WO2018128088A1 - Substrate cleaning method, substrate cleaning system, and storage medium - Google Patents

Substrate cleaning method, substrate cleaning system, and storage medium Download PDF

Info

Publication number
WO2018128088A1
WO2018128088A1 PCT/JP2017/046021 JP2017046021W WO2018128088A1 WO 2018128088 A1 WO2018128088 A1 WO 2018128088A1 JP 2017046021 W JP2017046021 W JP 2017046021W WO 2018128088 A1 WO2018128088 A1 WO 2018128088A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid
treatment
substrate
wafer
Prior art date
Application number
PCT/JP2017/046021
Other languages
French (fr)
Japanese (ja)
Inventor
明徳 相原
央 河野
伊藤 規宏
信博 緒方
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2018560357A priority Critical patent/JP6762378B2/en
Publication of WO2018128088A1 publication Critical patent/WO2018128088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the disclosed embodiment relates to a substrate cleaning method, a substrate cleaning system, and a storage medium.
  • a substrate cleaning apparatus that removes particles adhering to a substrate such as a silicon wafer or a compound semiconductor wafer is known.
  • Patent Document 1 discloses a substrate cleaning method in which a treatment film is formed on the surface of a substrate, and the treatment film is peeled off in a “film” state to remove particles on the substrate together with the treatment film. Yes.
  • Patent Document 1 has room for further improvement in terms of promoting the peeling of the treated film.
  • An object of one embodiment of the present invention is to provide a substrate cleaning method, a substrate cleaning system, and a storage medium that can promote peeling of a treatment film from a substrate.
  • the substrate cleaning method includes a film forming process liquid supply process, a stripping process liquid supply process, and a dissolution process liquid supply process.
  • a film formation treatment liquid for forming a film on the substrate containing a volatile component is supplied to the substrate.
  • the stripping treatment liquid supply step supplies pure water as a stripping treatment liquid for stripping the treatment film from the substrate to the treatment film formed by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of volatile components. .
  • the dissolution treatment liquid supply step supplies a dissolution treatment liquid that dissolves the treatment film with respect to the treatment film after the peeling treatment liquid supply step.
  • pure water as the stripping treatment liquid is supplied to the treatment film after supplying a mixed liquid obtained by mixing a liquid having a surface tension smaller than that of pure water and pure water.
  • peeling of the treatment film from the substrate can be promoted.
  • FIG. 1A is an explanatory diagram of a substrate cleaning method according to the first embodiment.
  • FIG. 1B is an explanatory diagram of the substrate cleaning method according to the first embodiment.
  • FIG. 1C is an explanatory diagram of the substrate cleaning method according to the first embodiment.
  • FIG. 1D is an explanatory diagram of the substrate cleaning method according to the first embodiment.
  • FIG. 1E is an explanatory diagram of the substrate cleaning method according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of the substrate cleaning system according to the first embodiment.
  • FIG. 3 is a schematic diagram showing the configuration of the substrate cleaning apparatus according to the first embodiment.
  • FIG. 4 is a flowchart showing a processing procedure of substrate cleaning processing executed by the substrate cleaning system according to the present embodiment.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of the peeling process.
  • FIG. 6 is a schematic side view of the substrate holding mechanism according to the second embodiment.
  • FIG. 7 is a schematic plan view (part 1) of the substrate holding mechanism according to the second embodiment.
  • FIG. 8 is a schematic enlarged view (No. 1) around the first gripping body.
  • FIG. 9 is a schematic enlarged view (No. 1) around the second gripping body.
  • FIG. 10 is a schematic plan view (part 2) of the substrate holding mechanism according to the second embodiment.
  • FIG. 11 is a schematic enlarged view (No. 2) around the second gripping body.
  • FIG. 12 is a schematic enlarged view (No. 2) around the first gripping body.
  • FIGS. 1A to 1E are explanatory views of a substrate cleaning method according to the first embodiment.
  • the substrate cleaning method according to the first embodiment includes a volatile component with respect to the pattern formation surface of a substrate such as a silicon wafer or a compound semiconductor wafer (hereinafter referred to as “wafer W”).
  • a processing liquid for forming a film on the wafer W (hereinafter referred to as “film forming processing liquid”) is supplied.
  • the film-forming treatment liquid supplied to the pattern forming surface of the wafer W is solidified or cured while causing volume shrinkage due to volatilization of volatile components, and becomes a treatment film.
  • solidification means solidification
  • curing means that molecules are connected to each other to be polymerized (for example, crosslinking or polymerization).
  • the peeling treatment liquid is supplied to the treatment film on the wafer W.
  • the peeling treatment liquid is a treatment liquid for peeling the above-described treatment film from the wafer W.
  • pure water at room temperature (about 23 to 25 degrees) is used as the stripping treatment liquid.
  • the pure water supplied on the processing film penetrates into the processing film and reaches the interface of the wafer W. Further, the pure water that has reached the interface of the wafer W penetrates into the pattern forming surface that is the interface of the wafer W.
  • the treatment film is peeled off from the wafer W in a “film” state, and attached to the pattern formation surface accordingly.
  • the particles P are peeled off from the wafer W together with the treatment film (see FIG. 1C).
  • the film-forming treatment liquid can separate the particles P attached to the pattern or the like from the pattern or the like due to distortion (tensile force) generated by volume contraction accompanying volatilization of the volatile component.
  • a solution for dissolving the treatment film is supplied to the treatment film peeled from the wafer W.
  • the treatment film is dissolved, and the particles P taken in the treatment film are in a state of floating in the dissolution treatment liquid (see FIG. 1D).
  • the particles P are removed from the wafer W by washing away the dissolution treatment liquid or the dissolved treatment film with pure water or the like (see FIG. 1E).
  • the processing film formed on the wafer W is peeled from the wafer W in a “film” state, so that the particles P attached to the pattern or the like are processed into the processing film. At the same time, the wafer W was removed.
  • particle removal is performed without using a chemical action, so that erosion of the underlying film due to an etching action or the like can be suppressed.
  • the particles P can be removed with a weak force as compared with the conventional substrate cleaning method using physical force, so that pattern collapse can be suppressed. it can.
  • the substrate cleaning method according to the first embodiment it is possible to easily remove particles P having a small particle diameter, which are difficult to remove by the conventional substrate cleaning method using physical force. .
  • the cleaned wafer W is in a state before the film-forming treatment liquid is applied, that is, a state where the pattern forming surface is exposed.
  • the film-forming treatment liquid for example, a topcoat liquid or “substrate cleaning composition” described in JP-A-2016-36012 is used.
  • a topcoat liquid or “substrate cleaning composition” described in JP-A-2016-36012 is used.
  • the treatment film formed with these film-forming treatment liquids has water repellency, even if pure water as a peeling treatment liquid is supplied to the treatment film, the pure water is repelled on the surface of the treatment film. Therefore, it is difficult to efficiently penetrate pure water into the treatment membrane.
  • the pure water as the peeling treatment liquid is mixed with the pure water and the liquid whose surface tension is smaller than that of the pure water before supplying the treatment film.
  • the mixed liquid to the treatment membrane pure water can easily penetrate into the treatment membrane. Thereby, peeling of the processing film from the wafer W can be promoted.
  • FIG. 2 is a schematic diagram illustrating a configuration of the substrate cleaning system according to the first embodiment.
  • the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate cleaning system 1 includes a carry-in / out station 2 and a processing station 3.
  • the carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12.
  • a plurality of transfer containers (hereinafter referred to as “carrier C”) that can store a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
  • the transport unit 12 is provided adjacent to the carrier placement unit 11.
  • a substrate transfer device 121 and a delivery unit 122 are provided inside the transfer unit 12.
  • the substrate transfer device 121 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 121 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 122 using a wafer holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transfer unit 12.
  • the processing station 3 includes a transfer unit 13 and a plurality of substrate cleaning apparatuses 14.
  • the plurality of substrate cleaning apparatuses 14 are provided side by side on both sides of the transport unit 13.
  • the transfer unit 13 includes a substrate transfer device 131 inside.
  • the substrate transfer device 131 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 131 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and the wafer W can be transferred between the delivery unit 122 and the substrate cleaning device 14 using a wafer holding mechanism. Transport.
  • the substrate cleaning device 14 is a device that executes a substrate cleaning process based on the above-described substrate cleaning method. A specific configuration of the substrate cleaning apparatus 14 will be described later.
  • the substrate cleaning system 1 includes a control device 4.
  • the control device 4 is a device that controls the operation of the substrate cleaning system 1.
  • the control device 4 is a computer, for example, and includes a control unit 15 and a storage unit 16.
  • the storage unit 16 stores a program for controlling various processes such as a substrate cleaning process.
  • the control unit 15 controls the operation of the substrate cleaning system 1 by reading and executing the program stored in the storage unit 16.
  • the control unit 15 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), and the storage unit 16 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • Such a program may be recorded in a computer-readable storage medium and may be installed in the storage unit 16 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • the substrate transfer device 121 of the loading / unloading station 2 takes out the wafer W from the carrier C and places the taken-out wafer W on the delivery unit 122.
  • the wafer W placed on the delivery unit 122 is taken out from the delivery unit 122 by the substrate transfer device 131 of the processing station 3 and carried into the substrate cleaning device 14, and the substrate cleaning process is performed by the substrate cleaning device 14.
  • the cleaned wafer W is unloaded from the substrate cleaning device 14 by the substrate transfer device 131 and placed on the delivery unit 122, and then returned to the carrier C by the substrate transfer device 121.
  • FIG. 3 is a schematic diagram showing the configuration of the substrate cleaning apparatus 14 according to the first embodiment.
  • the substrate cleaning apparatus 14 includes a chamber 20, a substrate holding mechanism 30, a liquid supply unit 40, and a recovery cup 50.
  • the chamber 20 accommodates the substrate holding mechanism 30, the liquid supply unit 40, and the recovery cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a down flow in the chamber 20.
  • the FFU 21 is connected to a downflow gas supply source 23 via a valve 22.
  • the FFU 21 discharges downflow gas (for example, dry air) supplied from the downflow gas supply source 23 into the chamber 20.
  • the substrate holding mechanism 30 includes a rotation holding unit 31, a support column 32, and a driving unit 33.
  • the rotation holding unit 31 is provided in the approximate center of the chamber 20.
  • a holding member 311 that holds the wafer W from the side surface is provided on the upper surface of the rotation holding unit 31.
  • the wafer W is horizontally held by the holding member 311 while being slightly separated from the upper surface of the rotation holding unit 31.
  • the column part 32 is a member extending in the vertical direction, and a base end part is rotatably supported by the drive part 33, and the rotation holding part 31 is horizontally supported at the tip part.
  • the drive unit 33 rotates the column unit 32 around the vertical axis.
  • the substrate holding mechanism 30 rotates the rotation holding unit 31 supported by the column unit 32 by rotating the column unit 32 using the driving unit 33, and thereby the wafer W held by the rotation holding unit 31 is rotated. Rotate.
  • the liquid supply unit 40 supplies various processing liquids to the wafer W held by the substrate holding mechanism 30.
  • the liquid supply unit 40 includes a plurality of (four in this case) nozzles 41a to 41d, an arm 42 that horizontally supports the nozzles 41a to 41d, and a turning lift mechanism 43 that turns and lifts the arm 42.
  • the nozzle 41a is connected to a chemical solution supply source 45a via a valve 44a and a flow rate regulator 46a.
  • the nozzle 41b is connected to a film forming process liquid supply source 45b via a valve 44b and a flow rate regulator 46b.
  • the nozzle 41c is connected to the stripping treatment liquid supply source 45c via the valve 44c and the flow rate regulator 46c.
  • the nozzle 41d is connected to a dissolution processing liquid supply source 45d via a valve 44d and a flow rate regulator 46d.
  • the chemical liquid supplied from the chemical liquid supply source 45a is discharged from the nozzle 41a.
  • the chemical solution for example, DHF (dilute hydrofluoric acid), SC1 (ammonia / hydrogen peroxide / water mixed solution), DSP (Diarrhetic Shellfish Poisoning) and the like are used.
  • the film formation processing liquid supplied from the film formation processing liquid supply source 45b is discharged from the nozzle 41b.
  • a topcoat liquid or “substrate cleaning composition” described in JP-A-2016-36012 is used as the film-forming treatment liquid.
  • a top coat film (an example of a treatment film) formed by the top coat liquid is a protective film applied to the upper surface of the resist in order to prevent the immersion liquid from entering the resist.
  • the immersion liquid is a liquid used for immersion exposure in a lithography process, for example.
  • the release treatment liquid supplied from the release treatment liquid supply source 45c is discharged from the nozzle 41c.
  • the stripping treatment liquid is DIW as described above.
  • the dissolution processing liquid supplied from the dissolution processing liquid supply source 45d is discharged.
  • an organic solvent such as IPA (isopropyl alcohol), thinner, MIBC (4-methyl-2-pentanol), toluene, acetate esters, alcohols, glycols (propylene glycol monomethyl ether) is used as the dissolution treatment liquid. It is done.
  • IPA heated to a predetermined temperature for example, 65 ° C.
  • room temperature IPA may be used as the dissolution treatment liquid.
  • the dissolution treatment liquid is not limited to an organic solvent, and for example, an alkali developer or an acid developer can be used.
  • the alkaline developer may contain at least one of ammonia water, a quaternary ammonium hydroxide aqueous solution such as tetramethylammonium hydroxide (TMAH), and an aqueous choline solution.
  • TMAH tetramethylammonium hydroxide
  • Acetic acid, formic acid, hydroxyacetic acid, etc. can be used as the acidic developer.
  • the recovery cup 50 is disposed so as to surround the rotation holding unit 31 and collects the processing liquid scattered from the wafer W by the rotation of the rotation holding unit 31.
  • a drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the substrate cleaning apparatus 14. Further, an exhaust port 52 for discharging the downflow gas supplied from the FFU 21 to the outside of the substrate cleaning apparatus 14 is formed at the bottom of the recovery cup 50.
  • FIG. 4 is a flowchart showing the processing procedure of the substrate cleaning processing executed by the substrate cleaning system 1 according to the present embodiment.
  • Each apparatus provided in the substrate cleaning system 1 executes each processing procedure shown in FIG. 4 according to the control of the control unit 15.
  • a substrate carry-in process is performed (step S101).
  • the wafer W carried into the chamber 20 by the substrate carrying device 131 (see FIG. 2) is held by the holding member 311 of the substrate holding mechanism 30.
  • the wafer W is held by the holding member 311 with the pattern forming surface facing upward.
  • the rotation holding unit 31 is rotated by the drive unit 33.
  • the rotation speed of the wafer W is set to 1000 rpm, for example.
  • the substrate cleaning apparatus 14 performs chemical treatment (step S102).
  • the chemical processing first, the nozzle 41a of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44a is opened for a predetermined time, whereby a chemical solution such as DHF is supplied to the pattern formation surface of the wafer W on which no resist is formed.
  • the chemical solution supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W.
