WO2018126931A1 - 一种参考信号发送方法、接收方法及装置 - Google Patents

一种参考信号发送方法、接收方法及装置 Download PDF

Info

Publication number
WO2018126931A1
WO2018126931A1 PCT/CN2017/118389 CN2017118389W WO2018126931A1 WO 2018126931 A1 WO2018126931 A1 WO 2018126931A1 CN 2017118389 W CN2017118389 W CN 2017118389W WO 2018126931 A1 WO2018126931 A1 WO 2018126931A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
subcarrier spacing
configuration
sub
subband
Prior art date
Application number
PCT/CN2017/118389
Other languages
English (en)
French (fr)
Inventor
李新县
吴宁
唐浩
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17890234.2A priority Critical patent/EP3557806A4/en
Priority to JP2019536899A priority patent/JP2020507947A/ja
Publication of WO2018126931A1 publication Critical patent/WO2018126931A1/zh
Priority to US16/503,577 priority patent/US10892878B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a reference signal transmitting method, a receiving method, and a device.
  • a reference signal for measuring channel state information is sent to the other side, and then the channel is obtained according to the feedback.
  • State quality For example, in a Long Term Evolution (LTE) system, a network device sends a reference signal such as a Cell Reference Signal (CRS) and a Channel State Information Reference Signal (CSI-RS). A reference signal such as a Sounding Reference Signal (SRS) is transmitted.
  • the terminal may determine the CSI according to the detected CRS or CSI-RS, thereby feeding back the channel quality.
  • the network device can estimate the uplink timing according to the SRS, and use the channel symmetry to estimate the downlink channel quality assuming the downlink/uplink channel reciprocity.
  • the time-frequency resources used for transmitting the reference signal are fixed and unique in the sub-carrier spacing, and when the reference signal is transmitted, only the fixed sub-carrier spacing and the reference signal pattern need to be transmitted.
  • the system supports multiple subcarrier spacings, for example: 15 kHz, 30 kHz, 60 kHz, 120 kHz.
  • One frequency point can support multiple subcarrier spacings
  • one channel can support multiple subcarrier spacings
  • one UE can support multiple subcarrier spacings.
  • the network side can dynamically configure or semi-statically configure the location of the bandwidth corresponding to different subcarrier spacings in the system bandwidth. For such resource dynamic changes and user support for multiple subcarrier spacings, the traditional measurement transmission signal is difficult to meet the demand, and the reference signal needs to be transmitted on a subband different from the reference signal subcarrier spacing.
  • the embodiment of the present application provides a reference signal sending method, a receiving method, and a device, which are used to implement multiple subcarrier spacings in a system bandwidth, and when a subband corresponding to a subcarrier spacing dynamically changes in position in a system bandwidth, the terminal sends Reference signal.
  • a method for transmitting a reference signal including:
  • the network device determines a first configuration of the first reference signal and a second configuration of the second reference signal; the first configuration includes a first subcarrier spacing; the second configuration includes a second subcarrier spacing;
  • the parameter configuration of the first sub-band is different from the parameter configuration of the second sub-band.
  • the network device transmits the second reference signal conforming to the second configuration on the second sub-band by transmitting the first reference signal conforming to the first configuration on the first sub-band, due to the first sub-band
  • the parameter configuration is different from the parameter configuration of the second sub-band, and thus can be applied to a scenario in which multiple sub-carrier intervals are used in the system bandwidth, and the position of the sub-band corresponding to the sub-carrier interval dynamically changes in the system bandwidth, thereby improving The transmission efficiency of the reference signal.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the network device determines the first subcarrier spacing and the second subcarrier spacing, including:
  • the network device determines a first subcarrier spacing according to a subcarrier spacing of the first subband, and the network device determines a second subcarrier spacing according to a subcarrier spacing of the second subband.
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the network device determines the first pattern, including:
  • the network device determines a first pattern set mapped with a subcarrier spacing of the first subband and a first subcarrier spacing, and selects a pattern from the first set of patterns as the first pattern.
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the method further includes:
  • the network device sends a first switch identifier, where the first switch identifier is used to indicate whether the terminal receives the first reference signal on the first sub-band.
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • the first configuration further includes an offset of the first reference signal in one transmission period; and the second configuration further includes an offset of the second reference signal in one transmission period.
  • the first configuration further includes one or more of the following:
  • the FDM is frequency-division multiplexed in the frequency domain between the first sub-band and the second sub-band;
  • Time division multiplexing TDM in the time domain between the first subband and the second subband
  • the first sub-band and the second sub-band are FDM in the frequency domain and TDM in the time domain.
  • the first reference signal and the second reference signal are channel state information reference signals.
  • a reference signal receiving method including:
  • the terminal Receiving, by the terminal, a first reference signal that conforms to the first configuration on the first sub-band, and a second reference signal that is consistent with the second configuration on the second sub-band;
  • the first configuration includes a first sub-carrier spacing
  • the The second configuration includes a second subcarrier spacing, the parameter configuration of the first subband being different from the parameter configuration of the second subband.
  • the terminal feeds back channel quality according to the first reference signal and the second reference signal, respectively.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the first subcarrier spacing and the second subcarrier spacing are determined by subcarrier spacing of the first subband.
  • the first subcarrier spacing is determined by a subcarrier spacing of the first subband
  • the second subcarrier spacing is determined by a subcarrier spacing of the second subband.
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the method further includes:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • the first configuration further includes an offset of the first reference signal in one transmission period; and the second configuration further includes an offset of the second reference signal in one transmission period.
  • a reference signal transmitting device includes:
  • a processing unit configured to determine a first configuration of the first reference signal and a second configuration of the second reference signal; the first configuration includes a first subcarrier spacing; and the second configuration includes a second subcarrier spacing;
  • transceiver unit configured to send, according to the first sub-band, a first reference signal that conforms to the first configuration, and send, on a second sub-band, a second reference signal that meets the second configuration;
  • the parameter configuration of the first sub-band is different from the parameter configuration of the second sub-band.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • processing unit is specifically configured to:
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • processing unit is specifically configured to:
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver unit is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • a reference signal receiving device includes:
  • a transceiver unit configured to receive a first reference signal conforming to the first configuration on the first sub-band, and receive a second reference signal that conforms to the second configuration on the second sub-band; the first configuration includes a first sub-carrier spacing
  • the second configuration includes a second subcarrier spacing, and a parameter configuration of the first subband is different from a parameter configuration of the second subband.
  • a processing unit configured to feed back channel quality according to the first reference signal and the second reference signal, respectively.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the first subcarrier spacing and the second subcarrier spacing are determined by subcarrier spacing of the first subband.
  • the first subcarrier spacing is determined by a subcarrier spacing of the first subband
  • the second subcarrier spacing is determined by a subcarrier spacing of the second subband.
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver unit is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • a reference signal transmitting device includes:
  • a processor configured to determine a first configuration of the first reference signal and a second configuration of the second reference signal; the first configuration includes a first subcarrier spacing; and the second configuration includes a second subcarrier spacing;
  • a transceiver configured to send, according to the first sub-band, a first reference signal that conforms to the first configuration, and send, on a second sub-band, a second reference signal that meets the second configuration;
  • the parameter configuration of the first sub-band is different from the parameter configuration of the second sub-band.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the processor is specifically configured to:
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the processor is specifically configured to:
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • a reference signal receiving device includes:
  • a transceiver configured to receive a first reference signal conforming to the first configuration on the first sub-band, and receive a second reference signal that conforms to the second configuration on the second sub-band;
  • the first configuration includes a first sub-carrier spacing
  • the second configuration includes a second subcarrier spacing, and a parameter configuration of the first subband is different from a parameter configuration of the second subband.
  • a processor configured to feed back channel quality according to the first reference signal and the second reference signal, respectively.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the first subcarrier spacing and the second subcarrier spacing are determined by subcarrier spacing of the first subband.
  • the first subcarrier spacing is determined by a subcarrier spacing of the first subband
  • the second subcarrier spacing is determined by a subcarrier spacing of the second subband.
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for sending a reference signal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a reference signal according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a reference signal transmission period according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a reference signal transmission period according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a reference signal according to an embodiment of the present application.
  • FIG. 7(a) to 7(d) are schematic diagrams of a pattern provided by an embodiment of the present application.
  • FIGS. 8(a) to 8(d) are schematic diagrams of a pattern provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for sending a reference signal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a reference signal sending apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a reference signal sending apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various mobile communication systems, for example, an NR system, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, and a wideband code division.
  • Wideband Code Division Multiple Access (WCDMA) system General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) System, Universal Mobile Telecommunication System (UMTS), Evolved Long Term Evolution (eLTE) system, 5G and other mobile communication systems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE Evolved Long Term Evolution
  • FIG. 1 it is a schematic diagram of a network architecture that can be applied to the embodiments of the present application.
  • FIG. 1 includes a network device and a terminal.
  • a terminal also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • a network device refers to a device in an access network that communicates with a terminal through one or more sectors on an air interface.
  • the base station device can also coordinate attribute management of the air interface.
