WO2018127023A1 - 去耦天线及其去耦方法 - Google Patents

去耦天线及其去耦方法 Download PDF

Info

Publication number
WO2018127023A1
WO2018127023A1 PCT/CN2017/120320 CN2017120320W WO2018127023A1 WO 2018127023 A1 WO2018127023 A1 WO 2018127023A1 CN 2017120320 W CN2017120320 W CN 2017120320W WO 2018127023 A1 WO2018127023 A1 WO 2018127023A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoupling
network
antenna
resonant
adjustable
Prior art date
Application number
PCT/CN2017/120320
Other languages
English (en)
French (fr)
Inventor
康玉龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17890173.2A priority Critical patent/EP3567676A4/en
Priority to KR1020197019252A priority patent/KR102197172B1/ko
Priority to JP2019536909A priority patent/JP6876807B2/ja
Publication of WO2018127023A1 publication Critical patent/WO2018127023A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present disclosure relates to the field of antenna decoupling, for example, to a decoupling antenna and a decoupling method thereof.
  • MIMO Multiple-Input Multiple-Output
  • multiple antenna arrays are independent of each other, and decoupling between antenna arrays is achieved by increasing the spatial distance between the antenna arrays; however, as the number of antenna arrays increases, the antenna size It is getting bigger and bigger, and it is difficult to meet the needs of market applications.
  • the present disclosure provides a decoupling antenna and a decoupling method thereof, which can eliminate mutual coupling signals generated between antenna arrays.
  • the present disclosure provides a decoupling antenna including: an antenna port, a decoupling network, a feeding network, a phase shifting network, and at least two sets of antenna arrays;
  • the phase shifting network is respectively connected to the at least two groups of antenna arrays
  • An input end of the feed network is connected to the decoupling network, and an output end of the feed network is connected to the phase shift network;
  • the decoupling network is disposed between the antenna port and the feed network, the decoupling network being configured to cancel a mutual coupling signal generated between the at least two sets of antenna arrays.
  • the spacing between the antenna arrays is less than or equal to a preset value.
  • the decoupling network includes an N-level adjustable decoupling unit, where N is a positive integer;
  • An input end of the first stage adjustable decoupling unit is connected to the antenna port via a first phase delay network, and an output end of the Nth adjustable decoupling unit is connected to the input end of the feed network via a second phase delay network Connected.
  • the i-th adjustable decoupling unit and the i+1th adjustable decoupling unit are connected by a first coupled tuning network, where 1 ⁇ i ⁇ N-1, and N is greater than or equal to 3.
  • the adjustable decoupling unit comprises at least two resonant networks, wherein the resonant networks are connected by a second coupled tuning network.
  • the i-th adjustable decoupling unit and the i+1th adjustable decoupling unit are connected by a first coupled tuning network, including:
  • the resonant network in the i-th stage adjustable decoupling unit is coupled to the resonant network in the i+1th adjustable decoupling unit via a first coupled tuning network.
  • the first coupled tuning network and the second coupled tuning network include coupled tuning screws for adjusting a phase in the resonant network.
  • the resonant network includes: a resonant cavity, a columnar resonator located in the resonant cavity, and a frequency tuning screw coaxial with the cylindrical resonator, the frequency tuning screw for adjusting the resonant network The frequency in .
  • the number of ports of the antenna port and the number of arrays of the antenna array are both M. Accordingly, the adjustable decoupling unit has M inputs and M outputs, and M is greater than or equal to 2. Integer.
  • the adjustable decoupling unit comprises at least two resonant networks, wherein the resonant networks are connected by a second coupled tuning network.
  • the present disclosure further provides a decoupling method for a decoupling antenna, the decoupling antenna being the decoupling antenna according to any one of the above, the method comprising:
  • the mutual coupling signal generated between the at least two sets of antenna arrays is eliminated by the decoupling signal.
  • the decoupling antenna includes: an antenna port, a decoupling network, a feeding network, a phase shifting network, and at least two sets of antenna arrays; wherein the phase shifting network is respectively connected to the at least two groups of antenna arrays An input end of the feed network is connected to the decoupling network, an output end of the feed network is connected to the phase shift network; the decoupling network is disposed at the antenna port and the feed network The decoupling network is used to cancel the mutual coupling signals generated between the at least two sets of antenna arrays.
  • a decoupling network is disposed between the antenna port and the feeding network, thereby realizing the elimination of the mutual coupling signal generated between the antenna arrays, thereby designing a small space antenna array structure.
  • FIG. 1 is a topological diagram of an antenna array network in the related art.
  • FIG. 2 is a topological diagram of an antenna array network of an embodiment.
  • FIG. 3 is a schematic diagram of parameter transfer of a decoupling antenna according to an embodiment.
  • CNDN decoupling network
  • Figure 5 is a physical model diagram of a decoupling network (CNDN) of an embodiment.
  • CNDN decoupling network
  • FIG. 7A is a schematic diagram showing the composition of a decoupling antenna according to an embodiment.
  • FIG. 7B is a schematic diagram showing the composition of at least two sets of antenna arrays 75 in FIG. 7A.