  • the nozzle 41c of the liquid supply unit 40 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, whereby DIW is supplied to the pattern forming surface of the wafer W.
  • the DIW supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the chemical solution remaining on the wafer W is washed away by the DIW.
  • a pre-wet process is performed (step S103).
  • the nozzle 41d of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44d is opened for a predetermined time, whereby IPA is supplied to the pattern forming surface of the wafer W.
  • the IPA supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W.
  • the topcoat liquid and the substrate cleaning composition as the film-forming treatment liquid have high water repellency, even if the film-forming treatment liquid is supplied to the wafer W after the chemical liquid treatment, the DIW remaining on the surface of the wafer W It will be repelled, and it will take a lot of time to form a liquid film of the film forming treatment liquid on the surface of the wafer W.
  • IPA is supplied to the wafer W after chemical liquid processing, and DIW remaining on the wafer W after chemical liquid processing is replaced with IPA.
  • the film forming treatment liquid is transferred to the upper surface of the wafer W in the film forming treatment liquid supply process (step S104) described later. And easily enter the gaps between the patterns. Therefore, it is possible to reduce the amount of film forming treatment liquid used and more reliably remove the particles P that have entered the gaps in the pattern. Further, it is possible to shorten the processing time of the film forming process liquid supply process.
  • IPA is supplied to the wafer W in the pre-wet processing
  • the processing liquid used for the pre-wet processing is not limited to IPA.
  • an organic solvent other than IPA such as ethanol or acetone can be used.
  • a film forming process liquid supply process is performed (step S104).
  • the nozzle 41 b of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44b is opened for a predetermined time, whereby the film forming treatment liquid is supplied to the pattern forming surface of the wafer W.
  • the film forming treatment liquid supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. As a result, a liquid film of the film forming treatment liquid is formed on the pattern forming surface of the wafer W.
  • the liquid film is preferably formed to a thickness (for example, 45 nm or more) covering at least the pattern on the wafer W.
  • the substrate cleaning apparatus 14 performs a drying process (step S105).
  • a drying process for example, the film forming process liquid is dried by increasing the rotation speed of the wafer W for a predetermined time.
  • the organic solvent contained in the film forming treatment liquid is vaporized, and the solid content contained in the film forming treatment liquid is solidified or hardened, and a treatment film is formed on the pattern forming surface of the wafer W. .
  • drying process in step S105 may be, for example, a process for reducing the pressure in the chamber 20 with a decompression device (not shown), or a process for reducing the humidity in the chamber 20 with the downflow gas supplied from the FFU 21. It may be. Also by these treatments, the film forming treatment liquid can be solidified or cured.
  • the substrate cleaning apparatus 14 may cause the substrate cleaning apparatus 14 to wait until the film-forming treatment liquid is naturally solidified or cured. Further, the film formation processing liquid is solidified by stopping the rotation of the wafer W or rotating the wafer W at a rotation speed that does not expose the surface of the wafer W by shaking the film formation processing liquid. It may be cured.
  • the substrate cleaning apparatus 14 performs a peeling process (step S106).
  • the peeling process the treatment film formed on the wafer W is peeled from the wafer W. The specific contents of the peeling process will be described later.
  • a dissolution processing liquid supply process is performed (step S107).
  • the nozzle 41 d of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44d is opened for a predetermined time, whereby IPA is supplied to the processing film peeled from the wafer W.
  • the IPA supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the treatment film is dissolved.
  • the processing film peeled off from the wafer W can be dissolved in a shorter time.
  • the substrate cleaning apparatus 14 performs a rinsing process (step S108).
  • the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film peeled from the wafer W.
  • the DIW supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the dissolved processing film and the particles P floating in the IPA are removed from the wafer W.
  • the substrate cleaning apparatus 14 performs a drying process (step S109).
  • the drying process for example, by increasing the rotation speed of the wafer W for a predetermined time, the DIW remaining on the surface of the wafer W is shaken off to dry the wafer W.
  • the IPA is supplied to the rotating wafer W from the nozzle 41 d after the dissolution processing liquid supply processing in step S 107, and then the wafer You may perform the process which rotates W at high speed and dries the wafer W.
  • the substrate cleaning apparatus 14 performs a substrate carry-out process (step S110).
  • a substrate carry-out process the wafer W is taken out from the chamber 20 of the substrate cleaning device 14 by the substrate transfer device 131 (see FIG. 2). Thereafter, the wafer W is accommodated in the carrier C placed on the carrier placement unit 11 via the delivery unit 122 and the substrate transfer device 121.
  • the substrate carry-out process is completed, the substrate cleaning process for one wafer W is completed.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of the peeling process.
  • DIW liquid accumulation processing is performed (step S201).
  • the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film formed on the wafer W.
  • the DIW supplied to the processing film on the wafer W spreads on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of DIW is formed on the treatment film.
  • the DIW liquid accumulation process is performed to form a DIW liquid film on the processing film.
  • the DIW supply time in the DIW liquid accumulation process is set to be shorter than that in the subsequent mixed liquid supply process (step S202) or the DIW supply process (step S203).
  • the DIW supply time in the DIW liquid accumulation process is 2 seconds.
  • the wafer W may be rotated at a lower speed than in the subsequent mixed liquid supply process (step S202) or the DIW supply process (step S203).
  • the substrate cleaning apparatus 14 performs a mixed liquid supply process (step S202).
  • a mixed liquid supply process for example, an intermediate position between the nozzle 41c and the nozzle 41d of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44c and the valve 44d are opened for a predetermined time, whereby DIW and IPA are simultaneously supplied to the processing film on the wafer W.
  • DIW and IPA supplied to the processing film on the wafer W are mixed while spreading on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. As a result, a liquid film of a mixed liquid of DIW and IPA is formed on the treatment film.
  • the surface tension of IPA is 20.8 mN / m at 20 ° C., which is smaller than the surface tension of DIW (72.75 mN / m).
  • Such a mixed liquid of IPA and DIW has a smaller surface tension than DIW, and thus is not easily repelled on the surface of the treatment film and easily penetrates into the treatment film. Therefore, the passage of pure water can be formed early in the treatment film.
  • the mixed solution preferably has an IPA concentration of less than 25%. This is because when the concentration of IPA is 25% or more, the treatment film is dissolved by the mixed solution and the phenomenon that the treatment film peels off in the state of “film” does not occur, resulting in a decrease in the particle removal rate. . More preferably, the IPA concentration of the mixed solution is 7.5% or less.
  • the control unit 15 controls the flow rate adjusters 46c and 46d so that the IPA concentration of the mixed solution is 7.5% or less.
  • the control unit 15 controls the flow rate adjusters 46c and 46d so that the flow rate ratio of DIW and IPA is 1000: 75, thereby supplying a liquid mixture having an IPA concentration of 7.5% to the treatment film. .
  • the supply time of the mixed liquid having an IPA concentration of 7.5% is preferably 60 sec or less. More preferably, the supply time of the mixed liquid is 2 seconds.
  • the inventors of the present application supplied a mixed solution with an IPA concentration of 7.5% obtained by setting the flow rate of DIW to 1000 ml / min and the flow rate of IPA to 75 ml / min for 60 seconds and for 2 seconds. In this case, the particle removal rate after the peeling treatment is measured by experiment, and it is confirmed that the removal rate when supplied for 2 seconds is higher than the removal rate when supplied for 60 seconds.
  • the substrate cleaning apparatus 14 performs a DIW supply process (step S203).
  • the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W.
  • the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film formed on the wafer W.
  • the DIW supplied to the processing film on the wafer W spreads on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of DIW is formed on the treatment film.
  • DIW penetrates into the processing film through the DIW path formed in the processing film by the mixed solution supply process and reaches the interface of the wafer W. Then, the DIW penetrates the pattern forming surface that is the interface of the wafer W, and peels the treatment film from the wafer W. Thereby, the particle P adhering to the pattern formation surface of the wafer W is peeled from the wafer W together with the treatment film.
  • the substrate cleaning apparatus 14 prior to supplying DIW as the stripping processing liquid to the processing film, a mixed liquid of DIW and IPA is supplied to the processing film and It was decided to form a DIW road. As a result, the time until DIW permeates the pattern formation surface is shortened, so that the time until the treatment film is peeled from the wafer W can be shortened. Therefore, it is possible to promote peeling of the processing film from the wafer W.
  • IPA heated to a predetermined temperature for example, 65 °
  • DIW a predetermined temperature
  • IPA and DIW are respectively supplied to the processing film and mixed on the processing film, thereby supplying the mixed solution to the processing film. It was decided. Thereby, it is not necessary to separately provide a mixing unit for generating a liquid mixture having a predetermined concentration, and the apparatus can be configured at low cost.
  • DIW is supplied to the processing film and DIW is deposited on the processing film, and then the mixed solution is supplied to the processing film. It is possible to prevent the treatment film from being dissolved by IPA before DIW and IPA are mixed.
  • the substrate cleaning system 1 includes the film forming process liquid supply part (liquid supply part 40), the stripping process liquid supply part (liquid supply part 40), and the dissolution process liquid supply. Part (liquid supply part 40).
  • the film formation treatment liquid supply unit supplies a film formation treatment liquid (for example, a topcoat liquid or a substrate cleaning composition) containing a volatile component to form a film on the substrate to the substrate (wafer W).
  • the stripping treatment liquid supply unit is pure water (DIW) as a stripping treatment liquid for stripping the treatment film from the substrate with respect to the treatment film formed by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of volatile components. Supply.
  • the dissolution treatment liquid supply unit supplies a dissolution treatment liquid (for example, IPA) that dissolves the treatment film with respect to the treatment film.
  • the stripping treatment liquid supply unit supplies pure water as the stripping treatment liquid after supplying a mixed liquid obtained by mixing a liquid (for example, IPA) having a surface tension smaller than that of pure water and pure water to the treatment film. Supply.
  • the substrate holding mechanism according to the second embodiment includes two gripping body groups that can operate independently, and uses these two gripping body groups to change the wafer W in the above-described dissolution processing liquid supply process. Do.
  • FIG. 6 is a schematic side view of the substrate holding mechanism according to the second embodiment.
  • FIG. 7 is a schematic plan view (part 1) of the substrate holding mechanism according to the second embodiment.
  • FIG. 8 is a schematic enlarged view (No. 1) around the first gripping body.
  • FIG. 9 is a schematic enlarged view (No. 1) around the second gripping body.
  • FIG. 10 is a schematic plan view (part 2) of the substrate holding mechanism according to the second embodiment.
  • FIG. 11 is a schematic enlarged view (No. 2) around the second gripping body.
  • FIG. 12 is a schematic enlarged view (No. 2) around the first gripping body.
  • FIGS. 6 to 9 show a state in which the wafer W is held using a first holding body 330_1 described later
  • FIGS. 10 to 12 show the wafer W using a second holding body 330_2 described later.
  • gripped is shown.
  • the substrate cleaning apparatus 14A includes a substrate holding mechanism 30A.
  • the substrate holding mechanism 30A includes a rotation holding unit 31A, a support unit 32, and a drive unit 33 (see FIG. 3).
  • the rotation holding unit 31A includes a first base unit 310 and a second base unit 320.
  • the first base portion 310 is a disk-like member connected to the support column portion 32, and the second base portion 320 is placed on the upper surface of the first base portion 310.
  • a plurality of (in this case, three) columns 321 extending in the vertical direction are provided below the second base portion 320.
  • the support column 321 extends below the first base portion 310 through a through hole 312 provided in the first base portion 310.
  • a push-up mechanism 323 is disposed below the support column 321.
  • the push-up mechanism 323 includes a push-up portion 323a extending in the extending direction and a drive unit 323b that raises and lowers the push-up portion 323a along the vertical direction.
  • the push-up mechanism 323 pushes up the column 321 of the second base part 320 vertically upward by moving the push-up part 323a vertically upward using the drive part 323b.
  • the second base part 320 can be moved upward away from the upper surface of the first base part 310 by the push-up mechanism 323.
  • a plurality of (here, three) pins 324 for supporting the wafer W when the second base unit 320 moves upward are provided on the upper part of the second base unit 320.
  • an engaging convex portion 313 is formed on the upper surface of the first base portion 310, and an engaging concave portion 326 is formed on the lower surface of the second base portion 320.
  • the engaging convex portion 313 is formed so as to surround the through hole 312, and the engaging concave portion 326 is formed so as to surround the engaging convex portion 313.
  • the engagement between the engagement convex portion 313 and the engagement concave portion 326 allows the first base portion 310 and the second base portion 320 to rotate integrally without causing positional displacement.
  • the substrate holding mechanism 30A includes a plurality (here, three) first grip bodies 330_1 and a plurality (here, three) second grip bodies 330_2.
  • the plurality of first grip bodies 330_1 and the second grip bodies 330_2 are alternately arranged in a circumferential manner on the outer peripheral portion of the first base portion 310.
  • each of the gripping bodies 330_1 and 330_2 is supported by the first base portion 310 so as to be rotatable around a rotation shaft 332 extending in the horizontal direction.
  • the plurality of first gripping bodies 330_1 and the second gripping bodies 330_2 include a gripping portion 331 that grips the peripheral edge of the wafer W above the rotation shaft 332, an upper surface of the first base portion 310, and a lower surface of the second base portion 320. And a push-down unit 333 disposed between the two.
  • the first gripping body 330_1 and the second gripping body 330_2 are formed in a substantially L shape in a side view
  • the rotation shaft 332 is disposed at the corner of the L shape
  • the gripping portion 331 and the pressing portion 333 are end portions of the L shape. Placed in each part.
  • a biasing member (not shown) is provided on the rotation shaft 332 of the plurality of first grip bodies 330_1 and the second grip bodies 330_2. By the biasing member, the plurality of first grip bodies 330_1 and the second grip bodies 330_2 are biased so that the grip portion 331 rotates in a direction away from the wafer W.
  • a plurality of (here, three) first recesses 325 ⁇ / b> _ ⁇ b> 1 and a plurality of (here, three) second recesses 325 ⁇ / b> _ ⁇ b> 2 are formed in the lower portion of the second base portion 320. .
  • the plurality of second recesses 325_2 are arranged at positions corresponding to the plurality of second grip bodies 330_2, and the plurality of first recesses 325_1 are positions corresponding to the plurality of first grip bodies 330_1. Is disposed at a position deviated by a predetermined angle (for example, 10 °).
  • the plurality of first holding bodies 330_1 are in a state in which the pressing portion 333 is pressed down by the lower surface of the second base portion 320.
  • the pressing portion 333 is pressed down, the movement of the gripping portion 331 to rotate away from the wafer W is restricted by a biasing member (not shown).
  • the plurality of first gripping bodies 330_1 are in a state where the peripheral portion of the wafer W is gripped by the gripping portion 331.
  • the plurality of second gripping bodies 330_2 are provided with the second recesses 325_2 at positions corresponding to the pressing portions 333.
  • the pressing part 333 of the 2nd holding body 330_2 is not pushed down by the lower surface of the 2nd base part 320.
