imparting water or oxygen barrier properties to the film or the like is preferable.
 前記バインダーとしては、本組成物から得られる膜等を高温環境下で用いたとしても、十分に形状(空隙)を保持でき、高い発光効率を長期にわたり維持できる膜等を容易に得ることができるなどの点から、架橋構造を形成可能な成分を用いることが好ましく、(メタ)アクリレート系バインダー、エポキシ系バインダーが好ましい。 As the binder, even when a film or the like obtained from the composition is used in a high-temperature environment, it is possible to easily obtain a film or the like that can maintain a sufficient shape (void) and maintain high luminous efficiency over a long period of time. In view of the above, it is preferable to use a component capable of forming a crosslinked structure, and (meth) acrylate binders and epoxy binders are preferred.
 (メタ)アクリレート系バインダーとしては、単官能単量体、2官能単量体、多官能単量体のいずれを用いてもよいが、2官能以上の(メタ)アクリル酸エステルを用いることが好ましい。 As the (meth) acrylate-based binder, any of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer may be used, but it is preferable to use a bifunctional or higher (meth) acrylic ester. .
 単官能単量体として、例えば、2-(メタ)アクリロイルオキシエチルコハク酸、ノニルフェニルカルビトールアクリレート、2-エチルヘキシルカルビトールアクリレート、イソステアリルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート(商品名「ニューフロンティアPGA」、第一工業製薬(株)製)が挙られる。 Examples of the monofunctional monomer include 2- (meth) acryloyloxyethyl succinic acid, nonylphenyl carbitol acrylate, 2-ethylhexyl carbitol acrylate, isostearyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate (trade name “ New Frontier PGA ", manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
 前記2官能単量体としては、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ビスフェノールAのビス((メタ)アクリロイルオキシエチル)エーテル、3-エチルペンタンジオールジ(メタ)アクリレート、フェニルグリシジルエーテルアクリレート、ヘキサメチレンジイソシアネート、ウレタンプレポリマー、ビス(2-(メタ)アクリロイルオキシエチル)アシッドフォスフェート(商品名「KAYAMER PM-2」、日本化薬(株)製)が挙られる。 Examples of the bifunctional monomer include 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 9,9-bis [4- (2- (meth) acryloyl). Oxyethoxy) phenyl] fluorene, tricyclodecane dimethanol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, bis ((meth) acryloyloxyethyl) ether of bisphenol A, 3-ethylpentanediol di (Meth) acrylate, phenylglycidyl ether acrylate, hexamethylene diisocyanate, urethane prepolymer, bis (2- (meth) acryloyloxyethyl) acid phosphate (trade name “KAYAMER PM-2”, manufactured by Nippon Kayaku Co., Ltd.) Is given.
 前記多官能単量体としては、例えば、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、プロポキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、下記式で表される化合物などのジペンタエリスリトール(ポリ)アクリレート、ジペンタエリスリトールペンタアクリレート、ウレタンプレポリマー、ビスフェノールAエポキシジアクリレート(商品名「CN104」、アルケマ(株)製)が挙られる。 Examples of the polyfunctional monomer include ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, and dipentaerythritol tris. (Meth) acrylate, dipentaerythritol penta (meth) acrylate, ethoxylated dipentaerythritol hexa (meth) acrylate, propoxylated dipentaerythritol hexa (meth) acrylate, dipentaerythritol hexa (meth) acrylate, represented by the following formula Compounds such as dipentaerythritol (poly) acrylate, dipentaerythritol pentaacrylate, urethane prepolymer, bisphenol A epoxy diacrylate (Trade name "CN104", manufactured by Arkema Co., Ltd.) is Kyora.
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子または炭素数3~6のアクリロイル基である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R is a hydrogen atom or an acryloyl group having 3 to 6 carbon atoms.)
 エポキシ系バインダーとしては、三員環エポキシ基を有する脂肪族化合物、三員環エポキシ基を有する脂環式化合物、三員環エポキシ基を有する芳香族化合物、四員環エポキシ基(オキセタニル基)を有する化合物のいずれを用いてもよい。 As an epoxy binder, an aliphatic compound having a three-membered ring epoxy group, an alicyclic compound having a three-membered ring epoxy group, an aromatic compound having a three-membered ring epoxy group, a four-membered ring epoxy group (oxetanyl group) Any of the compounds may be used.
 三員環エポキシ基を有する脂肪族化合物としては、例えば、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルが挙げられる。市販品としては、例えば、SR-NPG、SR-TMP(以上、阪本薬品工業(株)製)が挙げられる。 Examples of the aliphatic compound having a three-membered ring epoxy group include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and trimethylolpropane triglycidyl ether. It is done. Examples of commercially available products include SR-NPG and SR-TMP (manufactured by Sakamoto Pharmaceutical Co., Ltd.).
 三員環エポキシ基を有する脂環式化合物としては、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、ε-カプロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、トリメチルカプロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、β-メチル-δ-バレロラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシシクロへキサヒドロフタル酸ジオクチル、エポキシシクロヘキサヒドロフタル酸ジ-2-エチルヘキシル、メチレンビス(3,4-エポキシシクロヘキサン)が挙げられる。 Examples of alicyclic compounds having a three-membered ring epoxy group include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro. -3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methyl Cyclohexyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, ε-caprolactone modified 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, trimethylcaprolactone modified 3,4-epoxycyclohexyl Methyl-3 , 4'-epoxycyclohexanecarboxylate, β-methyl-δ-valerolactone modified 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, di (3,4-epoxycyclohexylmethyl) of ethylene glycol Examples include ether, ethylenebis (3,4-epoxycyclohexanecarboxylate), dioctyl epoxycyclohexahydrophthalate, di-2-ethylhexyl epoxycyclohexahydrophthalate, and methylenebis (3,4-epoxycyclohexane).
 三員環エポキシ基を有する脂環式化合物の市販品としては、例えば、アデカレジンEP-4085S、EP-4088S(以上、(株)ADEKA製)、セロキサイド2021、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、エポリードGT-300、エポリードGT-301、エポリードGT-302、エポリードGT-400、エポリード401、エポリード403(以上、(株)ダイセル製)が挙げられる。 Examples of commercially available alicyclic compounds having a three-membered ring epoxy group include Adeka Resin EP-4085S, EP-4088S (above, manufactured by ADEKA Corporation), Celoxide 2021, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide. 2085, Epolide GT-300, Epolide GT-301, Epolide GT-302, Epolide GT-400, Epolide 401, Epolide 403 (manufactured by Daicel Corporation).
 三員環エポキシ基を有する芳香族化合物としては、例えば、骨格に芳香環構造を有し、三員環エポキシ基を2個以上有する化合物が挙げられる。このような化合物の芳香環構造としては、ビスフェノールA型構造、ビスフェノールF型構造、ナフタレン骨格等が挙げられる。三員環エポキシ基を有する芳香族化合物としては、例えばビス(4-グリシジルフェノキシ)メタン、ビス(4-グリシジルフェノキシ)エタン、ビス(4-グリシジルナフトキシ)メタン、ビス(4-グリシジルナフトキシ)エタン等が挙げられる。三員環エポキシ基を有する芳香族化合物の市販品としては、例えば、YL980、YL983U(以上、三菱化学(株)製)、EPICLON HP-7200、EXA-4850-150、HP-4770、(以上、DIC(株)製)が挙げられる。 Examples of the aromatic compound having a three-membered ring epoxy group include compounds having an aromatic ring structure in the skeleton and having two or more three-membered ring epoxy groups. Examples of the aromatic ring structure of such a compound include a bisphenol A structure, a bisphenol F structure, and a naphthalene skeleton. Examples of aromatic compounds having a three-membered ring epoxy group include bis (4-glycidylphenoxy) methane, bis (4-glycidylphenoxy) ethane, bis (4-glycidylnaphthoxy) methane, and bis (4-glycidylnaphthoxy). Ethane and the like can be mentioned. Examples of commercially available aromatic compounds having a three-membered ring epoxy group include YL980, YL983U (manufactured by Mitsubishi Chemical Corporation), EPICLON® HP-7200, EXA-4850-150, HP-4770, (and DIC Corporation).
 四員環エポキシ基(オキセタニル基)を有する化合物としては、例えば分子中にオキセタニル基を1個または2個以上有する化合物が挙げられる。1個のオキセタニル基を有する化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-(メタ)アリルオキシメチル-3-エチルオキセタン、(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、4-フルオロ-〔1-(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、4-メトキシ-〔1-(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、〔1-(3-エチル-3-オキセタニルメトキシ)エチル〕フェニルエーテル、イソブトキシメチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニル(3-エチル-3-オキセタニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、エチルジエチレングリコール(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンタジエン(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニル(3-エチル-3-オキセタニルメチル)エーテル、テトラヒドロフルフリル(3-エチル-3-オキセタニルメチル)エーテル、テトラブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-テトラブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、トリブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-トリブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、ブトキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ペンタクロロフェニル(3-エチル-3-オキセタニルメチル)エーテル、ペンタブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、ボルニル(3-エチル-3-オキセタニルメチル)エーテルが挙げられる。 Examples of the compound having a four-membered ring epoxy group (oxetanyl group) include compounds having one or more oxetanyl groups in the molecule. Examples of the compound having one oxetanyl group include 3-ethyl-3-hydroxymethyloxetane, 3- (meth) allyloxymethyl-3-ethyloxetane, (3-ethyl-3-oxetanylmethoxy) methylbenzene, 4-fluoro- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, 4-methoxy- [1- (3-ethyl-3-oxetanylmethoxy) methyl] benzene, [1- (3-ethyl- 3-oxetanylmethoxy) ethyl] phenyl ether, isobutoxymethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyloxyethyl (3-ethyl-3-oxetanylmethyl) ether, isobornyl (3-ethyl-3- Oxetanylmethyl) ether, 2-ethylhexyl (3-ethyl-3 Oxetanylmethyl) ether, ethyl diethylene glycol (3-ethyl-3-oxetanylmethyl) ether, dicyclopentadiene (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyloxyethyl (3-ethyl-3-oxetanylmethyl) ether Dicyclopentenyl (3-ethyl-3-oxetanylmethyl) ether, tetrahydrofurfuryl (3-ethyl-3-oxetanylmethyl) ether, tetrabromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tetrabromo Phenoxyethyl (3-ethyl-3-oxetanylmethyl) ether, tribromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tribromophenoxyethyl (3-ethyl-3-oxetanylmethyl) ) Ether, 2-hydroxyethyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxypropyl (3-ethyl-3-oxetanylmethyl) ether, butoxyethyl (3-ethyl-3-oxetanylmethyl) ether, penta Examples include chlorophenyl (3-ethyl-3-oxetanylmethyl) ether, pentabromophenyl (3-ethyl-3-oxetanylmethyl) ether, and bornyl (3-ethyl-3-oxetanylmethyl) ether.
 オキセタニル基を2個以上有する化合物としては、例えば、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、1,2-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕エタン、1,2-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレンビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ブタン、1,6-ビス〔(3-エチル-3-オキセタニルメトキシ)メチル〕ヘキサン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンが挙げられる。 Examples of the compound having two or more oxetanyl groups include 3,7-bis (3-oxetanyl) -5-oxa-nonane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] propane, ethylene glycol bis (3-ethyl-3- Oxetanylmethyl) ether, dicyclopentenyl bis (3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis (3-ethyl-3-oxetanylmethyl) ) Ether, Tricyclodecanediyldimethylenebis (3-ethyl-3) Oxetanylmethyl) ether, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] butane, 1,6-bis [(3-ethyl-3-oxetanylmethoxy) methyl] hexane, 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane.
 前記バインダーとしては、バインダー樹脂であってもよい。
 バインダー樹脂としては、可視光領域で透明な樹脂または該樹脂を形成できる樹脂が好ましく、例えば、(メタ)アクリル系樹脂などの有機系樹脂、ポリシロキサンなどの無機系樹脂、(メタ)アクリルシロキサン系樹脂、エポキシシリコン系樹脂等の有機・無機ハイブリッド樹脂が挙げられる。前記樹脂の一例としては、特開2008-260930号公報、特開2009-102514号公報等に記載の樹脂が挙げられる。
The binder may be a binder resin.
The binder resin is preferably a transparent resin in the visible light region or a resin capable of forming the resin. For example, an organic resin such as a (meth) acrylic resin, an inorganic resin such as polysiloxane, and a (meth) acrylsiloxane Organic / inorganic hybrid resins such as resins and epoxy silicon resins can be used. Examples of the resin include resins described in JP2008-260930A, JP2009-102514A, and the like.
 また、前記バインダー樹脂としては、カルボキシ基、フェノール性水酸基等の酸性官能基を有する樹脂であることが好ましい。中でも、カルボキシ基を有する重合体(以下、「カルボキシ基含有重合体」とも称する。)が好ましく、例えば、1個以上のカルボキシ基を有するエチレン性不飽和単量体(以下、「不飽和単量体(c1)」とも称する。)と、該単量体と共重合可能な他のエチレン性不飽和単量体(以下、「不飽和単量体(c2)」とも称する。)との共重合体を挙げることができる。 The binder resin is preferably a resin having an acidic functional group such as a carboxy group or a phenolic hydroxyl group. Among them, a polymer having a carboxy group (hereinafter also referred to as “carboxy group-containing polymer”) is preferable. For example, an ethylenically unsaturated monomer having one or more carboxy groups (hereinafter referred to as “unsaturated monomer”). And the other ethylenically unsaturated monomers copolymerizable with the monomer (hereinafter also referred to as “unsaturated monomer (c2)”). Coalescence can be mentioned.
 不飽和単量体(c1)および不飽和単量体(c2)の共重合体の具体例としては、例えば、特開平7-140654号公報、特開平8-259876号公報、特開平10-31308号公報、特開平10-300922号公報、特開平11-174224号公報、特開平11-258415号公報、特開2000-56118号公報、特開2004-101728号公報等に開示されている共重合体を挙げることができる。 Specific examples of the copolymer of the unsaturated monomer (c1) and the unsaturated monomer (c2) include, for example, JP-A-7-140654, JP-A-8-259876, and JP-A-10-31308. No. 10, JP-A-10-300902, JP-A-11-174224, JP-A-11-258415, JP-A-2000-56118, JP-A-2004-101728, etc. Coalescence can be mentioned.
 不飽和単量体(c1)と不飽和単量体(c2)の共重合体において、該共重合体中の不飽和単量体(c1)の共重合割合は、好ましくは5~70質量%、より好ましくは10~60質量%である。このような範囲で不飽和単量体(c1)を共重合させることにより、色度特性、耐熱性および耐溶剤性に優れる膜等を容易に得ることができ、粒子(A)および(B)の分散性に優れ、保存安定性に優れる本組成物を容易に得ることができる。 In the copolymer of the unsaturated monomer (c1) and the unsaturated monomer (c2), the copolymerization ratio of the unsaturated monomer (c1) in the copolymer is preferably 5 to 70% by mass. More preferably, it is 10 to 60% by mass. By copolymerizing the unsaturated monomer (c1) in such a range, a film having excellent chromaticity characteristics, heat resistance and solvent resistance can be easily obtained, and particles (A) and (B) This composition having excellent dispersibility and excellent storage stability can be easily obtained.
 また、前記バインダー樹脂としては、例えば、特開平5-19467号公報、特開平6-230212号公報、特開平7-207211号公報、特開平9-325494号公報、特開平11-140144号公報、特開2008-181095号公報等に開示されているように、側鎖に(メタ)アクリロイル基等の重合性不飽和結合を有するカルボキシ基含有重合体を用いてもよい。 Examples of the binder resin include JP-A-5-19467, JP-A-6-230212, JP-A-7-207211, JP-A-9-325494, JP-A-11-140144, As disclosed in JP 2008-181095 A or the like, a carboxy group-containing polymer having a polymerizable unsaturated bond such as a (meth) acryloyl group in the side chain may be used.
 前記バインダー樹脂のGPCで測定した重量平均分子量(Mw)は、好ましくは1,000~100,000、より好ましくは3,000~50,000である。また、分子量分布(Mw/Mn)は、好ましくは1.0~5.0、より好ましくは1.0~3.0である。このような態様とすることで、色度特性、耐熱性および耐溶剤性に優れる膜等を容易に得ることができ、粒子(A)および(B)の分散性に優れ、保存安定性に優れる本組成物を容易に得ることができる。 The weight average molecular weight (Mw) measured by GPC of the binder resin is preferably 1,000 to 100,000, more preferably 3,000 to 50,000. The molecular weight distribution (Mw / Mn) is preferably 1.0 to 5.0, more preferably 1.0 to 3.0. By setting it as such an aspect, the film | membrane etc. which are excellent in chromaticity characteristics, heat resistance, and solvent resistance can be obtained easily, it is excellent in the dispersibility of particle | grains (A) and (B), and is excellent in storage stability. The present composition can be easily obtained.