  • FIG. 8 is a flow chart of a decoupling method of a decoupling antenna according to an embodiment.
  • FIG. 9 is a schematic diagram showing the composition of the resonant network 720 of FIG.
  • FIG. 7A is a schematic diagram of a configuration of a decoupling antenna according to an embodiment of the present invention.
  • the decoupling antenna of the embodiment of the present application includes: an antenna port 71, a decoupling network 72, a feed network 73, a phase shifting network 74, and at least two sets of antenna arrays 75; among them,
  • the phase shifting network 74 is connected to the at least two groups of antenna arrays 75;
  • An input end of the feed network 73 is connected to the decoupling network 72, and an output end of the feed network 73 is connected to the phase shifting network 74;
  • the decoupling network 72 is disposed between the antenna port 71 and the feed network 73, and the decoupling network 72 is configured to cancel the mutual coupling signals generated between the at least two sets of antenna arrays 75.
  • the at least two sets of antenna arrays 75 may include a plurality of antenna elements 7511, and the spacing between the antenna arrays 751 is less than or equal to a preset value.
  • the spacing between the antenna arrays 751 is less than or equal to a preset value, the requirements for miniaturizing the antenna structure can be satisfied.
  • the decoupling network 72 includes an N-level adjustable decoupling unit, and N is a positive integer.
  • An input end of the first stage adjustable decoupling unit 721 is connected to the antenna port 71 via a first phase delay network 10, and an output end of the Nth adjustable decoupling unit 72N is coupled to the feed via the second phase delay network 20
  • the inputs of the electrical network 73 are connected.
  • the value of N can be determined based on the actual decoupling parameters.
  • the i-th adjustable decoupling unit 72i and the i+1th adjustable decoupling unit 72(i+1) are connected by the first coupled tuning network 30, 1 ⁇ i ⁇ N-1, N is greater than or equal to 3.
  • the adjustable decoupling unit includes at least two resonant networks 720, wherein the resonant networks 720 are connected by a second coupled tuning network 40.
  • the i-th adjustable decoupling unit 72i and the i+1th adjustable decoupling unit 72(i+1) are connected by the first coupled tuning network 30, including :
  • the resonant network 720 in the i-th stage adjustable decoupling unit 72i is coupled to the resonant network 720 in the i+1th stage adjustable decoupling unit 72(i+1) via a coupled tuning network.
  • the first coupled tuning network 30 and the second coupled tuning network 40 are coupled tuning screws for adjusting the phase in the resonant network 720.
  • the resonant network 720 includes: a resonant cavity 7201, a columnar resonator 7202 located in the resonant cavity 7201, and a frequency tuning coaxial with the cylindrical resonator 7202 A screw 7203 for adjusting the frequency in the resonant network 720.
  • the number of ports of the antenna port 71 and the number of arrays of at least two groups of antenna arrays 75 are both M. Accordingly, the adjustable decoupling unit has M inputs and M At the output, M ⁇ 2.
  • the decoupling antenna of the embodiment of the present application implements an antenna decoupling function through a decoupling network.
  • the decoupling antenna can complete the design of each network in the decoupling network according to the pre-designed decoupling parameters, and then add a corresponding decoupling network between the antenna port and the feeding network, by adjusting the harmonics in the decoupling network.
  • the screws achieve decoupling of the antenna system.
  • MIMO antenna systems reduce the mutual coupling between antenna arrays by increasing the spatial spacing between antenna arrays. At this point, the network feature matrix of the MIMO antenna system appears to be close to zero for all matrix elements. As the number of antenna arrays increases, the distance between the antenna arrays decreases, and the mutual coupling between the antenna arrays increases.
  • the network matrix of the MIMO antenna system becomes a non-zero matrix, which is characterized by a main diagonal element. Close to zero, not the main diagonal element is not zero.
  • an adjustable decoupling network needs to be introduced at the back end of the MIMO antenna system, such as the decoupling network 72 shown in FIG. 1 and FIG. (decoupling network, CNDN), the network matrix S D of the decoupling network 72 is an N ⁇ N matrix in which the matrix elements are adjustable.
  • p1, p2 represent the inputs of the decoupling network 72
  • p3, p4 represent the outputs of the decoupling network 72.
  • a1 and a2 represent incident signals of a two-port network
  • b1 and b2 represent reflected signals of a two-port network.
  • the embodiments of the present application define a plurality of network matrices in the decoupling antenna architecture as follows:
  • the antenna architecture includes two or more antenna arrays.
  • S D is the network parameter of the decoupling network 72.
  • S A is the network parameter of the antenna architecture.
  • ⁇ in is the reflection coefficient of the antenna architecture S after the decoupling network 72 is added.
  • ⁇ L is the reflection coefficient of the antenna structure S A .
  • the network parameter S D of the decoupling network 72 can be represented by a scattering parameter matrix, as shown in equation (1):
  • S 11 represents a reflection coefficient of the first port in the decoupling network 72
  • S 22 represents a reflection coefficient of the second port in the decoupling network 72
  • S 12 represents a transmission coefficient of the first port to the second port
  • S 21 represents the transmission coefficient of the second port to the first port.
  • the matrix S can be characterized by the matrix S D and the matrix S A , and the expression of the matrix S is the formula (2):