  • the network device may be a gNB (gNodeB) in the NR, and may be a common base station (such as a NodeB or an eNB), may be a new radio controller (NR controller), or may be a centralized network element (Centralized Unit). It may be a new radio base station, which may be a radio remote module, may be a micro base station, may be a relay, may be a distributed network unit, or may be a transmission reception point (TRP) or a transmission.
  • TRP transmission reception point
  • subcarrier spacing the basic unit in the frequency domain.
  • the subcarrier spacing is 15 kHz.
  • Orthogonal Frequency Division Multiplexing OFDM
  • SCMA Sparse Code Multiplexing Access
  • filtered orthogonal frequency division multiplexing Filtered
  • the Orthogonal Frequency Division Multiplexing (F-OFDM) symbol and the Non-Orthogonal Multiple Access (NOMA) symbol may be determined according to actual conditions, and details are not described herein again.
  • FIG. 2 a schematic flowchart of a reference signal sending method according to an embodiment of the present application is shown.
  • the method includes:
  • Step 201 The network device determines a first configuration of the first reference signal and a second configuration of the second reference signal; the first configuration includes a first subcarrier spacing; and the second configuration includes a second subcarrier spacing.
  • Step 202 The network device sends a first reference signal that conforms to the first configuration on a first sub-band, and a second reference signal that meets the second configuration on a second sub-band.
  • the parameter configuration of a sub-band is different from the parameter configuration of the second sub-band.
  • subcarrier spacing of the first subcarrier and the first subband may be the same or different, and may be determined according to actual conditions.
  • the subcarrier spacing of the second subcarrier and the second subband may be the same or different.
  • Step 203 The terminal receives a first reference signal that conforms to the first configuration on the first sub-band, and receives a second reference signal that meets the second configuration on the second sub-band.
  • the first configuration includes a first sub-carrier interval.
  • the second configuration includes a second subcarrier spacing, and a parameter configuration of the first subband is different from a parameter configuration of the second subband.
  • Step 204 The terminal feeds back channel quality according to the first reference signal and the second reference signal, for example, a precoding matrix indication PMI, a channel quality indicator, a rank indication RI, and a reference signal received power RSRP.
  • a precoding matrix indication PMI for example, a precoding matrix indication PMI, a channel quality indicator, a rank indication RI, and a reference signal received power RSRP.
  • the types of the first reference signal and the second reference signal may be the same or different.
  • the first reference signal and the second reference signal may both be channel state information reference signals, the first reference signal and the first
  • the second reference signal may also be a reference signal similar to a channel state information reference signal or a cell reference signal.
  • the first configuration may further include one or more of the following:
  • the first pattern refers to a time domain location and a frequency domain location of a first reference signal at a fixed time-frequency resource; the first pattern may include a zero-power resource element (Resource Element, RE) and a non- One or more of zero power REs.
  • RE zero-power resource element
  • the zero-power RE can be used as a guard band between different sub-carriers, and can also be used for power bursting to increase the transmit power of the reference signal.
  • a first switch identifier where the first switch identifier is used to indicate whether the terminal receives the first reference signal on the first sub-band.
  • the terminal may indicate to the terminal that the network device periodically sends the first reference signal or triggers the first reference signal.
  • the periodic transmission of the first reference signal means that the network device sends the first reference signal according to the period and the offset until the switch is turned off, and the activation triggering the first reference signal means that the network device sends the first reference signal only once. .
  • the second configuration may further include one or more of the following:
  • a second pattern of the second reference signal or a time-frequency position and a frequency domain position of the second reference signal, that is, a symbol index of the second reference signal in the time domain and a carrier index in the frequency domain, where
  • the second pattern refers to a time domain location and a frequency domain location of the second reference signal at a fixed time-frequency resource;
  • a second switch identifier where the second switch identifier is used to indicate whether the terminal receives the second reference signal on the second sub-band.
  • the first pattern of the first reference signal and the second pattern of the second reference signal may be configured independently or may be configured in the same pattern. Independently configured here means that in order to avoid control signals and reference signals on different resource parts, reference signals transmitted on different resource parts can use different symbol indexes and frequency domain densities.
  • the resource part may be a part of resources in a sub-band or a resource consisting of the same sub-band or multiple sub-bands.
  • the sending period of the first reference signal and the sending period of the second reference signal may be the same or different, which is not limited by the embodiment of the present application.
  • the offset of the first reference signal in one transmission period and the offset of the second reference signal in one transmission period may be the same or different.
  • the offset of the first reference signal in one transmission period may refer to an offset between the position of the first reference signal in the time domain of one transmission period and the start time of the transmission period, for example, when one transmission period includes 10 times
  • the first reference signal is transmitted in the sixth time slot, and the offset of the first reference signal in one transmission period is 5 time slots.
  • the offset of the second reference signal in one transmission period can be referred to the foregoing description.
  • the unit of the transmission period and the offset may be a sub-frame level or a slot level or a sub-slot or a short transmission time interval.
  • the manner in which the network device determines the first subcarrier spacing and the second subcarrier spacing is different.
  • the first subcarrier spacing and the second subcarrier spacing may be pre-agreed by the network device and the terminal. At this time, the network device can directly determine the first subcarrier spacing and the second subcarrier spacing.
  • the network device and the terminal may pre-arrange that the first subcarrier spacing is the same as the subcarrier spacing of the Physical Downlink Shared Channel (PDSCH) in the first subband, and the second subcarrier spacing is the second subcarrier interval.
  • the subcarrier spacing of the PDSCH in the subband is the same.
  • the terminal may directly use the subcarrier spacing of the PDSCH in the first subband as the first subcarrier spacing, and the subcarrier spacing of the PDSCH in the second subband as the second subcarrier spacing.
  • the network device and the terminal may pre-arrange that the first subcarrier spacing is the same as the second subcarrier spacing, and the first subcarrier spacing is the same as the subcarrier spacing of the PDSCH in the first subband.
  • the terminal may directly use the subcarrier spacing of the PDSCH in the first subband as the first subcarrier spacing and the second subcarrier spacing.
  • the subcarrier spacing of the first subband may refer to the subcarrier spacing of the PDSCH in the first subband.
  • the subcarrier spacing of the second subband may refer to the subcarrier spacing of the PDSCH in the second subband, which is hereinafter referred to as the subcarrier spacing of the second subband for convenience of description.
  • first sub-carrier spacing and the second sub-carrier spacing may be the same or different, and are determined according to the actual situation, which is not limited by the embodiment of the present application.
  • the first configuration further includes a first pattern, where the first pattern is pre-agreed by the network device and the terminal, and the pre-agreement may be a pattern, which may be a pattern set, and the network device sends the pattern number to the terminal device, then The terminal may receive the first reference signal directly in the pre-agreed first pattern or according to the pattern corresponding to the pattern number.
  • the network device may determine the first subcarrier spacing and the second subcarrier spacing according to the subcarrier spacing of the first subband.
  • the network device may use the subcarrier spacing of the first frequency band as the first subcarrier spacing and the subcarrier spacing of the first frequency band as the second subcarrier spacing.
  • the first subcarrier spacing and the second subcarrier spacing are the same.
  • the network device may determine a first subcarrier spacing according to a subcarrier spacing of the first subband, and determine a second subcarrier spacing according to a subcarrier spacing of the second subband.
  • the network device may use the subcarrier spacing of the first frequency band as the first subcarrier spacing and the subcarrier spacing of the second frequency band as the second subcarrier spacing.
  • the first subcarrier spacing and the second subcarrier spacing may be the same or different.
  • the first configuration and the second configuration may be sent to the terminal by the network device by using high layer signaling or physical layer signaling.
  • the network device may send the first configuration and the second configuration on the first sub-band through the high-layer signaling or the physical layer signaling, or may send the first in the second sub-band through the high-layer signaling or the physical layer signaling.
  • the high layer signaling may be a radio resource control (RRC) signaling or a media access control (MAC) control element (Control Element, CE) signaling.
  • RRC radio resource control
  • MAC media access control
  • CE Control Element
  • the physical layer signaling may be signaling such as Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the terminal may determine the first configuration and the second configuration by using the received high layer signaling or physical layer signaling.
  • the sub-carrier spacing of the first sub-band may be the same as the sub-carrier spacing of the second sub-band, or may be different.
  • the first subcarrier spacing and the subcarrier spacing of the first subband may be the same or different, and may be determined according to actual conditions.
  • the second subcarrier spacing and the subcarrier spacing of the second subband may be the same or different.
  • the first pattern set may be mapped to the subcarrier spacing of the first subband and the first subcarrier spacing, and the mapping relationship may be pre-agreed.
  • the terminal may also be set and notified by the network device, wherein at least one pattern is included in the first set of patterns.
  • the network device may first determine a first pattern set mapped with a subcarrier spacing of the first subband and a first subcarrier spacing, and from the first pattern. A pattern is selected as the first pattern in the set.
  • the second pattern can also be determined in the above manner in time, and will not be described herein.
  • the first sub-band and the second sub-band may be frequency division multiplexed (FDM) in the frequency domain; or the first sub-band and the second sub-band
  • the frequency bands may be time division multiplexed (TDM) in the time domain; or the FDM in the frequency domain and the TDM in the time domain between the first subband and the second subband.