 前記バインダー樹脂は、公知の方法により製造することができるが、例えば、特開2003-222717号公報、特開2006-259680号公報、国際公開第2007/029871号等に開示されている方法により、その構造やMw、Mw/Mnを制御することもできる。 The binder resin can be produced by a known method. For example, the binder resin can be produced by a method disclosed in JP2003-222717A, JP2006-259680A, International Publication No. 2007/029871, etc. The structure, Mw, and Mw / Mn can also be controlled.
 また、前記バインダーとしては、現像等によって、所望の形状の膜等を容易に得ることができる等の点から、例えば、特開2015-166840号公報に記載のアルカリ可溶性樹脂を用いてもよいし、膜等の形成性に優れ、所望粘度の本組成物を容易に得ることができる等の点から、例えば、国際公開第2005/071014号に記載の反応希釈剤を用いることができる。 As the binder, for example, an alkali-soluble resin described in JP-A No. 2015-166840 may be used from the viewpoint that a film having a desired shape can be easily obtained by development or the like. From the viewpoint that the present composition having a desired viscosity can be easily obtained, for example, a reaction diluent described in International Publication No. 2005/071014 can be used.
 本組成物がバインダーを含有する場合、バインダーの含有量は、高い発光効率を有し、所望の(表面)形状を有する膜等を容易に形成することができるなどの点から、得られる膜等の透過率を考慮して、本組成物100質量%に対し、好ましくは0.5~50質量%であり、より好ましくは1~40質量%である。 When the present composition contains a binder, the content of the binder has a high luminous efficiency, and can be easily formed into a film having a desired (surface) shape. In consideration of the transmittance of the composition, it is preferably 0.5 to 50% by mass, more preferably 1 to 40% by mass with respect to 100% by mass of the present composition.
<その他の成分>
 本組成物には、前記粒子(A)、粒子(B)、溶媒(C)およびバインダー以外の、本分野における従来公知のその他の成分を、本発明の効果を損なわない範囲で配合してもよい。該その他の成分としては、フィラー、酸化防止剤、重合開始剤、酸発生剤、塩基発生剤、粘度調節剤、分散剤等が挙げられる。
 その他の成分は、それぞれ、1種を用いてもよく、2種以上を用いてもよい。
<Other ingredients>
In the present composition, other components conventionally known in the field other than the particles (A), particles (B), solvent (C) and binder may be blended within a range not impairing the effects of the present invention. Good. Examples of the other components include fillers, antioxidants, polymerization initiators, acid generators, base generators, viscosity modifiers, and dispersants.
Each of the other components may be used alone or in combination of two or more.
 [フィラー]
 前記フィラーとしては特に制限されず、従来公知のフィラーを用いることができるが、粒子(A)を吸着安定化できる可能性があり、長期にわたり、安定した発光効率を有する膜等を得ることが期待できるなどの点から、粒子(A)、特にQDを吸着または固定可能なフィラーや、より発光効率に優れる膜等が得られるなどの点から、高屈折率のフィラー等が好ましい。
 このようなフィラーとしては、ポーラスシリカ、チタニア、ジルコニアなどのゾル等が挙げられる。
[Filler]
The filler is not particularly limited, and a conventionally known filler can be used. However, there is a possibility that the particles (A) can be adsorbed and stabilized, and it is expected to obtain a film having stable luminous efficiency over a long period of time. From the standpoint of being able to obtain a filler capable of adsorbing or fixing the particles (A), particularly QD, a film having better luminous efficiency, and the like, a high refractive index filler is preferred.
Examples of such fillers include sols such as porous silica, titania, and zirconia.
 [酸化防止剤]
 前記酸化防止剤としては特に制限されず、酸化、特に、粒子(A)の酸化を防止できる材料であることが好ましい。特に、粒子(A)としてQDを用いる場合、QDの蛍光量子収率を低下させる原因となる、フリーラジカルの発生を抑制すること、酸素、水分または残存モノマー等がQD表面に付着することを抑制すること等を目的として、リンおよび/または硫黄原子を含む酸化防止剤が好ましく、ホスフィン構造を有する化合物、ホスファイト構造を有する化合物、チオエーテル構造を有する化合物、チオール基を有する化合物がより好ましい。更にこれらに、フェノール系酸化防止剤を併用すると耐熱性が向上しより好ましい。
[Antioxidant]
It does not restrict | limit especially as said antioxidant, It is preferable that it is a material which can prevent oxidation, especially the oxidation of particle | grains (A). In particular, when QD is used as the particles (A), it suppresses the generation of free radicals, which causes a reduction in the QD fluorescence quantum yield, and suppresses oxygen, moisture, or residual monomers from adhering to the QD surface. For the purpose of, for example, an antioxidant containing a phosphorus and / or sulfur atom is preferable, a compound having a phosphine structure, a compound having a phosphite structure, a compound having a thioether structure, and a compound having a thiol group are more preferable. Furthermore, it is more preferable to use a phenolic antioxidant in combination with these because heat resistance is improved.
 ・リン原子を含む酸化防止剤
 リン原子を含む酸化防止剤としては、ホスフィン構造を有する化合物、ホスファイト構造を有する化合物等が挙げられる。
-Antioxidant containing a phosphorus atom Examples of the antioxidant containing a phosphorus atom include a compound having a phosphine structure, a compound having a phosphite structure, and the like.
 (ホスフィン構造を有する化合物)
 ホスフィン構造を有する化合物としては、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリ-2,5-キシリルホスフィン、トリ-3,5-キシリルホスフィン、トリフェニルホスフィン、ジフェニル(p-ビニルフェニル)ホスフィン等が挙げられる。
(Compound having phosphine structure)
Compounds having a phosphine structure include tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tri-2,5-xylylphosphine, tri-3,5-xylylphosphine, tri Examples thereof include phenylphosphine and diphenyl (p-vinylphenyl) phosphine.
(ホスファイト構造を有する化合物)
 ホスファイト構造を有する化合物としては、トリス(ノニルフェニル)ホスファイト、トリス(p-t-オクチルフェニル)ホスファイト、トリス〔2,4,6-トリス(α-フェニルエチル)〕ホスファイト、トリス(p-2-ブテニルフェニル)ホスファイト、ビス(p-ノニルフェニル)シクロヘキシルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジ(2,4-ジ-t-ブチルフェニル)ペンタエリストールジホスファイト、2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス、ジステアリルペンタエリスリトールジホスファイト、4,4’-イソプロピリデン-ジフェノールアルキルホスファイト(アルキル基の炭素数は12~15)、テトラトリデシル-4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)ジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスファイト、2,6-ジ-t-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-t-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-ジ-t-ブチル-4-エチルフェニル-ステアリル-ペンタエリスリトールジホスファイト、ジ(2,6-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-t-アミル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト等が挙げられる。
(Compound having phosphite structure)
Examples of the compound having a phosphite structure include tris (nonylphenyl) phosphite, tris (pt-octylphenyl) phosphite, tris [2,4,6-tris (α-phenylethyl)] phosphite, tris ( p-2-butenylphenyl) phosphite, bis (p-nonylphenyl) cyclohexyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, di (2,4-di-t-butylphenyl) ) Pentaerystol diphosphite, 2,2′-methylenebis (4,6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus, distearyl pentaerythritol diphosphite, 4,4 ′ -Isopropylidene-diphenol alkyl phosphite (the alkyl group has 12 to 15 carbon atoms), Tratridecyl-4,4′-butylidene-bis (3-methyl-6-tert-butylphenol) diphosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylene phosphite, 2,6- Di-t-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-t-butyl-4-methylphenyl-phenyl-pentaerythritol diphosphite, 2,6-di-t-butyl- 4-ethylphenyl-stearyl-pentaerythritol diphosphite, di (2,6-t-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,6-di-t-amyl-4-methylphenyl-phenyl -Pentaerythritol diphosphite and the like.
 ホスファイト構造を有する化合物の市販品としては、(株)ADEKA製のアデカスタブシリーズ、具体的には、「PEP-4C」、「PEP-8」、「PEP-8W」、「PEP-24G」、「PEP-36」、「HP-10」、「2112」、「260」、「522A」、「1178」、「1500」、「C」、「135A」、「3010」および「TPP」、BASFジャパン(株)製の「IRGAFOS168」等が挙げられる。 As a commercial product of a compound having a phosphite structure, ADEKA Corporation's ADK STAB series, specifically, “PEP-4C”, “PEP-8”, “PEP-8W”, “PEP-24G” , “PEP-36”, “HP-10”, “2112”, “260”, “522A”, “1178”, “1500”, “C”, “135A”, “3010” and “TPP”, BASF Examples thereof include “IRGAFOS168” manufactured by Japan Corporation.
 リン原子を含む酸化防止剤としては、粒子(A)、特にQDの蛍光量子収率を低下させる原因となるフリーラジカルの発生をより効果的に抑制する等の点から、ホスフィン構造を有する化合物が好ましく、トリ-o-トリルホスフィン、トリ-2,5-キシリルホスフィンおよびトリフェニルホスフィンがより好ましい。 Examples of the antioxidant containing a phosphorus atom include compounds having a phosphine structure from the viewpoint of more effectively suppressing generation of free radicals that cause a decrease in the fluorescence quantum yield of particles (A), particularly QD. Tri-o-tolylphosphine, tri-2,5-xylylphosphine and triphenylphosphine are more preferable.
 ・硫黄原子を含む酸化防止剤
 硫黄原子を含む酸化防止剤としては、チオエーテル構造を有する化合物、チオール基を有する化合物等が挙げられる。
-Antioxidant containing a sulfur atom Examples of the antioxidant containing a sulfur atom include a compound having a thioether structure and a compound having a thiol group.
 (チオエーテル構造を有する化合物)
 チオエーテル構造を有する化合物としては、例えばジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトールテトラキス(3-オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ステアリルチオプロピオネート)、4,4-チオビス(3-メチル-6-t-ブチルフェノール)等が挙げられる。
(Compound having thioether structure)
Examples of the compound having a thioether structure include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate), Pentaerythritol tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol tetrakis (3-stearylthiopropionate), 4,4-thiobis (3-methyl-6) -T-butylphenol) and the like.
 チオエーテル構造を有する化合物の市販品としては、(株)ADEKA製のアデカスタブシリーズ、具体的には、「AO-412S」および「AO-503」、住友化学(株)製のsumilizerシリーズ、具体的には、「TPL-R」、「TPM」、「TPS」、「TP-D」および「MB」、BASFジャパン(株)製の「IRGANOXPS800FD」および「IRGANOXPS802FD」、(株)エーピーアイコーポレーション製の「DLTP」、「DSTP」、「DMTP」および「DTTP」等が挙げられる。 Commercially available compounds having a thioether structure include ADEKA Corporation's ADK STAB series, specifically “AO-412S” and “AO-503”, Sumitomo Chemical Co., Ltd. "TPL-R", "TPM", "TPS", "TP-D" and "MB", "IRGANOXPS800FD" and "IRGANOXPS802FD" manufactured by BASF Japan K.K., manufactured by API Corporation. “DLTP”, “DSTP”, “DMTP”, “DTTP” and the like can be mentioned.
 チオエーテル構造を有する化合物としては、粒子(A)、特にQDの蛍光量子収率を低下させる原因となるフリーラジカルの発生をより効果的に抑制する等の点から、4,4-チオビス(3-メチル-6-t-ブチルフェノール)、テトラキス[3-(ドデシルチオ)プロピオン酸]ペンタエリトリトール、3,3'-チオビスプロピオン酸ジトリデシル、BASF社製の「IRGANOX 1520 L」および「IRGANOX 1726」が好ましい。 As the compound having a thioether structure, 4,4-thiobis (3- (3) is more preferable in terms of more effectively suppressing generation of free radicals that cause a decrease in the fluorescence quantum yield of the particles (A), particularly QD. Methyl-6-t-butylphenol), tetrakis [3- (dodecylthio) propionic acid] pentaerythritol, ditridecyl 3,3′-thiobispropionate, “IRGANOX 1520 L” and “IRGANOX 1726” manufactured by BASF are preferred.
 (チオール基を有する化合物)
 チオール基を有する化合物は、チオール基によって、粒子(A)、特にQDの表面に効果的に結合することにより、QDの蛍光量子収率を低下させる原因となる酸素、水分、残存モノマー等がその表面に付着することを抑制することができる。さらに、2つ以上のチオール基を有する化合物を用いると、1つのチオール基で、粒子(A)、特にQDの表面と結合しつつ、別のチオール基でバインダーと結合することができ、バインダーおよび粒子(A)、特にQDを近接させ、前記酸素、水分、残存モノマー等の、粒子(A)、特にQD表面への付着をより顕著に抑制することができる。
(Compound having a thiol group)
A compound having a thiol group has oxygen, moisture, residual monomers, etc. that cause a decrease in the fluorescence quantum yield of QD by effectively binding to the surface of particles (A), particularly QD, by the thiol group. It can suppress adhering to the surface. Furthermore, when a compound having two or more thiol groups is used, one thiol group can be bonded to the surface of the particle (A), particularly QD, while another thiol group is bonded to the binder, and the binder and The particles (A), particularly QD, can be brought close to each other, and the adhesion of the oxygen, moisture, residual monomer, etc. to the particles (A), particularly the QD surface, can be more significantly suppressed.
 前記チオール基を有する化合物中のチオール基の数の下限は、通常1であり、2が好ましく、3がより好ましく、4がさらに好ましく、チオール基の数の上限は、8が好ましく、6がより好ましい。チオール基の数を前記下限以上とすることで、酸素、水分、残存モノマー等の、粒子(A)、特にQDの表面への付着を効果的に抑制でき、チオール基の数を前記上限以下とすることで、粒子(A)の凝集等を抑制できる。 The lower limit of the number of thiol groups in the compound having a thiol group is usually 1, preferably 2, preferably 3, more preferably 4, and the upper limit of the number of thiol groups is preferably 8, more preferably 6. preferable. By setting the number of thiol groups to the above lower limit or more, it is possible to effectively suppress the adhesion of particles (A), particularly QD, to the surface of oxygen, moisture, residual monomers, etc., and the number of thiol groups to be the upper limit or less. By doing so, aggregation of particles (A) can be suppressed.
 チオール基を有する化合物としては、特に限定されないが、粒子(A)、特にQDの蛍光量子収率の低下をより抑制できる等の点から、チオール基を有する連鎖移動剤が好ましい。また、チオール基を有する連鎖移動剤を用いることで、粒子(A)からの蛍光強度を維持し易くなり、高い色再現性をより容易かつ確実に維持することができると考えられる。 Although it does not specifically limit as a compound which has a thiol group, The chain transfer agent which has a thiol group from the point which can suppress the fall of the fluorescence quantum yield of particle | grains (A) especially QD is preferable. Moreover, it is considered that the use of a chain transfer agent having a thiol group makes it easier to maintain the fluorescence intensity from the particles (A), and it is possible to more easily and reliably maintain high color reproducibility.
 チオール基を有する化合物としては、下記式(1)で表される化合物(以下「化合物(I)」ともいう)が好ましい。 As the compound having a thiol group, a compound represented by the following formula (1) (hereinafter also referred to as “compound (I)”) is preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、Xは、炭素数1~20のn価の有機基である。R1は独立に、炭素数1~10のアルカンジイル基である。nは、1~8の整数である。複数のR1は、同一でもよく、異なっていてもよい。 In the formula (1), X is an n-valent organic group having 1 to 20 carbon atoms. R 1 is independently an alkanediyl group having 1 to 10 carbon atoms. n is an integer of 1 to 8. Several R1 may be the same and may differ.
 Xで表される有機基としては、炭素数1~20のn価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する基、炭化水素基およびへテロ原子含有基を有する基の水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。 Examples of the organic group represented by X include an n-valent hydrocarbon group having 1 to 20 carbon atoms, a group having a divalent heteroatom-containing group between carbon-carbon of the hydrocarbon group, a hydrocarbon group, and a hetero group. Examples include a group in which part or all of the hydrogen atoms of a group having an atom-containing group are substituted with a monovalent heteroatom-containing group.