  • ⁇ L is the reflection coefficient of the antenna architecture S A .
  • the reflection coefficient ⁇ in of the antenna architecture S after the decoupling network 72 is added is equal to or close to the zero matrix, and the antenna architecture S after the decoupling network 72 is added.
  • the reflection coefficient ⁇ in represents the degree of coupling of the signals between the antenna arrays.
  • the mutual coupling signal generated between the antenna arrays can be eliminated by designing a decoupling network S D .
  • the decoupling network S D can be dynamically adjusted according to the antenna architecture, and how to implement the decoupling network S D parameter adjustment can be referred to FIG. 4 .
  • 4 is a topological diagram of a four-port decoupling network 72 in accordance with an embodiment of the present application.
  • the decoupling network 72 can be represented by a four-port coupling matrix M:
  • M p zero matrix of a direct coupling port 4 ⁇ 4; M n is a 6 ⁇ 6 matrix resonant coupling; M pn input / output (I / O) port coupled to a matrix.
  • resonant coupling network parameter matrix M n S m can be expressed as:
  • I is a 4 ⁇ 4 phase discrimination matrix and j is an imaginary part symbol
  • s is the frequency variable of the decoupling network 72
  • s jf 0 / BW ⁇ (f / f 0 - f 0 / f)
  • f represents the frequency
  • f 0 is the center frequency of the decoupling network 72
  • BW is the decoupling network 72 Bandwidth.
  • the network parameter S D of the adjustable decoupling network 72 is expressed as follows:
  • ⁇ 1 and ⁇ 2 represent phase angles of the first phase delay network 10
  • ⁇ 3 and ⁇ 4 represent phase angles of the second phase delay network 20.
  • a resonant coupling matrix M n can be expressed as:
  • M 11 , M 22 , M 33 , M 44 , M 55 , M 66 represent the self-coupling matrix parameters of each resonant cavity;
  • the resonant coupling from the coupling matrix M n matrix parameters and mutual coupling matrix parameters n adjustable parameters achieved by an adjustable factor ⁇ .
  • To S D decoupling network parameters adjustable by changing the matrix parameters M n matrix.
  • each self-coupling matrix parameter M 11 , M 22 , M 33 , M 44 , M 55 , M 66 in the matrix is changed by a frequency tuning screw 7203 to change its numerical value.
  • FIG. 6 is an effect diagram of a decoupling network according to an embodiment of the present application.
  • the abscissa represents frequency and the ordinate represents coupling.
  • the antenna port is assumed to be two ports, and S21 represents two ports.
  • the degree of coupling between the two can be seen from the figure. Before the decoupling network 72 is added (corresponding to the curve before the S21 cancellation), the degree of coupling is higher. After the decoupling network 72 is added (corresponding to the curve after the S21 cancellation), the degree of coupling is obvious.
  • the reduction, thereby eliminating the mutual coupling signal in the antenna port can design a small space antenna array structure.
  • FIG. 8 is a flowchart of a method for decoupling a decoupling antenna according to an embodiment of the present disclosure.
  • the decoupling antenna is any one of the above decoupling antennas. As shown in FIG. 8, the method includes:
  • Step 810 Control the decoupling network to generate a decoupling signal.
  • Step 820 Eliminate the mutual coupling signal generated between the at least two sets of antenna arrays by using the decoupling signal.
  • An embodiment further provides a decoupling method for a decoupling antenna, the decoupling antenna being any one of the above decoupling antennas, the method comprising: step 1) and step 2).
  • Step 1) Set a decoupling network between the antenna port and the feed network.
  • the decoupling network is disposed between the antenna port and the feed network, including:
  • An N-level adjustable decoupling unit is disposed between the antenna port and the feed network, where N is a positive integer;
  • An input end of the first stage adjustable decoupling unit is connected to the antenna port via a first phase delay network, and an output end of the Nth adjustable decoupling unit is connected to the input end of the feed network via a second phase delay network Connected.
  • Step 2) Eliminating the mutual coupling signals generated between the at least two sets of antenna arrays through the decoupling network.
  • the adjustable decoupling unit includes at least two resonant networks, wherein the resonant networks are connected by a first coupled tuning network.
  • the resonant network in the i-th adjustable decoupling unit is coupled to the resonant network in the i+1th adjustable decoupling unit via a second coupled tuning network.
  • the first coupled tuning network and the second coupled tuning network are coupled tuning screws;
  • the resonant network includes: a resonant cavity, a columnar resonator located in the resonant cavity, and the columnar shape A frequency tuning screw with a coaxial body of the resonator.
  • the phase in the resonant network is adjusted by the coupling tuning screw, and the frequency in the resonant network is adjusted by the frequency tuning screw to eliminate the mutual coupling signal generated between the at least two sets of antenna arrays.
  • the present disclosure provides a decoupling antenna and a decoupling method thereof.
  • a decoupling network between an antenna port and a feeding network, the mutual coupling signal generated between the antenna arrays is eliminated, and an antenna occupying a small space can be designed.
  • Architecture By providing a decoupling network between an antenna port and a feeding network, the mutual coupling signal generated between the antenna arrays is eliminated, and an antenna occupying a small space can be designed. Architecture.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