  • the network device may divide one carrier into N sub-bands according to the frequency domain, and the parameter configuration of each sub-band is different, and N is a positive integer greater than or equal to 1.
  • the network device may separately send a reference signal to one terminal or multiple terminals on each of the N sub-bands, and the configuration of each reference signal sent may be the same or different.
  • the network device can number the sub-bands in each carrier.
  • the first sub-band and the second sub-band may be located on the same carrier or may be located on different carriers.
  • some embodiments are described in which the first sub-band and the second sub-band are located on the same carrier, but the first sub-band and the second sub-band are located in different carriers. The same method is used and will not be described here.
  • the parameter configuration of each sub-band may include one or more of the following:
  • the number of the subband is the number of the subband.
  • the network device can send the parameter configuration of the first sub-band through high-layer signaling or physical layer signaling. Similarly, the network device can send the parameter configuration of the second sub-band through high-layer signaling or physical layer signaling.
  • the network device may also send configurations of all subbands to the terminal through a Master Information Block (MIB) or a System Information Block (SIB).
  • MIB Master Information Block
  • SIB System Information Block
  • the specific process of the terminal to feed back the channel quality may refer to the description in the existing communication standard, and details are not described herein again.
  • first sub-band and the second sub-band are located in the same carrier, and the case where the first sub-band and the second sub-band are located in different carriers may be referred to the following description, and details are not described herein again.
  • the network device sends a reference signal, such as a CSI-RS, on the first sub-band and the second sub-band, and gives an end user that the sub-carrier spacing of the first sub-band is different from the sub-carrier spacing of the second sub-band.
  • the subcarrier spacing of the first subband is 15 kHz, and the subcarrier spacing of the second subband is 30 kHz; the first subband and the second subband are part of the system bandwidth, which may be a continuous bandwidth or multiple segments.
  • the first subcarrier spacing is the same as the second subcarrier spacing, which is determined by the network device according to the subcarrier spacing of the first subband, and is 15 kHz.
  • the first sub-band and the second sub-band may be FMD or TDM or FDM+TDM, and transmit the same sub-carrier spacing on the sub-bands of different sub-carrier intervals, that is, the first reference signal of the first sub-carrier interval, such as CSI-RS. . See Figure 3 for details.
  • FIG. 3 is a schematic diagram of a reference signal provided by an embodiment of the present application.
  • the configuration of the first reference signal includes one or more of the following: a pattern of a CSI-RS, a subcarrier spacing of a CSI-RS, a time domain and a frequency domain position of a CSI-RS, and a CSI-RS in a first frequency band.
  • the CSI-RS pattern may be a carrier index of a CSI-RS in a frequency domain and a symbol index in a time domain in a fixed time-frequency resource, and the fixed time-frequency resource may be one resource block, or one resource block pair, or one resource. Block group.
  • the time domain and frequency domain location of the CSI-RS may be an index of a resource block of the CSI-RS on the first subband and/or the second subband, and a time domain symbol index and a frequency domain carrier index in the resource block, such as:
  • the time-frequency position of the CSI-RS transmitted by the network device is a set ⁇ resource block 0, the time domain symbol index is 2, the frequency domain carrier index is 5 and 6 ⁇ , ⁇ resource block 5, the time domain symbol index is 2, the frequency domain carrier The index is 5 and 6 ⁇ , ⁇ resource block 8, time domain symbol index is 0, frequency domain carrier index is 7 ⁇ , and resource block definition is granular with the first subcarrier spacing.
  • the terminal side receives the reference signal configuration information on the first sub-band, determines the first sub-carrier interval and the time-frequency position of the first reference signal, whether the reference signal on a certain bandwidth is received, corresponding to the sub-band of the network device, and the reference The period and offset of signal reception.
  • the identifier sent by the CSI-RS on the first sub-band is used to indicate whether the terminal side receives the first reference signal on the sub-band, and the identifier may be indicating that the terminal side periodically receives the first reference signal, or may be an indication.
  • the terminal side triggers receiving the first reference signal.
  • the 1-bit resource identifier rsflag may indicate that the first reference signal on the sub-band is not received, and the periodicity is represented by 0.
  • the transmission period of the first reference signal may be the same as the transmission period of the second reference signal, and the offset of the first reference signal in one transmission period may be the same as the offset of the second reference signal in one transmission period.
  • the transmission period of the first reference signal and the transmission period of the second reference signal are both 5
  • the offset of the first reference signal in one transmission period and the offset of the second reference signal in one transmission period are both Is 0.
  • the transmission period of the first reference signal may be different from the transmission period of the second reference signal, and the offset of the first reference signal in one transmission period may be offset from the second reference signal in one transmission period. Not the same.
  • the transmission period of the first reference signal is 5, and the offset of the first reference signal in one transmission period is 0; the transmission period of the second reference signal is 4, and the second reference signal is transmitted in one transmission.
  • the offset in the period is 1.
  • the transmission period of the first reference signal is the same as the transmission period of the second reference signal, and the offset of the first reference signal in one transmission period and the transmission of the second reference signal are in one transmission.
  • the offsets in the cycle are different and will not be described here.
  • first sub-band and the second sub-band are only used as an example, and the number of sub-bands for transmitting the first reference signal of the first sub-carrier interval may be less than or equal to the number of all sub-bands on the system bandwidth. .
  • the sub-carrier spacing of the first sub-carrier and the first sub-band may be different, and the sub-carrier spacing of the second sub-carrier and the second sub-band may be different, and details are not described herein again.
  • the network device sends a reference signal, such as a CSI-RS, on the first sub-band and the second sub-band, and gives an end user that the sub-carrier spacing of the first sub-band is different from the sub-carrier spacing of the second sub-band.
  • the subcarrier spacing of the first subband is 15 kHz, and the subcarrier spacing of the second subband is 30 kHz; the first subcarrier spacing is different from the second subcarrier spacing, and the first subcarrier spacing is determined by the network device according to the first subcarrier.
  • the subcarrier spacing of the frequency band is determined to be 15 kHz; the second subcarrier spacing is determined by the network device according to the subcarrier spacing of the second subband, which is 30 kHz. See Figure 6 for details.
  • FIG. 6 is a schematic diagram of a reference signal provided by an embodiment of the present application.
  • the configuration of the first reference signal includes one or more of the following: a pattern of a CSI-RS, a subcarrier spacing of a CSI-RS, a time domain and a frequency domain position of a CSI-RS, and a CSI-RS at the first Bandwidth occupied on the frequency band, period and offset of CSI-RS transmission on the first sub-band, identifier of whether CSI-RS is transmitted on the first sub-band, sub-carrier spacing of CSI-RS sub-band, sub-band number .
  • the first subcarrier spacing that is received by the terminal may be determined according to the first subcarrier spacing carried in the first reference signal configuration information, or may be determined according to the subcarrier spacing of the subband of the subband.
  • the network device can broadcast the subcarrier spacing of all subbands on the system bandwidth, the location and bandwidth in the system bandwidth to the terminal side through the MIB or the SIB, and the terminal side can obtain the subcarrier spacing of the subband according to the subband number.
  • the terminal side receives the configuration information of the reference signal on the first sub-band, determines the first sub-carrier spacing of the reference signal on each sub-band, the pattern of the reference signal, whether the reference signal is received, the time-frequency position of the reference signal, the transmission period, and the offset .
  • the sub-carrier spacing of the first sub-carrier and the first sub-band may be different, and the sub-carrier spacing of the second sub-carrier and the second sub-band may be different, and details are not described herein again.
  • the network device sends a reference signal, such as a CSI-RS, to the first sub-band and the second sub-band, and the first sub-carrier spacing is different from the sub-carrier spacing of the first sub-band.
  • the subcarrier spacing is not the same as the subcarrier spacing of the second subband.
  • the first pattern set has a mapping relationship with the subcarrier spacing of the first subband and the first subcarrier spacing
  • the second pattern set has a mapping relationship with the subcarrier spacing of the second subband and the second subcarrier spacing.
  • the first pattern of the subcarrier spacing and the first subcarrier spacing mapping of the first subband may be as shown in FIG. 7 (a). ) shown.
  • the first pattern includes zero power RE and non-zero power RE.
  • the first pattern mapped with the subcarrier spacing of the first subband and the first subcarrier spacing may be as shown in FIG. 7(b). ) shown.
  • the first pattern includes zero power RE and non-zero power RE.
  • the first pattern of the subcarrier spacing and the first subcarrier spacing mapping of the first subband may be as shown in FIG. 7 (c). ) shown.
  • the first pattern includes zero power RE and non-zero power RE.
  • the first pattern mapped with the subcarrier spacing of the first subband and the first subcarrier spacing may be as shown in FIG. 7(d). ) shown.
  • the first pattern includes zero power RE and non-zero power RE.
  • FIGS. 8(a) to 8(d) are schematic diagrams showing a first pattern of subcarrier spacing and first subcarrier spacing mapping with the first subband.
  • the subcarrier spacing of the first subband is 15 kHz, and the first subcarrier spacing is 30 kHz.
  • the subcarrier spacing of the first subband is 15 kHz, and the first subcarrier spacing is 60 kHz.