  • FIG. Therefore, the second gripping body 330_2 is in a state where the gripping portion 331 is rotated in a direction away from the wafer W by a biasing member (not shown), that is, a state where the wafer W is not gripped.
  • the substrate holding mechanism 30A according to the second embodiment can switch from the state in which the wafer W is held by the first holding body 330_1 to the state in which the wafer W is held by the second holding body 330_2.
  • the rotation of the wafer W is first stopped, and then the second base unit 320 is lifted using the push-up mechanism 323. As the second base portion 320 moves up, the gripping of the wafer W by the first gripping body 330_1 is released, and the wafer W is supported by the pins 324.
  • the first base portion 310 is rotated by a predetermined angle (here, 10 °) using the driving portion 33.
  • a predetermined angle here, 10 °
  • the plurality of first recesses 325_1 are arranged at positions corresponding to the plurality of first grip bodies 330_1, and the plurality of second recesses 325_2 correspond to the plurality of second grip bodies 330_2. It is arranged at a position that is deviated by a predetermined angle (in this case, 10 °) from the position to be moved.
  • the second base portion 320 is lowered using the push-up mechanism 323. Accordingly, as illustrated in FIG. 11, the pressing portions 333 of the plurality of second gripping bodies 330_2 are pushed down by the lower surface of the second base portion 320, and the plurality of second gripping bodies 330_2 rotate around the rotation shaft 332. The gripper 331 of the plurality of second grippers 330_2 grips the peripheral edge of the wafer W.
  • the plurality of first gripping bodies 330 ⁇ / b> _ ⁇ b> 1 have the first recesses 325 ⁇ / b> _ ⁇ b> 1 disposed at positions corresponding to the pressing portions 333, so It does not become a state. Therefore, the plurality of first gripping bodies 330_1 are not gripping the wafer W.
  • the through hole 312 formed in the first base portion 310 has the first base portion 310 so that the rotation of the first base portion 310 is not hindered by the support column 321 of the second base portion 320. It has the shape extended along the circumferential direction.
  • a plurality of (here, six) locking portions 315 are provided on the upper surface of the first base portion 310, and the peripheral portion of the second base portion 320 is A plurality of (here, six) notches 327 are formed.
  • the locking portion 315 is on one end in the rotation direction of the notch 327.
  • the plurality of first recesses 325_1 are arranged at positions corresponding to the plurality of first gripping bodies 330_1 as shown in FIG. 10
  • the other end portion in the rotation direction of the notch portion 327 It is comprised so that it may contact
  • the substrate holding mechanism 30A includes a state in which the wafer W is gripped by the plurality of first gripping bodies 330_1 and a plurality of second grips that can operate independently of the first gripping body 330_1.
  • the state in which the wafer W is held by the body 330_2 can be switched.
  • the control unit 15 performs the switching process between the first gripping body 330_1 and the second gripping body 330_2 described above during the dissolution processing liquid supply process (step S107 in FIG. 4). For example, after supplying IPA as a dissolution processing liquid to the wafer W for a predetermined time, the control unit 15 stops the supply of IPA and the rotation of the wafer W, and performs the switching process described above to start from the first gripper 330_1. After switching to the second gripping body 330_2, the supply of IPA and the rotation of the wafer W are restarted. Thereby, even if the processing film and the particles P are attached to the first gripping body 330_1, the wafer W can be prevented from being soiled or dusted by changing to the second gripping body 330_2. it can.
  • the substrate cleaning apparatus 14A includes a recovery cup 50A.
  • the recovery cup 50 ⁇ / b> A includes an outer cup 53 and an inner cup 54 disposed on the inner side of the outer cup 53.
  • the inner cup 54 receives liquid scattered from the lower surface of the wafer W. Further, the inner cup 54 is formed lower than the outer cup 53, and between the outer cup 53 and the inner cup 54, the liquid scattered from the upper surface of the wafer W is received and led to the liquid discharge port 51. A liquid path is formed.
  • the recovery cup 50 ⁇ / b> A can separate the liquid splashed from the upper surface of the wafer W and the liquid splashed from the lower surface of the wafer W.
  • one substrate cleaning device 14 or 14A performs all of the film forming process liquid supply process, the peeling process liquid supply process, and the dissolution process liquid supply process. 14 may be shared.
  • Substrate cleaning system 14 Substrate cleaning device 45a Chemical solution supply source 45b Film formation processing solution supply source 45c Stripping processing solution supply source 45d Dissolution processing solution supply source 310 First base portion 320 Second base portion 323 Push-up mechanism 325_1 First recess 325_2 2nd recessed part 330_1 1st holding body 330_2 2nd holding body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate cleaning method according to an embodiment comprises a film-forming-liquid supply step, a releasing-liquid supply step, and a dissolving-liquid supply step. In the film-forming-liquid supply step, a film-forming liquid, which includes a volatile component and serves to form a film on a substrate, is supplied to the substrate. In the releasing-liquid supply step, pure water as a releasing liquid for releasing the film from the substrate is supplied to the film formed by solidifying or curing the film-forming liquid on the substrate by volatilizing the volatile component. In the dissolving-liquid supply step, after the releasing-liquid supply step, a dissolving liquid for dissolving the film is supplied to the film. Further, in the releasing-liquid supply step, pure water as a releasing liquid is supplied to the film after supplying a mixed liquid of pure water and a liquid having a lower surface tension than pure water to the film.

Description

基板洗浄方法、基板洗浄システムおよび記憶媒体Substrate cleaning method, substrate cleaning system, and storage medium
 開示の実施形態は、基板洗浄方法、基板洗浄システムおよび記憶媒体に関する。 The disclosed embodiment relates to a substrate cleaning method, a substrate cleaning system, and a storage medium.
 従来、シリコンウェハや化合物半導体ウェハ等の基板に付着したパーティクルの除去を行う基板洗浄装置が知られている。 Conventionally, a substrate cleaning apparatus that removes particles adhering to a substrate such as a silicon wafer or a compound semiconductor wafer is known.
 たとえば、特許文献1には、基板の表面に処理膜を形成し、この処理膜を「膜」の状態で剥離させることで、処理膜とともに基板上のパーティクルを除去する基板洗浄方法が開示されている。 For example, Patent Document 1 discloses a substrate cleaning method in which a treatment film is formed on the surface of a substrate, and the treatment film is peeled off in a “film” state to remove particles on the substrate together with the treatment film. Yes.
特開2015-119164号公報JP2015-119164A
 しかしながら、上述した特許文献1に記載の技術には、処理膜の剥離を促進させるという点で更なる改善の余地がある。 However, the technique described in Patent Document 1 described above has room for further improvement in terms of promoting the peeling of the treated film.
 実施形態の一態様は、基板からの処理膜の剥離を促進させることができる基板洗浄方法、基板洗浄システムおよび記憶媒体を提供することを目的とする。 An object of one embodiment of the present invention is to provide a substrate cleaning method, a substrate cleaning system, and a storage medium that can promote peeling of a treatment film from a substrate.
 実施形態の一態様に係る基板洗浄方法は、成膜処理液供給工程と、剥離処理液供給工程と、溶解処理液供給工程とを含む。成膜処理液供給工程は、揮発成分を含み基板上に膜を形成するための成膜処理液を基板へ供給する。剥離処理液供給工程は、揮発成分が揮発することによって成膜処理液が基板上で固化または硬化してなる処理膜に対して処理膜を基板から剥離させる剥離処理液としての純水を供給する。溶解処理液供給工程は、剥離処理液供給工程後、処理膜に対して処理膜を溶解させる溶解処理液を供給する。また、剥離処理液供給工程は、処理膜に対し、純水よりも表面張力が小さい液体と純水とを混合した混合液を供給した後で、剥離処理液としての純水を供給する。 The substrate cleaning method according to one aspect of the embodiment includes a film forming process liquid supply process, a stripping process liquid supply process, and a dissolution process liquid supply process. In the film formation treatment liquid supply step, a film formation treatment liquid for forming a film on the substrate containing a volatile component is supplied to the substrate. The stripping treatment liquid supply step supplies pure water as a stripping treatment liquid for stripping the treatment film from the substrate to the treatment film formed by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of volatile components. . The dissolution treatment liquid supply step supplies a dissolution treatment liquid that dissolves the treatment film with respect to the treatment film after the peeling treatment liquid supply step. In the stripping treatment liquid supply step, pure water as the stripping treatment liquid is supplied to the treatment film after supplying a mixed liquid obtained by mixing a liquid having a surface tension smaller than that of pure water and pure water.
 実施形態の一態様によれば、基板からの処理膜の剥離を促進させることができる。 According to one aspect of the embodiment, peeling of the treatment film from the substrate can be promoted.
図1Aは、第1の実施形態に係る基板洗浄方法の説明図である。FIG. 1A is an explanatory diagram of a substrate cleaning method according to the first embodiment. 図1Bは、第1の実施形態に係る基板洗浄方法の説明図である。FIG. 1B is an explanatory diagram of the substrate cleaning method according to the first embodiment. 図1Cは、第1の実施形態に係る基板洗浄方法の説明図である。FIG. 1C is an explanatory diagram of the substrate cleaning method according to the first embodiment. 図1Dは、第1の実施形態に係る基板洗浄方法の説明図である。FIG. 1D is an explanatory diagram of the substrate cleaning method according to the first embodiment. 図1Eは、第1の実施形態に係る基板洗浄方法の説明図である。FIG. 1E is an explanatory diagram of the substrate cleaning method according to the first embodiment. 図2は、第1の実施形態に係る基板洗浄システムの構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of the substrate cleaning system according to the first embodiment. 図3は、第1の実施形態に係る基板洗浄装置の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of the substrate cleaning apparatus according to the first embodiment. 図4は、本実施形態に係る基板洗浄システムが実行する基板洗浄処理の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure of substrate cleaning processing executed by the substrate cleaning system according to the present embodiment. 図5は、剥離処理の処理手順の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of a processing procedure of the peeling process. 図6は、第2の実施形態に係る基板保持機構の模式側面図である。FIG. 6 is a schematic side view of the substrate holding mechanism according to the second embodiment. 図7は、第2の実施形態に係る基板保持機構の模式平面図(その1)である。FIG. 7 is a schematic plan view (part 1) of the substrate holding mechanism according to the second embodiment. 図8は、第1把持体周辺の模式拡大図(その1)である。FIG. 8 is a schematic enlarged view (No. 1) around the first gripping body. 図9は、第2把持体周辺の模式拡大図(その1)である。FIG. 9 is a schematic enlarged view (No. 1) around the second gripping body. 図10は、第2の実施形態に係る基板保持機構の模式平面図(その2)である。FIG. 10 is a schematic plan view (part 2) of the substrate holding mechanism according to the second embodiment. 図11は、第2把持体周辺の模式拡大図(その2)である。FIG. 11 is a schematic enlarged view (No. 2) around the second gripping body. 図12は、第1把持体周辺の模式拡大図(その2)である。FIG. 12 is a schematic enlarged view (No. 2) around the first gripping body.
 以下、添付図面を参照して、本願の開示する基板洗浄方法、基板洗浄システムおよび記憶媒体の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a substrate cleaning method, a substrate cleaning system, and a storage medium disclosed in the present application will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
(第1の実施形態)
<基板洗浄方法の内容>
 まず、第1の実施形態に係る基板洗浄方法の内容について図1A~図1Eを用いて説明する。図1A~図1Eは、第1の実施形態に係る基板洗浄方法の説明図である。
(First embodiment)
<Contents of substrate cleaning method>
First, the contents of the substrate cleaning method according to the first embodiment will be described with reference to FIGS. 1A to 1E. 1A to 1E are explanatory views of a substrate cleaning method according to the first embodiment.
 図1Aに示すように、第1の実施形態に係る基板洗浄方法では、シリコンウェハや化合物半導体ウェハ等の基板(以下、「ウェハW」と記載する)のパターン形成面に対し、揮発成分を含みウェハW上に膜を形成するための処理液(以下、「成膜処理液」と記載する)を供給する。 As shown in FIG. 1A, the substrate cleaning method according to the first embodiment includes a volatile component with respect to the pattern formation surface of a substrate such as a silicon wafer or a compound semiconductor wafer (hereinafter referred to as “wafer W”). A processing liquid for forming a film on the wafer W (hereinafter referred to as “film forming processing liquid”) is supplied.
 ウェハWのパターン形成面に供給された成膜処理液は、揮発成分の揮発による体積収縮を起こしながら固化または硬化して処理膜となる。これにより、ウェハW上に形成されたパターンやパターンに付着したパーティクルPがこの処理膜に覆われた状態となる(図1B参照)。なお、ここでいう「固化」とは、固体化することを意味し、「硬化」とは、分子同士が連結して高分子化すること(たとえば架橋や重合等)を意味する。 The film-forming treatment liquid supplied to the pattern forming surface of the wafer W is solidified or cured while causing volume shrinkage due to volatilization of volatile components, and becomes a treatment film. As a result, the pattern formed on the wafer W and the particles P adhering to the pattern are covered with the processing film (see FIG. 1B). Here, “solidification” means solidification, and “curing” means that molecules are connected to each other to be polymerized (for example, crosslinking or polymerization).
 つづいて、図1Bに示すように、ウェハW上の処理膜に対して剥離処理液が供給される。剥離処理液とは、前述の処理膜をウェハWから剥離させる処理液である。第1の実施形態に係る基板洗浄方法では、剥離処理液として常温(23~25度程度)の純水が用いられる。 Subsequently, as shown in FIG. 1B, the peeling treatment liquid is supplied to the treatment film on the wafer W. The peeling treatment liquid is a treatment liquid for peeling the above-described treatment film from the wafer W. In the substrate cleaning method according to the first embodiment, pure water at room temperature (about 23 to 25 degrees) is used as the stripping treatment liquid.
 処理膜上に供給された純水は、処理膜中に浸透していきウェハWの界面に到達する。さらに、ウェハWの界面に到達した純水は、ウェハWの界面であるパターン形成面に浸透する。 The pure water supplied on the processing film penetrates into the processing film and reaches the interface of the wafer W. Further, the pure water that has reached the interface of the wafer W penetrates into the pattern forming surface that is the interface of the wafer W.
 このように、ウェハWと処理膜との間に剥離処理液としての純水が浸入することにより、処理膜は「膜」の状態でウェハWから剥離し、これに伴い、パターン形成面に付着したパーティクルPが処理膜とともにウェハWから剥離する(図1C参照)。 In this way, when pure water as a peeling treatment liquid permeates between the wafer W and the treatment film, the treatment film is peeled off from the wafer W in a “film” state, and attached to the pattern formation surface accordingly. The particles P are peeled off from the wafer W together with the treatment film (see FIG. 1C).
 なお、成膜処理液は、揮発成分の揮発に伴う体積収縮によって生じる歪み(引っ張り力)により、パターン等に付着したパーティクルPをパターン等から引き離すことができる。 In addition, the film-forming treatment liquid can separate the particles P attached to the pattern or the like from the pattern or the like due to distortion (tensile force) generated by volume contraction accompanying volatilization of the volatile component.