 「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基および芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和であっても不飽和であってもよい。「鎖状炭化水素基」としては、直鎖状であっても、分岐状であってもよい。「脂環式炭化水素基」とは、単環であっても、多環であってもよい。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This “hydrocarbon group” may be saturated or unsaturated. The “chain hydrocarbon group” may be linear or branched. The “alicyclic hydrocarbon group” may be monocyclic or polycyclic. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 上記炭化水素基としては、
 メタン、エタン、プロパン、n-ブタン、イソブタン等のアルカン;
 エテン、プロペン、1-ブテン、2-ブテン、2-メチルプロペン等のアルケン;
 エチン、プロピン、1-ブチン、2-ブチン等のアルキンなどの鎖状炭化水素;
 シクロブタン、シクロペンタン、シクロヘキサン等の単環のシクロアルカン;
 シクロブテン、シクロペンテン、シクロヘキセン等の単環のシクロアルケン;
 ノルボルナン、トリシクロデカン、アダマンタン等の多環のシクロアルカン;
 ノルボルネン、トリシクロデセン等の多環のシクロアルケンなどの脂環式炭化水素;
 ベンゼン、トルエン、キシレン、ナフタレン等の芳香族炭化水素;
などの炭化水素からn個の水素原子を除いた基等が挙げられる。
As the hydrocarbon group,
Alkanes such as methane, ethane, propane, n-butane, isobutane;
Alkenes such as ethene, propene, 1-butene, 2-butene, 2-methylpropene;
Chain hydrocarbons such as alkynes such as ethyne, propyne, 1-butyne and 2-butyne;
Monocyclic cycloalkanes such as cyclobutane, cyclopentane, cyclohexane;
Monocyclic cycloalkenes such as cyclobutene, cyclopentene, cyclohexene;
Polycyclic cycloalkanes such as norbornane, tricyclodecane and adamantane;
Alicyclic hydrocarbons such as polycyclic cycloalkenes such as norbornene and tricyclodecene;
Aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene;
And a group obtained by removing n hydrogen atoms from a hydrocarbon.
 前記炭素-炭素間に含まれていてもよい2価のヘテロ原子含有基としては、-O-、-S-、-NR’-、-CO-、-CS-等が挙げられる。前記R’は、水素原子または炭素数1~10の1価の炭化水素基である。2価のヘテロ原子含有基としては、-O-が好ましい。 Examples of the divalent hetero atom-containing group which may be contained between the carbon atoms include —O—, —S—, —NR′—, —CO—, —CS— and the like. R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. The divalent heteroatom-containing group is preferably —O—.
 前記水素原子を置換してもよい1価のヘテロ原子含有基としては、-OH、-SH、-NHR’、-COR’、-CSR’等が挙げられる。 Examples of the monovalent hetero atom-containing group that may substitute for the hydrogen atom include —OH, —SH, —NHR ′, —COR ′, —CSR ′, and the like.
 前記Xで表される有機基の炭素数の下限としては、通常1であり、3が好ましく、4がより好ましく、上限としては、15が好ましく、10がより好ましく、6がさらに好ましい。 The lower limit of the carbon number of the organic group represented by X is usually 1, preferably 3 and more preferably 4, and the upper limit is preferably 15, more preferably 10, and still more preferably 6.
 前記nの下限としては、通常1であり、2が好ましく、3がより好ましく、4がさらに好ましく、上限としては、6が好ましい。 The lower limit of n is usually 1, 2 is preferable, 3 is more preferable, 4 is more preferable, and 6 is preferable as the upper limit.
 前記Xで表される有機基としては、下記式(X-1)で表される基、下記式(X-2)で表される基および下記式(X-3)で表される基が好ましい。 Examples of the organic group represented by X include a group represented by the following formula (X-1), a group represented by the following formula (X-2), and a group represented by the following formula (X-3). preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記式(X-1)~(X-3)中、*は、式(1)における-O-との結合部位を示す。前記式(X-3)中、mは、1~5の整数である。 In the formulas (X-1) to (X-3), * represents a binding site with —O— in the formula (1). In the formula (X-3), m is an integer of 1 to 5.
 前記R1で表されるアルカンジイル基としては、メタンジイル基、1,2-エタンジイル基、1,1-エタンジイル基、1,3-プロパンジイル基、1,2-プロパンジイル基、1,1-プロパンジイル基、2,2-プロパンジイル基等が挙げられる。R1としては、炭素数1~3のアルカンジイル基が好ましく、1,2-エタンジイル基および1,2-プロパンジイル基がより好ましい。 Examples of the alkanediyl group represented by R 1 include methanediyl group, 1,2-ethanediyl group, 1,1-ethanediyl group, 1,3-propanediyl group, 1,2-propanediyl group, 1,1- Examples thereof include a propanediyl group and a 2,2-propanediyl group. R 1 is preferably an alkanediyl group having 1 to 3 carbon atoms, more preferably a 1,2-ethanediyl group and a 1,2-propanediyl group.
 前記mとしては、1~4の整数が好ましく、2~4の整数がより好ましく、3がさらに好ましい。 M is preferably an integer of 1 to 4, more preferably an integer of 2 to 4, and still more preferably 3.
 粒子(A)、特にQDの表面に酸素、水分、残存モノマー等が付着することをより効果的に抑制することができる等の点から、化合物(I)としては、下記式で表される化合物が好ましい。 Compound (I) is a compound represented by the following formula from the viewpoint of more effectively suppressing the adhesion of oxygen, moisture, residual monomer, etc. to the surface of particles (A), particularly QD. Is preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ・リン原子および硫黄原子を含む酸化防止剤
 リン及び硫黄を含む過酸化物分解剤としては、トリチオ亜りん酸トリラウリル、トリチオ亜りん酸トリブチル、トリチオ亜りん酸トリフェニル等が挙げられる。
-Antioxidant containing phosphorus atom and sulfur atom Examples of the peroxide decomposer containing phosphorus and sulfur include trilauryl trithiophosphite, tributyl trithiophosphite, triphenyl trithiophosphite and the like.
 ・フェノール系酸化防止剤
 フェノール系酸化防止剤としては、例えば、スチレン化フェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-p-エチルフェノール、2,4,6-トリ-t-ブチルフェノール、ブチルヒドロキシアニソール、1-ヒドロキシ-3-メチル-4-イソプロピルベンゼン、モノ-t-ブチル-p-クレゾール、モノ-t-ブチル-m-クレゾール、2,4-ジメチル-6-t-ブチルフェノール、ブチル化ビスフェノールA、2,2’-メチレン-ビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ノニルフェノール)、2,2’-イソブチリデン-ビス-(4,6-ジメチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、4,4’-メチレン-ビス-(2,6-ジ-t-ブチルフェノール)、2,2-チオ-ビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオ-ビス-(3-メチル-6-t-ブチルフェノール)、4,4’-チオ-ビス-(2-メチル-6-ブチルフェノール)、4,4’-チオ-ビス-(6-t-ブチル-3-メチルフェノール)、ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンゼン)スルフィド、2,2-チオ[ジエチル-ビス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート]、ビス[3,3-ビス(4’-ヒドロキシ-3’-t-ブチルフェノール)ブチリックアシッド]グリコールエステル、ビス[2-(2-ヒドロキシ-5-メチル-3-t-ブチルベンゼン)-4-メチル-6-t-ブチルフェニル]テレフタレート、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)イソシアヌレート、N-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェノール)プロピオネート、テトラキス[メチレン-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,1’-ビス(4-ヒドロキシフェニル)シクロヘキサン、モノ(α-メチルベンゼン)フェノール、ジ(α-メチルベンジル)フェノール、トリ(α-メチルベンジル)フェノール、ビス(2’-ヒドロキシ-3’-t-ブチル-5’-メチルベンジル)4-メチル-フェノール、2,5-ジ-t-アミルハイドロキノン、2,6-ジ-ブチル-α-ジメチルアミノ-p-クレゾール、2,5-ジ-t-ブチルハイドロキノン、3,5-ジ-t-ブチル-4-ヒドロキシベンジルリン酸のジエチルエステル、3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンが挙げられる。
・ Phenolic antioxidants Examples of phenolic antioxidants include styrenated phenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-p-ethylphenol, 2,4,6-tri-t-butylphenol, butylhydroxyanisole, 1-hydroxy-3-methyl-4-isopropylbenzene, mono-t-butyl-p-cresol, mono-t-butyl-m-cresol, 2 , 4-Dimethyl-6-t-butylphenol, Butylated bisphenol A, 2,2'-methylene-bis- (4-methyl-6-t-butylphenol), 2,2'-methylene-bis- (4-ethyl -6-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-nonylphenol), 2,2'-isobutylidene-bis (4,6-dimethylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 4,4'-methylene-bis- (2,6-di-t-butylphenol) 2,2-thio-bis- (4-methyl-6-tert-butylphenol), 4,4′-thio-bis- (3-methyl-6-tert-butylphenol), 4,4′-thio-bis -(2-Methyl-6-butylphenol), 4,4'-thio-bis- (6-tert-butyl-3-methylphenol), bis (3-methyl-4-hydroxy-5-tert-butylbenzene) Sulfide, 2,2-thio [diethyl-bis-3- (3,5-di-t-butyl-4-hydroxyphenol) propionate], bis [3,3-bis (4'-hydroxy-3'-t -Butylphenol) Butyric acid Glycol ester, bis [2- (2-hydroxy-5-methyl-3-t-butylbenzene) -4-methyl-6-t-butylphenyl] terephthalate, 1,3,5-tris (3 ′, 5 ′ -Di-t-butyl-4'-hydroxybenzyl) isocyanurate, N-octadecyl-3- (4'-hydroxy-3 ', 5'-di-t-butylphenol) propionate, tetrakis [methylene- (3', 5′-di-t-butyl-4-hydroxyphenyl) propionate] methane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, mono (α-methylbenzene) phenol, di (α-methylbenzyl) phenol, Tri (α-methylbenzyl) phenol, bis (2′-hydroxy-3′-t-butyl-5′-methylbenzyl) 4-methyl-phenol, 2 , 5-di-t-amylhydroquinone, 2,6-di-butyl-α-dimethylamino-p-cresol, 2,5-di-t-butylhydroquinone, 3,5-di-t-butyl-4- Diethyl ester of hydroxybenzyl phosphate, 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2, 4,8,10-tetraoxaspiro [5.5] undecane.
 酸化防止剤の含有量は、酸素、水分、残存モノマー等の、粒子(A)、特にQDへの付着をより抑制することができ、フリーラジカルの発生をより効果的に抑制でき、粒子(A)の蛍光量子収率の低下をより抑制することができる等の点から、粒子(A)100質量部に対し、好ましくは1~100質量部、より好ましくは5~40質量部である。 The content of the antioxidant can further suppress the adhesion of oxygen, moisture, residual monomers and the like to the particles (A), particularly QD, and can more effectively suppress the generation of free radicals. ) Is preferably 1 to 100 parts by weight, more preferably 5 to 40 parts by weight with respect to 100 parts by weight of the particles (A).
 [重合開始剤、酸発生剤および塩基発生剤]
 前記重合開始剤、酸発生剤および塩基発生剤としては、特に制限されず、例えば、特開2016-130809号公報に記載の化合物を用いることができる。
[Polymerization initiator, acid generator and base generator]
The polymerization initiator, acid generator, and base generator are not particularly limited, and for example, compounds described in JP-A-2016-130809 can be used.
 [粘度調節剤]
 前記粘度調節剤としては特に制限されず、本組成物の成形方式に合せて粘性を調節するため各種増粘剤、レベリング剤等が挙げられる。粘度調節剤としては、酸素、水を遮断する目的から低極性の化合物を用いることが好ましい。
[Viscosity modifier]
The viscosity modifier is not particularly limited, and examples thereof include various thickeners and leveling agents in order to adjust the viscosity according to the molding method of the present composition. As the viscosity modifier, it is preferable to use a low-polarity compound for the purpose of blocking oxygen and water.
<本組成物>
 本組成物の調製方法は特に制限されないが、例えば、本組成物は、前記粒子(A)、粒子(B)、溶媒(C)、ならびに、必要により、前記バインダーおよびその他の成分を混合することで調製することができる。
<This composition>
The method for preparing the composition is not particularly limited. For example, the composition may be prepared by mixing the particles (A), the particles (B), the solvent (C), and, if necessary, the binder and other components. Can be prepared.
 本組成物の粘度(25℃)は、所望の用途や塗布方法などにより、適宜選択すればよいが、例えば、本組成物をインクジェット印刷する場合には、1~20mPa・s程度が好ましく、本組成物をスクリーン印刷する場合には、100~5000mPa・s程度が好ましい。
 このような粘度を有する本組成物は、溶媒(C)等の使用量を適宜調節することや、粘度調節剤の添加で得られる。
The viscosity (25 ° C.) of the present composition may be appropriately selected depending on the desired application, application method, etc. For example, when the present composition is ink-jet printed, it is preferably about 1 to 20 mPa · s. When screen-printing the composition, it is preferably about 100 to 5000 mPa · s.
This composition having such a viscosity can be obtained by appropriately adjusting the amount of the solvent (C) used or by adding a viscosity modifier.
 本組成物は、光源からの光を効率よく波長変換して用いるデバイス、例えば、可視光を用いて画像の表示を行う発光表示素子の発光層、LEDや蛍光灯照明の色調調整層及び導光層、太陽光発電パネルの受光変換層などを形成するための組成物として好適に用いることができる。
 具体的には、本組成物から、従来公知の方法で膜や成形体を形成して、特に膜を形成して、これらの用途に用いられる。
This composition is a device that efficiently converts the wavelength of light from a light source, for example, a light emitting layer of a light emitting display element that displays an image using visible light, a color tone adjusting layer of LED or fluorescent lamp illumination, and a light guide. It can be suitably used as a composition for forming a layer, a light receiving conversion layer of a photovoltaic power generation panel, and the like.
Specifically, a film or a molded body is formed from the present composition by a conventionally known method, in particular, a film is formed and used for these applications.
≪波長変換層≫
 本発明の一実施形態に係る波長変換層(以下「本層」ともいう。)は、
 前記本組成物を用いて形成された層(以下「層1」ともいう。)、または、
 前記蛍光体粒子(A)および光拡散材(B')を含み、吸湿量が0.01~3%である層(以下「層2」ともいう。)である。
 このような本層は、吸湿量が少なく、発光効率が高い。特に、該層自体の吸湿量が低いため、蛍光体粒子(A)の特性、特に発光効率等が低下し難く、波長変換層の寸法変化やデバイスに該層を用いる時の該層と接触する層との剥離等が生じ難い等の効果も有する。
 さらに、蛍光体粒子(A)として量子ドット(以下「QD」ともいう。)を用いる場合、該QDは、高価な材料であることから、使用量をなるべく抑えたいが、発光量は確保したいという、2つのトレードオフの関係にある要求を同時に達成することができる。
≪Wavelength conversion layer≫
The wavelength conversion layer (hereinafter also referred to as “main layer”) according to an embodiment of the present invention is:
A layer formed using the present composition (hereinafter also referred to as “layer 1”), or
A layer containing the phosphor particles (A) and the light diffusing material (B ′) and having a moisture absorption of 0.01 to 3% (hereinafter also referred to as “layer 2”).
Such a main layer has a low moisture absorption and a high luminous efficiency. In particular, since the moisture absorption amount of the layer itself is low, the characteristics of the phosphor particles (A), in particular, the light emission efficiency and the like are hardly lowered, and the layer changes when the wavelength conversion layer is used or when the layer is used in a device. It also has an effect that peeling from the layer is difficult to occur.
Furthermore, when quantum dots (hereinafter also referred to as “QD”) are used as the phosphor particles (A), since the QD is an expensive material, it is desired to suppress the use amount as much as possible, but to secure a light emission amount. Two trade-off requirements can be achieved simultaneously.
<光拡散材(B')>
 前記光拡散材(B')としては、光を拡散可能な材料であれば特に制限されず、従来公知の材料を用いることができるが、光を拡散可能な粒子であることが好ましい。層2が前記効果を奏する一因としては、前述の本組成物が前記効果を奏する理由と同様の理由等が挙げられる。
 層2に含まれる光拡散材(B')は、1種でもよく、2種以上でもよい。
<Light diffusing material (B ')>
The light diffusing material (B ′) is not particularly limited as long as it is a material capable of diffusing light, and a conventionally known material can be used, but particles capable of diffusing light are preferable. One reason why the layer 2 exhibits the effect is the same as the reason why the composition described above exhibits the effect.
The light diffusing material (B ′) contained in the layer 2 may be one type or two or more types.
 光拡散材(B')としては、粒子、空隙(例:気泡)等が挙げられる。該粒子は、中実粒子であってもよいが、内部に空孔を有する前記中空粒子(B)であることが好ましい。
 光拡散材(B')として前記中空粒子(B)を用いることで、粒子(A)に入射する光量をより増加させることができ、粒子(A)からの発光光を効率的に光拡散することができ、高い発光効率を有する波長変換層を容易に得ることができ、層2の厚みを薄くしても、また、層2中の粒子(A)の量を低減しても、粒子(A)に入射する光量が増した分発光量を確保することができる。
 さらに、光拡散材(B')として前記中空粒子(B)を用いることで、耐屈曲性に優れる波長変換層を容易に得ることができる。
 該中空粒子としては、本組成物の欄に記載した粒子と同様の粒子等が挙げられる。
Examples of the light diffusing material (B ′) include particles and voids (eg, bubbles). The particles may be solid particles, but are preferably the hollow particles (B) having pores therein.