  • the subcarrier spacing of the first subband is 60 kHz, and the first subcarrier spacing is 15 kHz.
  • the subcarrier spacing of the first subband is 30 kHz, and the first subcarrier spacing is 15 kHz.
  • the configuration of the first reference signal includes one or more of the following: a pattern of a CSI-RS, a subcarrier spacing of the CSI-RS, a time domain and a frequency domain position of the CSI-RS, and a CSI-RS occupied by the first frequency band Bandwidth, period and offset of CSI-RS transmission on the first sub-band, identity of whether CSI-RS is transmitted on the first sub-band, sub-carrier spacing of CSI-RS sub-band, sub-band number.
  • the pattern of the CSI-RS is one of the first pattern sets described above.
  • the terminal side receives the configuration information of the reference signal on the first sub-band, determines the first sub-carrier spacing of the reference signal on each sub-band, the pattern of the reference signal, whether the reference signal is received, the time-frequency position of the reference signal, the transmission period, and the offset .
  • the subcarrier spacing of the first subcarrier and the first subband may be the same, and the subcarrier spacing of the second subcarrier and the second subband may be the same, and details are not described herein again.
  • FIG. 9 it is a schematic flowchart of a reference signal sending method provided by an embodiment of the present application.
  • the method includes:
  • Step 901 The network device determines a third configuration of the third reference signal and a fourth configuration of the fourth reference signal, where the third configuration includes a third subcarrier spacing, where the fourth configuration includes a fourth subcarrier spacing, where The parameter configuration of the third sub-band is different from the parameter configuration of the fourth sub-band.
  • Step 902 The network device sends the third configuration and the fourth configuration to the terminal.
  • Step 903 The terminal receives the third configuration and the fourth configuration sent by the network device.
  • the third configuration includes a third subcarrier spacing; the fourth configuration includes a fourth subcarrier spacing, wherein a parameter configuration of the third subband is different from a parameter configuration of the fourth subband.
  • Step 904 The terminal sends a third reference signal that conforms to the third configuration on the third sub-band, and transmits a fourth reference signal that conforms to the fourth configuration on the fourth sub-band.
  • the third reference signal and the fourth reference signal may both be channel state information reference signals or cell reference signals, and the third reference signal and the fourth reference signal may also be similar.
  • a reference signal of a channel state information reference signal or a cell reference signal For the other contents of the third reference signal and the fourth reference signal, reference may be made to the description in steps 201 to 204, and details are not described herein again.
  • the third configuration may further include one or more of the following:
  • the third switch identifier is used to indicate whether the terminal receives the third reference signal on the third sub-band;
  • the number of the third subband is the number of the third subband.
  • the specific content of the fourth configuration may refer to the third configuration and the description of the first configuration or the second configuration in steps 201 to 204, and details are not described herein again.
  • step 901 to step 904 the third subcarrier spacing and the fourth subcarrier spacing may be the same or different.
  • the description of the first subcarrier spacing and the second subcarrier in steps 201 to 204 This will not be repeated here.
  • the third sub-band and the fourth sub-band may be located on the same carrier, or may be located in different carriers.
  • the description in the reference step 201 to step 204 and details are not described herein again.
  • the embodiment of the present application further provides a reference signal transmitting apparatus, which can perform the foregoing method embodiments.
  • FIG. 10 a schematic structural diagram of a reference signal sending apparatus is provided in an embodiment of the present application.
  • the apparatus includes:
  • the processing unit 1001 is configured to determine a first configuration of the first reference signal and a second configuration of the second reference signal; the first configuration includes a first subcarrier spacing; and the second configuration includes a second subcarrier spacing;
  • the transceiver unit 1002 is configured to send, according to the first reference frequency band, a first reference signal that conforms to the first configuration, and send, on a second sub-band, a second reference signal that meets the second configuration.
  • the parameter configuration of the first sub-band is different from the parameter configuration of the second sub-band.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • processing unit 1001 is specifically configured to:
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • processing unit 1001 is specifically configured to:
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver unit 1002 is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • the transceiver unit 1002 can be implemented by a transceiver
  • the processing unit 1001 can be implemented by a processor.
  • network device 1100 can include a processor 1101, a transceiver 1102, and a memory 1103.
  • the memory 1103 may be used to store a program/code pre-installed when the network device 1100 is shipped from the factory, or may store a code or the like for execution of the processor 1101.
  • the embodiment of the present application further provides a reference signal receiving apparatus, which can perform the foregoing method embodiments.
  • FIG. 12 a schematic structural diagram of a reference signal receiving apparatus is provided in an embodiment of the present application.
  • the apparatus includes:
  • the transceiver unit 1201 is configured to receive a first reference signal conforming to the first configuration on the first sub-band, and receive a second reference signal that conforms to the second configuration on the second sub-band; the first configuration includes the first sub-carrier