 つづいて、ウェハWから剥離された処理膜に対し、処理膜を溶解させる溶解処理液が供給される。これにより、処理膜は溶解し、処理膜に取り込まれていたパーティクルPは、溶解処理液中に浮遊した状態となる(図1D参照)。その後、溶解処理液や溶解した処理膜を純水等で洗い流すことにより、パーティクルPは、ウェハW上から除去される(図1E参照)。 Subsequently, a solution for dissolving the treatment film is supplied to the treatment film peeled from the wafer W. Thereby, the treatment film is dissolved, and the particles P taken in the treatment film are in a state of floating in the dissolution treatment liquid (see FIG. 1D). After that, the particles P are removed from the wafer W by washing away the dissolution treatment liquid or the dissolved treatment film with pure water or the like (see FIG. 1E).
 このように、第1の実施形態に係る基板洗浄方法では、ウェハW上に形成された処理膜をウェハWから「膜」の状態で剥離させることで、パターン等に付着したパーティクルPを処理膜とともにウェハWから除去することとした。 As described above, in the substrate cleaning method according to the first embodiment, the processing film formed on the wafer W is peeled from the wafer W in a “film” state, so that the particles P attached to the pattern or the like are processed into the processing film. At the same time, the wafer W was removed.
 したがって、第1の実施形態に係る基板洗浄方法によれば、化学的作用を利用することなくパーティクル除去を行うため、エッチング作用等による下地膜の侵食を抑えることができる。 Therefore, according to the substrate cleaning method according to the first embodiment, particle removal is performed without using a chemical action, so that erosion of the underlying film due to an etching action or the like can be suppressed.
 また、第1の実施形態に係る基板洗浄方法によれば、従来の物理力を利用した基板洗浄方法と比較して弱い力でパーティクルPを除去することができるため、パターン倒れを抑制することもできる。 In addition, according to the substrate cleaning method according to the first embodiment, the particles P can be removed with a weak force as compared with the conventional substrate cleaning method using physical force, so that pattern collapse can be suppressed. it can.
 さらに、第1の実施形態に係る基板洗浄方法によれば、従来の物理力を利用した基板洗浄方法では除去が困難であった、粒子径が小さいパーティクルPを容易に除去することが可能となる。 Furthermore, according to the substrate cleaning method according to the first embodiment, it is possible to easily remove particles P having a small particle diameter, which are difficult to remove by the conventional substrate cleaning method using physical force. .
 なお、第1の実施形態に係る基板洗浄方法において、処理膜は、ウェハWに成膜された後、パターン露光を行うことなくウェハWから全て除去される。したがって、洗浄後のウェハWは、成膜処理液を塗布する前の状態、すなわち、パターン形成面が露出した状態となる。 In the substrate cleaning method according to the first embodiment, after the processing film is formed on the wafer W, it is completely removed from the wafer W without performing pattern exposure. Therefore, the cleaned wafer W is in a state before the film-forming treatment liquid is applied, that is, a state where the pattern forming surface is exposed.
 ここで、成膜処理液としては、たとえばトップコート液や、特開2016-36012号公報に記載の「基板洗浄用組成物」等が用いられる。しかしながら、これらの成膜処理液によって形成される処理膜は撥水性を有するため、かかる処理膜に対して剥離処理液としての純水を供給しても、処理膜の表面で純水がはじかれてしまい、処理膜中に純水を効率よく浸透させることが困難である。 Here, as the film-forming treatment liquid, for example, a topcoat liquid or “substrate cleaning composition” described in JP-A-2016-36012 is used. However, since the treatment film formed with these film-forming treatment liquids has water repellency, even if pure water as a peeling treatment liquid is supplied to the treatment film, the pure water is repelled on the surface of the treatment film. Therefore, it is difficult to efficiently penetrate pure water into the treatment membrane.
 そこで、第1の実施形態に係る基板洗浄方法では、剥離処理液としての純水を供給するのに先立ち(すなわち、図1Aに示す処理と図1Bに示す処理との間に)、純水よりも表面張力が小さい液体と純水とを混合した混合液を処理膜に供給することとした。 Therefore, in the substrate cleaning method according to the first embodiment, prior to supplying pure water as the stripping treatment liquid (that is, between the process shown in FIG. 1A and the process shown in FIG. 1B), In addition, a mixed liquid obtained by mixing a liquid having a small surface tension and pure water is supplied to the treatment film.
 かかる混合液は、純水と比較して表面張力が小さいため、処理膜の表面ではじかれにくく、処理膜中に浸透し易い。かかる混合液を処理膜中に浸透することで、処理膜中には純水の通り道が形成される。これにより、その後、剥離処理液としての純水を処理膜に供給した際に、純水をパターン形成面に早期に到達させることができる。 Since such a mixed solution has a smaller surface tension than pure water, it is not easily repelled on the surface of the treatment film and easily penetrates into the treatment film. By permeating the mixed solution into the treatment membrane, a passage of pure water is formed in the treatment membrane. Thereby, after that, when pure water as the peeling treatment liquid is supplied to the treatment film, the pure water can reach the pattern forming surface at an early stage.
 このように、第1の実施形態に係る基板洗浄方法によれば、剥離処理液としての純水を処理膜に供給するのに先立ち、純水よりも表面張力が小さい液体と純水とを混合した混合液を処理膜に供給することで、純水が処理膜中に浸透し易くなる。これにより、ウェハWからの処理膜の剥離を促進させることができる。 As described above, according to the substrate cleaning method according to the first embodiment, the pure water as the peeling treatment liquid is mixed with the pure water and the liquid whose surface tension is smaller than that of the pure water before supplying the treatment film. By supplying the mixed liquid to the treatment membrane, pure water can easily penetrate into the treatment membrane. Thereby, peeling of the processing film from the wafer W can be promoted.
<基板洗浄システムの構成>
 次に、第1の実施形態に係る基板洗浄システムの構成について図2を用いて説明する。図2は、第1の実施形態に係る基板洗浄システムの構成を示す模式図である。なお、以下においては、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
<Configuration of substrate cleaning system>
Next, the configuration of the substrate cleaning system according to the first embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating a configuration of the substrate cleaning system according to the first embodiment. In the following, in order to clarify the positional relationship, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
 図2に示すように、基板洗浄システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 2, the substrate cleaning system 1 includes a carry-in / out station 2 and a processing station 3. The carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚のウェハWを水平状態で収容可能な複数の搬送容器(以下、「キャリアC」と記載する)が載置される。 The loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12. A plurality of transfer containers (hereinafter referred to as “carrier C”) that can store a plurality of wafers W in a horizontal state are placed on the carrier placement unit 11.
 搬送部12は、キャリア載置部11に隣接して設けられる。搬送部12の内部には、基板搬送装置121と、受渡部122とが設けられる。 The transport unit 12 is provided adjacent to the carrier placement unit 11. A substrate transfer device 121 and a delivery unit 122 are provided inside the transfer unit 12.
 基板搬送装置121は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置121は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部122との間でウェハWの搬送を行う。 The substrate transfer device 121 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 121 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 122 using a wafer holding mechanism. Do.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部13と、複数の基板洗浄装置14とを備える。複数の基板洗浄装置14は、搬送部13の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transfer unit 12. The processing station 3 includes a transfer unit 13 and a plurality of substrate cleaning apparatuses 14. The plurality of substrate cleaning apparatuses 14 are provided side by side on both sides of the transport unit 13.
 搬送部13は、内部に基板搬送装置131を備える。基板搬送装置131は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置131は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部122と基板洗浄装置14との間でウェハWの搬送を行う。 The transfer unit 13 includes a substrate transfer device 131 inside. The substrate transfer device 131 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 131 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and the wafer W can be transferred between the delivery unit 122 and the substrate cleaning device 14 using a wafer holding mechanism. Transport.
 基板洗浄装置14は、上述した基板洗浄方法に基づく基板洗浄処理を実行する装置である。かかる基板洗浄装置14の具体的な構成については、後述する。 The substrate cleaning device 14 is a device that executes a substrate cleaning process based on the above-described substrate cleaning method. A specific configuration of the substrate cleaning apparatus 14 will be described later.
 また、基板洗浄システム1は、制御装置4を備える。制御装置4は、基板洗浄システム1の動作を制御する装置である。かかる制御装置4は、たとえばコンピュータであり、制御部15と記憶部16とを備える。記憶部16には、基板洗浄処理等の各種の処理を制御するプログラムが格納される。制御部15は、記憶部16に記憶されたプログラムを読み出して実行することによって基板洗浄システム1の動作を制御する。制御部15は、たとえばCPU(Central Processing Unit)やMPU(Micro Processor Unit)等であり、記憶部16は、たとえばROM(Read Only Memory)やRAM(Random Access Memory)等である。 Further, the substrate cleaning system 1 includes a control device 4. The control device 4 is a device that controls the operation of the substrate cleaning system 1. The control device 4 is a computer, for example, and includes a control unit 15 and a storage unit 16. The storage unit 16 stores a program for controlling various processes such as a substrate cleaning process. The control unit 15 controls the operation of the substrate cleaning system 1 by reading and executing the program stored in the storage unit 16. The control unit 15 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processor Unit), and the storage unit 16 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部16にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be recorded in a computer-readable storage medium and may be installed in the storage unit 16 of the control device 4 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
 上記のように構成された基板洗浄システム1では、まず、搬入出ステーション2の基板搬送装置121が、キャリアCからウェハWを取り出し、取り出したウェハWを受渡部122に載置する。受渡部122に載置されたウェハWは、処理ステーション3の基板搬送装置131によって受渡部122から取り出されて基板洗浄装置14へ搬入され、基板洗浄装置14によって基板洗浄処理が施される。洗浄後のウェハWは、基板搬送装置131により基板洗浄装置14から搬出されて受渡部122に載置された後、基板搬送装置121によってキャリアCに戻される。 In the substrate cleaning system 1 configured as described above, first, the substrate transfer device 121 of the loading / unloading station 2 takes out the wafer W from the carrier C and places the taken-out wafer W on the delivery unit 122. The wafer W placed on the delivery unit 122 is taken out from the delivery unit 122 by the substrate transfer device 131 of the processing station 3 and carried into the substrate cleaning device 14, and the substrate cleaning process is performed by the substrate cleaning device 14. The cleaned wafer W is unloaded from the substrate cleaning device 14 by the substrate transfer device 131 and placed on the delivery unit 122, and then returned to the carrier C by the substrate transfer device 121.
<基板洗浄装置の構成>
 次に、基板洗浄装置14の構成について図3を参照して説明する。図3は、第1の実施形態に係る基板洗浄装置14の構成を示す模式図である。
<Configuration of substrate cleaning device>
Next, the configuration of the substrate cleaning apparatus 14 will be described with reference to FIG. FIG. 3 is a schematic diagram showing the configuration of the substrate cleaning apparatus 14 according to the first embodiment.
 図3に示すように、基板洗浄装置14は、チャンバ20と、基板保持機構30と、液供給部40と、回収カップ50とを備える。 As shown in FIG. 3, the substrate cleaning apparatus 14 includes a chamber 20, a substrate holding mechanism 30, a liquid supply unit 40, and a recovery cup 50.
 チャンバ20は、基板保持機構30と液供給部40と回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates the substrate holding mechanism 30, the liquid supply unit 40, and the recovery cup 50. An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20. The FFU 21 forms a down flow in the chamber 20.
 FFU21は、バルブ22を介してダウンフローガス供給源23に接続される。FFU21は、ダウンフローガス供給源23から供給されるダウンフローガス(たとえば、ドライエア)をチャンバ20内に吐出する。 The FFU 21 is connected to a downflow gas supply source 23 via a valve 22. The FFU 21 discharges downflow gas (for example, dry air) supplied from the downflow gas supply source 23 into the chamber 20.
 基板保持機構30は、回転保持部31と、支柱部32と、駆動部33とを備える。回転保持部31は、チャンバ20の略中央に設けられる。回転保持部31の上面には、ウェハWを側面から保持する保持部材311が設けられる。ウェハWは、かかる保持部材311によって回転保持部31の上面からわずかに離間した状態で水平保持される。 The substrate holding mechanism 30 includes a rotation holding unit 31, a support column 32, and a driving unit 33. The rotation holding unit 31 is provided in the approximate center of the chamber 20. A holding member 311 that holds the wafer W from the side surface is provided on the upper surface of the rotation holding unit 31. The wafer W is horizontally held by the holding member 311 while being slightly separated from the upper surface of the rotation holding unit 31.
 支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において回転保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。 The column part 32 is a member extending in the vertical direction, and a base end part is rotatably supported by the drive part 33, and the rotation holding part 31 is horizontally supported at the tip part. The drive unit 33 rotates the column unit 32 around the vertical axis.
 かかる基板保持機構30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された回転保持部31を回転させ、これにより、回転保持部31に保持されたウェハWを回転させる。 The substrate holding mechanism 30 rotates the rotation holding unit 31 supported by the column unit 32 by rotating the column unit 32 using the driving unit 33, and thereby the wafer W held by the rotation holding unit 31 is rotated. Rotate.
 液供給部40は、基板保持機構30に保持されたウェハWに対して各種の処理液を供給する。かかる液供給部40は、複数(ここでは4つ)のノズル41a~41dと、ノズル41a~41dを水平に支持するアーム42と、アーム42を旋回および昇降させる旋回昇降機構43とを備える。 The liquid supply unit 40 supplies various processing liquids to the wafer W held by the substrate holding mechanism 30. The liquid supply unit 40 includes a plurality of (four in this case) nozzles 41a to 41d, an arm 42 that horizontally supports the nozzles 41a to 41d, and a turning lift mechanism 43 that turns and lifts the arm 42.
 ノズル41aは、バルブ44aおよび流量調整器46aを介して薬液供給源45aに接続される。ノズル41bは、バルブ44bおよび流量調整器46bを介して成膜処理液供給源45bに接続される。ノズル41cは、バルブ44cおよび流量調整器46cを介して剥離処理液供給源45cに接続される。ノズル41dは、バルブ44dおよび流量調整器46dを介して溶解処理液供給源45dに接続される。 The nozzle 41a is connected to a chemical solution supply source 45a via a valve 44a and a flow rate regulator 46a. The nozzle 41b is connected to a film forming process liquid supply source 45b via a valve 44b and a flow rate regulator 46b. The nozzle 41c is connected to the stripping treatment liquid supply source 45c via the valve 44c and the flow rate regulator 46c. The nozzle 41d is connected to a dissolution processing liquid supply source 45d via a valve 44d and a flow rate regulator 46d.
 ノズル41aからは、薬液供給源45aから供給される薬液が吐出される。薬液としては、たとえばDHF(希フッ酸)、SC1(アンモニア/過酸化水素/水の混合液)、DSP(Diarrhetic Shellfish Poisoning)等が用いられる。 The chemical liquid supplied from the chemical liquid supply source 45a is discharged from the nozzle 41a. As the chemical solution, for example, DHF (dilute hydrofluoric acid), SC1 (ammonia / hydrogen peroxide / water mixed solution), DSP (Diarrhetic Shellfish Poisoning) and the like are used.