By using the hollow particles (B) as the light diffusing material (B ′), the amount of light incident on the particles (A) can be increased, and the emitted light from the particles (A) can be efficiently diffused. The wavelength conversion layer having high luminous efficiency can be easily obtained, and even if the thickness of the layer 2 is reduced or the amount of the particles (A) in the layer 2 is reduced, the particles ( The amount of light emitted can be ensured by the increase in the amount of light incident on A).
Furthermore, by using the hollow particles (B) as the light diffusing material (B ′), a wavelength conversion layer having excellent bending resistance can be easily obtained.
Examples of the hollow particles include particles similar to the particles described in the column of the present composition.
 本層中の光拡散材(B')の含有量は、吸湿量が低く、高い発光効率を有し、しかも、その発光効率を長期にわたり維持できる波長変換層を容易に得ることができるなどの点から、好ましくは0.1~50質量%、より好ましくは0.3~30質量%であり、さらに好ましくは0.5~25質量%である。 The content of the light diffusing material (B ′) in this layer has a low moisture absorption, a high luminous efficiency, and a wavelength conversion layer that can maintain the luminous efficiency over a long period of time can be easily obtained. From this point, it is preferably 0.1 to 50% by mass, more preferably 0.3 to 30% by mass, and further preferably 0.5 to 25% by mass.
 本層には、粒子(A)および光拡散材(B')の他に、1種または2種以上の前記バインダーまたはその硬化体、1種または2種以上の本組成物の欄に記載のその他の成分等を含んでいてもよい。
 本層がバインダー(C)を含有する場合、バインダー(C)の含有量は、吸湿量が少なく、高い発光効率を有し、所望の(表面)形状を有する波長変換層を容易に形成することができるなどの点から、得られる波長変換層の透過率を考慮して、本層100質量%に対し、好ましくは50~95質量%であり、より好ましくは60~90質量%である。
In this layer, in addition to the particles (A) and the light diffusing material (B ′), one or more of the binders or cured products thereof, one or more of the compositions described in the column of the present composition Other components may be included.
When this layer contains a binder (C), the binder (C) content is low in moisture absorption, has high luminous efficiency, and easily forms a wavelength conversion layer having a desired (surface) shape. In view of the transmittance of the obtained wavelength conversion layer, it is preferably 50 to 95% by mass, more preferably 60 to 90% by mass with respect to 100% by mass of the main layer.
<波長変換層の製造方法>
 本層は、特に制限されず、従来公知の方法で製造することができるが、前記粒子(A)や得られる層において前記光拡散材(B')となる成分(以下「成分(B'1)」ともいう。)を含む組成物(以下「組成物C」ともいう。)を用いて層を形成する工程を含む方法が好ましく、前記本組成物を用いて層を形成する工程を含む方法がより好ましい。
 前記組成物Cは、前記粒子(A)および前記成分(B'1)を含む組成物であってもよいし、例えば、前記粒子(A)を含む組成物と前記成分(B'1)を含む組成物などの2種以上の組成物であってもよい。
 2種以上の組成物を用いる場合には、最終的に得られる層が前記粒子(A)および光拡散材(B')を含む層となればよい。
<Method for producing wavelength conversion layer>
This layer is not particularly limited and can be produced by a conventionally known method. However, the layer (hereinafter referred to as “component (B′1) which becomes the light diffusing material (B ′) in the particles (A) and the obtained layer). The method including a step of forming a layer using a composition containing the composition (hereinafter also referred to as “composition C”) is preferable, and a method including the step of forming a layer using the present composition. Is more preferable.
The composition C may be a composition containing the particles (A) and the component (B′1). For example, the composition C may contain the composition containing the particles (A) and the component (B′1). Two or more types of compositions, such as a composition containing, may be sufficient.
When two or more kinds of compositions are used, the finally obtained layer may be a layer containing the particles (A) and the light diffusing material (B ′).
 前記組成物Cは、前記粒子(A)、および/または、前記成分(B'1)、必要により、前記バインダー成分、前記その他の成分等を含み、さらに必要により、これら以外の、本分野における従来公知の任意成分を、本発明の効果を損なわない範囲で含んでもよい。
 該任意成分としては、有機溶媒、重合開始剤、酸発生剤、塩基発生剤、粘度調節剤等が挙げられる。
 前記任意成分は、それぞれ、1種を用いてもよく、2種以上を用いてもよい。
The composition C includes the particles (A) and / or the component (B′1), and if necessary, the binder component, the other components, and the like. Conventionally known arbitrary components may be included within a range not impairing the effects of the present invention.
Examples of the optional component include an organic solvent, a polymerization initiator, an acid generator, a base generator, and a viscosity modifier.
Each of the optional components may be used alone or in combination of two or more.
 [成分(B'1)]
 前記成分(B'1)としては、前記粒子(B)であってもよく、波長変換層を形成する段階で、組成等が変化し、変化した後の成分が、光拡散能を有するような成分であってもよい。後者としては、例えば、p,p'-オキシビスベンゼンスルホニルヒドラジド、炭酸水素ナトリウム、ジニトロソペンタメチレンテトラミン、アゾジカルボンアミド、無機系発泡剤 P-5(大塚化学(株)製)などの発泡剤が挙げられる。
[Ingredient (B′1)]
The component (B′1) may be the particle (B), and the composition and the like change at the stage of forming the wavelength conversion layer, and the changed component has a light diffusing ability. It may be a component. Examples of the latter include foaming agents such as p, p′-oxybisbenzenesulfonylhydrazide, sodium hydrogen carbonate, dinitrosopentamethylenetetramine, azodicarbonamide, and inorganic foaming agent P-5 (manufactured by Otsuka Chemical Co., Ltd.). Is mentioned.
 前記組成物を用いて層を形成する方法としては、特に制限されないが、前記組成物を基材上に塗布し塗膜を形成する工程1と、得られた塗膜を硬化する工程2とを含む方法が好ましい。 The method for forming a layer using the composition is not particularly limited, and includes a step 1 for applying the composition on a substrate to form a coating film and a step 2 for curing the obtained coating film. A method comprising is preferred.
 前記基材としては特に制限されず、金属製、樹脂製またはガラス製の従来公知の基材を用いることができ、蛍光体粒子含有膜を形成したい部材自体を基材としてもよい。
 前記基材は、表面処理をしたものであってもよい。
The substrate is not particularly limited, and a conventionally known substrate made of metal, resin, or glass can be used, and the member itself on which the phosphor particle-containing film is to be formed may be used as the substrate.
The base material may be subjected to a surface treatment.
 前記塗布する方法は特に制限されず、従来公知の方法を所望の用途に応じて適宜選択することができるが、例えば、スピンコート法、スリットコート法、ディッピング法、グラビア印刷、インクジェット印刷、スクリーン印刷、ノズルプリント法が挙げられる。これらの中でも、光拡散材(B')による光拡散効果と、粒子(A)による蛍光発光効果がより効果的に発揮される波長変換層をより容易に得ることができる等の点から、インクジェット印刷が好ましい。 The coating method is not particularly limited, and a conventionally known method can be appropriately selected according to a desired application. For example, spin coating method, slit coating method, dipping method, gravure printing, inkjet printing, screen printing. And a nozzle printing method. Among these, the ink-jet ink can be more easily obtained from the point that it is possible to more easily obtain the light-diffusing effect by the light-diffusing material (B ′) and the fluorescent light-emitting effect by the particles (A). Printing is preferred.
 なお、本組成物を基材に塗布する際には、該基材表面の一部を覆う膜状に塗布してもよいし、平板の基材上に突起物となるように塗布してもよいし、予め形成された基材の凹部に埋め込むように塗布してもよい。 In addition, when apply | coating this composition to a base material, you may apply | coat to the film form which covers a part of surface of this base material, or may apply | coat so that it may become a projection on a flat base material. Alternatively, it may be applied so as to be embedded in a concave portion of a base material formed in advance.
 前記工程2は、塗膜を硬化すれば特に制限されず、用いる組成物によって、適宜条件を調整すればよいが、前記バインダー成分として、光硬化性成分を用いる場合には、加熱工程を行い、次いで光照射工程を行う方法が好ましい。 The step 2 is not particularly limited as long as the coating film is cured, and the conditions may be appropriately adjusted depending on the composition to be used. However, when the photocurable component is used as the binder component, a heating step is performed. Next, a method of performing a light irradiation step is preferable.
 前記加熱は、1段階の加熱であってもよいし、2段階以上の加熱であってもよい。
 このような加熱の条件としては、加熱温度が、好ましくは60℃以上、より好ましくは80℃以上であり、その上限は、基材の耐熱性に配慮すると、好ましくは200℃である。また、得られる層において光拡散材(B')となる成分として、発泡剤を用いる場合には、該発泡剤が発泡する温度以上の温度で加熱することが好ましい。
The heating may be one-stage heating or two-stage heating or more.
As such heating conditions, the heating temperature is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and the upper limit is preferably 200 ° C. in consideration of the heat resistance of the substrate. Moreover, when using a foaming agent as a component used as a light-diffusion material (B ') in the layer obtained, it is preferable to heat at the temperature more than the temperature which this foaming agent foams.
 前記光照射の条件としては、特に制限されないが、露光光として紫外線などを用い、露光量を0.05~5J/cm2とする条件などが挙げられる。 The light irradiation conditions are not particularly limited, and examples include conditions in which ultraviolet rays are used as exposure light and the exposure amount is 0.05 to 5 J / cm 2 .
 また、前記バインダーとして、アルカリ可溶成分等を用いる場合、前記工程2の前または後に、パターン露光とそれに続く現像工程を行うことによって所望の形状の膜を得ることもできる。 Further, when an alkali-soluble component or the like is used as the binder, a film having a desired shape can be obtained by performing pattern exposure and subsequent development step before or after the step 2.
 得られた波長変換層は、基材から剥離して用いてもよいし、波長変換層を形成したい部材自体を基材とした場合、基材から剥離せずに用いてもよい。 The obtained wavelength conversion layer may be used after being peeled from the base material, or may be used without being peeled from the base material when the member itself on which the wavelength conversion layer is to be formed is used as the base material.
<波長変換層の物性等>
 本層は、前記粒子(A)の特性、特に発光効率等が劣化し難く、寸法変化が生じ難く、発光効率が高く、長期にわたる安定性に優れる層を容易に得ることができる等の点から、吸湿量が好ましくは0.01~3%、より好ましくは0.01~2%、特に好ましくは0.01~1%である。
 該吸湿量は、具体的には下記実施例に記載の方法で測定することができる。
 このような吸湿量の波長変換層は、前記光拡散材(B')の種類および量、バインダー(C)の量などを調整することで、得ることができる。
<Physical properties of wavelength conversion layer>
This layer is characterized in that the characteristics of the particles (A), in particular, luminous efficiency and the like are hardly deteriorated, dimensional change is difficult to occur, the luminous efficiency is high, and a layer having excellent long-term stability can be easily obtained. The moisture absorption is preferably 0.01 to 3%, more preferably 0.01 to 2%, and particularly preferably 0.01 to 1%.
The moisture absorption can be specifically measured by the method described in the following examples.
Such a wavelength conversion layer having a moisture absorption amount can be obtained by adjusting the type and amount of the light diffusing material (B ′), the amount of the binder (C), and the like.
 波長変換層には、耐屈曲性が求められる場合があり、耐屈曲性に優れる波長変換層が求められている。
 具体的には、JIS-K5600-5-1:1999に準拠した円筒形マンドレル法による耐屈曲性試験において、クラックが生じるマンドレルの直径(mm)と波長変換層の厚み(μm)との関係が以下の要件(i)または(ii)を満たすことが好ましい。
 要件(i):波長変換層の厚みが11.8μm以上の場合、下記式を満たす
  クラックが生じるマンドレルの直径(mm)/波長変換層の厚み(μm)≦0.17
 要件(ii):波長変換層の厚みが11.8μm未満の場合、直径が2mmであるマンドレルを用いても波長変換層にクラックが生じない
 前記要件(i)の式の右辺は、好ましくは0.14、より好ましくは0.1である。
 このような耐屈曲性を有する波長変換層は、前記光拡散材(B')として中空粒子を用いること、波長変換層中の光拡散材(B')の量、バインダー(C)の量、該層の空隙率などを調整することで、得ることができる。
The wavelength conversion layer may be required to have bending resistance, and a wavelength conversion layer having excellent bending resistance is required.
Specifically, in the bending resistance test by the cylindrical mandrel method based on JIS-K5600-5: 1-1: 1999, there is a relationship between the diameter (mm) of the mandrel where the crack occurs and the thickness (μm) of the wavelength conversion layer. It is preferable to satisfy the following requirements (i) or (ii).
Requirement (i): When the thickness of the wavelength conversion layer is 11.8 μm or more, the diameter of the mandrel (mm) where the crack that satisfies the following formula is satisfied / the thickness of the wavelength conversion layer (μm) ≦ 0.17 is satisfied.
Requirement (ii): When the thickness of the wavelength conversion layer is less than 11.8 μm, no crack is generated in the wavelength conversion layer even when a mandrel having a diameter of 2 mm is used. The right side of the expression of the requirement (i) is preferably 0. .14, more preferably 0.1.
The wavelength conversion layer having such bending resistance uses hollow particles as the light diffusion material (B ′), the amount of the light diffusion material (B ′) in the wavelength conversion layer, the amount of the binder (C), It can be obtained by adjusting the porosity of the layer.
 本層は、光源から入射された光の波長を変換する層であり、変換後の光の波長は、所望の用途によって適宜選択すればよいが、通常、波長520~560nmの範囲および波長600~700nmの範囲の光を含むことが多い。従って、本層は、これらの波長域における光の透過率が高い方が好ましい。
 具体的には、波長520~560nmの範囲および波長600~700nmの範囲において、波長変換層の垂直方向から測定した場合のそれぞれの透過率の平均値が、共に70%以上であることが好ましく、より好ましくは75%以上、さらに好ましくは80%以上である。
 特に、本層を可視光表示装置に用いる場合には、前記透過率を満たすことが好ましい。
This layer is a layer that converts the wavelength of light incident from the light source, and the wavelength of the light after conversion may be appropriately selected depending on the desired application. Usually, the wavelength is in the range of 520 to 560 nm and the wavelength is 600 to 600. Often includes light in the 700 nm range. Therefore, this layer preferably has a high light transmittance in these wavelength regions.
Specifically, in the wavelength range of 520 to 560 nm and the wavelength range of 600 to 700 nm, the average value of the respective transmittances when measured from the vertical direction of the wavelength conversion layer is preferably 70% or more. More preferably, it is 75% or more, More preferably, it is 80% or more.
In particular, when this layer is used in a visible light display device, it is preferable that the transmittance is satisfied.
 本層(厚さ3μm)は、下記実施例に記載の方法で測定されるヘイズ(平均ヘイズ)が、好ましくは1~80%、より好ましくは3~60%である。
 該ヘイズは、光散乱度の指標であるため、ヘイズが前記範囲にあることで、光拡散の効果により光の利用効率が高まるため、発光効率の高い膜を容易に得ることができる。
This layer (thickness 3 μm) preferably has a haze (average haze) measured by the method described in the following examples of 1 to 80%, more preferably 3 to 60%.
Since the haze is an index of the light scattering degree, when the haze is in the above range, the light use efficiency increases due to the effect of light diffusion, so that a film with high light emission efficiency can be easily obtained.
 本層は、下記実施例に記載の方法で測定されるヘイズの標準偏差が、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下である。
 該ヘイズの標準偏差は、塗膜面の均一性を表す指標であるため、標準偏差が前記範囲にあることで、ムラのない均一な発光特性を有する膜を得ることができる。
This layer has a standard deviation of haze measured by the method described in the following examples, preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less.
Since the standard deviation of the haze is an index representing the uniformity of the coating film surface, a film having uniform light emission characteristics without unevenness can be obtained when the standard deviation is within the above range.
 本層は、発光効率、耐屈曲性および光透過性等によりバランスよく優れる層となる等の点から、該層を切断したときの断面において観察される空隙率が、好ましくは1~50vol%、より好ましくは5~50vol%、さらに好ましくは10~40vol%である。
 該空隙率は、具体的には下記実施例に記載の方法で測定することができる。
This layer has a porosity of preferably 1 to 50 vol% observed in a cross section when the layer is cut from the viewpoint that the layer is excellent in balance due to luminous efficiency, bending resistance, light transmission, and the like. More preferably, it is 5 to 50 vol%, and further preferably 10 to 40 vol%.
The porosity can be specifically measured by the method described in the following examples.
 本層の厚さは、所望の用途に応じて適宜選択すればよいが、通常0.5~200μmであり、軽薄短小化が要求されるデバイス等に好適に使用できる等の点から、より好ましくは1~100μmである。 The thickness of this layer may be appropriately selected according to the desired application, but is usually 0.5 to 200 μm, and is more preferable from the viewpoint that it can be suitably used for a device that is required to be light and thin. Is 1 to 100 μm.