  • the second configuration includes a second subcarrier spacing, and a parameter configuration of the first subband is different from a parameter configuration of the second subband.
  • the processing unit 1202 is configured to feed back channel quality according to the first reference signal and the second reference signal, respectively.
  • the parameter configuration includes one or more of the following:
  • Cyclic prefix CP type
  • the first subcarrier spacing and the second subcarrier spacing are determined by subcarrier spacing of the first subband.
  • the first subcarrier spacing is determined by a subcarrier spacing of the first subband
  • the second subcarrier spacing is determined by a subcarrier spacing of the second subband.
  • the first configuration further includes a first pattern of the first reference signal, or a time-frequency location and a frequency domain location of the first reference signal, where the first pattern refers to a fixed time-frequency The time domain location and frequency domain location of the first reference signal under the resource.
  • the first pattern includes one or more of a zero power resource element RE and a non-zero power RE.
  • the transceiver unit 1201 is further configured to:
  • the first configuration further includes a sending period of the first reference signal
  • the second configuration further includes a sending period of the second reference signal
  • the transceiver unit 1201 can be implemented by a transceiver
  • the processing unit 1202 can be implemented by a processor.
  • the terminal 1300 can include a processor 1301, a transceiver 1302, and a memory 1303.
  • the memory 1303 may be used to store a program/code pre-installed at the time of leaving the terminal 1300, or may store a code or the like for execution of the processor 1301.
  • the transceiver can be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor 1501 may further include a hardware chip.
  • the hardware chip may be a dedicated integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory may include a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile memory).
  • read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, Abbreviation: SSD); the memory may also include a combination of the above types of memory.
  • FIG. 11 and FIG. 13 may further include a bus interface, which may include any number of interconnected buses and bridges, and various circuits of the memory represented by one or more processors and memories represented by the processor are together.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号发送方法、接收方法及装置,其中方法包括:网络设备确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;所述网络设备在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。

Description

一种参考信号发送方法、接收方法及装置
本申请要求在2017年1月6日提交国家专利局、申请号为201710011309.4、发明名称为“一种参考信号发送方法、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号发送方法、接收方法及装置。
背景技术
目前的无线通信系统中,在网络设备与终端进行数据传输的过程中,由于一侧对于信道状态信息的未知,会向另一侧发送用于测量信道状态信息的参考信号,然后根据反馈获得信道状态质量。比如长期演进(Long Term Evolution,LTE)系统中,网络设备会发送小区参考信号(Cell Reference Signal,CRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等参考信号,终端会发送探测参考信号(Sounding Reference Signal,SRS)等参考信号。终端可以根据检测到的CRS或CSI-RS确定CSI,从而反馈信道质量。相应的,网络设备可以根据SRS估计上行定时(timing),且在假设下行/上行信道互易的情况下,利用信道对称性来估计下行信道质量。
现有技术中,用于发送参考信号的时频资源所采用的子载波间隔固定且唯一,发送参考信号时,只需要按照固定的子载波间隔和参考信号图案发送即可。但在下一代无线通信系统中,例如:在新无线(New Radio,NR)系统中,系统支持多种子载波间隔,例如:15kHz,30kHz,60kHz,120kHz。一个频点可以支持多种子载波间隔,一个信道可以支持多种子载波间隔,一个UE可以支持多个子载波间隔。网络侧可以动态的配置或半静态配置不同子载波间隔对应的带宽在系统带宽中的位置。针对这种资源动态变化和用户支持多个子载波间隔,传统的测量发送信号难以满足需求,需要在与参考信号子载波间隔不同的子带上发送参考信号。
综上,在系统带宽中采用多种子载波间隔,子载波间隔对应的子带在系统带宽中的位置动态变化时,网络设备如何发送参考信号,目前来说还是一个亟待解决的问题。
发明内容
本申请实施例提供一种参考信号发送方法、接收方法及装置,用以实现在系统带宽中采用多种子载波间隔,子载波间隔对应的子带在系统带宽中的位置动态变化时,向终端发送参考信号。
第一方面,提供一种参考信号发送方法,包括:
网络设备确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
所述网络设备在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
根据上述方法,网络设备通过在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号,由于第一子频带的参数配置与所述第二子频带的参数配置不同,因此可以适用于在系统带宽中采用多种子载波间隔,且子载波间隔对应的子带在系统带宽中的位置动态变化的场景,从而提高参考信号的发送效率。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述网络设备确定第一子载波间隔和第二子载波间隔,包括:
所述网络设备根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
所述网络设备根据第一子频带的子载波间隔确定第一子载波间隔,所述网络设备根据第二子频带的子载波间隔确定第二子载波间隔。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述网络设备确定第一图案,包括:
所述网络设备确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述方法还包括:
所述网络设备发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
可选的,所述第一配置中还包括第一参考信号在一个发送周期中的偏移;所述第二配置中还包括所述第二参考信号在一个发送周期中的偏移。
可选的,所述第一配置还包括以下一项或多项:
第一子载波间隔;
第一参考信号在第一子频带上占用的带宽。
可选的,所述第一子频带与所述第二子频带之间在频域上频分复用FDM;或者
所述第一子频带与所述第二子频带之间在时域上时分复用TDM;或者
所述第一子频带与所述第二子频带之间在频域上FDM、在时域上TDM。
可选的,所述第一参考信号以及所述第二参考信号均为信道状态信息参考信号。
第二方面,提供一种参考信号接收方法,包括:
终端在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合 第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
所述终端分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由所述第二子频带的子载波间隔确定。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述方法还包括:
所述终端接收所述网络设备发送的第一开关标识;
所述终端根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
可选的,所述第一配置中还包括第一参考信号在一个发送周期中的偏移;所述第二配置中还包括所述第二参考信号在一个发送周期中的偏移。
一种参考信号发送装置,包括:
处理单元,用于确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
收发单元,用于在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述处理单元具体用于:
根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
根据第一子频带的子载波间隔确定第一子载波间隔,根据第二子频带的子载波间隔 确定第二子载波间隔。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述处理单元具体用于:
确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发单元还用于:
发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
一种参考信号接收装置,包括:
收发单元,用于在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
处理单元,用于分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由所述第二子频带的子载波间隔确定。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发单元还用于:
接收所述网络设备发送的第一开关标识;
根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
一种参考信号发送装置,包括:
处理器,用于确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一 配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
收发机,用于在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述处理器具体用于:
根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
根据第一子频带的子载波间隔确定第一子载波间隔,根据第二子频带的子载波间隔确定第二子载波间隔。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述处理器具体用于:
确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发机还用于:
发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
一种参考信号接收装置,包括:
收发机,用于在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
处理器,用于分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由 所述第二子频带的子载波间隔确定。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发机还用于:
接收所述网络设备发送的第一开关标识;
根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
附图说明
图1为为适用于本申请实施例的一种网络架构示意图;
图2为本申请实施例提供的一种参考信号发送方法流程示意图;
图3为本申请实施例提供的一种参考信号示意图;
图4为本申请实施例提供的一种参考信号发送周期示意图;
图5为本申请实施例提供的一种参考信号发送周期示意图;
图6为本申请实施例提供的一种参考信号示意图;
图7(a)至图7(d)为本申请实施例提供的一种图案示意图;
图8(a)至图8(d)为本申请实施例提供的一种图案示意图;
图9为本申请实施例提供的一种参考信号发送方法流程示意图;
图10为本申请实施例提供的一种参考信号发送装置结构示意图;
图11为本申请实施例提供的一种网络设备结构示意图;
图12为本申请实施例提供的一种参考信号发送装置结构示意图;
图13为本申请实施例提供的一种终端结构示意图。
具体实施方式
本申请实施例可以应用于各种移动通信系统,例如:NR系统、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)系统、5G等其它移动通信系统。
如图1所示,为可以适用于本申请实施例的一种网络架构示意图。图1中包括网络设备以及终端。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端 例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、网络设备,是指接入网中在空中接口上通过一个或多个扇区与终端通信的设备。基站设备还可协调对空中接口的属性管理。网络设备可以是NR中的gNB(gNodeB),可以是普通的基站(如NodeB或eNB),可以是新无线控制器(New Radio controller,NR controller),可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
3)、子载波间隔,频域上的基本单位。例如在LTE系统中,子载波间隔为15kHz。
4)、符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
结合上述描述,如图2所示,为本申请实施例提供的一种参考信号发送方法流程示意图。
参见图2,该方法包括:
步骤201:网络设备确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔。
步骤202:所述网络设备在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
需要说明的是,所述第一子载波与第一子频带的子载波间隔可以相同,也可以不同,具体根据实际情况确定。所述第二子载波与第二子频带的子载波间隔可以相同,也可以不同。
步骤203:终端在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
步骤204:所述终端分别根据所述第一参考信号以及所述第二参考信号反馈信道质量,比如预编码矩阵指示PMI,信道质量指示,秩指示RI,参考信号接收功率RSRP。
步骤201中,所述第一参考信号与所述第二参考信号的类型可以相同,也可以不同。所述第一参考信号与所述第二参考信号的类型相同时,所述第一参考信号以及所述第二参考信号可以均为信道状态信息参考信号,所述第一参考信号以及所述第二参考信号还可以为类似于信道状态信息参考信号或者小区参考信号的参考信号。
本申请实施例中,第一配置还可以包括以下一项或多项:
第一参考信号的发送周期;
第一参考信号在一个发送周期中的偏移;
所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,即第一参考信号在所在调度资源块中时域上的符号索引和频域上的载波索引,其中,所述第一图 案是指在固定时频资源下第一参考信号的时域位置和频域位置;所述第一图案中可以包括零功率资源元素(Resource Element,RE)和非零功率RE中的一种或多种。其中零功率RE可以用作不同子载波之间的保护带,也可以用于功率瞬爆,用于提升参考信号的发射功率。
第一子载波间隔;
第一参考信号在第一子频带上占用的带宽;
第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。所述第一开关标识指示终端接收所述第一子频带上的所述第一参考信号时,可以向终端指示网络设备是周期性发送第一参考信号或触发式发送第一参考信号。周期性发送第一参考信号是指网络设备会按照周期和偏移一直发第一参考信号,直到开关关闭,而激活触发式发送第一参考信号是指网络设备每次只发一次第一参考信号。
相应的,第二配置还可以包括以下一项或多项:
第二参考信号的发送周期;
第二参考信号在一个发送周期中的偏移;
所述第二参考信号的第二图案,或所述第二参考信号的时频位置和频域位置,即第二参考信号在时域上的符号索引和频域上的载波索引,所述第二图案是指在固定时频资源下第二参考信号的时域位置和频域位置;
第二子载波间隔;
第二参考信号在第二子频带上占用的带宽;
第二开关标识,所述第二开关标识用于指示终端是否接收所述第二子频带上所述的第二参考信号。
需要说明的是,本申请实施例中,第一参考信号的第一图案与第二参考信号的第二图案可以独立配置,也可以配置为相同的图案。此处独立配置的是指:为了避开不同资源部分上的控制信号和参考信号,在不同的资源部分上发送的参考信号可以使用不同的符号索引和频域密度。
需要说明的是,资源部分可以是子频带中的一部分资源或与子频带相同或多个子频带组成的资源。
结合上面的描述,所述第一参考信号的发送周期与所述第二参考信号的发送周期可以相同,也可以不同,本申请实施例对此并不限定。相应的,第一参考信号在一个发送周期中的偏移与第二参考信号在一个发送周期中的偏移可以相同,也可以不同。第一参考信号在一个发送周期中的偏移可以是指第一参考信号在一个发送周期的时域上的位置与该发送周期起始时刻之间的偏移,例如一个发送周期包括10个时隙,第一参考信号在第6个时隙发送,那么第一参考信号在一个发送周期中的偏移为5个时隙。第二参考信号在一个发送周期中的偏移可以参考前面的描述。
同时,本申请实施例中,发送周期和偏移的单位可以是子帧级的或时隙级的或子时隙的或短传输时间间隔级的。
网络设备确定第一子载波间隔和第二子载波间隔的方式有多种,第一种可能的实现方式中,第一子载波间隔和第二子载波间隔可以为网络设备与终端预先约定的,此时,网络设备可以直接确定出第一子载波间隔和第二子载波间隔。
可选的,网络设备与终端可以预先约定,第一子载波间隔与第一子频带中的物理下行 共享信道(Physical Downlink Shared Channel,PDSCH)的子载波间隔相同,第二子载波间隔与第二子频带中的PDSCH的子载波间隔相同。此时在步骤203中,终端可以直接将第一子频带中的PDSCH的子载波间隔作为第一子载波间隔,将第二子频带中的PDSCH的子载波间隔作为第二子载波间隔。
可选的,网络设备与终端可以预先约定,第一子载波间隔与第二子载波间隔相同,第一子载波间隔与第一子频带中的PDSCH的子载波间隔相同。此时在步骤203中,终端可以直接将第一子频带中的PDSCH的子载波间隔作为第一子载波间隔和第二子载波间隔。需要说明的是,本申请实施例中,第一子频带的子载波间隔可以是指第一子频带中PDSCH的子载波间隔,为了描述方便,以下均称为第一子频带的子载波间隔。相应的,第二子频带的子载波间隔可以是指第二子频带中PDSCH的子载波间隔,为了描述方便,以下均称为第二子频带的子载波间隔。
需要说明的是,在该实现方式中,第一子载波间隔与第二子载波间隔可以相同,也可以不相同,具体根据实际情况确定,本申请实施例对此并不限定。
举例来说,第一配置中还包括第一图案,第一图案为网络设备与终端预先约定的,该预先约定可以为一个图案,可以为一个图案集合,网络设备向终端设备发送图案编号,那么,终端可以直接在预先约定的第一图案中或根据图案编号对应的图案接收第一参考信号。
第二种可能的实现方式中,所述网络设备可以根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔。
具体的,网络设备可以将第一频带的子载波间隔作为第一子载波间隔、将第一频带的子载波间隔作为第二子载波间隔。
在该实现方式下,第一子载波间隔和第二子载波间隔相同。
第三种可能的实现方式中,所述网络设备可以根据第一子频带的子载波间隔确定第一子载波间隔,根据第二子频带的子载波间隔确定第二子载波间隔。
具体的,网络设备可以将第一频带的子载波间隔作为第一子载波间隔、将第二频带的子载波间隔作为第二子载波间隔。在该实现方式下,第一子载波间隔和第二子载波间隔可以相同,也可以不同。
在第二以及第三种可能的实现方式中,第一配置以及第二配置可以为网络设备通过高层信令或物理层信令发送给终端的。具体的,网络设备可以通过高层信令或物理层信令在第一子频带上发送第一配置和第二配置,也可以通过高层信令或物理层信令在第二子频带上发送第一配置和第二配置;
本申请实施例中,高层信令可以为无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)信令等信令。物理层信令可以为下行控制信息(Downlink Control Information,DCI)等信令。
此时,在步骤203中,终端可以通过接收到的高层信令或物理层信令确定第一配置和第二配置。
需要说明的是,本申请实施例中,第一子频带的子载波间隔可以与第二子频带的子载波间隔相同,也可以不同,本申请实施例对此并不限定。
本申请实施例中,第一子载波间隔与第一子频带的子载波间隔可以相同,也可以不同,具体根据实际情况确定。相应的,第二子载波间隔与第二子频带的子载波间隔可以相同, 也可以不同。
第一子载波间隔与第一子频带的子载波间隔不相同时,第一图案集合可以与第一子频带的子载波间隔以及第一子载波间隔存在映射关系,该映射关系可以为预先约定的,也可以由网络设备设置并通知终端,其中第一图案集合中包括至少一个图案。此时,在第一配置中包括第一图案时,所述网络设备可以先确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。第二图案也可以按时上述方式确定,在此不再赘述。
步骤202中,所述第一子频带与所述第二子频带之间在频域上可以频分复用(Frequency Division Multiplexing,FDM);或者,所述第一子频带与所述第二子频带之间在时域上可以时分复用(Time Division Multiplexing,TDM);或者,所述第一子频带与所述第二子频带之间在频域上FDM、在时域上TDM。
需要说明的是,本申请实施例中,网络设备可以将一个载波按照频域划分为N个子频带,每个子频带的参数配置不同,N为大于等于1的正整数。网络设备可以在所述N个子频带中的每个子频带上分别发送参考信号给一个终端或多个终端,且发送的每个参考信号的配置可以相同,也可以不同。同时,网络设备可以为每个载波中的子频带进行编号。
结合上述描述,第一子频带与第二子频带可以位于同一个载波,也可以位于不同的载波。为了描述方便,在本申请实施例中,有些实施例是以第一子频带与第二子频带位于同一个载波进行说明,但第一子频带与第二子频带位于不同载波的场景,也可以采用同样的方法,在此不再赘述。
同时,本申请实施例中,每个子频带的参数配置可以包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置;
循环前缀(Cyclic prefix,CP)类型;
子频带的编号。
网络设备可以通过高层信令或物理层信令发送第一子频带的参数配置,同样的,网络设备可以通过高层信令或物理层信令发送第二子频带的参数配置。
本申请实施例中,网络设备还可以通过主信息块(Master Information Block,MIB)或系统信息块(System Information Block,SIB)向终端发送所有子频带的配置。
步骤204中,终端反馈信道质量的具体过程可以参考现有通信标准中的描述,在此不再赘述。
下面结合具体的实施例详细描述前面的过程。下面的描述中,第一子频带与第二子频带位于同一载波中,第一子频带与第二子频带位于不同载波中的情况可以参考下面的描述,在此不再赘述。
第一种可能的场景:
在该场景中,网络设备在第一子频带与第二子频带上发送参考信号,比如CSI-RS,给一个终端用户,第一子频带的子载波间隔与第二子频带的子载波间隔不同,第一子频带的子载波间隔为15kHz,第二子频带的子载波间隔为30kHz;第一子频带与第二子频带为系统带宽中的一部分,可以是一段连续的带宽,也可以是多段非连续带宽组成的,第一子载 波间隔与第二子载波间隔相同,是由网络设备根据第一子频带的子载波间隔确定的,均为15kHz。第一子频带与第二子频带可以FMD或TDM或FDM+TDM,在不同子载波间隔的子频带上发送相同子载波间隔,也就是第一子载波间隔的第一参考信号,比如CSI-RS。具体参见图3。如图3所示,为本申请实施例提供的一种参考信号示意图。
图3中,第一参考信号的配置包括以下一项或多项:CSI-RS的图案,CSI-RS的子载波间隔,CSI-RS的时域和频域位置,CSI-RS在第一频带上占用的的带宽,CSI-RS在第一子频带上发送的周期和偏移,CSI-RS在第一子频带上是否发送的标识。CSI-RS图案可以是固定时频资源中CSI-RS在频域上的载波索引和在时域上的符号索引,固定时频资源可以为1个资源块,或一个资源块对,或一个资源块组。CSI-RS的时域和频域位置可以是CSI-RS在第一子频带上和/或第二子频带上资源块的索引,以及资源块中时域符号索引和频域载波索引,比如:网络设备发送的CSI-RS的时频位置为集合{资源块0,时域符号索引为2,频域载波索引为5和6},{资源块5,时域符号索引为2,频域载波索引为5和6},{资源块8,时域符号索引为0,频域载波索引为7},资源块的定义以第一子载波间隔为粒度。终端侧接收第一子频带上参考信号配置信息,确定第一子载波间隔以及第一参考信号的时频位置,在某段带宽上的参考信号是否接收,对应于网络设备的子频带,以及参考信号接收的周期与偏移。
CSI-RS在第一子频带上是否发送的标识用于指示终端侧是否接收该子频带上的第一参考信号,该标识可以是指示终端侧周期性的接收第一参考信号,也可以是指示终端侧触发式的接收第一参考信号,比如对于指示周期性的接收第一参考信号,1比特的资源标识rsflag可以用1表示不接收该子频带上的第一参考信号,用0表示周期性接收该子频带上的第一参考信号。
图3中,第一参考信号的发送周期可以与第二参考信号的发送周期相同,且第一参考信号在一个发送周期中的偏移可以与第二参考信号在一个发送周期中的偏移相同。具体,结合图3,如图4所示。图4中,第一参考信号的发送周期与第二参考信号的发送周期均为5,且第一参考信号在一个发送周期中的偏移与第二参考信号在一个发送周期中的偏移均为0。