去耦天线及其去耦方法,所述去耦天线包括:天线端口、去耦网络、馈电网络、移相网络、两组以上天线阵列;其中,所述移相网络与所述两组以上天线阵列分别相连;所述馈电网络的输入端与所述去耦网络相连,所述馈电网络的输出端与所述移相网络相连;所述去耦网络设置在所述天线端口与所述馈电网络之间,所述去耦网络用于将所述两组以上天线阵列之间产生的互耦信号消除。

Description

去耦天线及其去耦方法 技术领域
本公开涉及天线去耦技术领域,例如涉及一种去耦天线及其去耦方法。
背景技术
随着通信系统的飞速发展,为了提升通信系统信号容量及吞吐率,射频前端多输入多输出(Multiple-Input Multiple-Output,MIMO)技术越来越受业界重视,大规模阵列天线系统也成为近几年通信技术研究的热点。由于天线阵列数量的增加,多个天线集成在有限空间内,天线阵列之间的间距远小于半波波长。由此导致天线阵列之间的相关性将大大增加,天线之间的互耦性增强。较强的天线互耦性不仅导致信道间的自干扰严重、通信信道信噪比恶化、信道容量减小和辐射效率降低,同时还影响自身通信系统端口驻波、系统误告警率提升等。为了保持在大规模天线系统小型化的同时降低天线阵列间的干扰,天线阵列间的去耦技术成为待研究的课题。
相关技术中,如图1所示,多个天线阵列之间彼此相互独立,天线阵列之间的去耦通过增加天线阵列之间的空间距离来实现;然而随着天线阵列数量的增加,天线尺寸越来越大,很难满足市场应用需求。
发明内容
本公开提供了一种去耦天线及其去耦方法,可以消除天线阵列之间产生互耦信号。
本公开提供一种去耦天线,包括:天线端口、去耦网络、馈电网络、移相网络和至少两组天线阵列;其中,
所述移相网络与所述至少两组天线阵列分别相连;
所述馈电网络的输入端与所述去耦网络相连,所述馈电网络的输出端与所述移相网络相连;
所述去耦网络设置在所述天线端口与所述馈电网络之间,所述去耦网络设置为将所述至少两组天线阵列之间产生的互耦信号消除。
可选地,所述天线阵列之间的间距小于等于预设值。
可选地,所述去耦网络包括N级可调去耦单元,N为正整数;其中,
第1级可调去耦单元的输入端经第一相位延迟网络与所述天线端口相连,第N级可调去耦单元的输出端经第二相位延迟网络与所述馈电网络的输入端相连。
可选地,第i级可调去耦单元与第i+1级可调去耦单元之间通过第一耦合调谐网络相连,1≤i≤N-1,N大于等于3。
可选地,所述可调去耦单元包括至少两个谐振网络,其中,谐振网络之间通过第二耦合调谐网络相连。
可选地,所述第i级可调去耦单元与第i+1级可调去耦单元之间通过第一耦合调谐网络相连,包括:
第i级可调去耦单元中的谐振网络通过第一耦合调谐网络与第i+1级可调去耦单元中的谐振网络相连。
可选地,所述第一耦合调谐网络和所述第二耦合调谐网络包括耦合调谐螺钉,所述耦合调谐螺钉用于调节所述谐振网络中的相位。
可选地,所述谐振网络包括:谐振腔、位于所述谐振腔内的柱状谐振体、以及与所述柱状谐振体同轴的频率调谐螺钉,所述频率调谐螺钉用于调节所述谐振网络中的频率。
可选地,所述天线端口的端口数和所述天线阵列的阵列数均为M,相应地,所述可调去耦单元具有M个输入端和M个输出端,M为大于等于2的整数。
可选地,所述可调去耦单元包括至少两个谐振网络,其中,谐振网络之间通过第二耦合调谐网络相连。
本公开还提供一种去耦天线的去耦方法,所述去耦天线为上述任一项所述的去耦天线,所述方法包括:
控制所述去耦网络产生去耦信号;
通过所述去耦信号将所述至少两组天线阵列之间产生的互耦信号消除。
本公开的技术方案中,去耦天线包括:天线端口、去耦网络、馈电网络、移相网络和至少两组天线阵列;其中,所述移相网络与所述至少两组天线阵列分别相连;所述馈电网络的输入端与所述去耦网络相连,所述馈电网络的输出端与所述移相网络相连;所述去耦网络设置在所述天线端口与所述馈电网络之间,所述去耦网络用于将所述至少两组天线阵列之间产生的互耦信号消除。采用本申请的技术方案,在天线端口与馈电网络之间设置去耦网络,实现了消除天线阵列之间产生的互耦信号,进而可以设计出小空间的天线阵列结构。
附图说明
图1为相关技术中的天线阵列网络拓扑图。
图2为一实施例的天线阵列网络拓扑图。
图3为一实施例的去耦天线参数传递示意图。
图4为一实施例的去耦网络(CNDN)矩阵可调因子示意图。
图5为一实施例的去耦网络(CNDN)的实物模型图。
图6为一实施例的去耦网络(CNDN)的效果图。
图7A为一实施例的去耦天线的组成示意图。
图7B为图7A中至少两组天线阵列75的组成示意图。
图8为一实施例的去耦天线的去耦方法的流程图。
图9为图2中谐振网络720的组成示意图。
具体实施方式
所附附图仅供参考说明之用,并非用来限定本申请实施例。
图7A为一实施例的去耦天线的组成示意图,本申请实施例的去耦天线包括:天线端口71、去耦网络72、馈电网络73、移相网络74和至少两组天线阵列75;其中,
所述移相网络74与所述至少两组天线阵列75分别相连;