<波長変換層の用途>
 本層は、光源からの光を効率よく波長変換して用いるデバイス、例えば、可視光を用いて画像の表示を行う発光表示素子の発光層、LEDや蛍光灯照明の色調調整層及び導光層、太陽光発電パネルの受光変換層などとして好適に用いることができる。
<Application of wavelength conversion layer>
This layer is a device that efficiently converts the wavelength of light from a light source, for example, a light emitting layer of a light emitting display element that displays an image using visible light, a color tone adjusting layer and a light guiding layer of LED or fluorescent lamp illumination. It can be suitably used as a light receiving conversion layer of a photovoltaic power generation panel.
 本層の形成される場所としては、特に制限されず、所望の用途に応じて、適宜選択すればよいが、例えば、液晶シャッターや、発光素子による光スイッチを応用した表示デバイス等において、光スイッチ素子基板上やデバイス内の導光部材上(アウトセル構造)、投影型の表示デバイスにおける表示スクリーン部材上、光電変換素子上、太陽光発電パネル上、照明器具を構成する導光部材上が挙げられる。 The place where this layer is formed is not particularly limited and may be appropriately selected according to the desired application. For example, in a display device using a liquid crystal shutter or an optical switch using a light emitting element, the optical switch Examples thereof include an element substrate, a light guide member in the device (out-cell structure), a display screen member in a projection display device, a photoelectric conversion element, a photovoltaic power generation panel, and a light guide member constituting a lighting fixture. .
 以下、本発明を具体例に基づいて詳細に説明するが、本発明はこれらの具体例に限定されない。 Hereinafter, the present invention will be described in detail based on specific examples, but the present invention is not limited to these specific examples.
 [合成例1]蛍光体a1(量子ドット)の合成
 Chem. Mater., 2015, 27 (13), pp 4893-4898に準じて合成を行った。具体的には、以下の方法で合成を行った。
 真空ラインおよび窒素ラインへの連結管、熱電対温度計、還流管ならびにセプタムを4つの口に取り付け、攪拌子を入れた4つ口フラスコ中で、塩化インジウム8.44g、塩化亜鉛5.2gおよびオレイルアミン163.3gを混合した後、得られた混合物を真空条件下で水および酸素を除きながら、110℃で1時間加熱し、窒素で常圧に戻し、内容物を190℃に加熱した。
[Synthesis Example 1] Synthesis of phosphor a1 (quantum dot) Synthesis was performed according to Chem. Mater., 2015, 27 (13), pp 4893-4898. Specifically, the synthesis was performed by the following method.
In a four-necked flask with a stirrer attached to a vacuum line and a connecting line to a nitrogen line, a thermocouple thermometer, a reflux pipe and a septum in four necks, indium chloride 8.44 g, zinc chloride 5.2 g and After mixing 163.3 g of oleylamine, the resulting mixture was heated at 110 ° C. for 1 hour while removing water and oxygen under vacuum conditions, returned to normal pressure with nitrogen, and the contents were heated to 190 ° C.
 190℃の混合液にトリスジエチルアミノホスフィン15.7gを注入し、反応を開始し、185℃で20分撹拌・反応させた。得られた溶液を200℃に昇温し、トリオクチルホスフィンの硫黄付加物(トリオクチルホスフィンと硫黄とを等モル混合し均一に溶解した化合物)15.4gを投入して2時間反応させた。次いでステアリン酸亜鉛82.6gとオクタデセン330gとを投入し、220℃に昇温して30分反応させた後、トリオクチルホスフィンの硫黄付加物52.6gを投入した。反応液を240℃に昇温して30分反応させた後、ステアリン酸亜鉛41gとオクタデセン165gとを投入し、260℃で30分反応させた。反応液を窒素気流下で室温まで冷却し、InP/ZnSコアシェルナノ結晶粗生成物を合成した。 15.7 g of trisdiethylaminophosphine was injected into the liquid mixture at 190 ° C. to start the reaction, and the mixture was stirred and reacted at 185 ° C. for 20 minutes. The resulting solution was heated to 200 ° C., and 15.4 g of a trioctylphosphine sulfur adduct (a compound in which equimolar trioctylphosphine and sulfur were mixed and dissolved uniformly) was added and reacted for 2 hours. Next, 82.6 g of zinc stearate and 330 g of octadecene were added, the temperature was raised to 220 ° C., and the mixture was reacted for 30 minutes, and then 52.6 g of a sulfur addition product of trioctylphosphine was added. After raising the temperature of the reaction solution to 240 ° C. and reacting for 30 minutes, 41 g of zinc stearate and 165 g of octadecene were added and reacted at 260 ° C. for 30 minutes. The reaction solution was cooled to room temperature under a nitrogen stream to synthesize an InP / ZnS core-shell nanocrystal crude product.
 得られた反応液の入ったフラスコをグローブボックス中に移し、内容液をビーカーに移した。該ビーカーにトルエンを加えた後、エタノールを加え、粒子を沈降させた後、遠心分離を行った。得られた粒子を、トルエンに再分散させ、エタノールを加えて遠心分離する操作を5回繰り返し行った後、得られた粒子にトルエンを加え、無機成分含量が3質量%となるように再分散させ、蛍光体a1分散液を得た。なお、蛍光体a1分散液をオーブンで加熱乾燥(90℃、20分)した後の固形分濃度は7.5質量%であり、無機成分の他に有機分を含んでいた。 The flask containing the obtained reaction solution was transferred into a glove box, and the content solution was transferred to a beaker. Toluene was added to the beaker, ethanol was added to settle the particles, and then centrifugation was performed. The obtained particles were redispersed in toluene, and the operation of adding ethanol and centrifuging was repeated 5 times, and then toluene was added to the obtained particles and redispersed so that the inorganic component content was 3% by mass. To obtain a phosphor a1 dispersion. In addition, solid content concentration after carrying out the heat drying (90 degreeC, 20 minutes) of fluorescent substance a1 dispersion liquid was 7.5 mass%, and the organic content was included in addition to the inorganic component.
 得られた、蛍光体a1分散液を用い、Quantaurus-QY(浜松ホトニクス(株)製)を用い、励起光として、波長450nmの光を用いて、蛍光スペクトルを測定した。得られたスペクトルのピークトップにおける波長(最大蛍光波長)は、648nmであり、該ピークの半値幅(該ピークの半分の高さにおける幅)は50nmであった。 Using the obtained phosphor a1 dispersion, Quantaurus-QY (manufactured by Hamamatsu Photonics Co., Ltd.) was used, and the fluorescence spectrum was measured using light having a wavelength of 450 nm as excitation light. The wavelength at the peak top (maximum fluorescence wavelength) of the obtained spectrum was 648 nm, and the half-width of the peak (width at the half height of the peak) was 50 nm.
 また、透過型電子顕微鏡(「JEM-2010F」、日本電子(株)製)により蛍光体a1の粒径を測定した。観察視野内の任意の20個の粒子の外径を平均して平均粒径を求めると4.5nmであった。 Further, the particle diameter of the phosphor a1 was measured with a transmission electron microscope (“JEM-2010F”, manufactured by JEOL Ltd.). When the average particle diameter was determined by averaging the outer diameters of any 20 particles in the observation field, it was 4.5 nm.
 熱質量(TGA)分析装置(Thermo plus EVO2、(株)リガク製)を用い、昇温速度5℃/分、エアーフロー下でTGA分析したところ、蛍光体a1中の無機分は40質量%であった。すなわち蛍光体として機能するInP/ZnSコアシェルナノ結晶は40質量%、残り60質量%は量子ドットを分散安定化している有機分(リガンド成分)であった。 Using a thermal mass (TGA) analyzer (Thermo PLUS PLUS EVO2, manufactured by Rigaku Corporation), TGA analysis was performed at a heating rate of 5 ° C./min under an air flow. The inorganic content in the phosphor a1 was 40% by mass. there were. That is, the InP / ZnS core-shell nanocrystal functioning as a phosphor was 40% by mass, and the remaining 60% by mass was an organic component (ligand component) that dispersed and stabilized the quantum dots.
 蛍光体a2分散液の製造
 RE-316(デンカ(株)製、無機蛍光粒子)のプロレングリコールモノメチルエーテルアセテート(PGMEA)分散液を用い、ジルコニア製ビーズを用いたビーズミル(回転数:1500rpm)により、分散液中のRE-316の平均粒子径が200nmになるよう粉砕することで、蛍光体a2分散液(固形分濃度は7.5質量%)を得た。
 なお、前記平均粒子径は、ベックマン・コールター社製のナノ粒子アナライザー「DelsaNano S」を用いて動的光散乱法で測定した。
Production of Phosphor a2 Dispersion Using a propylene glycol monomethyl ether acetate (PGMEA) dispersion of RE-316 (manufactured by Denka Co., Ltd., inorganic fluorescent particles), and a bead mill (rotation speed: 1500 rpm) using zirconia beads The phosphor a2 dispersion (solid content concentration: 7.5% by mass) was obtained by pulverizing so that the average particle size of RE-316 in the dispersion was 200 nm.
The average particle diameter was measured by a dynamic light scattering method using a nanoparticle analyzer “Delsa Nano S” manufactured by Beckman Coulter.
 [蛍光体a3]
 デンカ(株)製アロンブライトGR-MW540Hを、平均粒径が300nmとなるまで、乾式ビーズミル シグマドライSDA5(アシザワ・ファインテック(株)製)を用い、乾式粉砕することで、蛍光体a3を得た。
 蛍光体a3をトルエン中に分散させた分散液(固形分濃度7.5質量%)を用いて、前記と同様にして、最大蛍光波長を測定したところ、544nmであった。
[Phosphor a3]
Fluorescent substance a3 is obtained by dry-pulverizing Aronbright GR-MW540H manufactured by Denka Co., Ltd. using dry bead mill Sigma Dry SDA5 (manufactured by Ashizawa Finetech Co., Ltd.) until the average particle size becomes 300 nm. It was.
The maximum fluorescence wavelength was measured in the same manner as described above using a dispersion liquid (solid content concentration: 7.5 mass%) in which the phosphor a3 was dispersed in toluene, and it was 544 nm.
 [製造例1]中空粒子b1の製造
 容量2リットルの反応容器に、予め、媒体として水109.5質量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(F65、花王(株)製)0.2質量部、重合開始剤として過硫酸ナトリウム0.5質量部を投入した。
[Production Example 1] Production of hollow particles b1 In a reaction vessel having a capacity of 2 liters, 109.5 parts by weight of water as a medium and 0.2 parts by weight of sodium dodecylbenzenesulfonate (F65, manufactured by Kao Corporation) as an emulsifier As a polymerization initiator, 0.5 part by mass of sodium persulfate was added.
 一方、メタクリル酸メチル90質量部、メタクリル酸10質量部、分子量調整剤としてオクチルチオグリコール2.5質量部、乳化剤(F65、花王(株)製)0.1質量部および水40質量部を混合攪拌してモノマー混合物の水性分散体1を調製した。 Meanwhile, 90 parts by mass of methyl methacrylate, 10 parts by mass of methacrylic acid, 2.5 parts by mass of octylthioglycol as a molecular weight regulator, 0.1 part by mass of an emulsifier (F65, manufactured by Kao Corporation) and 40 parts by mass of water are mixed. An aqueous dispersion 1 of the monomer mixture was prepared by stirring.
 得られたモノマー混合物の水性分散体1の20質量%を前記反応容器に投入し、反応容器内の液を攪拌しながら温度75℃まで昇温して1時間重合反応を行い、その後、温度を75℃に保ちながら残り80質量%のモノマー混合物の水性分散体1を連続的に2時間かけて反応容器に添加した。さらに、2時間熟成を行うことで、シード粒子の水性分散体(固形分40質量%)を得た。 20% by mass of the obtained aqueous dispersion 1 of the monomer mixture was put into the reaction vessel, and the temperature was raised to 75 ° C. while stirring the liquid in the reaction vessel to conduct a polymerization reaction for 1 hour. While maintaining the temperature at 75 ° C., the remaining 80 mass% of the aqueous dispersion 1 of the monomer mixture was continuously added to the reaction vessel over 2 hours. Furthermore, the seed particle aqueous dispersion (solid content: 40% by mass) was obtained by aging for 2 hours.
 次いで、メタクリル酸メチル79.5質量部、メタクリル酸20質量部、ジビニルベンゼン(純度81%)0.5質量部、オクチルチオグリコール3質量部、乳化剤(F65、花王(株)製)0.1質量部および水40質量部を混合攪拌してモノマー混合物の水性分散体2を調製した。 Next, 79.5 parts by weight of methyl methacrylate, 20 parts by weight of methacrylic acid, 0.5 parts by weight of divinylbenzene (purity 81%), 3 parts by weight of octylthioglycol, emulsifier (F65, manufactured by Kao Corporation) 0.1 An aqueous dispersion 2 of a monomer mixture was prepared by mixing and stirring parts by mass and 40 parts by mass of water.
 一方、容量2リットルの反応容器に、予め、媒体として水186質量部を投入し、これに、得られたシード粒子の水性分散体を25質量部、および、重合開始剤として過硫酸ナトリウム0.5質量部を投入した。反応容器内の液を攪拌しながら温度80℃まで昇温し、この温度に保ちながら、得られたモノマー混合物の水性分散体2を連続的に3時間かけて投入した。その後、更に2時間熟成を行なうことで、粒子径0.41μmの第1ポリマー粒子の水性分散体(固形分31質量%)を得た。 On the other hand, 186 parts by mass of water as a medium was previously charged into a reaction vessel having a capacity of 2 liters, and 25 parts by mass of the obtained aqueous dispersion of seed particles was added to the reaction container. 5 parts by mass were added. While stirring the liquid in the reaction vessel, the temperature was raised to 80 ° C., and while maintaining this temperature, the obtained aqueous dispersion 2 of the monomer mixture was continuously added over 3 hours. Thereafter, aging was further performed for 2 hours to obtain an aqueous dispersion of the first polymer particles having a particle diameter of 0.41 μm (solid content: 31% by mass).
 次いで、スチレン56.5質量部、エチレングリコールジメタクリレート3質量部、乳化剤(F65、花王(株)製)0.1質量部および水40質量部を混合攪拌して、重合性モノマー(β)混合物の水性分散体3を調製した。 Next, 56.5 parts by mass of styrene, 3 parts by mass of ethylene glycol dimethacrylate, 0.1 part by mass of an emulsifier (F65, manufactured by Kao Corporation) and 40 parts by mass of water were mixed and stirred to obtain a polymerizable monomer (β) mixture. Aqueous dispersion 3 was prepared.
 一方、容量2リットルの反応容器に、予め、媒体として水240質量部を投入し、これに、得られた第1ポリマー粒子の水性分散体を48.4質量部、スチレン20質量部、および、重合開始剤として過硫酸ナトリウム0.4質量部を投入した。反応容器内の液を攪拌しながら温度80℃まで昇温し、この温度で30分間スチレンの重合を行い、第1ポリマー粒子にスチレンの重合物が複合したポリマー粒子を得た。
 得られた反応容器内の液を攪拌しながら80℃に保持し、ここに、重合性モノマー(β)混合物の水性分散体3を連続的に4時間かけて投入した。この際、該水性分散体3を投入開始後2時間経過時に、アクリル酸0.5質量部を反応容器に一括投入してスチレンと共重合させた。該水性分散体3をすべて反応容器に投入し終わった後、ジビニルベンゼン(純度81%)20質量部を一括投入し、第1ポリマー粒子の表層にスチレン、アクリル酸、エチレングリコールジメタクリレート、ジビニルベンゼンの重合体を積層させたコアシェル粒子を得た。なお、得られたコアシェル粒子には、未反応の重合性モノマー(β)が存在していた。
On the other hand, 240 parts by mass of water was previously charged as a medium in a reaction vessel having a capacity of 2 liters, and 48.4 parts by mass of the obtained aqueous dispersion of the first polymer particles, 20 parts by mass of styrene, and As a polymerization initiator, 0.4 part by mass of sodium persulfate was added. While stirring the liquid in the reaction vessel, the temperature was raised to 80 ° C., and styrene was polymerized at this temperature for 30 minutes to obtain polymer particles in which a polymer of styrene was combined with the first polymer particles.
The liquid in the obtained reaction vessel was kept at 80 ° C. with stirring, and the aqueous dispersion 3 of the polymerizable monomer (β) mixture was continuously added thereto over 4 hours. At this time, 0.5 part by mass of acrylic acid was charged all at once into the reaction vessel and copolymerized with styrene at the elapse of 2 hours after the start of the addition of the aqueous dispersion 3. After all of the aqueous dispersion 3 has been charged into the reaction vessel, 20 parts by mass of divinylbenzene (purity 81%) are charged all at once, and styrene, acrylic acid, ethylene glycol dimethacrylate, divinylbenzene are applied to the surface layer of the first polymer particles. As a result, core-shell particles were laminated. In addition, the unreacted polymerizable monomer (β) was present in the obtained core-shell particles.