 ノズル41bからは、成膜処理液供給源45bから供給される成膜処理液が吐出される。成膜処理液としては、たとえばトップコート液や、特開2016-36012号公報に記載の「基板洗浄用組成物」等が用いられる。なお、トップコート液により形成されるトップコート膜(処理膜の一例)は、レジストへの液浸液の浸み込みを防ぐためにレジストの上面に塗布される保護膜である。また、液浸液とは、たとえばリソグラフィ工程における液浸露光に用いられる液体である。 The film formation processing liquid supplied from the film formation processing liquid supply source 45b is discharged from the nozzle 41b. As the film-forming treatment liquid, for example, a topcoat liquid or “substrate cleaning composition” described in JP-A-2016-36012 is used. Note that a top coat film (an example of a treatment film) formed by the top coat liquid is a protective film applied to the upper surface of the resist in order to prevent the immersion liquid from entering the resist. The immersion liquid is a liquid used for immersion exposure in a lithography process, for example.
 ノズル41cからは、剥離処理液供給源45cから供給される剥離処理液が吐出される。剥離処理液は、上述したようにDIWである。 The release treatment liquid supplied from the release treatment liquid supply source 45c is discharged from the nozzle 41c. The stripping treatment liquid is DIW as described above.
 ノズル41dからは、溶解処理液供給源45dから供給される溶解処理液が吐出される。溶解処理液としては、たとえばIPA(イソプロピルアルコール)、シンナー、MIBC(4-メチル-2-ペンタノール)、トルエン、酢酸エステル類、アルコール類、グリコール類(プロピレングリコールモノメチルエーテル)などの有機溶剤が用いられる。 From the nozzle 41d, the dissolution processing liquid supplied from the dissolution processing liquid supply source 45d is discharged. For example, an organic solvent such as IPA (isopropyl alcohol), thinner, MIBC (4-methyl-2-pentanol), toluene, acetate esters, alcohols, glycols (propylene glycol monomethyl ether) is used as the dissolution treatment liquid. It is done.
 ここでは、溶解処理液として、所定の温度(たとえば、65℃)に加熱されたIPAを用いるものとする。 Here, IPA heated to a predetermined temperature (for example, 65 ° C.) is used as the dissolution treatment liquid.
 なお、溶解処理液としては、常温のIPAを用いても構わない。また、溶解処理液としては、有機溶剤に限らず、たとえば、アルカリ現像液や酸性現像液を用いることもできる。アルカリ現像液は、アンモニア水、テトラメチルアンモニウムヒドロキシド(TMAH:Tetra Methyl Ammonium Hydroxide)等の4級水酸化アンモニウム水溶液、コリン水溶液の少なくとも一つを含むものであればよい。酸性現像液としては、酢酸、蟻酸、ヒドロキシ酢酸等を用いることができる。 Note that room temperature IPA may be used as the dissolution treatment liquid. Further, the dissolution treatment liquid is not limited to an organic solvent, and for example, an alkali developer or an acid developer can be used. The alkaline developer may contain at least one of ammonia water, a quaternary ammonium hydroxide aqueous solution such as tetramethylammonium hydroxide (TMAH), and an aqueous choline solution. Acetic acid, formic acid, hydroxyacetic acid, etc. can be used as the acidic developer.
 回収カップ50は、回転保持部31を取り囲むように配置され、回転保持部31の回転によってウェハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から基板洗浄装置14の外部へ排出される。また、回収カップ50の底部には、FFU21から供給されるダウンフローガスを基板洗浄装置14の外部へ排出する排気口52が形成される。 The recovery cup 50 is disposed so as to surround the rotation holding unit 31 and collects the processing liquid scattered from the wafer W by the rotation of the rotation holding unit 31. A drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the substrate cleaning apparatus 14. Further, an exhaust port 52 for discharging the downflow gas supplied from the FFU 21 to the outside of the substrate cleaning apparatus 14 is formed at the bottom of the recovery cup 50.
<基板洗浄システムの具体的動作>
 次に、基板洗浄装置14の具体的動作について図4を参照して説明する。図4は、本実施形態に係る基板洗浄システム1が実行する基板洗浄処理の処理手順を示すフローチャートである。基板洗浄システム1が備える各装置は、制御部15の制御に従って図4に示す各処理手順を実行する。
<Specific operation of substrate cleaning system>
Next, a specific operation of the substrate cleaning apparatus 14 will be described with reference to FIG. FIG. 4 is a flowchart showing the processing procedure of the substrate cleaning processing executed by the substrate cleaning system 1 according to the present embodiment. Each apparatus provided in the substrate cleaning system 1 executes each processing procedure shown in FIG. 4 according to the control of the control unit 15.
 図4に示すように、基板洗浄装置14では、まず、基板搬入処理が行われる(ステップS101)。かかる基板搬入処理では、基板搬送装置131(図2参照)によってチャンバ20内に搬入されたウェハWが基板保持機構30の保持部材311により保持される。このときウェハWは、パターン形成面が上方を向いた状態で保持部材311に保持される。その後、駆動部33によって回転保持部31が回転する。これにより、ウェハWは、回転保持部31に水平保持された状態で回転保持部31とともに回転する。ウェハWの回転数は、たとえば、1000rpmに設定される。 As shown in FIG. 4, in the substrate cleaning apparatus 14, first, a substrate carry-in process is performed (step S101). In such a substrate carry-in process, the wafer W carried into the chamber 20 by the substrate carrying device 131 (see FIG. 2) is held by the holding member 311 of the substrate holding mechanism 30. At this time, the wafer W is held by the holding member 311 with the pattern forming surface facing upward. Thereafter, the rotation holding unit 31 is rotated by the drive unit 33. Thereby, the wafer W rotates together with the rotation holding unit 31 while being held horizontally by the rotation holding unit 31. The rotation speed of the wafer W is set to 1000 rpm, for example.
 つづいて、基板洗浄装置14では、薬液処理が行われる(ステップS102)。薬液処理では、まず、液供給部40のノズル41aがウェハWの中央上方に位置する。その後、バルブ44aが所定時間開放されることにより、レジストが形成されていないウェハWのパターン形成面に対してDHF等の薬液が供給される。ウェハWへ供給された薬液は、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。 Subsequently, the substrate cleaning apparatus 14 performs chemical treatment (step S102). In the chemical processing, first, the nozzle 41a of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44a is opened for a predetermined time, whereby a chemical solution such as DHF is supplied to the pattern formation surface of the wafer W on which no resist is formed. The chemical solution supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W.
 つづいて、液供給部40のノズル41cがウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、ウェハWのパターン形成面に対してDIWが供給される。ウェハWへ供給されたDIWは、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。これにより、ウェハW上に残存する薬液がDIWによって洗い流される。 Subsequently, the nozzle 41c of the liquid supply unit 40 is located above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, whereby DIW is supplied to the pattern forming surface of the wafer W. The DIW supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the chemical solution remaining on the wafer W is washed away by the DIW.
 つづいて、基板洗浄装置14では、プリウェット処理が行われる(ステップS103)。プリウェット処理では、液供給部40のノズル41dがウェハWの中央上方に位置する。その後、バルブ44dが所定時間開放されることにより、ウェハWのパターン形成面に対してIPAが供給される。ウェハWへ供給されたIPAは、ウェハWの回転に伴う遠心力によってウェハWのパターン形成面に広がる。 Subsequently, in the substrate cleaning apparatus 14, a pre-wet process is performed (step S103). In the pre-wet process, the nozzle 41d of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44d is opened for a predetermined time, whereby IPA is supplied to the pattern forming surface of the wafer W. The IPA supplied to the wafer W spreads on the pattern forming surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W.
 成膜処理液としてのトップコート液や基板洗浄用組成物は撥水性が高いため、薬液処理後のウェハWに対して成膜処理液を供給しても、ウェハWの表面に残存するDIWによってはじかれてしまい、ウェハWの表面に成膜処理液の液膜を形成するのに多くの時間がかかってしまう。 Since the topcoat liquid and the substrate cleaning composition as the film-forming treatment liquid have high water repellency, even if the film-forming treatment liquid is supplied to the wafer W after the chemical liquid treatment, the DIW remaining on the surface of the wafer W It will be repelled, and it will take a lot of time to form a liquid film of the film forming treatment liquid on the surface of the wafer W.
 そこで、第1の実施形態に係る基板洗浄システム1では、薬液処理後のウェハWに対してIPAを供給して、薬液処理後のウェハWに残存するDIWをIPAに置換することとした。このように、成膜処理液と親和性のあるIPAを事前にウェハWに塗り広げておくことで、後述する成膜処理液供給処理(ステップS104)において、成膜処理液がウェハWの上面に広がり易くなるとともに、パターンの隙間にも入り込み易くなる。したがって、成膜処理液の使用量を削減することができるとともに、パターンの隙間に入り込んだパーティクルPをより確実に除去することが可能となる。また、成膜処理液供給処理の処理時間の短縮化を図ることもできる。 Therefore, in the substrate cleaning system 1 according to the first embodiment, IPA is supplied to the wafer W after chemical liquid processing, and DIW remaining on the wafer W after chemical liquid processing is replaced with IPA. In this way, by spreading IPA having affinity with the film forming treatment liquid on the wafer W in advance, the film forming treatment liquid is transferred to the upper surface of the wafer W in the film forming treatment liquid supply process (step S104) described later. And easily enter the gaps between the patterns. Therefore, it is possible to reduce the amount of film forming treatment liquid used and more reliably remove the particles P that have entered the gaps in the pattern. Further, it is possible to shorten the processing time of the film forming process liquid supply process.
 なお、ここでは、プリウェット処理において、ウェハWに対してIPAを供給することとしたが、プリウェット処理に用いる処理液は、IPAに限定されない。プリウェット処理に用いる処理液としては、たとえば、エタノールやアセトンなどのIPA以外の有機溶剤を用いることができる。 Note that, here, IPA is supplied to the wafer W in the pre-wet processing, but the processing liquid used for the pre-wet processing is not limited to IPA. As the treatment liquid used for the pre-wet treatment, for example, an organic solvent other than IPA such as ethanol or acetone can be used.
 つづいて、基板洗浄装置14では、成膜処理液供給処理が行われる(ステップS104)。成膜処理液供給処理では、液供給部40のノズル41bがウェハWの中央上方に位置する。その後、バルブ44bが所定時間開放されることにより、ウェハWのパターン形成面に対して成膜処理液が供給される。 Subsequently, in the substrate cleaning apparatus 14, a film forming process liquid supply process is performed (step S104). In the film forming process liquid supply process, the nozzle 41 b of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44b is opened for a predetermined time, whereby the film forming treatment liquid is supplied to the pattern forming surface of the wafer W.
 ウェハWへ供給された成膜処理液は、ウェハWの回転に伴う遠心力によってウェハWの表面に広がる。これにより、ウェハWのパターン形成面に成膜処理液の液膜が形成される。液膜は、少なくともウェハW上のパターンを覆う厚さ(たとえば、45nm以上)に形成されることが好ましい。 The film forming treatment liquid supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. As a result, a liquid film of the film forming treatment liquid is formed on the pattern forming surface of the wafer W. The liquid film is preferably formed to a thickness (for example, 45 nm or more) covering at least the pattern on the wafer W.
 つづいて、基板洗浄装置14では、乾燥処理が行われる(ステップS105)。かかる乾燥処理では、たとえばウェハWの回転速度を所定時間増加させることによって成膜処理液を乾燥させる。これにより、たとえば成膜処理液に含まれる有機溶媒の一部または全部が気化して成膜処理液に含まれる固形分が固化または硬化し、ウェハWのパターン形成面に処理膜が形成される。 Subsequently, the substrate cleaning apparatus 14 performs a drying process (step S105). In such a drying process, for example, the film forming process liquid is dried by increasing the rotation speed of the wafer W for a predetermined time. Thereby, for example, part or all of the organic solvent contained in the film forming treatment liquid is vaporized, and the solid content contained in the film forming treatment liquid is solidified or hardened, and a treatment film is formed on the pattern forming surface of the wafer W. .
 なお、ステップS105の乾燥処理は、たとえば、図示しない減圧装置によってチャンバ20内を減圧状態にする処理であってもよいし、FFU21から供給されるダウンフローガスによってチャンバ20内の湿度を低下させる処理であってもよい。これらの処理によっても、成膜処理液を固化または硬化させることができる。 Note that the drying process in step S105 may be, for example, a process for reducing the pressure in the chamber 20 with a decompression device (not shown), or a process for reducing the humidity in the chamber 20 with the downflow gas supplied from the FFU 21. It may be. Also by these treatments, the film forming treatment liquid can be solidified or cured.
 また、基板洗浄装置14は、成膜処理液が自然に固化または硬化するまでウェハWを基板洗浄装置14で待機させてもよい。また、ウェハWの回転を停止させたり、成膜処理液が振り切られてウェハWの表面が露出することがない程度の回転数でウェハWを回転させたりすることによって成膜処理液を固化または硬化させてもよい。 Further, the substrate cleaning apparatus 14 may cause the substrate cleaning apparatus 14 to wait until the film-forming treatment liquid is naturally solidified or cured. Further, the film formation processing liquid is solidified by stopping the rotation of the wafer W or rotating the wafer W at a rotation speed that does not expose the surface of the wafer W by shaking the film formation processing liquid. It may be cured.
 つづいて、基板洗浄装置14では、剥離処理が行われる(ステップS106)。かかる剥離処理では、ウェハW上に形成された処理膜がウェハWから剥離される。かかる剥離処理の具体的な内容については、後述する。 Subsequently, the substrate cleaning apparatus 14 performs a peeling process (step S106). In the peeling process, the treatment film formed on the wafer W is peeled from the wafer W. The specific contents of the peeling process will be described later.
 つづいて、基板洗浄装置14では、溶解処理液供給処理が行われる(ステップS107)。溶解処理液供給処理では、液供給部40のノズル41dがウェハWの中央上方に位置する。その後、バルブ44dが所定時間開放されることにより、ウェハWから剥離された処理膜に対してIPAが供給される。ウェハWへ供給されたIPAは、ウェハWの回転に伴う遠心力によってウェハWの表面に広がる。これにより、処理膜は溶解する。 Subsequently, in the substrate cleaning apparatus 14, a dissolution processing liquid supply process is performed (step S107). In the dissolution processing liquid supply process, the nozzle 41 d of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44d is opened for a predetermined time, whereby IPA is supplied to the processing film peeled from the wafer W. The IPA supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the treatment film is dissolved.
 第1の実施形態に係る基板洗浄システム1では、溶解処理液として所定の温度に加熱されたIPAを用いることとしたため、ウェハWから剥離された処理膜をより短時間で溶解させることができる。 In the substrate cleaning system 1 according to the first embodiment, since the IPA heated to a predetermined temperature is used as the dissolution processing liquid, the processing film peeled off from the wafer W can be dissolved in a shorter time.