所述馈电网络73的输入端与所述去耦网络72相连,所述馈电网络73的输出端与所述移相网络74相连;
所述去耦网络72设置在所述天线端口71与所述馈电网络73之间,所述去耦网络72设置为将所述至少两组天线阵列75之间产生的互耦信号消除。
本申请实施例中,可选地,参考图7B,所述至少两组天线阵列75可以包括多个天线振子7511,天线阵列751之间的间距小于等于预设值。
当天线阵列751之间的间距小于等于预设值时,可以满足小型化天线结构的要求。
本申请实施例中,可选地,参考图2,所述去耦网络72包括N级可调去耦 单元,N为正整数。
第1级可调去耦单元721的输入端经第一相位延迟网络10与所述天线端口71相连,第N级可调去耦单元72N的输出端经第二相位延迟网络20与所述馈电网络73的输入端相连。
N的数值可以根据实际去耦参数而确定。
本申请实施例中,可选地,第i级可调去耦单元72i与第i+1级可调去耦单元72(i+1)之间通过第一耦合调谐网络30相连,1≤i≤N-1,N大于等于3。
本申请实施例中,可选地,所述可调去耦单元包括至少两个谐振网络720,其中,谐振网络720之间通过第二耦合调谐网络40相连。
本申请实施例中,可选地,所述第i级可调去耦单元72i与第i+1级可调去耦单元72(i+1)之间通过第一耦合调谐网络30相连,包括:
第i级可调去耦单元72i中的谐振网络720通过耦合调谐网络与第i+1级可调去耦单元72(i+1)中的谐振网络720相连。
本申请实施例中,可选地,所述第一耦合调谐网络30和第二耦合调谐网络40为耦合调谐螺钉,所述耦合调谐螺钉用于调节谐振网络720中的相位。
本申请实施例中,可选地,参考图9,所述谐振网络720包括:谐振腔7201、位于所述谐振腔7201内的柱状谐振体7202、与所述柱状谐振体7202同轴的频率调谐螺钉7203,所述频率调谐螺钉7203用于调节谐振网络720中的频率。
本申请实施例中,可选地,所述天线端口71的端口数和至少两组天线阵列75的阵列数均为M,相应地,所述可调去耦单元具有M个输入端和M个输出端,M≥2。
本申请实施例的去耦天线通过去耦网络实现天线去耦功能。该去耦天线可以按预先设计的去耦参数完成去耦网络中每个网络的设计,然后在天线端口与所述馈电网络之间加入相应的去耦网络,通过调节去耦网络中的谐调螺钉实现天线系统的去耦。
以下结合应用实例对本申请实施例的方案进行描述。
如图1所示,对于MIMO天线系统,假设其有M个天线通道,每个天线通道间相互独立,M为正整数。图1中,COM表示合路/DIV表示分路,ANT+45° 和ANT-45°分别代表一路天线信号。通常情况下,MIMO天线系统通过增大天线阵列之间的空间间距来降低天线阵列之间的互耦,此时,MIMO天线系统的网络特征矩阵表现为所有矩阵元素接近于零。随着天线阵列数增加,天线阵列之间的距离减小,天线阵列之间的互耦增大,此时,MIMO天线系统的网络矩阵变成一个非零矩阵,其特征为主对角线元素接近于零,而非主对角线元素不为零。为了使得MIMO天线系统既能满足小型体积的要求,又能满足信号匹配的要求,需要在MIMO天线系统的后端引入可调的去耦网络,如图1和图2所示的去耦网络72(decoupling network,CNDN),去耦网络72的网络矩阵S D是一个N×N的矩阵,该矩阵中的矩阵元素可调。图2中,p1、p2代表去耦网络72的输入端,p3、p4代表去耦网络72的输出端。
结合图3所示的参数传递示意图,图3中a1、a2代表两端口网络的入射信号,b1、b2代表两端口网络的反射信号。本申请实施例对去耦天线架构中的多个网络矩阵定义如下:
S为加入去耦网络72后的天线架构的网络参数,这里,天线架构包括两组以上天线阵列。
S D为去耦网络72的网络参数。
S A为天线架构的网络参数。
Γ in为加入去耦网络72后的天线架构S的反射系数。
Γ L为天线架构S A的反射系数。
基于以上定义,去耦网络72的网络参数S D可以通过散射参数矩阵表示,如公式(1)所示:
Figure PCTCN2017120320-appb-000001
其中,S 11代表去耦网络72中第一个端口的反射系数、S 22代表去耦网络72中第二个端口的反射系数,S 12代表第一个端口到第二个端口的传输系数,S 21代表第二个端口到第一个端口的传输系数。
在天线端口71与馈电网络73之间加入去耦网络72后,根据微波网络理论,可以用矩阵S D和矩阵S A来表征矩阵S,矩阵S的表达式为公式(2):
S=S DS A                  (2)
加入去耦网络72后的天线架构S的反射系数Γ in的表达式为公式(3):
Γ in=S 11+S 12(1-S 22Γ L) -1S 21Γ L             (3)
其中,Γ L为天线架构S A的反射系数。
本申请实施例中,要设计出合理的去耦网络S D,需使得加入去耦网络72后的天线架构S的反射系数Γ in等于或接近零矩阵,加入去耦网络72后的天线架构S的反射系数Γ in代表了天线阵列之间信号的耦合程度。