 前記水性分散体3を投入し終えてからおよそ15分後に、攪拌を続けながら20%アンモニア水溶液5質量部を反応容器に一括投入し、温度を90℃に上げ、2時間攪拌熟成した。その後、t-ブチルハイドロパーオキサイド0.3質量部およびホルムアルデヒド樹脂0.1質量部を投入し、そのまま1時間攪拌放置することで、単一の空孔を有する球状の中空粒子b1の水性分散体Em1(固形分26.5質量%)を得た。 Approximately 15 minutes after the completion of the addition of the aqueous dispersion 3, 5 parts by mass of a 20% aqueous ammonia solution was added all at once to the reaction vessel while stirring, the temperature was raised to 90 ° C., and the mixture was aged and stirred for 2 hours. Thereafter, 0.3 part by mass of t-butyl hydroperoxide and 0.1 part by mass of formaldehyde resin were added, and the mixture was allowed to stand for 1 hour as it was, whereby an aqueous dispersion of spherical hollow particles b1 having single pores. Em1 (solid content 26.5% by mass) was obtained.
 得られた中空粒子b1の水性分散体を、遠心分離器を用いて15000rpmで30分間遠心分離することで中空粒子の沈殿物を得、この沈殿物を真空乾燥機を用いて25℃で24時間乾燥させることで、中空粒子b1を得た。 The obtained aqueous dispersion of hollow particles b1 is centrifuged at 15000 rpm for 30 minutes using a centrifuge to obtain a precipitate of hollow particles, and this precipitate is obtained at 25 ° C. for 24 hours using a vacuum dryer. The hollow particles b1 were obtained by drying.
 [製造例2]中空粒子b2の製造
 製造例1において、反応の各段階で用いるドデシルベンゼンスルホン酸ナトリウムの量を各々製造例1の2倍量に増量した以外は、製造例1と同様にして、中空粒子b2を得た。
[Production Example 2] Production of hollow particles b2 In Production Example 1, the amount of sodium dodecylbenzenesulfonate used in each stage of the reaction was increased to twice the amount of Production Example 1 in the same manner as in Production Example 1. Hollow particles b2 were obtained.
 [製造例3]中空粒子b3の製造
 製造例1において、水性分散体3をすべて反応容器に投入し終わった後に投入するジビニルベンゼン(純度81%)の投入量を18質量部に変更した以外は、製造例1と同様にして、中空粒子b3を得た。
[Production Example 3] Production of hollow particles b3 In Production Example 1, except that the amount of divinylbenzene (purity 81%) charged after all of the aqueous dispersion 3 was charged into the reaction vessel was changed to 18 parts by mass. In the same manner as in Production Example 1, hollow particles b3 were obtained.
 <中空粒子サイズ>
 中空粒子をエポキシ樹脂で包埋(コスモバイオ(株)製、Quetol 651 Kit使用)し、該エポキシ樹脂を硬化させた後、ミクロトームで超薄切片を切り出し、JEM-1400Plus(日本電子(株)製)を用いて、該切片をTEM観察した。観察視野内の粒子20個を任意に選定し、これら粒子の空孔の最大直径および中空粒子を構成する外殻の最大直径をそれぞれ測長し、それぞれ、20個の平均値から内径および外径を算出した。
 また、粒子形状を真球と仮定し、外径および内径データから殻の厚み(平均膜厚)を算出し、殻の厚み/外径(殻/外径)を算出した。さらに、内径から空隙体積、外径から粒子体積を算出し、その比から空隙率を求めた。
 粒子径変動係数(CV)は、20個の粒子の外径計測データから、式CV=(標準偏差
/外径)に基づいて算出した。
 これらの結果を表1に示す。
<Hollow particle size>
Hollow particles were embedded in an epoxy resin (Cosmo Bio Co., Ltd., using Quetol 651 Kit), and after curing the epoxy resin, ultrathin sections were cut out with a microtome, and JEM-1400Plus (manufactured by JEOL Ltd.) ) Were used for TEM observation. Twenty particles in the observation field are arbitrarily selected, the maximum diameter of the pores of these particles and the maximum diameter of the outer shell constituting the hollow particles are measured, and the inner diameter and the outer diameter are respectively calculated from the average value of 20 particles. Was calculated.
Further, assuming that the particle shape is a true sphere, the shell thickness (average film thickness) was calculated from the outer diameter and inner diameter data, and the shell thickness / outer diameter (shell / outer diameter) was calculated. Furthermore, the void volume was calculated from the inner diameter, the particle volume was calculated from the outer diameter, and the porosity was determined from the ratio.
The particle diameter variation coefficient (CV) was calculated from the outer diameter measurement data of 20 particles based on the formula CV = (standard deviation / outer diameter).
These results are shown in Table 1.
 <トルエン不溶分>
 中空粒子約1gを採取して精密秤量し(w1g)、該粒子を100mLのトルエンに浸漬させ、80℃で6時間攪拌後、遠心分離器を用いて15000rpmで30分間遠心分離し、分離液の一部(vmL)を蒸発乾燥固化させ、得られた残存固形分(トルエン可溶分w2g)を秤量し、下記式(1)によりトルエン不溶分を算出した。結果を表1に示す。
  トルエン不溶分(質量%)=(w1-(w2×100/v))/w1×100・・・(1)
<Toluene insoluble matter>
About 1 g of hollow particles are collected and weighed accurately (w1 g), the particles are immersed in 100 mL of toluene, stirred at 80 ° C. for 6 hours, and then centrifuged at 15000 rpm for 30 minutes using a centrifuge. A part (vmL) was evaporated to dryness and solidified, and the obtained residual solid content (toluene soluble content w2 g) was weighed, and the toluene insoluble content was calculated by the following formula (1). The results are shown in Table 1.
Toluene insoluble matter (mass%) = (w1− (w2 × 100 / v)) / w1 × 100 (1)
 <耐熱温度>
 中空粒子を、示差熱天秤Thermo plus EVO2((株)リガク製)を用い、エアーフロー200cc/min下で、昇温速度5℃/minの条件で40℃から500℃まで昇温し、この時の昇温開始前の質量から5%質量が変化した時の温度を耐熱温度とした。結果を表1に示す。
<Heat-resistant temperature>
Using a differential thermal balance Thermo plus EVO2 (manufactured by Rigaku Corporation), the hollow particles were heated from 40 ° C. to 500 ° C. under a temperature increase rate of 5 ° C./min under an air flow of 200 cc / min. The temperature at which 5% mass changed from the mass before the start of temperature increase was defined as the heat resistant temperature. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [実施例1]
 容器に、蛍光体a1分散液を933質量部量り取り、そこに、粒子b1(100質量部)およびメシチレン(10149質量部)を入れ、混合した後、ジペンタエリスリトールヘキサアクリレート(382質量部)およびIrgacure 184(20質量部)を加え、30分間超音波照射して分散混合し、1μmのフィルターで粗大固形物を除去することで蛍光体粒子含有組成物を得た。
[Example 1]
In a container, 933 parts by mass of the phosphor a1 dispersion was weighed, and particles b1 (100 parts by mass) and mesitylene (10149 parts by mass) were added and mixed, and then dipentaerythritol hexaacrylate (382 parts by mass) and Irgacure 184 (20 parts by mass) was added, ultrasonically irradiated for 30 minutes, dispersed and mixed, and coarse solids were removed with a 1 μm filter to obtain a phosphor particle-containing composition.
 [実施例2~10および比較例1]
 表2に記載の成分を表2に記載の量で用いた以外は実施例1と同様にして、蛍光体粒子含有組成物を得た。なお、表2中の各成分の種類の下段に記載の括弧の中の数値が、各成分の使用量(質量部)である。
[Examples 2 to 10 and Comparative Example 1]
A phosphor particle-containing composition was obtained in the same manner as in Example 1 except that the components shown in Table 2 were used in the amounts shown in Table 2. In addition, the numerical value in the bracket | parenthesis described in the lower stage of the kind of each component in Table 2 is the usage-amount (mass part) of each component.
 表2中の各成分の略号は以下のとおりである。
 ・「DPHA」:ジペンタエリスリトールヘキサアクリレート
 ・「MOSA」:2-メタクリロイルオキシエチルコハク酸
 ・「ポリマーD」:下記製造例4で得られたポリマー
 ・「Irg184」:Irgacure 184(BASF社製、光重合開始剤)
 ・「AO-80」:アデカスタブAO-80((株)ADEKA製、フェノール系酸化防止剤)
 ・「AO-412S」:アデカスタブAO-412S((株)ADEKA製、チオエーテル系酸化防止剤)
 ・「TTO」:TTO-51(C)(石原産業(株)製、超微粒子酸化チタン)
Abbreviations of each component in Table 2 are as follows.
"DPHA": Dipentaerythritol hexaacrylate "MOSA": 2-methacryloyloxyethyl succinic acid "Polymer D": polymer obtained in the following Production Example 4 "Irg184": Irgacure 184 (manufactured by BASF, light Polymerization initiator)
"AO-80": ADK STAB AO-80 (manufactured by ADEKA, phenolic antioxidant)
"AO-412S": ADK STAB AO-412S (manufactured by ADEKA, thioether antioxidant)
"TTO": TTO-51 (C) (Ishihara Sangyo Co., Ltd., ultrafine titanium oxide)
 [製造例4]ポリマーDの製造
 冷却管と攪拌機を備えたフラスコに、PGMEA 150質量部を仕込んで窒素置換した。80℃に加熱して、同温度で、PGMEA 50質量部、メタクリル酸10質量部、メタクリル酸シクロヘキシル30質量部、スチレン10質量部、コハク酸モノ(2-メタクリロイルオキシエチル)20質量部、メタクリル酸2-ヒドロキシエチル3質量部、メタクリル酸2-エチルヘキシル15質量部、N-フェニルマレイミド12質量部および2,2’-アゾビス(2,4-ジメチルバレロニトリル)6質量部の混合溶液を2時間かけて滴下し、この温度を保持して1時間重合した。その後、反応溶液の温度を90℃に昇温し、さらに1時間重合することにより、ポリマーDのPGMEA溶液(固形分濃度:33質量%)を得た。得られたポリマーDは、Mwが10,800、Mnが5,900、Mw/Mnが1.83であった。
[Production Example 4] Production of polymer D A flask equipped with a cooling pipe and a stirrer was charged with 150 parts by mass of PGMEA and purged with nitrogen. Heated to 80 ° C., at the same temperature, 50 parts by weight of PGMEA, 10 parts by weight of methacrylic acid, 30 parts by weight of cyclohexyl methacrylate, 10 parts by weight of styrene, 20 parts by weight of mono (2-methacryloyloxyethyl) succinate, methacrylic acid A mixed solution of 3 parts by weight of 2-hydroxyethyl, 15 parts by weight of 2-ethylhexyl methacrylate, 12 parts by weight of N-phenylmaleimide and 6 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) is taken over 2 hours. The mixture was added dropwise and polymerized for 1 hour while maintaining this temperature. Thereafter, the temperature of the reaction solution was raised to 90 ° C., and further polymerized for 1 hour to obtain a PGMEA solution of polymer D (solid content concentration: 33 mass%). The obtained polymer D had Mw of 10,800, Mn of 5,900, and Mw / Mn of 1.83.
 [Mw、MnおよびMw/Mn]
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記条件でMwおよびMnを測定し、Mw/Mnを算出した。
 装置:昭和電工(株)製、「GPC-101」
 カラム:昭和電工(株)製、「GPC-KF-801」、「GPC-KF-802」、「GPC-KF-803」および「GPC-KF-804」を連結したもの
 移動相:テトラヒドロフラン
 カラム温度:40℃
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
[Mw, Mn and Mw / Mn]
Mw and Mn were measured by gel permeation chromatography (GPC) under the following conditions to calculate Mw / Mn.
Equipment: “GPC-101” manufactured by Showa Denko K.K.
Column: “GPC-KF-801”, “GPC-KF-802”, “GPC-KF-803” and “GPC-KF-804”, manufactured by Showa Denko KK Mobile phase: Tetrahydrofuran Column temperature : 40 ° C
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene
 <発光効率>
 実施例および比較例で得られた組成物を、0.7mm厚、150mm×180mmのガラス基板上に、得られる塗膜の厚さが3μmとなるように塗装した。
 以下の3種類の塗膜を、それぞれ1cm×1cmのサイズに切り出し、Quantaurus-QY(浜松ホトニクス(株)製)を用い、励起光波長450nmにて発光特性を計測し、発光効率を評価した。
<Luminous efficiency>
The compositions obtained in Examples and Comparative Examples were coated on a 0.7 mm thick, 150 mm × 180 mm glass substrate so that the resulting coating film thickness was 3 μm.
The following three types of coating films were each cut into a size of 1 cm × 1 cm, and luminescence characteristics were measured at an excitation light wavelength of 450 nm using Quantaurus-QY (manufactured by Hamamatsu Photonics Co., Ltd.) to evaluate luminous efficiency.
 発光効率は、ガラス基板上に塗膜を形成した時の塗膜(成膜時)、該塗膜を180℃のホットプレートで10分間加熱し、5分冷却した後の塗膜(加熱後)、および、成膜時の塗膜を、1時間トルエンに浸漬し、次いで1時間水に浸漬した後に90℃で5分乾燥した後の塗膜(浸漬後)のそれぞれを用いて測定した。
 比較例1の組成物を用いて得られた塗膜(成膜時)の発光効率を100としたときの発光効率の結果を表2に示す。
Luminous efficiency is the coating film when the coating film is formed on the glass substrate (during film formation), the coating film is heated on a hot plate at 180 ° C. for 10 minutes and cooled for 5 minutes (after heating) And the coating film at the time of film-forming was measured using each of the coating film (after immersion) after being immersed in toluene for 1 hour and then immersed in water for 1 hour and then dried at 90 ° C. for 5 minutes.
Table 2 shows the results of the luminous efficiency when the luminous efficiency of the coating film (during film formation) obtained using the composition of Comparative Example 1 is taken as 100.
 本組成物は、該組成物からLEDなどの波長変換層等を形成し、使用されることが考えられる。LEDなどには、波長変換層以外の他の層も積層され、その際には、通常、加熱や浸漬工程が含まれる。従って、本組成物から得られる膜(蛍光体粒子含有膜)には、このような加熱や浸漬工程を経ても特性が変わらないことが望まれるため、前記のように、加熱後および浸漬後の膜についても発光効率を測定した。 This composition can be used by forming a wavelength conversion layer such as an LED from the composition. Layers other than the wavelength conversion layer are also laminated on the LED and the like, and in that case, usually a heating or dipping process is included. Accordingly, since it is desired that the film (phosphor particle-containing film) obtained from the present composition does not change in properties even after such heating and immersion processes, as described above, after heating and after immersion. The luminous efficiency of the film was also measured.
 <ヘイズ>
 発光効率測定用に準備した塗膜(成膜時)を用いて、ヘイズメーターHM-150((株)村上色彩技術研究所製)でヘイズを計測した。測定は150mm×180mmのガラス基板上の任意の20箇所で行い、得られたヘイズ値から、平均値、標準偏差をそれぞれ算出した。
 ヘイズ値はJIS K7136に従って求め、光散乱度の指標とした。また、標準偏差は塗膜面の均一性を表す指標とし、標準偏差が2%以下の場合、塗膜にムラがなく、良好な塗膜であると判断した。
<Haze>
Haze was measured with a haze meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.) using a coating film (during film formation) prepared for measuring luminous efficiency. The measurement was performed at 20 arbitrary locations on a 150 mm × 180 mm glass substrate, and an average value and a standard deviation were calculated from the obtained haze values.
The haze value was determined according to JIS K7136 and used as an index of light scattering degree. The standard deviation was an index representing the uniformity of the coating surface. When the standard deviation was 2% or less, it was judged that the coating film had no unevenness and was a good coating film.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例で得られた組成物は、高い発光効率を示す膜を形成できた。
 実施例1で得られた組成物を用いた場合、目視ではムラは見られず良好な塗膜を形成でき、該塗膜のヘイズ評価を行うと平均ヘイズ値は50%であり、ヘイズ値の標準偏差は1%であった。これは、粒子b1のCV値が小さく、成膜の均一性が良好であるためと考えられる。
The composition obtained in the example could form a film showing high luminous efficiency.
When the composition obtained in Example 1 was used, no unevenness was visually observed and a good coating film could be formed. When haze evaluation of the coating film was performed, the average haze value was 50%, and the haze value was The standard deviation was 1%. This is presumably because the CV value of the particle b1 is small and the uniformity of film formation is good.