 つづいて、基板洗浄装置14では、リンス処理が行われる(ステップS108)。リンス処理では、液供給部40のノズル41cがウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、ウェハWから剥離された処理膜に対してDIWが供給される。ウェハWへ供給されたDIWは、ウェハWの回転に伴う遠心力によってウェハWの表面に広がる。これにより、溶解した処理膜やIPA中に浮遊するパーティクルPがウェハWから除去される。 Subsequently, the substrate cleaning apparatus 14 performs a rinsing process (step S108). In the rinsing process, the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film peeled from the wafer W. The DIW supplied to the wafer W spreads on the surface of the wafer W due to the centrifugal force accompanying the rotation of the wafer W. Thereby, the dissolved processing film and the particles P floating in the IPA are removed from the wafer W.
 つづいて、基板洗浄装置14では、乾燥処理が行われる(ステップS109)。乾燥処理では、たとえばウェハWの回転速度を所定時間増加させることによって、ウェハWの表面に残存するDIWを振り切ってウェハWを乾燥させる。 Subsequently, the substrate cleaning apparatus 14 performs a drying process (step S109). In the drying process, for example, by increasing the rotation speed of the wafer W for a predetermined time, the DIW remaining on the surface of the wafer W is shaken off to dry the wafer W.
 なお、基板洗浄装置14では、上述したステップS108およびステップS109の処理に代えて、ステップS107の溶解処理液供給処理に引き続き、ノズル41dから回転するウェハWに対してIPAを供給した後で、ウェハWを高速で回転させてウェハWを乾燥させる処理を行ってもよい。 In the substrate cleaning apparatus 14, instead of the processing in step S 108 and step S 109 described above, the IPA is supplied to the rotating wafer W from the nozzle 41 d after the dissolution processing liquid supply processing in step S 107, and then the wafer You may perform the process which rotates W at high speed and dries the wafer W. FIG.
 つづいて、基板洗浄装置14では、基板搬出処理が行われる(ステップS110)。かかる基板搬出処理では、基板搬送装置131(図2参照)によって、基板洗浄装置14のチャンバ20からウェハWが取り出される。その後、ウェハWは、受渡部122および基板搬送装置121を経由して、キャリア載置部11に載置されたキャリアCに収容される。かかる基板搬出処理が完了すると、1枚のウェハWについての基板洗浄処理が完了する。 Subsequently, the substrate cleaning apparatus 14 performs a substrate carry-out process (step S110). In such a substrate carry-out process, the wafer W is taken out from the chamber 20 of the substrate cleaning device 14 by the substrate transfer device 131 (see FIG. 2). Thereafter, the wafer W is accommodated in the carrier C placed on the carrier placement unit 11 via the delivery unit 122 and the substrate transfer device 121. When the substrate carry-out process is completed, the substrate cleaning process for one wafer W is completed.
 次に、ステップS106の剥離処理の具体的な手順の一例について図5を参照して説明する。図5は、剥離処理の処理手順の一例を示すフローチャートである。 Next, an example of a specific procedure of the peeling process in step S106 will be described with reference to FIG. FIG. 5 is a flowchart illustrating an example of a processing procedure of the peeling process.
 図5に示すように、基板洗浄装置14では、まず、DIW液盛り処理が行われる(ステップS201)。DIW液盛り処理では、液供給部40のノズル41cがウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、ウェハW上に形成された処理膜に対してDIWが供給される。ウェハW上の処理膜に供給されたDIWは、ウェハWの回転に伴う遠心力によって処理膜の表面に広がる。これにより、処理膜上にDIWの液膜が形成される。 As shown in FIG. 5, in the substrate cleaning apparatus 14, first, DIW liquid accumulation processing is performed (step S201). In the DIW liquid accumulation process, the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film formed on the wafer W. The DIW supplied to the processing film on the wafer W spreads on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of DIW is formed on the treatment film.
 なお、DIW液盛り処理は、処理膜上にDIWの液膜を形成するために行われる。このため、DIW液盛り処理におけるDIWの供給時間は、後段の混合液供給処理(ステップS202)やDIW供給処理(ステップS203)と比較して短く設定される。たとえば、DIW液盛り処理におけるDIWの供給時間は、2secである。また、DIW液盛り処理では、後段の混合液供給処理(ステップS202)やDIW供給処理(ステップS203)と比較してウェハWを低速で回転させるようにしてもよい。 The DIW liquid accumulation process is performed to form a DIW liquid film on the processing film. For this reason, the DIW supply time in the DIW liquid accumulation process is set to be shorter than that in the subsequent mixed liquid supply process (step S202) or the DIW supply process (step S203). For example, the DIW supply time in the DIW liquid accumulation process is 2 seconds. Further, in the DIW liquid accumulation process, the wafer W may be rotated at a lower speed than in the subsequent mixed liquid supply process (step S202) or the DIW supply process (step S203).
 つづいて、基板洗浄装置14では、混合液供給処理が行われる(ステップS202)。混合液供給処理では、たとえば液供給部40のノズル41cおよびノズル41dの中間位置をウェハWの中央上方に位置させる。その後、バルブ44cおよびバルブ44dが所定時間開放されることにより、ウェハW上の処理膜に対してDIWおよびIPAが同時に供給される。ウェハW上の処理膜に供給されたDIWおよびIPAは、ウェハWの回転に伴う遠心力によって処理膜の表面に広がりながら混合される。これにより、処理膜上にDIWとIPAとの混合液の液膜が形成される。 Subsequently, the substrate cleaning apparatus 14 performs a mixed liquid supply process (step S202). In the mixed liquid supply process, for example, an intermediate position between the nozzle 41c and the nozzle 41d of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44c and the valve 44d are opened for a predetermined time, whereby DIW and IPA are simultaneously supplied to the processing film on the wafer W. DIW and IPA supplied to the processing film on the wafer W are mixed while spreading on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. As a result, a liquid film of a mixed liquid of DIW and IPA is formed on the treatment film.
 IPAの表面張力は、20℃で20.8mN/mであり、DIWの表面張力(72.75mN/m)よりも小さい。かかるIPAとDIWとの混合液は、DIWと比較して表面張力が小さいため、処理膜の表面ではじかれにくく、処理膜中に浸透し易い。したがって、処理膜中に純水の通り道を早期に形成することができる。 The surface tension of IPA is 20.8 mN / m at 20 ° C., which is smaller than the surface tension of DIW (72.75 mN / m). Such a mixed liquid of IPA and DIW has a smaller surface tension than DIW, and thus is not easily repelled on the surface of the treatment film and easily penetrates into the treatment film. Therefore, the passage of pure water can be formed early in the treatment film.
 ここで、混合液は、IPAの濃度が25%未満であることが好ましい。これは、IPAの濃度が25%以上とした場合、混合液によって処理膜が溶解されて処理膜が「膜」の状態で剥離する現象が発生しなくなる結果、パーティクル除去率が低下するためである。より好ましくは、混合液のIPA濃度は7.5%以下である。 Here, the mixed solution preferably has an IPA concentration of less than 25%. This is because when the concentration of IPA is 25% or more, the treatment film is dissolved by the mixed solution and the phenomenon that the treatment film peels off in the state of “film” does not occur, resulting in a decrease in the particle removal rate. . More preferably, the IPA concentration of the mixed solution is 7.5% or less.
 制御部15は、混合液のIPA濃度が7.5%以下となるように、流量調整器46c,46dを制御する。たとえば、制御部15は、DIWおよびIPAの流量比が1000:75となるように、流量調整器46c,46dを制御することにより、IPA濃度が7.5%の混合液を処理膜に供給する。 The control unit 15 controls the flow rate adjusters 46c and 46d so that the IPA concentration of the mixed solution is 7.5% or less. For example, the control unit 15 controls the flow rate adjusters 46c and 46d so that the flow rate ratio of DIW and IPA is 1000: 75, thereby supplying a liquid mixture having an IPA concentration of 7.5% to the treatment film. .
 ここで、IPA濃度が7.5%の混合液であっても、処理膜に対して長時間供給し続けると、処理膜を溶解させてしまいパーティクル除去率が低下するおそれがある。このような観点から、IPA濃度が7.5%の混合液の供給時間は、60sec以下が好ましい。より好ましくは、混合液の供給時間は、2secである。 Here, even if the IPA concentration is 7.5%, if the supply to the treatment film is continued for a long time, the treatment film may be dissolved and the particle removal rate may decrease. From such a viewpoint, the supply time of the mixed liquid having an IPA concentration of 7.5% is preferably 60 sec or less. More preferably, the supply time of the mixed liquid is 2 seconds.
 なお、本願発明者らは、DIWの流量を1000ml/minとし、IPAの流量を75ml/minとして得られるIPA濃度7.5%の混合液を処理膜に対して、60sec供給した場合と2sec供給した場合における剥離処理後のパーティクル除去率を実験により測定し、60sec供給した場合の除去率よりも2sec供給した場合の除去率の方が高いことを確認している。 The inventors of the present application supplied a mixed solution with an IPA concentration of 7.5% obtained by setting the flow rate of DIW to 1000 ml / min and the flow rate of IPA to 75 ml / min for 60 seconds and for 2 seconds. In this case, the particle removal rate after the peeling treatment is measured by experiment, and it is confirmed that the removal rate when supplied for 2 seconds is higher than the removal rate when supplied for 60 seconds.
 つづいて、基板洗浄装置14では、DIW供給処理が行われる(ステップS203)。DIW供給処理では、液供給部40のノズル41cがウェハWの中央上方に位置する。その後、バルブ44cが所定時間開放されることにより、ウェハW上に形成された処理膜に対してDIWが供給される。ウェハW上の処理膜に供給されたDIWは、ウェハWの回転に伴う遠心力によって処理膜の表面に広がる。これにより、処理膜上にDIWの液膜が形成される。 Subsequently, the substrate cleaning apparatus 14 performs a DIW supply process (step S203). In the DIW supply process, the nozzle 41 c of the liquid supply unit 40 is positioned above the center of the wafer W. Thereafter, the valve 44c is opened for a predetermined time, whereby DIW is supplied to the processing film formed on the wafer W. The DIW supplied to the processing film on the wafer W spreads on the surface of the processing film due to the centrifugal force accompanying the rotation of the wafer W. Thereby, a liquid film of DIW is formed on the treatment film.
 DIWは、混合液供給処理によって処理膜中に形成されたDIWの通り道を通って処理膜中に浸透してウェハWの界面に到達する。そして、DIWは、ウェハWの界面であるパターン形成面に浸透して、処理膜をウェハWから剥離させる。これにより、ウェハWのパターン形成面に付着したパーティクルPが処理膜とともにウェハWから剥離される。 DIW penetrates into the processing film through the DIW path formed in the processing film by the mixed solution supply process and reaches the interface of the wafer W. Then, the DIW penetrates the pattern forming surface that is the interface of the wafer W, and peels the treatment film from the wafer W. Thereby, the particle P adhering to the pattern formation surface of the wafer W is peeled from the wafer W together with the treatment film.
 このように、第1の実施形態に係る基板洗浄装置14では、剥離処理液としてのDIWを処理膜に供給するのに先立ち、DIWとIPAとの混合液を処理膜に供給して処理膜中にDIWの通り道を形成することとした。これにより、DIWがパターン形成面に浸透するまでの時間が短縮されるため、処理膜がウェハWから剥離するまでの時間を短縮することができる。したがって、ウェハWからの処理膜の剥離を促進させることが可能である。 As described above, in the substrate cleaning apparatus 14 according to the first embodiment, prior to supplying DIW as the stripping processing liquid to the processing film, a mixed liquid of DIW and IPA is supplied to the processing film and It was decided to form a DIW road. As a result, the time until DIW permeates the pattern formation surface is shortened, so that the time until the treatment film is peeled from the wafer W can be shortened. Therefore, it is possible to promote peeling of the processing film from the wafer W.
 また、第1の実施形態に係る基板洗浄装置14では、所定の温度(たとえば65°)に加熱されたIPAをDIWと混合することとした。IPAを加熱することにより、IPAの表面張力がより小さくなることから、混合液の表面張力をより小さくすることができる。したがって、処理膜中に純水の通り道をより早期に形成することができる。 In the substrate cleaning apparatus 14 according to the first embodiment, IPA heated to a predetermined temperature (for example, 65 °) is mixed with DIW. By heating the IPA, the surface tension of the IPA is further reduced, so that the surface tension of the mixed liquid can be further reduced. Therefore, the passage of pure water can be formed earlier in the treatment film.
 また、第1の実施形態に係る基板洗浄装置14では、処理膜に対してIPAとDIWとをそれぞれ供給して処理膜上でこれらを混合することにより、処理膜に対して混合液を供給することとした。これにより、所定濃度の混合液を生成するための混合部を別途設ける必要がなく、安価に装置を構成できる。 Further, in the substrate cleaning apparatus 14 according to the first embodiment, IPA and DIW are respectively supplied to the processing film and mixed on the processing film, thereby supplying the mixed solution to the processing film. It was decided. Thereby, it is not necessary to separately provide a mixing unit for generating a liquid mixture having a predetermined concentration, and the apparatus can be configured at low cost.
 また、第1の実施形態に係る基板洗浄装置14では、処理膜に対してDIWを供給して処理膜上にDIWを液盛りした後で、処理膜に対して混合液を供給することとしたため、DIWとIPAとが混合される前に、IPAによって処理膜が溶解されることを抑制することができる。 In the substrate cleaning apparatus 14 according to the first embodiment, DIW is supplied to the processing film and DIW is deposited on the processing film, and then the mixed solution is supplied to the processing film. It is possible to prevent the treatment film from being dissolved by IPA before DIW and IPA are mixed.
 上述してきたように、第1の実施形態に係る基板洗浄システム1は、成膜処理液供給部(液供給部40)と、剥離処理液供給部(液供給部40)と、溶解処理液供給部(液供給部40)とを備える。成膜処理液供給部は、揮発成分を含み基板上に膜を形成するための成膜処理液(たとえば、トップコート液や基板洗浄用組成物)を基板(ウェハW)へ供給する。剥離処理液供給部は、揮発成分が揮発することによって成膜処理液が基板上で固化または硬化してなる処理膜に対して処理膜を基板から剥離させる剥離処理液としての純水(DIW)を供給する。溶解処理液供給部は、処理膜に対して処理膜を溶解させる溶解処理液(たとえば、IPA)を供給する。また、剥離処理液供給部は、処理膜に対し、純水よりも表面張力が小さい液体(たとえば、IPA)と純水とを混合した混合液を供給した後で、剥離処理液としての純水を供給する。 As described above, the substrate cleaning system 1 according to the first embodiment includes the film forming process liquid supply part (liquid supply part 40), the stripping process liquid supply part (liquid supply part 40), and the dissolution process liquid supply. Part (liquid supply part 40). The film formation treatment liquid supply unit supplies a film formation treatment liquid (for example, a topcoat liquid or a substrate cleaning composition) containing a volatile component to form a film on the substrate to the substrate (wafer W). The stripping treatment liquid supply unit is pure water (DIW) as a stripping treatment liquid for stripping the treatment film from the substrate with respect to the treatment film formed by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of volatile components. Supply. The dissolution treatment liquid supply unit supplies a dissolution treatment liquid (for example, IPA) that dissolves the treatment film with respect to the treatment film. The stripping treatment liquid supply unit supplies pure water as the stripping treatment liquid after supplying a mixed liquid obtained by mixing a liquid (for example, IPA) having a surface tension smaller than that of pure water and pure water to the treatment film. Supply.