由此,当Γ in=0(消除全部耦合的理想条件)时,可得到天线架构S A的反射系数Γ L与去耦网络的网络参数S D的关系为:
Figure PCTCN2017120320-appb-000002
也就是说,在实际去耦天线架构的设计过程中,只要通过设计一个去耦网络S D来实现消除天线阵列之间产生的互耦信号。
本申请实施例中,去耦网络S D能够根据天线架构进行动态调节,如何实现去耦网络S D参数可调,可参照图4。图4为本申请实施例的四端口去耦网络72的拓扑图,去耦网络72可以用一个四端口耦合矩阵M来表示:
Figure PCTCN2017120320-appb-000003
其中,M p为一个4×4端口的直接耦合零矩阵;M n为一个6×6谐振耦合矩阵;M pn为输入/输出(I/O)口耦合矩阵。
本申请实施例中,谐振耦合矩阵M n的网络参数S m可以表示为:
Figure PCTCN2017120320-appb-000004
其中,I为4×4的鉴相矩阵,j为虚部符号;
s为去耦网络72的频率变量,s=jf 0/BW×(f/f 0-f 0/f),f代表频率,f 0为去耦网络72的中心频率,BW为去耦网络72的带宽。
根据微波网络理论,可调去耦网络72的网络参数S D表述如下:
[S D]=[P 12][S m][P 34]              (7)
其中,
Figure PCTCN2017120320-appb-000005
θ1和θ2代表第一相位 延迟网络10相位角,θ3和θ4代表第二相位延迟网络20相位角。
在图4中,谐振耦合矩阵M n可表示为:
Figure PCTCN2017120320-appb-000006
其中,M 11、M 22、M 33、M 44、M 55、M 66表示每一个谐振腔体自耦合矩阵参数;M 12=M 21、M 23=M 32、M 34=M 43、M 45=M 54、M 56=M 65、M 25=M 52、M 16=M 61、表示相邻谐振腔体互耦合矩阵参数;其它耦合矩阵参数在这里均用为0表示。该谐振耦合矩阵M n中自耦合矩阵参数和互耦合矩阵参数通过可调因子β n实现参数可调。通过改变矩阵M n矩阵参数来实现去耦网络S D参数可调。
图5为去耦网络的实物模型图,其中,对于矩阵中每个自耦合矩阵参数M 11、M 22、M 33、M 44、M 55、M 66通过频率调谐螺钉7203来改变其数值变化量;对于矩阵中每个互耦合矩阵参数:
M 12=M 21、M 23=M 32、M 34=M 43、M 45=M 54、M 56=M 65、M 25=M 52、M 16=M 61、通过耦合调谐螺钉7204改变其数值变化量,通过控制调谐螺钉的深度改变谐振耦合矩阵M n模型参数,实现与天线架构的网络参数S A匹配,从而使得加入可调去耦网络S D后的新型多天线架构端口的反射系数Γ in近似为零。
图6为本申请实施例的去耦网络的效果图,如图6所示,横坐标代表频率,纵坐标代表耦合程度,本示例中,假设天线端口为两端口,S21代表了两个端口之间的耦合程度,从图中可见,在加入去耦网络72之前(对应S21相消前的曲线)耦合程度较高,在加入去耦网络72之后(对应S21相消后的曲线)耦合程度明显降低,从而实现了消除天线端口中的互耦信号,进而可以设计出小空间的天线阵列结构。
图8为本申请实施例的去耦天线的去耦方法的流程图,该去耦天线为上述任意一种去耦天线,如图8所示,所述方法包括:
步骤810、控制所述去耦网络产生去耦信号。
步骤820、通过所述去耦信号将所述至少两组天线阵列之间产生的互耦信号消除。
一实施例还提供一种去耦天线的去耦方法,该去耦天线为上述任意一种去耦天线,该方法包括:步骤1)和步骤2)。
步骤1):在天线端口与馈电网络之间设置去耦网络。
本申请实施例中,可选地,所述在天线端口与馈电网络之间设置去耦网络,包括:
在天线端口与馈电网络之间设置N级可调去耦单元,N为正整数;其中,
第1级可调去耦单元的输入端经第一相位延迟网络与所述天线端口相连,第N级可调去耦单元的输出端经第二相位延迟网络与所述馈电网络的输入端相连。
步骤2):通过所述去耦网络将至少两组天线阵列之间产生的互耦信号消除。
本申请实施例中,可选地,所述可调去耦单元包括至少两个谐振网络,其中,谐振网络之间通过第一耦合调谐网络相连。第i级可调去耦单元中的谐振网络通过第二耦合调谐网络与第i+1级可调去耦单元中的谐振网络相连。
本申请实施例中,所述第一耦合调谐网络和所述第二耦合调谐网络为耦合调谐螺钉;所述谐振网络包括:谐振腔、位于所述谐振腔内的柱状谐振体、与所述柱状谐振体同轴的频率调谐螺钉。
所述通过所述去耦网络将上述至少两组天线阵列之间产生的互耦信号消除,包括:
通过所述耦合调谐螺钉调节谐振网络中的相位,通过所述频率调谐螺钉调节谐振网络中的频率,将上述至少两组天线阵列之间产生的互耦信号消除。
工业实用性
本公开提供了去耦天线及其去耦方法,通过在天线端口与馈电网络之间设置去耦网络,实现了消除天线阵列之间产生的互耦信号,进而可以设计出占用空间小的天线架构。