[調製例1~9および12~14]
 混合装置である3本ロール(BR-100V、アイメックス(株)製)に、表3に示す混合割合で、成分(B'1)、バインダー成分、蛍光体粒子および添加剤を、この順で混練しながら加え、最後に感光剤を加えて均一なペースト状となるまで30分間混練分散し、組成物を得た。
[Preparation Examples 1 to 9 and 12 to 14]
The three rolls (BR-100V, manufactured by IMEX Co., Ltd.), which is a mixing device, are kneaded in this order with component (B′1), binder component, phosphor particles and additives in the mixing ratio shown in Table 3. Then, a photosensitizer was added at the end and kneaded and dispersed for 30 minutes until a uniform paste was obtained, to obtain a composition.
 [調製例10~11]
 蛍光体粒子、成分(B’1)および添加剤のうちの有機溶媒(酢酸ブチルまたはメシチレン)を表3の混合割合に従って混合した後、30分間超音波照射して分散混合し、次いで、これにバインダー成分、他の添加剤および感光剤を表3の混合割合に従って加えて撹拌混合の後、1μmのフィルターで粗大固形物を除去することで組成物を得た。
[Preparation Examples 10 to 11]
The phosphor particles, component (B′1) and organic solvent (butyl acetate or mesitylene) among the additives were mixed according to the mixing ratio in Table 3 and then dispersed by ultrasonic irradiation for 30 minutes. A binder component, other additives and a photosensitizer were added according to the mixing ratio shown in Table 3, and after stirring and mixing, a coarse solid was removed with a 1 μm filter to obtain a composition.
 なお、表3中の下段の数値は、各成分中の固形分の混合比率(質量部)を表し、表3において、蛍光体a1分散液の下に記載の数値は、蛍光体a1が該質量となるように分散液を用いたことを示す。 In addition, the numerical value of the lower stage in Table 3 represents the mixing ratio (mass part) of the solid content in each component, and in Table 3, the numerical value described under the phosphor a1 dispersion is the mass of the phosphor a1. This shows that the dispersion was used.
 表2に記載の略号以外の表3中の各成分の略号は以下のとおりである。
 ・「中実粒子1」:シリカ粒子(シーホスターKE-S50、日本触媒(株)製、外径:0.5μm、空隙率:0%)
 ・「AP」:ペンタエリスリトールトリ(メタ)アクリレート
 ・「UVインクUV1」:硬質UVインク SPC-0371((株)ミマキエンジニアリング製)
 ・「UVインクUV2」:UV IJ-LED シリーズ LOWタイプ(T&K TOKA社製)
Abbreviations of each component in Table 3 other than the abbreviations described in Table 2 are as follows.
“Solid particles 1”: silica particles (Seahoster KE-S50, manufactured by Nippon Shokubai Co., Ltd., outer diameter: 0.5 μm, porosity: 0%)
"AP": Pentaerythritol tri (meth) acrylate "UV ink UV1": Hard UV ink SPC-0371 (Mimaki Engineering Co., Ltd.)
・ "UV ink UV2": UV IJ-LED series LOW type (manufactured by T & K TOKA)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [水性組成物の調製]
 [調製例15~16]
 表4の混合割合に従い、各水性分散体を、水性分散体Em1、バインダー成分および架橋剤の順に加えて混合し、水を加えて固形分が30%となるように濃度調整し、異物や凝集物を400メッシュのSUS網でろ別除去し、水性組成物を得た。
[Preparation of aqueous composition]
[Preparation Examples 15 to 16]
According to the mixing ratio of Table 4, each aqueous dispersion was added and mixed in the order of aqueous dispersion Em1, binder component and cross-linking agent, and water was added to adjust the concentration so that the solid content was 30%. The product was removed by filtration with a 400 mesh SUS net to obtain an aqueous composition.
 表4中の各成分の略号は以下のとおりである。
 ・「水性分散体Em2」:ケミタイトZ-33((株)日本触媒製)
 ・「水性分散体Em3」:カルボジライトE-02(日清紡ケミカル(株)製)
 ・「水性分散体Em4」:アクリルウレタンエマルション WEM-3000(大成ファインケミカル(株)製)
 ・「水性分散体Em5」:アクリルエマルション AE173A((株)イーテック製)
Abbreviations for each component in Table 4 are as follows.
"Aqueous dispersion Em2": Chemite Z-33 (manufactured by Nippon Shokubai Co., Ltd.)
・ "Aqueous dispersion Em3": Carbodilite E-02 (Nisshinbo Chemical Co., Ltd.)
"Aqueous dispersion Em4": Acrylic urethane emulsion WEM-3000 (manufactured by Taisei Fine Chemical Co., Ltd.)
"Aqueous dispersion Em5": Acrylic emulsion AE173A (manufactured by Etec Co., Ltd.)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、表4中の下段の数値は、各成分中の固形分の混合比率(質量部)を表す。 In addition, the numerical value of the lower stage in Table 4 represents the mixing ratio (mass part) of the solid content in each component.
 [実施例11~19、実施例22~23および比較例2~4]
 表5に示す組成物を用い、表5に示す各成膜方法に従って、PETフィルム基材(テイジンテトロンフィルムG2、帝人デュポンフィルム(株)製、100μm厚)上に、得られる層の厚みが表5に示す厚みとなるように波長変換層を形成した。
 実施例で得られた波長変換層を目視にて確認したところ、成膜状態は良好であり、また、発光効率も100を超え効率の良い波長変換層が確認された。
[Examples 11 to 19, Examples 22 to 23, and Comparative Examples 2 to 4]
Using the composition shown in Table 5, according to each film-forming method shown in Table 5, the thickness of the layer obtained on the PET film substrate (Teijin Tetron Film G2, Teijin DuPont Films Co., Ltd., 100 μm thickness) The wavelength conversion layer was formed so as to have the thickness shown in FIG.
When the wavelength conversion layer obtained in the Example was visually confirmed, the film formation state was good, and the light emission efficiency exceeded 100, and an efficient wavelength conversion layer was confirmed.
 [実施例20]
 ポリイミドフィルム(東レ・デュポン(株)製、カプトン200H/V、厚み:50μm)にポリイミドテープ(耐熱絶縁用ポリイミド粘着テープ No.360A、日東電工(株)製、厚み:50μm)で囲われた1mm角の区画を設け、深さ50μmの凹部を有する基材を準備した。
 この凹部に、調製例15の水性組成物をインクジェット装置(DotView)を用いて塗布した後、得られた基材を90℃で5分間加熱し、次いで、230℃まで5分間かけて昇温し、230℃で5分焼成した。前記凹部には40μm厚みの硬化膜ができていた。
 調製例15の水性組成物を用いて得られた層の上に、調製例12を用い、下記方法4により層を形成した。
 ポリイミドテープを除去することで、1mm角、高さ50μmの波長変換層が得られた。
[Example 20]
1 mm surrounded by a polyimide film (made by Toray DuPont, Kapton 200H / V, thickness: 50 μm) with a polyimide tape (polyimide adhesive tape for heat-resistant insulation No. 360A, manufactured by Nitto Denko Corporation, thickness: 50 μm) A substrate having corner sections and a recess having a depth of 50 μm was prepared.
After applying the aqueous composition of Preparation Example 15 to this recess using an inkjet apparatus (DotView), the obtained substrate was heated at 90 ° C. for 5 minutes, and then heated to 230 ° C. over 5 minutes. And calcination at 230 ° C. for 5 minutes. A cured film having a thickness of 40 μm was formed in the recess.
On the layer obtained using the aqueous composition of Preparation Example 15, a layer was formed by the following Method 4 using Preparation Example 12.
By removing the polyimide tape, a wavelength conversion layer having a size of 1 mm square and a height of 50 μm was obtained.
 [実施例21]
 調製例15の水性組成物の代わりに調製例16の水性組成物を用いた以外は実施例20と同様にして、波長変換層を形成した。
[Example 21]
A wavelength conversion layer was formed in the same manner as in Example 20 except that the aqueous composition of Preparation Example 16 was used instead of the aqueous composition of Preparation Example 15.
 <波長変換層の形成方法>
・「方法1」スクリーン印刷
 スクリーン印刷機(HP-320型スクリーン印刷機、ニューロング精密工業(株)製)を用い、基材上に組成物を5mm角となるようにパターン印刷し、90℃のオーブンで20分乾燥させた後、UV照射(UVコンベアQRM-2288、(株)オーク製作所製、露光量:0.5J/cm2)することで、該パターンを硬化させた。
<Method for forming wavelength conversion layer>
"Method 1" screen printing Using a screen printing machine (HP-320 type screen printing machine, manufactured by Neurong Seimitsu Kogyo Co., Ltd.), the composition is printed on the substrate in a pattern of 5 mm square, 90 ° C After drying in an oven for 20 minutes, the pattern was cured by UV irradiation (UV conveyor QRM-2288, manufactured by Oak Manufacturing Co., Ltd., exposure amount: 0.5 J / cm 2 ).
・「方法2」ノズルプリント
 ノズルプリンティング装置(NP-750G、Screen社製)を用い、基材上に組成物を5mm角となるように塗布し、90℃のオーブンで20分乾燥させた後、UV照射(UVコンベアQRM-2288、露光量:0.5J/cm2)することで、該組成物を硬化させた。
"Method 2" Nozzle printing Using a nozzle printing device (NP-750G, manufactured by Screen), the composition was applied onto the substrate so as to be 5 mm square, and dried in an oven at 90 ° C for 20 minutes. The composition was cured by UV irradiation (UV conveyor QRM-2288, exposure amount: 0.5 J / cm 2 ).
・「方法3」スリットコート
 スリット式塗布装置(LC-R300G、Screen社製)を用い、基材上に組成物を全面塗布し、90℃のオーブンで20分乾燥させた後、UV照射(UVコンベアQRM-2288、露光量:0.5J/cm2)することで、該組成物を硬化させた。
"Method 3" Slit coat Using a slit coater (LC-R300G, manufactured by Screen), the composition was coated on the entire surface, dried in an oven at 90 ° C for 20 minutes, and then irradiated with UV (UV Conveyor QRM-2288, exposure amount: 0.5 J / cm 2 ), the composition was cured.
・「方法4」インクジェット
 インクジェット装置(DotView)を用い、基材上に組成物を塗布し、90℃のオーブンで20分乾燥させた後、UV照射(UVコンベアQRM-2288、露光量:0.5J/cm2)することで、該組成物を硬化させた。
“Method 4” Inkjet Inkjet apparatus (DotView) was used to apply the composition onto the substrate, and after drying in an oven at 90 ° C. for 20 minutes, UV irradiation (UV conveyor QRM-2288, exposure: 0. 5 J / cm 2 ) to cure the composition.
 <吸湿量>
 実施例および比較例で得られた波長変換層から、PETフィルムまたはポリイミドフィルムを剥離し、得られた波長変換層を約1gとなるように切り取り、得られた層を熱風乾燥機により120℃で12時間乾燥した後、該層の質量(W1)を測定した。次に、重量(W1)を測定した後の層を、温度30℃、相対湿度90%RHに調整した恒温恒湿槽に12時間静置した後、該層の質量(W2)を測定した。波長変換層の吸湿量は以下の式で求めた。結果を表5に示す。
  吸湿量(質量%)=[(W2-W1)/W1]×100
<Moisture absorption>
From the wavelength conversion layer obtained in the examples and comparative examples, the PET film or the polyimide film was peeled off, and the obtained wavelength conversion layer was cut out to be about 1 g, and the obtained layer was heated at 120 ° C. with a hot air dryer. After drying for 12 hours, the mass (W1) of the layer was measured. Next, the layer after measuring the weight (W1) was allowed to stand in a constant temperature and humidity chamber adjusted to a temperature of 30 ° C. and a relative humidity of 90% RH for 12 hours, and then the mass (W2) of the layer was measured. The moisture absorption amount of the wavelength conversion layer was determined by the following formula. The results are shown in Table 5.
Moisture absorption (mass%) = [(W2-W1) / W1] × 100
 <マンドレル屈曲試験>
 前記実施例および比較例に準じてPETフィルムまたはポリイミドフィルム付波長変換層を100mm×50mmのサイズで作成した試験片を用い、JIS-K5600-5-1:1999(円筒形マンドレル法)に準拠してタイプ1の試験装置により試験を行い、波長変換層の耐屈曲性試験を行った。
 波長変換層に白色線が目視にて視認された場合をクラックが生じたと評価した。前記クラックが生じた際のマンドレルの直径を表5に示す。
 なお、表5において、「<2」とは、直径が2mmのマンドレルを用いた場合でもクラックが生じなかったことを示す。
<Mandrel bending test>
In accordance with JIS-K5600-5-1: 1999 (cylindrical mandrel method), using a test piece prepared with a wavelength conversion layer with a PET film or polyimide film having a size of 100 mm × 50 mm according to the above-mentioned examples and comparative examples. The test was performed with a type 1 test apparatus, and the bending resistance test of the wavelength conversion layer was performed.
The case where the white line was visually recognized in the wavelength conversion layer was evaluated as having cracked. Table 5 shows the diameter of the mandrel when the crack occurs.
In Table 5, “<2” indicates that no crack was generated even when a mandrel having a diameter of 2 mm was used.
 <透過率>
 実施例および比較例に準じてPETフィルムまたはポリイミドフィルム付波長変換層を30mm角のサイズで作成し、分光光度計にて緑波長(520~560nm)および赤波長(600~700nm)各々の波長域における透過率を測定した。なお、波長変換層の透過率は、PETフィルムまたはポリイミドフィルム付波長変換層を用いて測定した透過率から、その基材としたPETフィルムまたはポリイミドフィルムの光吸収分を補正することで算出した。結果を表5に示す。
<Transmissivity>
A wavelength conversion layer with a PET film or a polyimide film was prepared in a size of 30 mm square according to Examples and Comparative Examples, and each wavelength range of green wavelength (520 to 560 nm) and red wavelength (600 to 700 nm) was measured with a spectrophotometer. The transmittance was measured. In addition, the transmittance | permeability of the wavelength conversion layer was computed by correct | amending the light absorption part of the PET film or polyimide film used as the base material from the transmittance | permeability measured using the PET film or the wavelength conversion layer with a polyimide film. The results are shown in Table 5.
 <空隙率>
 実施例および比較例で得られたPETフィルムまたはポリイミドフィルム付波長変換層をエポキシ樹脂で包埋(コスモバイオ(株)製、Quetol 651 Kit使用)し、該エポキシ樹脂を硬化させた後、ミクロトームで超薄切片を切り出し、JEM-1400Plus(日本電子(株)製)を用いて、任意の10サンプルをTEM観察した。観察視野内の空隙20個を任意に選定し、20個それぞれの空隙の最大直径(空隙サイズ)を測長した。合計200個の空隙の平均を表5に示す。
 また、空隙を真球と仮定してそれぞれのサンプル中の観察視野内にある空隙の合計面積と観察視野面積の比から波長変換層中の空隙率(vol%)を算出した。10サンプルにおいて算出した空隙率の平均を表5に示す。
<Porosity>
The wavelength conversion layer with PET film or polyimide film obtained in Examples and Comparative Examples was embedded with an epoxy resin (Cosmo Bio Co., Ltd., using Quetol 651 Kit), and after curing the epoxy resin, with a microtome Ultrathin sections were cut out, and any 10 samples were observed with TEM using JEM-1400Plus (manufactured by JEOL Ltd.). Twenty voids in the observation field were arbitrarily selected, and the maximum diameter (gap size) of each of the 20 voids was measured. Table 5 shows the average of a total of 200 voids.
Further, the void ratio (vol%) in the wavelength conversion layer was calculated from the ratio of the total area of the voids in the observation visual field in each sample and the observation visual field area, assuming that the voids were true spheres. Table 5 shows the average porosity calculated for 10 samples.
 <発光効率>
 実施例および比較例に準じてPETフィルムまたはポリイミドフィルム付波長変換層を1cm×1cmのサイズで作成し、Quantaurus-QY(浜松ホトニクス(株)製)を用い、励起光波長450nmにて発光効率を計測した。
 なお、表5には、比較例2の発光効率を100とした時の各試験における発光効率を示す。
<Luminous efficiency>
A wavelength conversion layer with a PET film or a polyimide film was prepared in a size of 1 cm × 1 cm according to the examples and comparative examples, and using Quantaaus-QY (manufactured by Hamamatsu Photonics Co., Ltd.), the luminous efficiency was obtained at an excitation light wavelength of 450 nm. Measured.
Table 5 shows the luminous efficiency in each test when the luminous efficiency of Comparative Example 2 is 100.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (14)

  1.  蛍光体粒子(A)、中空粒子(B)および有機溶媒(C)を含み、
     蛍光体粒子(A)がInを含む、
    蛍光体粒子含有組成物。
    Including phosphor particles (A), hollow particles (B) and organic solvent (C),
    The phosphor particles (A) contain In,
    Phosphor particle-containing composition.