 したがって、第1の実施形態に係る基板洗浄システム1によれば、ウェハWからの処理膜の剥離を促進させることができる。 Therefore, according to the substrate cleaning system 1 according to the first embodiment, peeling of the processing film from the wafer W can be promoted.
(第2の実施形態)
 第2の実施形態では、基板保持機構の具体的な構成例について説明する。第2の実施形態に係る基板保持機構は、独立して動作可能な2つの把持体群を備えており、これら2つの把持体群を用い、上述した溶解処理液供給処理においてウェハWの持ち替えを行う。
(Second Embodiment)
In the second embodiment, a specific configuration example of the substrate holding mechanism will be described. The substrate holding mechanism according to the second embodiment includes two gripping body groups that can operate independently, and uses these two gripping body groups to change the wafer W in the above-described dissolution processing liquid supply process. Do.
 図6は、第2の実施形態に係る基板保持機構の模式側面図である。また、図7は、第2の実施形態に係る基板保持機構の模式平面図(その1)である。図8は、第1把持体周辺の模式拡大図(その1)である。図9は、第2把持体周辺の模式拡大図(その1)である。 FIG. 6 is a schematic side view of the substrate holding mechanism according to the second embodiment. FIG. 7 is a schematic plan view (part 1) of the substrate holding mechanism according to the second embodiment. FIG. 8 is a schematic enlarged view (No. 1) around the first gripping body. FIG. 9 is a schematic enlarged view (No. 1) around the second gripping body.
 また、図10は、第2の実施形態に係る基板保持機構の模式平面図(その2)である。図11は、第2把持体周辺の模式拡大図(その2)である。図12は、第1把持体周辺の模式拡大図(その2)である。 FIG. 10 is a schematic plan view (part 2) of the substrate holding mechanism according to the second embodiment. FIG. 11 is a schematic enlarged view (No. 2) around the second gripping body. FIG. 12 is a schematic enlarged view (No. 2) around the first gripping body.
 なお、図6~図9には、後述する第1把持体330_1を用いてウェハWを把持した状態を示しており、図10~図12は、後述する第2把持体330_2を用いてウェハWを把持した状態を示している。 6 to 9 show a state in which the wafer W is held using a first holding body 330_1 described later, and FIGS. 10 to 12 show the wafer W using a second holding body 330_2 described later. The state which hold | gripped is shown.
 図6および図7に示すように、第2の実施形態に係る基板洗浄装置14Aは、基板保持機構30Aを備える。基板保持機構30Aは、回転保持部31Aと、支柱部32と、駆動部33(図3参照)を備える。 As shown in FIGS. 6 and 7, the substrate cleaning apparatus 14A according to the second embodiment includes a substrate holding mechanism 30A. The substrate holding mechanism 30A includes a rotation holding unit 31A, a support unit 32, and a drive unit 33 (see FIG. 3).
 回転保持部31Aは、第1ベース部310と、第2ベース部320とを備える。第1ベース部310は、支柱部32に接続される円板状の部材であり、第2ベース部320は、かかる第1ベース部310の上面に載置される。 The rotation holding unit 31A includes a first base unit 310 and a second base unit 320. The first base portion 310 is a disk-like member connected to the support column portion 32, and the second base portion 320 is placed on the upper surface of the first base portion 310.
 第2ベース部320の下部には、鉛直方向に延在する複数(ここでは、3つ)の支柱321が設けられる。支柱321は、第1ベース部310に設けられた貫通孔312を介して第1ベース部310の下方に延在する。 A plurality of (in this case, three) columns 321 extending in the vertical direction are provided below the second base portion 320. The support column 321 extends below the first base portion 310 through a through hole 312 provided in the first base portion 310.
 支柱321の下方には、押上機構323が配置される。押上機構323は、延長方向に延在する押上部323aと、押上部323aを鉛直方向に沿って昇降させる駆動部323bとを備える。かかる押上機構323は、駆動部323bを用いて押上部323aを鉛直上方に移動させることにより、第2ベース部320の支柱321を鉛直上方に押し上げる。 A push-up mechanism 323 is disposed below the support column 321. The push-up mechanism 323 includes a push-up portion 323a extending in the extending direction and a drive unit 323b that raises and lowers the push-up portion 323a along the vertical direction. The push-up mechanism 323 pushes up the column 321 of the second base part 320 vertically upward by moving the push-up part 323a vertically upward using the drive part 323b.
 このように、第2ベース部320は、押上機構323によって第1ベース部310の上面から離れて上方へ移動することができる。第2ベース部320の上部には、第2ベース部320が上方へ移動した際に、ウェハWを支持するための複数(ここでは、3つ)のピン324が設けられる。 Thus, the second base part 320 can be moved upward away from the upper surface of the first base part 310 by the push-up mechanism 323. A plurality of (here, three) pins 324 for supporting the wafer W when the second base unit 320 moves upward are provided on the upper part of the second base unit 320.
 なお、第1ベース部310の上面には係合凸部313が形成され、第2ベース部320の下面には係合凹部326が形成される。係合凸部313は、貫通孔312の周囲を取り囲むように形成され、係合凹部326は、かかる係合凸部313の周囲を取り囲むように形成される。これら係合凸部313と係合凹部326とが係合することにより、第1ベース部310と第2ベース部320とは、位置ずれを起こすことなく一体的に回転することができる。 Note that an engaging convex portion 313 is formed on the upper surface of the first base portion 310, and an engaging concave portion 326 is formed on the lower surface of the second base portion 320. The engaging convex portion 313 is formed so as to surround the through hole 312, and the engaging concave portion 326 is formed so as to surround the engaging convex portion 313. The engagement between the engagement convex portion 313 and the engagement concave portion 326 allows the first base portion 310 and the second base portion 320 to rotate integrally without causing positional displacement.
 また、図7に示すように、基板保持機構30Aは、複数(ここでは、3つ)の第1把持体330_1と、複数(ここでは、3つ)の第2把持体330_2とを備える。複数の第1把持体330_1および第2把持体330_2は、第1ベース部310の外周部に円周状に交互に並べて配置される。また、各把持体330_1,330_2は、第1ベース部310に対し、水平方向に延在する回転軸332を中心に回動可能に支持される。 Further, as shown in FIG. 7, the substrate holding mechanism 30A includes a plurality (here, three) first grip bodies 330_1 and a plurality (here, three) second grip bodies 330_2. The plurality of first grip bodies 330_1 and the second grip bodies 330_2 are alternately arranged in a circumferential manner on the outer peripheral portion of the first base portion 310. In addition, each of the gripping bodies 330_1 and 330_2 is supported by the first base portion 310 so as to be rotatable around a rotation shaft 332 extending in the horizontal direction.
 複数の第1把持体330_1および第2把持体330_2は、回転軸332よりも上方においてウェハWの周縁部を把持する把持部331と、第1ベース部310の上面と第2ベース部320の下面との間に配置される押下部333とを備える。たとえば、第1把持体330_1および第2把持体330_2は、側面視略L字状に形成され、回転軸332はL字の角部に配置され、把持部331および押下部333はL字の端部にそれぞれ配置される。 The plurality of first gripping bodies 330_1 and the second gripping bodies 330_2 include a gripping portion 331 that grips the peripheral edge of the wafer W above the rotation shaft 332, an upper surface of the first base portion 310, and a lower surface of the second base portion 320. And a push-down unit 333 disposed between the two. For example, the first gripping body 330_1 and the second gripping body 330_2 are formed in a substantially L shape in a side view, the rotation shaft 332 is disposed at the corner of the L shape, and the gripping portion 331 and the pressing portion 333 are end portions of the L shape. Placed in each part.
 複数の第1把持体330_1および第2把持体330_2の回転軸332には、図示しない付勢部材が設けられている。かかる付勢部材により、複数の第1把持体330_1および第2把持体330_2は、把持部331がウェハWから離れる方向に回転するように付勢されている。 A biasing member (not shown) is provided on the rotation shaft 332 of the plurality of first grip bodies 330_1 and the second grip bodies 330_2. By the biasing member, the plurality of first grip bodies 330_1 and the second grip bodies 330_2 are biased so that the grip portion 331 rotates in a direction away from the wafer W.
 第2ベース部320の下部には、図7に示すように、複数(ここでは、3つ)の第1凹部325_1と、複数(ここでは、3つ)の第2凹部325_2とが形成される。 As shown in FIG. 7, a plurality of (here, three) first recesses 325 </ b> _ <b> 1 and a plurality of (here, three) second recesses 325 </ b> _ <b> 2 are formed in the lower portion of the second base portion 320. .
 たとえば図7に示すように、複数の第2凹部325_2は、複数の第2把持体330_2に対応する位置に配置され、複数の第1凹部325_1は、複数の第1把持体330_1に対応する位置から所定角度(たとえば、10°)ずれた位置に配置されている。 For example, as illustrated in FIG. 7, the plurality of second recesses 325_2 are arranged at positions corresponding to the plurality of second grip bodies 330_2, and the plurality of first recesses 325_1 are positions corresponding to the plurality of first grip bodies 330_1. Is disposed at a position deviated by a predetermined angle (for example, 10 °).
 この場合、図8に示すように、複数の第1把持体330_1は、第2ベース部320の下面によって押下部333が押し下げられた状態となっている。押下部333が押し下げられることで、図示しない付勢部材によって把持部331がウェハWから離れる方向へ回転しようとする動きが規制される。これにより、複数の第1把持体330_1は、把持部331によりウェハWの周縁部を把持した状態となる。 In this case, as shown in FIG. 8, the plurality of first holding bodies 330_1 are in a state in which the pressing portion 333 is pressed down by the lower surface of the second base portion 320. When the pressing portion 333 is pressed down, the movement of the gripping portion 331 to rotate away from the wafer W is restricted by a biasing member (not shown). As a result, the plurality of first gripping bodies 330_1 are in a state where the peripheral portion of the wafer W is gripped by the gripping portion 331.
 これに対し、複数の第2把持体330_2は、図9に示すように、押下部333に対応する位置に第2凹部325_2が配置される。このため、第2把持体330_2の押下部333は、第1把持体330_1と異なり、第2ベース部320の下面によって押し下げられない。よって、第2把持体330_2は、図示しない付勢部材によって把持部331がウェハWから離れる方向へ回転した状態、すなわち、ウェハWを把持していない状態となる。 On the other hand, as shown in FIG. 9, the plurality of second gripping bodies 330_2 are provided with the second recesses 325_2 at positions corresponding to the pressing portions 333. For this reason, unlike the 1st holding body 330_1, the pressing part 333 of the 2nd holding body 330_2 is not pushed down by the lower surface of the 2nd base part 320. FIG. Therefore, the second gripping body 330_2 is in a state where the gripping portion 331 is rotated in a direction away from the wafer W by a biasing member (not shown), that is, a state where the wafer W is not gripped.
 第2の実施形態に係る基板保持機構30Aは、第1把持体330_1によってウェハWを把持した状態から第2把持体330_2によってウェハWを把持した状態に切り替えることができる。 The substrate holding mechanism 30A according to the second embodiment can switch from the state in which the wafer W is held by the first holding body 330_1 to the state in which the wafer W is held by the second holding body 330_2.
 かかる持ち替えを行う場合には、まず、ウェハWの回転を停止させ、その後、押上機構323を用いて第2ベース部320を持ち上げる。第2ベース部320が上昇することで、第1把持体330_1によるウェハWの把持が解除され、ピン324によってウェハWが支持された状態となる。 When performing such transfer, the rotation of the wafer W is first stopped, and then the second base unit 320 is lifted using the push-up mechanism 323. As the second base portion 320 moves up, the gripping of the wafer W by the first gripping body 330_1 is released, and the wafer W is supported by the pins 324.
 つづいて、第2ベース部320を持ち上げた状態で、駆動部33を用いて第1ベース部310を所定角度(ここでは、10°)回転させる。これにより、図10に示すように、複数の第1凹部325_1が、複数の第1把持体330_1に対応する位置に配置され、複数の第2凹部325_2は、複数の第2把持体330_2に対応する位置から所定角度(ここでは、10°)ずれた位置に配置される。 Subsequently, in a state where the second base portion 320 is lifted, the first base portion 310 is rotated by a predetermined angle (here, 10 °) using the driving portion 33. Accordingly, as shown in FIG. 10, the plurality of first recesses 325_1 are arranged at positions corresponding to the plurality of first grip bodies 330_1, and the plurality of second recesses 325_2 correspond to the plurality of second grip bodies 330_2. It is arranged at a position that is deviated by a predetermined angle (in this case, 10 °) from the position to be moved.
 その後、押上機構323を用いて第2ベース部320を下降させる。これにより、図11に示すように、複数の第2把持体330_2の押下部333が、第2ベース部320の下面によって押し下げられて、複数の第2把持体330_2が回転軸332を中心に回動し、複数の第2把持体330_2の把持部331がウェハWの周縁部を把持した状態となる。 Thereafter, the second base portion 320 is lowered using the push-up mechanism 323. Accordingly, as illustrated in FIG. 11, the pressing portions 333 of the plurality of second gripping bodies 330_2 are pushed down by the lower surface of the second base portion 320, and the plurality of second gripping bodies 330_2 rotate around the rotation shaft 332. The gripper 331 of the plurality of second grippers 330_2 grips the peripheral edge of the wafer W.
 一方、複数の第1把持体330_1は、図12に示すように、押下部333に対応する位置に第1凹部325_1が配置されているため、押下部333が第2ベース部320によって押し下げられた状態とならない。したがって、複数の第1把持体330_1は、ウェハWを把持していない状態となる。 On the other hand, as shown in FIG. 12, the plurality of first gripping bodies 330 </ b> _ <b> 1 have the first recesses 325 </ b> _ <b> 1 disposed at positions corresponding to the pressing portions 333, so It does not become a state. Therefore, the plurality of first gripping bodies 330_1 are not gripping the wafer W.
 これにより、第1把持体330_1によってウェハWを把持した状態から第2把持体330_2によってウェハWを把持した状態に切り替わる。 Thus, the state in which the wafer W is held by the first holding body 330_1 is switched to the state in which the wafer W is held by the second holding body 330_2.
 なお、図7に示すように、第1ベース部310に形成される貫通孔312は、第1ベース部310の回転が第2ベース部320の支柱321によって阻害されないように、第1ベース部310の周方向に沿って延在した形状を有している。 As shown in FIG. 7, the through hole 312 formed in the first base portion 310 has the first base portion 310 so that the rotation of the first base portion 310 is not hindered by the support column 321 of the second base portion 320. It has the shape extended along the circumferential direction.