Claims (11)

  1. 一种去耦天线,包括:天线端口、去耦网络、馈电网络、移相网络和至少两组天线阵列;其中,
    所述移相网络与所述至少两组天线阵列分别相连;
    所述馈电网络的输入端与所述去耦网络相连,所述馈电网络的输出端与所述移相网络相连;
    所述去耦网络设置在所述天线端口与所述馈电网络之间,所述去耦网络设置为将所述至少两组天线阵列之间产生的互耦信号消除。
  2. 根据权利要求1所述的去耦天线,其中,所述天线阵列之间的间距小于等于预设值。
  3. 根据权利要求1所述的去耦天线,其中,所述去耦网络包括N级可调去耦单元,N为正整数;其中,
    第1级可调去耦单元的输入端经第一相位延迟网络与所述天线端口相连,第N级可调去耦单元的输出端经第二相位延迟网络与所述馈电网络的输入端相连。
  4. 根据权利要求3所述的去耦天线,其中,第i级可调去耦单元与第i+1级可调去耦单元之间通过第一耦合调谐网络相连,1≤i≤N-1,N大于等于3。
  5. 根据权利要求4所述的去耦天线,其中,所述可调去耦单元包括至少两个谐振网络,其中,谐振网络之间通过第二耦合调谐网络相连。
  6. 根据权利要求5所述的去耦天线,其中,所述第i级可调去耦单元与第i+1级可调去耦单元之间通过第一耦合调谐网络相连,包括:
    第i级可调去耦单元中的谐振网络通过第一耦合调谐网络与第i+1级可调去耦单元中的谐振网络相连。
  7. 根据权利要求5所述的去耦天线,其中,所述第一耦合调谐网络和所述第二耦合调谐网络包括耦合调谐螺钉,所述耦合调谐螺钉用于调节所述谐振网络中的相位。
  8. 根据权利要求5所述的去耦天线,其中,所述谐振网络包括:谐振腔、位于所述谐振腔内的柱状谐振体、以及与所述柱状谐振体同轴的频率调谐螺钉,所述频率调谐螺钉用于调节所述谐振网络中的频率。
  9. 根据权利要求3所述的去耦天线,其中,所述天线端口的端口数和所述天线阵列的阵列数均为M,相应地,所述可调去耦单元具有M个输入端和M个输出端,M为大于等于2的整数。
  10. 根据权利要求3所述的去耦天线,其中,所述可调去耦单元包括至少两个谐振网络,其中,谐振网络之间通过第二耦合调谐网络相连。
  11. 一种去耦天线的去耦方法,所述去耦天线为权利要求1-10中任一项所述的去耦天线,所述方法包括:
    控制所述去耦网络产生去耦信号;
    通过所述去耦信号将所述至少两组天线阵列之间产生的互耦信号消除。
PCT/CN2017/120320 2017-01-05 2017-12-29 去耦天线及其去耦方法 WO2018127023A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17890173.2A EP3567676A4 (en) 2017-01-05 2017-12-29 DECOUPLING ANTENNA AND DECOUPLING PROCEDURE FOR IT
KR1020197019252A KR102197172B1 (ko) 2017-01-05 2017-12-29 디커플링 안테나 및 그 디커플링 방법
JP2019536909A JP6876807B2 (ja) 2017-01-05 2017-12-29 減結合アンテナおよびその減結合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008113.XA CN108281786A (zh) 2017-01-05 2017-01-05 一种去耦天线架构及其去耦方法
CN201710008113.X 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018127023A1 true WO2018127023A1 (zh) 2018-07-12

Family

ID=62789454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120320 WO2018127023A1 (zh) 2017-01-05 2017-12-29 去耦天线及其去耦方法

Country Status (5)

Country Link
EP (1) EP3567676A4 (zh)
JP (1) JP6876807B2 (zh)
KR (1) KR102197172B1 (zh)
CN (1) CN108281786A (zh)
WO (1) WO2018127023A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768933A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种新型低频去耦结构及小型终端设备
CN113285239A (zh) * 2021-04-26 2021-08-20 湖南大学 一种基于相位调节的去耦反射器
CN113659336A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 天线装置、电子设备及用于天线装置的去耦方法
CN117498026A (zh) * 2023-12-29 2024-02-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法
CN113659336B (zh) * 2020-05-12 2024-06-07 西安电子科技大学 天线装置、电子设备及用于天线装置的去耦方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391498A (zh) * 2019-07-17 2019-10-29 安徽蓝讯电子科技有限公司 一种优化基站天线阵列隔离度的方法
CN113659338A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 天线装置和电子设备
CN113659311A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 天线装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848471A (zh) * 2010-05-07 2010-09-29 摩比天线技术(深圳)有限公司 一种无线通讯网络扩容方法及基站天线
US20120013519A1 (en) * 2010-07-15 2012-01-19 Sony Ericsson Mobile Communications Ab Multiple-input multiple-output (mimo) multi-band antennas with a conductive neutralization line for signal decoupling
CN203445240U (zh) * 2013-09-06 2014-02-19 南京信息工程大学 一种新型mimo带有去耦网络的小型天线阵
CN104392597A (zh) * 2014-11-26 2015-03-04 无锡华普微电子有限公司 射频ic微功率无线遥控发射电路
CN205069884U (zh) * 2015-10-27 2016-03-02 广东健博通科技股份有限公司 一种多端口分频电调天线