图3中,第一参考信号的发送周期可以与第二参考信号的发送周期不相同,且第一参考信号在一个发送周期中的偏移可以与第二参考信号在一个发送周期中的偏移不相同。具体,结合图3,如图5所示。图5中,第一参考信号的发送周期为5,且第一参考信号在一个发送周期中的偏移为0;第二参考信号的发送周期均为4,且与第二参考信号在一个发送周期中的偏移均为1。
当然,以上只是示例,还有其他情况,比如第一参考信号的发送周期与第二参考信号的发送周期相同,且第一参考信号在一个发送周期中的偏移与第二参考信号在一个发送周期中偏移不同,在此不再赘述。
需要说明的是,第一子频带和第二子频带仅用作举例说明,用于发送第一子载波间隔的第一参考信号的子频带个数可以小于等于系统带宽上所有的子频带个数。
在该场景中,所述第一子载波与第一子频带的子载波间隔可以不同,所述第二子载波与第二子频带的子载波间隔可以不同,在此不再赘述。
第二种可能的场景:
在该场景中,网络设备在第一子频带与第二子频带上发送参考信号,比如CSI-RS,给 一个终端用户,第一子频带的子载波间隔与第二子频带的子载波间隔不同,第一子频带的子载波间隔为15kHz,第二子频带的子载波间隔为30kHz;第一子载波间隔与第二子载波间隔不相同,第一子载波间隔是由网络设备根据第一子频带的子载波间隔确定的,为15kHz;第二子载波间隔是由网络设备根据第二子频带的子载波间隔确定的,为30kHz。具体参见图6。如图6所示,为本申请实施例提供的一种参考信号示意图。
关于图6中,第一参考信号的配置包括以下一项或多项:CSI-RS的图案,CSI-RS的子载波间隔,CSI-RS的时域和频域位置,CSI-RS在第一频带上占用的的带宽,CSI-RS在第一子频带上发送的周期和偏移,CSI-RS在第一子频带上是否发送的标识,CSI-RS子频带的子载波间隔,子频带编号。其中终端获取第一子载波间隔可以根据第一参考信号配置信息中携带的第一子载波间隔,也可以根据子频带的子频带的子载波间隔确定。网络设备可以通过MIB或SIB向终端侧广播系统带宽上所有子频带的子载波间隔、在系统带宽中的位置和带宽,终端侧根据子频带编号即可获取该子频带的子载波间隔。
终端侧接收第一子频带上参考信号的配置信息,确定每个子频带上参考信号的第一子载波间隔,参考信号的图案,参考信号是否接收,参考信号的时频位置、发送周期和偏移。
在该场景中,所述第一子载波与第一子频带的子载波间隔可以不同,所述第二子载波与第二子频带的子载波间隔可以不同,在此不再赘述。
第三种可能的场景:
在该场景中,网络设备在第一子频带与第二子频带上发送参考信号,比如CSI-RS,给一个终端,第一子载波间隔与第一子频带的子载波间隔不相同,第二子载波间隔与第二子频带的子载波间隔不相同。第一图案集合与第一子频带的子载波间隔以及第一子载波间隔存在映射关系,第二图案集合与第二子频带的子载波间隔以及第二子载波间隔存在映射关系。
举例来说,第一子频带的子载波间隔为15kHz、第一子载波间隔为30kHz时,与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案可以如图7(a)所示。图7(a)中,第一图案中包括零功率RE和非零功率RE。
举例来说,第一子频带的子载波间隔为15kHz、第一子载波间隔为60kHz时,与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案可以如图7(b)所示。图7(b)中,第一图案中包括零功率RE和非零功率RE。
举例来说,第一子频带的子载波间隔为60kHz、第一子载波间隔为15kHz时,与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案可以如图7(c)所示。图7(c)中,第一图案中包括零功率RE和非零功率RE。
举例来说,第一子频带的子载波间隔为30kHz、第一子载波间隔为15kHz时,与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案可以如图7(d)所示。图7(d)中,第一图案中包括零功率RE和非零功率RE。
当然,第一图案中也可以只包括非零功率RE,具体如图8(a)至8(d)所示。图8(a)至图8(d)为与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案示意图。其中,图8(a)中,第一子频带的子载波间隔为15kHz、第一子载波间隔为30kHz。图8(b)中,第一子频带的子载波间隔为15kHz、第一子载波间隔为60kHz。图8(c)中,第一子频带的子载波间隔为60kHz、第一子载波间隔为15kHz。图8(d)中,第一子频带的子载波间隔为30kHz、第一子载波间隔为15kHz。
第一参考信号的配置包括以下一项或多项:CSI-RS的图案,CSI-RS的子载波间隔,CSI-RS的时域和频域位置,CSI-RS在第一频带上占用的的带宽,CSI-RS在第一子频带上发送的周期和偏移,CSI-RS在第一子频带上是否发送的标识,CSI-RS子频带的子载波间隔,子频带编号。所述CSI-RS的图案为上述第一图案集合中的一个。
终端侧接收第一子频带上参考信号的配置信息,确定每个子频带上参考信号的第一子载波间隔,参考信号的图案,参考信号是否接收,参考信号的时频位置、发送周期和偏移。
在该场景中,所述第一子载波与第一子频带的子载波间隔可以相同,所述第二子载波与第二子频带的子载波间隔可以相同,在此不再赘述。
当然,上述第一种可能的场景至第三种可能的场景只是示例,还可以存在其他场景,具体参考前面的描述,在此不再赘述。
上面描述的是下行参考信号如何发送,本申请实施例的方法还适用于上行参考信号的发送。具体的,如图9所示,为本申请实施例提供的一种参考信号发送方法流程示意图。
参见图9,该方法包括:
步骤901:网络设备确定第三参考信号的第三配置和第四参考信号的第四配置;所述第三配置包括第三子载波间隔;所述第四配置包括第四子载波间隔,其中,所述第三子频带的参数配置与所述第四子频带的参数配置不同。
步骤902:所述网络设备向终端发送所述第三配置以及所述第四配置。
步骤903:终端接收网络设备发送的第三配置以及第四配置。
所述第三配置包括第三子载波间隔;所述第四配置包括第四子载波间隔,其中,所述第三子频带的参数配置与所述第四子频带的参数配置不同。
步骤904:所述终端在第三子频带上发送符合第三配置的第三参考信号、在第四子频带上发送符合第四配置的第四参考信号。
步骤901至步骤904中,所述第三参考信号以及所述第四参考信号可以均为信道状态信息参考信号或者小区参考信号,所述第三参考信号以及所述第四参考信号还可以为类似于信道状态信息参考信号或者小区参考信号的参考信号。关于所述第三参考信号以及所述第四参考信号的其他内容,可以参考步骤201至步骤204中的描述,在此不再赘述。
步骤901至步骤904中,所述第三配置还可以包括以下一项或多项:
第三参考信号的发送周期;
第三参考信号在一个发送周期中的偏移;
所述第三参考信号的第三图案,或所述第三参考信号的时频位置和频域位置,即第三参考信号在所在调度资源块中时域上的符号索引和频域上的载波索引。
第三参考信号在第三子频带上占用的带宽;
第三开关标识,所述第三开关标识用于指示终端是否接收所述第三子频带上的所述第三参考信号;
第三子频带的编号。
上述内容具体可以参考步骤201至步骤204中关于第一配置或第二配置的描述,在此不再赘述。
相应的,所述第四配置的具体内容可以参考第三配置以及步骤201至步骤204中关于第一配置或第二配置的描述,在此不再赘述。
步骤901至步骤904中,所述第三子频带的参数配置与所述第四子频带的参数配置的 具体内容可以参考步骤201至步骤204中的描述,在此不再赘述。
步骤901至步骤904中,第三子载波间隔与第四子载波间隔可以相同,也可以不同,具体可以参考步骤201至步骤204中关于第一子载波间隔与第二子载波间的描述,在此不再赘述。
步骤901至步骤904中,第三子频带与第四子频带可以位于同一个载波,也可以位于不同的载波,具体可以参考参考步骤201至步骤204中的描述,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种参考信号发送装置,该装置可执行上述方法实施例。
如图10所示,为本申请实施例提供一种参考信号发送装置结构示意图。
参见图10,该装置包括:
处理单元1001,用于确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
收发单元1002,用于在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述处理单元1001具体用于:
根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
根据第一子频带的子载波间隔确定第一子载波间隔,根据第二子频带的子载波间隔确定第二子载波间隔。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述处理单元1001具体用于:
确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发单元1002还用于:
发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元1002可以由收发机实现,处理单元1001可以由处理器实现。如图11所示,网络设备1100可以包括 处理器1101、收发机1102和存储器1103。其中,存储器1103可以用于存储网络设备1100出厂时预装的程序/代码,也可以存储用于处理器1101执行时的代码等。
基于相同的技术构思,本申请实施例还提供一种参考信号接收装置,该装置可执行上述方法实施例。
如图12所示,为本申请实施例提供一种参考信号接收装置结构示意图。
参见图12,该装置包括:
收发单元1201,用于在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
处理单元1202,用于分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
可选的,所述参数配置包括以下一项或多项:
子载波间隔;
载波频率;
子频带带宽;
子频带在系统带宽中的位置:
循环前缀CP类型。
可选的,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由所述第二子频带的子载波间隔确定。
可选的,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
可选的,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
可选的,所述收发单元1201还用于:
接收所述网络设备发送的第一开关标识;
根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
可选的,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元1201可以由收发机实现,处理单元1202可以由处理器实现。如图13所示,终端1300可以包括处理器1301、收发机1302和存储器1303。其中,存储器1303可以用于存储终端1300出厂时预装的程序/代码,也可以存储用于处理器1301执行时的代码等。
收发机可以是有线收发信机,无线收发信机或其组合。有线收发信机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发信机例如可以为无线局域网收发信机,蜂窝网络收发信机或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器1501还可以进一步包括硬件芯片。上述硬件芯片可以是专用集 成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器还可以包括上述种类的存储器的组合。
其中,图11和图13中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种参考信号发送方法,其特征在于,包括:
    网络设备确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
    所述网络设备在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
    其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
  2. 根据权利要求1所述的方法,其特征在于,所述参数配置包括以下一项或多项:
    子载波间隔;
    载波频率;
    子频带带宽;
    子频带在系统带宽中的位置:
    循环前缀CP类型。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备确定第一子载波间隔和第二子载波间隔,包括:
    所述网络设备根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
    所述网络设备根据第一子频带的子载波间隔确定第一子载波间隔,所述网络设备根据第二子频带的子载波间隔确定第二子载波间隔。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
  5. 根据权利要求4所述的方法,其特征在于,所述网络设备确定第一图案,包括:
    所述网络设备确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述第一图案集合中选择一个图案作为所述第一图案。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
  9. 一种参考信号接收方法,其特征在于,包括:
    终端在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同;
    所述终端分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
  10. 根据权利要求9所述的方法,其特征在于,所述参数配置包括以下一项或多项:
    子载波间隔;
    载波频率;
    子频带带宽;
    子频带在系统带宽中的位置:
    循环前缀CP类型。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
    所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由所述第二子频带的子载波间隔确定。
  12. 根据权利要求9至11任一所述的方法,其特征在于,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
  13. 根据权利要求12所述的方法,其特征在于,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