 また、図6および図7に示すように、第1ベース部310の上面には、複数(ここでは、6つ)の係止部315が設けられ、第2ベース部320の周縁部には、複数(ここでは、6つ)の切欠部327が形成されている。係止部315は、図7に示すように、複数の第2凹部325_2が複数の第2把持体330_2に対応する位置に配置される場合には、切欠部327の回転方向における一方側の端部に当接し、図10に示すように、複数の第1凹部325_1が複数の第1把持体330_1に対応する位置に配置される場合には、切欠部327の回転方向における他方側の端部に当接するように構成されている。 Further, as shown in FIGS. 6 and 7, a plurality of (here, six) locking portions 315 are provided on the upper surface of the first base portion 310, and the peripheral portion of the second base portion 320 is A plurality of (here, six) notches 327 are formed. As shown in FIG. 7, when the plurality of second recesses 325_2 are arranged at positions corresponding to the plurality of second gripping bodies 330_2, the locking portion 315 is on one end in the rotation direction of the notch 327. When the plurality of first recesses 325_1 are arranged at positions corresponding to the plurality of first gripping bodies 330_1 as shown in FIG. 10, the other end portion in the rotation direction of the notch portion 327 It is comprised so that it may contact | abut.
 このように、第2の実施形態に係る基板保持機構30Aは、複数の第1把持体330_1によりウェハWを把持した状態と、第1把持体330_1と独立して動作可能な複数の第2把持体330_2によりウェハWを把持した状態とを切り替えることができる。 As described above, the substrate holding mechanism 30A according to the second embodiment includes a state in which the wafer W is gripped by the plurality of first gripping bodies 330_1 and a plurality of second grips that can operate independently of the first gripping body 330_1. The state in which the wafer W is held by the body 330_2 can be switched.
 第2の実施形態において、制御部15は、溶解処理液供給処理(図4のステップS107)中に、上述した第1把持体330_1と第2把持体330_2との切替処理を行う。たとえば、制御部15は、ウェハWに対して溶解処理液としてのIPAを所定時間供給した後、IPAの供給およびウェハWの回転を停止し、上記の切替処理を行って第1把持体330_1から第2把持体330_2への持ち替えを行った後、IPAの供給およびウェハWの回転を再開する。これにより、仮に、第1把持体330_1に処理膜やパーティクルPが付着していたとしても、第2把持体330_2への持ち替えを行うことにより、ウェハWの汚損や発塵等を防止することができる。 In the second embodiment, the control unit 15 performs the switching process between the first gripping body 330_1 and the second gripping body 330_2 described above during the dissolution processing liquid supply process (step S107 in FIG. 4). For example, after supplying IPA as a dissolution processing liquid to the wafer W for a predetermined time, the control unit 15 stops the supply of IPA and the rotation of the wafer W, and performs the switching process described above to start from the first gripper 330_1. After switching to the second gripping body 330_2, the supply of IPA and the rotation of the wafer W are restarted. Thereby, even if the processing film and the particles P are attached to the first gripping body 330_1, the wafer W can be prevented from being soiled or dusted by changing to the second gripping body 330_2. it can.
 なお、図6に示すように、第2の実施形態に係る基板洗浄装置14Aは、回収カップ50Aを備える。回収カップ50Aは、外側カップ53と、外側カップ53よりも内側に配置される内側カップ54とを備える。内側カップ54は、ウェハWの下面から飛散する液体を受ける。また、内側カップ54は、外側カップ53よりも低く形成されており、外側カップ53と内側カップ54との間には、ウェハWの上面から飛散する液体を受けて排液口51へと導く排液路が形成される。このように、回収カップ50Aは、ウェハWの上面から飛散する液体と、ウェハWの下面から飛散する液体とを分離することが可能である。 In addition, as shown in FIG. 6, the substrate cleaning apparatus 14A according to the second embodiment includes a recovery cup 50A. The recovery cup 50 </ b> A includes an outer cup 53 and an inner cup 54 disposed on the inner side of the outer cup 53. The inner cup 54 receives liquid scattered from the lower surface of the wafer W. Further, the inner cup 54 is formed lower than the outer cup 53, and between the outer cup 53 and the inner cup 54, the liquid scattered from the upper surface of the wafer W is received and led to the liquid discharge port 51. A liquid path is formed. Thus, the recovery cup 50 </ b> A can separate the liquid splashed from the upper surface of the wafer W and the liquid splashed from the lower surface of the wafer W.
 上述してきた各実施形態では、1つの基板洗浄装置14,14Aが、成膜処理液供給処理、剥離処理液供給処理、溶解処理液供給処理の全てを行うこととしたが、複数の基板洗浄装置14で分担して行ってもよい。 In each of the above-described embodiments, one substrate cleaning device 14 or 14A performs all of the film forming process liquid supply process, the peeling process liquid supply process, and the dissolution process liquid supply process. 14 may be shared.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Thus, the broader aspects of the present invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications can be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
W ウェハ
1 基板洗浄システム
14 基板洗浄装置
45a 薬液供給源
45b 成膜処理液供給源
45c 剥離処理液供給源
45d 溶解処理液供給源
310 第1ベース部
320 第2ベース部
323 押上機構
325_1 第1凹部
325_2 第2凹部
330_1 第1把持体
330_2 第2把持体
W Wafer 1 Substrate cleaning system 14 Substrate cleaning device 45a Chemical solution supply source 45b Film formation processing solution supply source 45c Stripping processing solution supply source 45d Dissolution processing solution supply source 310 First base portion 320 Second base portion 323 Push-up mechanism 325_1 First recess 325_2 2nd recessed part 330_1 1st holding body 330_2 2nd holding body

Claims (9)

  1.  揮発成分を含み基板上に膜を形成するための成膜処理液を前記基板へ供給する成膜処理液供給工程と、
     前記揮発成分が揮発することによって前記成膜処理液が前記基板上で固化または硬化してなる処理膜に対して該処理膜を前記基板から剥離させる剥離処理液としての純水を供給する剥離処理液供給工程と、
     前記剥離処理液供給工程後、前記処理膜に対して該処理膜を溶解させる溶解処理液を供給する溶解処理液供給工程と
     を含み、
     前記剥離処理液供給工程は、
     前記処理膜に対し、純水よりも表面張力が小さい液体と純水とを混合した混合液を供給した後で、前記剥離処理液としての純水を供給する、基板洗浄方法。
    A film forming process liquid supply step for supplying a film forming process liquid for forming a film on the substrate containing a volatile component to the substrate;
    A stripping process for supplying pure water as a stripping treatment liquid for stripping the treatment film from the substrate to a treatment film obtained by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of the volatile component. A liquid supply process;
    After the peeling treatment liquid supply step, a dissolution treatment liquid supply step for supplying a dissolution treatment liquid for dissolving the treatment film with respect to the treatment film, and
    The peeling treatment liquid supply step includes
    A substrate cleaning method, wherein a pure liquid as the stripping treatment liquid is supplied to the treatment film after a mixed liquid obtained by mixing a liquid having a surface tension smaller than that of pure water and pure water is supplied.
  2.  前記剥離処理液供給工程は、
     前記処理膜に対して前記液体と純水とをそれぞれ供給して前記処理膜上で前記液体と純水とを混合することにより、前記処理膜に対して前記混合液を供給する、請求項1に記載の基板洗浄方法。
    The peeling treatment liquid supply step includes
    The liquid and pure water are respectively supplied to the treatment film, and the liquid and pure water are mixed on the treatment film, thereby supplying the mixed liquid to the treatment film. A method for cleaning a substrate as described in 1. above.
  3.  前記剥離処理液供給工程は、
     前記処理膜に対して純水を供給して該処理膜上に純水を液盛りした後、前記処理膜に対して前記混合液を供給する、請求項2に記載の基板洗浄方法。
    The peeling treatment liquid supply step includes
    The substrate cleaning method according to claim 2, wherein pure water is supplied to the treatment film to deposit pure water on the treatment film, and then the mixed solution is supplied to the treatment film.
  4.  前記液体は、IPAである、請求項1に記載の基板洗浄方法。 The substrate cleaning method according to claim 1, wherein the liquid is IPA.
  5.  前記IPAは、加熱されたIPAである、請求項4に記載の基板洗浄方法。 The substrate cleaning method according to claim 4, wherein the IPA is heated IPA.
  6.  前記混合液は、IPAの濃度が25%未満である、請求項4に記載の基板洗浄方法。 The substrate cleaning method according to claim 4, wherein the liquid mixture has an IPA concentration of less than 25%.
  7.  前記溶解処理液供給工程は、
     前記基板の周縁部を把持する複数の第1把持体と、前記第1把持体と独立して動作可能な前記基板の周縁部を把持する複数の第2把持体とを備える保持部を用い、前記複数の第1把持体により前記基板の周縁部を把持した状態と、前記複数の第2把持体により前記基板の周縁部を把持した状態とを切り替える、請求項1に記載の基板洗浄方法。
    The dissolution treatment liquid supply step includes
    Using a holding unit comprising a plurality of first gripping bodies that grip the peripheral edge portion of the substrate and a plurality of second gripping bodies that grip the peripheral edge portion of the substrate that can operate independently of the first gripping body, The substrate cleaning method according to claim 1, wherein the state is switched between a state in which the peripheral portion of the substrate is gripped by the plurality of first grippers and a state in which the peripheral portion of the substrate is gripped by the plurality of second grippers.
  8.  揮発成分を含み基板上に膜を形成するための成膜処理液を前記基板へ供給する成膜処理液供給部と、
     前記揮発成分が揮発することによって前記成膜処理液が前記基板上で固化または硬化してなる処理膜に対して該処理膜を前記基板から剥離させる剥離処理液としての純水を供給する剥離処理液供給部と、
     前記処理膜に対して該処理膜を溶解させる溶解処理液を供給する溶解処理液供給部と
     を備え、
     前記剥離処理液供給部は、
     前記処理膜に対し、純水よりも表面張力が小さい液体と純水とを混合した混合液を供給した後で、前記剥離処理液としての純水を供給する、基板洗浄システム。
    A film-forming treatment liquid supply unit that supplies a film-forming treatment liquid containing a volatile component to form a film on the substrate;
    A stripping process for supplying pure water as a stripping treatment liquid for stripping the treatment film from the substrate to a treatment film obtained by solidifying or curing the film deposition treatment liquid on the substrate by volatilization of the volatile component. A liquid supply unit;
    A dissolution treatment liquid supply unit for supplying a dissolution treatment liquid for dissolving the treatment film with respect to the treatment film,
    The peeling treatment liquid supply unit is
    A substrate cleaning system for supplying pure water as the stripping treatment liquid after supplying a mixed liquid obtained by mixing a liquid having a surface tension smaller than that of pure water and pure water to the treatment film.
  9.  コンピュータ上で動作し、基板洗浄システムを制御するプログラムが記憶されたコンピュータ読取可能な記憶媒体であって、
     前記プログラムは、実行時に、請求項1に記載の基板洗浄方法が行われるように、コンピュータに前記基板洗浄システムを制御させる、記憶媒体。
    A computer-readable storage medium that operates on a computer and stores a program for controlling the substrate cleaning system,
    A storage medium that, when executed, causes a computer to control the substrate cleaning system so that the substrate cleaning method according to claim 1 is performed.
PCT/JP2017/046021 2017-01-04 2017-12-21 Substrate cleaning method, substrate cleaning system, and storage medium WO2018128088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018560357A JP6762378B2 (en) 2017-01-04 2017-12-21 Substrate cleaning method, substrate cleaning system and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017000138 2017-01-04
JP2017-000138 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018128088A1 true WO2018128088A1 (en) 2018-07-12

Family

ID=62791051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046021 WO2018128088A1 (en) 2017-01-04 2017-12-21 Substrate cleaning method, substrate cleaning system, and storage medium

Country Status (3)

Country Link
JP (1) JP6762378B2 (en)
TW (1) TWI762550B (en)
WO (1) WO2018128088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613549A (en) * 2019-02-26 2020-09-01 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159560A1 (en) * 2018-02-15 2019-08-22 Jfeスチール株式会社 Continuous coating device
JP7401243B2 (en) * 2019-09-30 2023-12-19 信越エンジニアリング株式会社 Substrate processing equipment and substrate processing method
KR102638509B1 (en) * 2020-12-29 2024-02-19 세메스 주식회사 Method for treating a substrate
KR102622986B1 (en) * 2020-12-31 2024-01-10 세메스 주식회사 Apparatus for treating substrate and method for treating substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107023A (en) * 1995-10-13 1997-04-22 Toshiba Microelectron Corp Rotary holder of substance to be treated
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
JP2016036012A (en) * 2014-07-31 2016-03-17 東京エレクトロン株式会社 Substrate processing system, substrate cleaning method, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107023A (en) * 1995-10-13 1997-04-22 Toshiba Microelectron Corp Rotary holder of substance to be treated
JP2016034006A (en) * 2014-07-31 2016-03-10 東京エレクトロン株式会社 Substrate cleaning method and storage medium
JP2016036012A (en) * 2014-07-31 2016-03-17 東京エレクトロン株式会社 Substrate processing system, substrate cleaning method, and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613549A (en) * 2019-02-26 2020-09-01 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
CN111613549B (en) * 2019-02-26 2024-02-06 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TWI762550B (en) 2022-05-01
JP6762378B2 (en) 2020-09-30
TW201840372A (en) 2018-11-16
JPWO2018128088A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6308910B2 (en) Substrate cleaning method, substrate cleaning system, and storage medium
WO2018128088A1 (en) Substrate cleaning method, substrate cleaning system, and storage medium
JP5977727B2 (en) Substrate cleaning method, substrate cleaning system, and storage medium
JP5977720B2 (en) Substrate processing method, substrate processing system, and storage medium
JP6142059B2 (en) Substrate processing method, substrate processing system, and storage medium
JP6425517B2 (en) Substrate processing method, substrate processing apparatus and storage medium
JP7066024B2 (en) Board processing method, board processing system and storage medium
JP5543633B2 (en) Substrate cleaning system, substrate cleaning method, and storage medium
JP5937632B2 (en) Substrate processing method, pre-processing apparatus, post-processing apparatus, substrate processing system, and storage medium
JP6140576B2 (en) Substrate processing method, substrate processing system, and storage medium
JP5677603B2 (en) Substrate cleaning system, substrate cleaning method, and storage medium
JP6865632B2 (en) Substrate cleaning equipment and substrate cleaning method
CN108028195B (en) Substrate processing method, substrate processing apparatus, and storage medium
JP7105950B2 (en) SUBSTRATE CLEANING METHOD, SUBSTRATE CLEANING SYSTEM AND STORAGE MEDIUM
WO2020004047A1 (en) Substrate cleaning method, substrate cleaning system, and storage medium
TW202240681A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018560357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890360

Country of ref document: EP

Kind code of ref document: A1