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748337B1 (ko) * 2000-12-18 2007-08-09 주식회사 케이티 이중편파 다이버시티 능동형 마이크로스트립 배열 안테나
CN1941500B (zh) * 2005-09-30 2011-10-19 西门子(中国)有限公司 射频发射线圈的去耦合方法
TWM434316U (en) * 2006-04-27 2012-07-21 Rayspan Corp Antennas and systems based on composite left and right handed method
EP2647124B1 (en) * 2010-11-29 2019-06-05 Smart Antenna Technologies Ltd Balanced antenna system
CN102104193B (zh) * 2010-12-01 2015-04-01 中兴通讯股份有限公司 一种多输入多输出天线系统
CN102104185A (zh) * 2010-12-01 2011-06-22 中兴通讯股份有限公司 多输入多输出阵列天线
US9276554B2 (en) * 2012-04-04 2016-03-01 Hrl Laboratories, Llc Broadband non-Foster decoupling networks for superdirective antenna arrays
EP2538578A4 (en) * 2012-04-20 2013-09-04 Huawei Tech Co Ltd ANTENNA, BASE STATION AND RADIATION PROCESSING
US9627751B2 (en) * 2012-11-30 2017-04-18 The Chinese University Of Hong Kong Device for decoupling antennas in compact antenna array and antenna array with the device
US9203144B2 (en) * 2012-12-06 2015-12-01 Microsoft Technology Licensing, Llc Reconfigurable multiband antenna decoupling networks
CN103138034A (zh) * 2013-02-28 2013-06-05 上海大学 Sir同轴腔体双通带滤波器
CN203721860U (zh) * 2013-09-25 2014-07-16 中兴通讯股份有限公司 一种介质滤波器
US20150195001A1 (en) * 2014-01-07 2015-07-09 Quintel Technology Limited Antenna system with enhanced inter-sector interference mitigation
CN104810617B (zh) * 2014-01-24 2019-09-13 南京中兴软件有限责任公司 一种天线单元及终端
US9478854B2 (en) * 2014-03-17 2016-10-25 The Chinese University Of Hong Kong Devices and methods for reducing interference between closely collocated antennas
US9543644B2 (en) * 2014-07-01 2017-01-10 The Chinese University Of Hong Kong Method and an apparatus for decoupling multiple antennas in a compact antenna array
KR101584707B1 (ko) * 2014-10-17 2016-01-12 주식회사 케이엠더블유 다중모드 공진기
CN105742828B (zh) * 2016-03-31 2018-09-28 广东通宇通讯股份有限公司 双极化三波束天线及其馈电网络装置
CN106571526A (zh) * 2016-04-06 2017-04-19 昆山睿翔讯通通信技术有限公司 移动通讯系统终端mimo天线的解耦方法及解耦网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848471A (zh) * 2010-05-07 2010-09-29 摩比天线技术(深圳)有限公司 一种无线通讯网络扩容方法及基站天线
US20120013519A1 (en) * 2010-07-15 2012-01-19 Sony Ericsson Mobile Communications Ab Multiple-input multiple-output (mimo) multi-band antennas with a conductive neutralization line for signal decoupling
CN203445240U (zh) * 2013-09-06 2014-02-19 南京信息工程大学 一种新型mimo带有去耦网络的小型天线阵
CN104392597A (zh) * 2014-11-26 2015-03-04 无锡华普微电子有限公司 射频ic微功率无线遥控发射电路
CN205069884U (zh) * 2015-10-27 2016-03-02 广东健博通科技股份有限公司 一种多端口分频电调天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567676A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659336A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 天线装置、电子设备及用于天线装置的去耦方法
CN113659336B (zh) * 2020-05-12 2024-06-07 西安电子科技大学 天线装置、电子设备及用于天线装置的去耦方法
CN112768933A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种新型低频去耦结构及小型终端设备
CN113285239A (zh) * 2021-04-26 2021-08-20 湖南大学 一种基于相位调节的去耦反射器
CN113285239B (zh) * 2021-04-26 2022-11-15 湖南大学 一种基于相位调节的去耦反射器
CN117498026A (zh) * 2023-12-29 2024-02-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法
CN117498026B (zh) * 2023-12-29 2024-04-02 南京信息工程大学 一种法布里-珀罗谐振腔微带天线阵列解耦的方法

Also Published As

Publication number Publication date
EP3567676A1 (en) 2019-11-13
KR20190088549A (ko) 2019-07-26
JP2020504543A (ja) 2020-02-06
EP3567676A4 (en) 2020-08-05
JP6876807B2 (ja) 2021-05-26
CN108281786A (zh) 2018-07-13
KR102197172B1 (ko) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2018127023A1 (zh) 去耦天线及其去耦方法
JP5344772B2 (ja) メタマテリアル構造に基づくデバイス
WO2017157087A1 (en) Hybrid beam-forming antenna array using selection matrix for antenna phase calibration
Nie et al. Systematic design of large-scale multiport decoupling networks
CN103579755B (zh) 天线和用于形成天线的方法
CN112821083B (zh) 基于Ka波段的双圆极化阵列天线单元
CN104795638A (zh) 双频段圆极化共口径微带天线
Mineo et al. An adaptive transmitting power technique for energy efficient mm-wave wireless NoCs
Bakhar et al. Robust blind beam formers for smart antenna system using window techniques
CN110661103A (zh) 一种x频段低栅瓣圆极化天线
CN210607636U (zh) 一种x频段低栅瓣圆极化天线
Hannula et al. Beneficial interaction of coupling and mismatch in a two-antenna system
CN204407467U (zh) 一种无线音响的mimo天线
CN207705394U (zh) 波导馈电网络、波导阵列天线
CN103594812B (zh) 薄基片宽带差波束平面喇叭天线
CN103594804B (zh) 薄基片槽线平面喇叭天线
Piltyay et al. Electromagnetic performance of waveguide polarizers with sizes obtained by single-mode technique and by trust region optimization
CN103606752B (zh) 薄基片相位校正宽带差波束平面喇叭天线
CN103606750B (zh) 薄基片相位校正准八木平面喇叭天线
CN103594816B (zh) 薄基片相位校正槽线平面喇叭天线
Qun et al. Performance of LMS algorithm in smart antenna
CN103618145B (zh) 薄基片准八木平面喇叭天线
WO2020244113A1 (zh) 天线结构和电子设备
CN103618146B (zh) 薄基片相位校正宽带平面喇叭天线
CN103594814B (zh) 薄基片相位校正振子平面喇叭天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019252

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019536909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890173

Country of ref document: EP

Effective date: 20190805