  14. 根据权利要求9至13任一所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的第一开关标识;
    所述终端根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
  15. 根据权利要求9至14任一所述的方法,其特征在于,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
  16. 一种参考信号发送装置,其特征在于,包括:
    处理单元,用于确定第一参考信号的第一配置和第二参考信号的第二配置;所述第一配置包括第一子载波间隔;所述第二配置包括第二子载波间隔;
    收发单元,用于在第一子频带上发送符合所述第一配置的第一参考信号、在第二子频带上发送符合所述第二配置的第二参考信号;
    其中,所述第一子频带的参数配置与所述第二子频带的参数配置不同。
  17. 根据权利要求16所述的装置,其特征在于,所述参数配置包括以下一项或多项:
    子载波间隔;
    载波频率;
    子频带带宽;
    子频带在系统带宽中的位置:
    循环前缀CP类型。
  18. 根据权利要求16或17所述的装置,其特征在于,所述处理单元具体用于:
    根据第一子频带的子载波间隔确定第一子载波间隔以及第二子载波间隔;或者
    根据第一子频带的子载波间隔确定第一子载波间隔,根据第二子频带的子载波间隔确定第二子载波间隔。
  19. 根据权利要求16至18任一所述的装置,其特征在于,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元具体用于:
    确定与第一子频带的子载波间隔以及第一子载波间隔映射的第一图案集合,并从所述 第一图案集合中选择一个图案作为所述第一图案。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
  22. 根据权利要求19至21任一所述的装置,其特征在于,所述收发单元还用于:
    发送第一开关标识,所述第一开关标识用于指示终端是否接收所述第一子频带上的所述第一参考信号。
  23. 根据权利要求19至22任一所述的装置,其特征在于,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
  24. 一种参考信号接收装置,其特征在于,包括:
    收发单元,用于在第一子频带上接收符合第一配置的第一参考信号、在第二子频带上接收符合第二配置的第二参考信号;所述第一配置包括第一子载波间隔,所述第二配置包括第二子载波间隔,所述第一子频带的参数配置与所述第二子频带的参数配置不同;
    处理单元,用于分别根据所述第一参考信号以及所述第二参考信号反馈信道质量。
  25. 根据权利要求24所述的装置,其特征在于,所述参数配置包括以下一项或多项:
    子载波间隔;
    载波频率;
    子频带带宽;
    子频带在系统带宽中的位置:
    循环前缀CP类型。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第一子载波间隔以及第二子载波间隔由第一子频带的子载波间隔确定;或者
    所述第一子载波间隔由所述第一子频带的子载波间隔确定,所述第二子载波间隔由所述第二子频带的子载波间隔确定。
  27. 根据权利要求24至26任一所述的装置,其特征在于,所述第一配置中还包括所述第一参考信号的第一图案,或所述第一参考信号的时频位置和频域位置,所述第一图案是指在固定时频资源下第一参考信号的时域位置和频域位置。
  28. 根据权利要求27所述的装置,其特征在于,所述第一图案中包括零功率资源元素RE和非零功率RE中的一种或多种。
  29. 根据权利要求24至28任一所述的装置,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第一开关标识;
    根据所述第一开关标识确定是否在所述第一子频带上接收所述的第一参考信号。
  30. 根据权利要求24至29任一所述的装置,其特征在于,所述第一配置中还包括所述第一参考信号的发送周期,所述第二配置中还包括所述第二参考信号的发送周期。
PCT/CN2017/118389 2017-01-06 2017-12-25 一种参考信号发送方法、接收方法及装置 WO2018126931A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17890234.2A EP3557806A4 (en) 2017-01-06 2017-12-25 TRANSMITTING AND RECEIVING METHOD AND DEVICE FOR REFERENCE SIGNAL
JP2019536899A JP2020507947A (ja) 2017-01-06 2017-12-25 参照信号送信方法及び装置並びに参照信号受信方法及び装置
US16/503,577 US10892878B2 (en) 2017-01-06 2019-07-04 Reference signal sending method and apparatus, and reference signal receiving method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011309.4 2017-01-06
CN201710011309.4A CN108282302B (zh) 2017-01-06 2017-01-06 一种参考信号发送方法、接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/503,577 Continuation US10892878B2 (en) 2017-01-06 2019-07-04 Reference signal sending method and apparatus, and reference signal receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2018126931A1 true WO2018126931A1 (zh) 2018-07-12

Family

ID=62789083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118389 WO2018126931A1 (zh) 2017-01-06 2017-12-25 一种参考信号发送方法、接收方法及装置

Country Status (5)

Country Link
US (1) US10892878B2 (zh)
EP (1) EP3557806A4 (zh)
JP (1) JP2020507947A (zh)
CN (1) CN108282302B (zh)
WO (1) WO2018126931A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809494B (zh) * 2017-05-05 2021-03-23 维沃移动通信有限公司 Csi-rs序列的发送方法、接收方法、相关设备及系统
CN110830212B (zh) 2018-08-10 2021-08-20 华为技术有限公司 一种参考信号发送、接收方法及装置
CN111726311B (zh) * 2019-03-18 2021-10-22 华为技术有限公司 数据信道的传输方法及装置
KR20230098922A (ko) 2019-05-02 2023-07-04 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 공유 채널을 송수신하는 방법및 이를 위한 장치
CN115603883A (zh) * 2020-02-14 2023-01-13 上海朗帛通信技术有限公司(Cn) 一种被用于无线通信的节点中的方法和装置
CN112075049B (zh) * 2020-08-06 2023-10-03 北京小米移动软件有限公司 参考信号的配置、接收方法及装置、网络设备、用户设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356574A (zh) * 2009-03-19 2012-02-15 日本电气株式会社 将下行链路解调参考信号插入到ofdm帧中
US20130064203A1 (en) * 2010-05-21 2013-03-14 Fujitsu Limited Transmitter, receiver, communication system, and communication method
CN103166882A (zh) * 2011-12-19 2013-06-19 无锡国科微纳传感网科技有限公司 信道估计方法及装置
CN105827383A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047744B2 (ja) * 2013-01-23 2016-12-21 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
US10038581B2 (en) * 2015-06-01 2018-07-31 Huawei Technologies Co., Ltd. System and scheme of scalable OFDM numerology
CN106658734B (zh) * 2017-01-03 2019-07-12 东南大学 一种适用于不同子载波间隔的多载波资源分配方法
US11432229B2 (en) * 2018-10-05 2022-08-30 Qualcomm Incorporated Identification of cells in new radio unlicensed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356574A (zh) * 2009-03-19 2012-02-15 日本电气株式会社 将下行链路解调参考信号插入到ofdm帧中
US20130064203A1 (en) * 2010-05-21 2013-03-14 Fujitsu Limited Transmitter, receiver, communication system, and communication method
CN105827383A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
CN103166882A (zh) * 2011-12-19 2013-06-19 无锡国科微纳传感网科技有限公司 信道估计方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557806A4

Also Published As

Publication number Publication date
CN108282302A (zh) 2018-07-13
JP2020507947A (ja) 2020-03-12
EP3557806A1 (en) 2019-10-23
EP3557806A4 (en) 2019-12-18
US20190327065A1 (en) 2019-10-24
US10892878B2 (en) 2021-01-12
CN108282302B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
US11757511B2 (en) Ordering of CSI in UCI
WO2018126931A1 (zh) 一种参考信号发送方法、接收方法及装置
KR102460799B1 (ko) 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치
CN110365455B (zh) 一种定位参考信号传输方法及装置
EP3860024B1 (en) Methods executed by user equipment and user equipment
US20210337514A1 (en) Sidelink reference signal transmission method and communication apparatus
JP7471370B2 (ja) 検出ウィンドウ指示方法及び装置
KR102611078B1 (ko) 슬롯 및 미니 슬롯에서의 기준 신호 위치 시그널링
JP2020504484A (ja) 基準信号の伝送方法及び通信装置
EP3565337A1 (en) User terminal and wireless communications method
KR20210042359A (ko) 사용자 장비에 의해 실행되는 방법 및 사용자 장비
KR20170083014A (ko) 비면허 스펙트럼 상에서 lte 셀들의 효율적 동작
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020024202A1 (en) Dynamic adjustment of pdcch monitoring occasions
KR20200065059A (ko) 무선 통신 방법, 단말 및 네트워크 기기
WO2019153853A1 (zh) 资源指示方法、用户设备及网络侧设备
KR102070961B1 (ko) 채널 상태 정보 참조 신호 송신을 위한 방법 및 디바이스
KR20200035308A (ko) 제어 정보 전송/수신 방법 및 장치
JP7332041B2 (ja) 方法、及び、端末デバイス
US20170257848A1 (en) Measurement-relates signaling for wireless communication
CN108282315B (zh) 一种时隙类型指示方法、确定方法及装置
KR20210017777A (ko) 차세대 무선망에서 주파수 영역 PRS muting 설정 방법 및 장치
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
CN108271257B (zh) 一种资源配置方法及装置
EP4042614B1 (en) Rv sequence for enhanced multi-segment pusch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890234

Country of ref document: EP

Effective date: 20190718