  2.  蛍光体粒子(A)、中空粒子(B)および有機溶媒(C)を含み、
     中空粒子(B)が、有機中空粒子である、
    蛍光体粒子含有組成物。
    Including phosphor particles (A), hollow particles (B) and organic solvent (C),
    The hollow particles (B) are organic hollow particles.
    Phosphor particle-containing composition.
  3.  前記中空粒子(B)のトルエン不溶分が90~100質量%である、請求項1または2に記載の蛍光体粒子含有組成物。 The phosphor particle-containing composition according to claim 1 or 2, wherein a content of toluene insoluble in the hollow particles (B) is 90 to 100% by mass.
  4.  2官能以上の(メタ)アクリル酸エステルを含む、請求項1~3のいずれか1項に記載の蛍光体粒子含有組成物。 The phosphor particle-containing composition according to any one of claims 1 to 3, comprising a bifunctional or higher functional (meth) acrylic acid ester.
  5.  バインダー樹脂を含む、請求項1~4のいずれか1項に記載の蛍光体粒子含有組成物。 The phosphor particle-containing composition according to any one of claims 1 to 4, comprising a binder resin.
  6.  前記中空粒子(B)の殻の平均膜厚が0.005~0.1μmである、請求項1~5のいずれか1項に記載の蛍光体粒子含有組成物。 6. The phosphor particle-containing composition according to claim 1, wherein an average film thickness of the shell of the hollow particles (B) is 0.005 to 0.1 μm.
  7.  前記蛍光体粒子(A)が、InP/ZnS化合物、InP/ZnSe化合物、InP/ZnSe/ZnS化合物、InP/(ZnS/ZnSe)固溶体化合物、InP/ZnSeS化合物、CuInS2/ZnS化合物、AgInS2化合物、(ZnS/AgInS2)固溶体/ZnS化合物およびZnドープAgInS2化合物よりなる群から選ばれる少なくとも1種の量子ドットを含む、請求項1~6のいずれか1項に記載の蛍光体粒子含有組成物。 The phosphor particles (A) are InP / ZnS compounds, InP / ZnSe compounds, InP / ZnSe / ZnS compounds, InP / (ZnS / ZnSe) solid solution compounds, InP / ZnSeS compounds, CuInS 2 / ZnS compounds, AgInS 2 compounds. The phosphor particle-containing composition according to claim 1, comprising at least one quantum dot selected from the group consisting of: (ZnS / AgInS 2 ) solid solution / ZnS compound and Zn-doped AgInS 2 compound. object.
  8.  前記有機溶媒(C)が、1,2-プロピレングリコール-1-メチルエーテル-2-アセテート、1,3-ブタンジオール-1-アセテート-3-メチルエーテル、3-メトキシブタノール、1,2-プロピレングリコール-1-メチルエーテル、1,2-プロピレングリコール-1-エチルエーテル、ジエチレングリコールモノプロピルエーテル、ジ(1,3-プロピレングリコール)-1-モノメチルエーテル、シクロヘキサノン、3-エトキシブタノール、3-ヒドロキシプロピオン酸-1-エチルエステル-3-エチルエーテル、3-ヒドロキシプロピオン酸-1-メチルエーテル-1-メチルエステル、ジエチレングリコールジメチルエーテルおよびジエチレングリコールメチルエチルエーテルよりなる群から選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の蛍光体粒子含有組成物。 The organic solvent (C) is 1,2-propylene glycol-1-methyl ether-2-acetate, 1,3-butanediol-1-acetate-3-methyl ether, 3-methoxybutanol, 1,2-propylene Glycol-1-methyl ether, 1,2-propylene glycol-1-ethyl ether, diethylene glycol monopropyl ether, di (1,3-propylene glycol) -1-monomethyl ether, cyclohexanone, 3-ethoxybutanol, 3-hydroxypropion At least selected from the group consisting of acid-1-ethyl ester-3-ethyl ether, 3-hydroxypropionic acid-1-methyl ether-1-methyl ester, diethylene glycol dimethyl ether and diethylene glycol methyl ethyl ether It is one, the phosphor particle-containing composition according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか1項に記載の蛍光体粒子含有組成物を用いて形成された波長変換層。 A wavelength conversion layer formed using the phosphor particle-containing composition according to any one of claims 1 to 8.
  10.  吸湿量が0.01~3%である、請求項9に記載の波長変換層。 The wavelength conversion layer according to claim 9, wherein the moisture absorption is 0.01 to 3%.
  11.  蛍光体粒子(A)および光拡散材(B')を含み、吸湿量が0.01~3%である、波長変換層。 A wavelength conversion layer containing phosphor particles (A) and a light diffusing material (B ′) and having a moisture absorption of 0.01 to 3%.
  12.  JIS-K5600-5-1:1999に準拠した円筒形マンドレル法による耐屈曲性試験において、クラックが生じるマンドレルの直径(mm)と波長変換層の厚み(μm)との関係が以下の要件(i)または(ii)を満たす、請求項9~11のいずれか1項に記載の波長変換層。
     要件(i):波長変換層の厚みが11.8μm以上の場合、下記式を満たす
     クラックが生じるマンドレルの直径(mm)/波長変換層の厚み(μm)≦0.17
     要件(ii):波長変換層の厚みが11.8μm未満の場合、直径が2mmであるマンドレルを用いても波長変換層にクラックが生じない
    In the bending resistance test by the cylindrical mandrel method according to JIS-K5600-5-1: 1999, the relationship between the diameter (mm) of the mandrel where the crack occurs and the thickness (μm) of the wavelength conversion layer is the following requirement (i The wavelength conversion layer according to any one of claims 9 to 11, which satisfies (ii) or (ii).
    Requirement (i): When the thickness of the wavelength conversion layer is 11.8 μm or more, the diameter of the mandrel (mm) where the crack that satisfies the following formula is satisfied / the thickness of the wavelength conversion layer (μm) ≦ 0.17 is satisfied.
    Requirement (ii): When the thickness of the wavelength conversion layer is less than 11.8 μm, no crack occurs in the wavelength conversion layer even when a mandrel having a diameter of 2 mm is used.
  13.  波長520~560nmの範囲および波長600~700nmの範囲において、波長変換層の垂直方向から測定した場合のそれぞれの透過率の平均値が、共に70%以上である、請求項9~12のいずれか1項に記載の波長変換層。 The average value of the respective transmittances when measured from the vertical direction of the wavelength conversion layer in the wavelength range of 520 to 560 nm and the wavelength range of 600 to 700 nm are both 70% or more. 2. The wavelength conversion layer according to item 1.
  14.  蛍光体粒子(A)および得られる層において光拡散材(B')となる成分を用いて層を形成する工程を含む、
     請求項11~13のいずれか1項に記載の波長変換層の製造方法。
    A step of forming a layer using the phosphor particles (A) and a component that becomes a light diffusing material (B ′) in the resulting layer,
    The method for producing a wavelength conversion layer according to any one of claims 11 to 13.
PCT/JP2017/046914 2017-01-06 2017-12-27 Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer WO2018128144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197015110A KR20190098130A (en) 2017-01-06 2017-12-27 Method for producing phosphor particle-containing composition, wavelength converting layer and wavelength converting layer
JP2018560386A JPWO2018128144A1 (en) 2017-01-06 2017-12-27 Phosphor particle-containing composition, wavelength conversion layer, and method for producing wavelength conversion layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017001248 2017-01-06
JP2017001247 2017-01-06
JP2017-001248 2017-01-06
JP2017-001247 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128144A1 true WO2018128144A1 (en) 2018-07-12

Family

ID=62789343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046914 WO2018128144A1 (en) 2017-01-06 2017-12-27 Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer

Country Status (4)

Country Link
JP (1) JPWO2018128144A1 (en)
KR (1) KR20190098130A (en)
TW (1) TW201835297A (en)
WO (1) WO2018128144A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011252A (en) * 2018-07-24 2020-02-03 삼성에스디아이 주식회사 Curable composition including quantum dot and color filter using the same
JP2020063409A (en) * 2018-10-12 2020-04-23 東洋インキScホールディングス株式会社 Ink composition and wavelength conversion layer
WO2020162552A1 (en) * 2019-02-07 2020-08-13 Dic株式会社 Inkjet ink for color filter, photoconversion layer, and color filter
JP2021054918A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color resist, color filter, light-emitting device, and method for manufacturing color resist
CN114127228A (en) * 2019-07-19 2022-03-01 东京应化工业株式会社 Wavelength conversion film, composition for forming wavelength conversion film, and method for producing cluster-containing quantum dot
WO2022080359A1 (en) * 2020-10-12 2022-04-21 パナソニックIpマネジメント株式会社 Wavelength conversion member molding composition, color resist, color filter, method for manufacturing color resist, light emitting device, and method for manufacturing light emitting device
CN114981691A (en) * 2020-02-13 2022-08-30 东丽株式会社 Paste, substrate, display, and method for manufacturing substrate
CN115362220A (en) * 2020-05-13 2022-11-18 Dic株式会社 Resin composition containing light-emitting particles, method for producing same, light-converting layer, and light-emitting element
CN115558337A (en) * 2021-07-01 2023-01-03 苏州星烁纳米科技有限公司 Luminescent nanoparticle ink, luminescent nanoparticle color film prepared from luminescent nanoparticle ink and display device
WO2023106322A1 (en) * 2021-12-10 2023-06-15 日本ゼオン株式会社 Hollow particles, method for producing hollow particles, and resin composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020208754A1 (en) * 2019-04-10 2020-10-15
TWI705123B (en) * 2019-10-29 2020-09-21 隆達電子股份有限公司 Wavelength converting material and light emitting device
KR102425726B1 (en) * 2020-06-03 2022-07-27 한국광기술원 Method for Manufacturing High Quality Phosphor Plate
CN112226232B (en) * 2020-10-16 2023-01-06 广东广腾达科技有限公司 Modified quantum dot, quantum dot master batch, quantum dot diffusion plate and preparation method
TWI804872B (en) * 2021-05-20 2023-06-11 台灣揚昕股份有限公司 Display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006987A1 (en) * 2012-07-04 2014-01-09 シャープ株式会社 Florescent material, florescent coating, phosphor substrate, electronic instrument, and led package
JP2015522668A (en) * 2012-05-22 2015-08-06 ナノコ テクノロジーズ リミテッド Quantum yield enhancement using highly reflective agents
WO2015138174A1 (en) * 2014-03-10 2015-09-17 3M Innovative Properties Company Composite nanoparticles including a thiol-substituted silicone
WO2015153148A1 (en) * 2014-04-02 2015-10-08 3M Innovative Properties Company Composite nanoparticles including a thioether ligand
WO2016024827A1 (en) * 2014-08-14 2016-02-18 주식회사 엘지화학 Light-emitting film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110136676A (en) 2010-06-14 2011-12-21 삼성엘이디 주식회사 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus
WO2016075950A1 (en) 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522668A (en) * 2012-05-22 2015-08-06 ナノコ テクノロジーズ リミテッド Quantum yield enhancement using highly reflective agents
WO2014006987A1 (en) * 2012-07-04 2014-01-09 シャープ株式会社 Florescent material, florescent coating, phosphor substrate, electronic instrument, and led package
WO2015138174A1 (en) * 2014-03-10 2015-09-17 3M Innovative Properties Company Composite nanoparticles including a thiol-substituted silicone
WO2015153148A1 (en) * 2014-04-02 2015-10-08 3M Innovative Properties Company Composite nanoparticles including a thioether ligand
WO2016024827A1 (en) * 2014-08-14 2016-02-18 주식회사 엘지화학 Light-emitting film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011252A (en) * 2018-07-24 2020-02-03 삼성에스디아이 주식회사 Curable composition including quantum dot and color filter using the same
KR102296791B1 (en) 2018-07-24 2021-08-31 삼성에스디아이 주식회사 Curable composition including quantum dot and color filter using the same
JP2020063409A (en) * 2018-10-12 2020-04-23 東洋インキScホールディングス株式会社 Ink composition and wavelength conversion layer
WO2020162552A1 (en) * 2019-02-07 2020-08-13 Dic株式会社 Inkjet ink for color filter, photoconversion layer, and color filter
KR102632511B1 (en) * 2019-02-07 2024-01-31 디아이씨 가부시끼가이샤 Inkjet ink, light conversion layer, and color filter for color filters
CN113286866A (en) * 2019-02-07 2021-08-20 Dic株式会社 Inkjet ink for color filter, light conversion layer, and color filter
KR20210104870A (en) * 2019-02-07 2021-08-25 디아이씨 가부시끼가이샤 Inkjet inks for color filters, light conversion layers and color filters
JPWO2020162552A1 (en) * 2019-02-07 2021-09-09 Dic株式会社 Inkjet ink for color filters, light conversion layer and color filter
CN114127228A (en) * 2019-07-19 2022-03-01 东京应化工业株式会社 Wavelength conversion film, composition for forming wavelength conversion film, and method for producing cluster-containing quantum dot
JP2021054918A (en) * 2019-09-27 2021-04-08 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color resist, color filter, light-emitting device, and method for manufacturing color resist
JP7442121B2 (en) 2019-09-27 2024-03-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color resist, color filter, light emitting device, and method for producing color resist
CN114981691A (en) * 2020-02-13 2022-08-30 东丽株式会社 Paste, substrate, display, and method for manufacturing substrate
CN115362220A (en) * 2020-05-13 2022-11-18 Dic株式会社 Resin composition containing light-emitting particles, method for producing same, light-converting layer, and light-emitting element
WO2022080359A1 (en) * 2020-10-12 2022-04-21 パナソニックIpマネジメント株式会社 Wavelength conversion member molding composition, color resist, color filter, method for manufacturing color resist, light emitting device, and method for manufacturing light emitting device
CN115558337A (en) * 2021-07-01 2023-01-03 苏州星烁纳米科技有限公司 Luminescent nanoparticle ink, luminescent nanoparticle color film prepared from luminescent nanoparticle ink and display device
WO2023106322A1 (en) * 2021-12-10 2023-06-15 日本ゼオン株式会社 Hollow particles, method for producing hollow particles, and resin composition

Also Published As

Publication number Publication date
KR20190098130A (en) 2019-08-21
JPWO2018128144A1 (en) 2019-11-07
TW201835297A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018128144A1 (en) Composition containing fluorescent particles, wavelength conversion layer, and production method for wavelength conversion layer
US20180340674A1 (en) Encapsulated quantum dots in porous particles
KR101878421B1 (en) Quantum dot dispersion, self emission type photosensitive resin composition comprising the same, color filter and image display device manufactured using the same
TW202124600A (en) Inkjet ink composition for forming light conversion layer, light conversion layer and color filter
KR20160091708A (en) Color filter and image display device using the same
TW202140693A (en) Ink composition for photoconversion layer formation, photoconversion layer, and color filter
JP2021128341A (en) Quantum dots, quantum dot dispersion containing the same, light conversion curable composition, quantum dot light-emitting diode, quantum dot film, cured film formed using the composition, and image display device comprising the cured film
KR20220141230A (en) Resin molded article containing quantum dot and fabrication method thereof
JP2020019902A (en) Ink composition, photoconversion layer and color filter
JPWO2019017423A1 (en) Ink composition, method for producing the same, light conversion layer, and color filter
JP7331452B2 (en) Curable ink composition, light conversion layer and color filter
JP7035400B2 (en) Ink composition, light conversion layer and color filter
KR20240011666A (en) Ink composition, light conversion layer, color filter, and light conversion film
CN116783267A (en) Solvent-free quantum dot composition, preparation method thereof, cured film comprising solvent-free quantum dot composition, color filter comprising solvent-free quantum dot composition, and display device comprising solvent-free quantum dot composition
JP6981083B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP2021128339A (en) Quantum dot dispersion and curable composition containing the same
KR20210154588A (en) A quantum dot, a quantum dot dispersion, a light converting curable composition, a quantum dot light-emitting diode, a quantum dot film and a light converting ink composition comprising the quantum dot, a cured film manufactured by the composition and a display device comprising the same
KR102661081B1 (en) Quantum composition, curable pattern formed from the same, and image display including the curable pattern
KR102625549B1 (en) Quantum dots, curable composition comprising the same, and curable pattern and image display formed from the composition
KR102635661B1 (en) Quantum composition, curable pattern formed from the same, and image display including the curable pattern
KR102635662B1 (en) Quantum composition, curable pattern formed from the same, and image display including the curable pattern
JP7020014B2 (en) Ink composition, light conversion layer and color filter
KR102635660B1 (en) Quantum composition, curable pattern formed from the same, and image display including the curable pattern
KR20230087372A (en) Quantum ligand, quantum composition, curable pattern formed from the same, and display device including the curable pattern
KR20230121343A (en) Quantum composition, curable pattern formed from the same, and display device including the curable pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015110

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018560386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889908

Country of ref document: EP

Kind code of ref document: A1