WO2018126826A1 - 一种人工冻结法封闭驱替土壤中污染物的方法 - Google Patents

一种人工冻结法封闭驱替土壤中污染物的方法 Download PDF

Info

Publication number
WO2018126826A1
WO2018126826A1 PCT/CN2017/114262 CN2017114262W WO2018126826A1 WO 2018126826 A1 WO2018126826 A1 WO 2018126826A1 CN 2017114262 W CN2017114262 W CN 2017114262W WO 2018126826 A1 WO2018126826 A1 WO 2018126826A1
Authority
WO
WIPO (PCT)
Prior art keywords
freezing
soil
frozen
pollutants
contaminated
Prior art date
Application number
PCT/CN2017/114262
Other languages
English (en)
French (fr)
Inventor
王建州
周国庆
李雅筠
梁恒昌
杨森
陈拓
赵光思
刘书幸
酒逢源
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US16/462,528 priority Critical patent/US10654082B2/en
Priority to CA3045862A priority patent/CA3045862C/en
Publication of WO2018126826A1 publication Critical patent/WO2018126826A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to a method for treating green contaminated soil, in particular to a method for sealing and expelling pollutants in soil by artificial freezing method.
  • the purpose of the invention is to provide a method for artificially freezing the pollutants in the soil by using the artificial freezing method to deal with the disadvantages of the existing contaminated soil technology that can not effectively control the polluted soil and generate secondary pollution.
  • the artificial freezing method of the present invention closes the method for displacing pollutants in the soil: forming a closed frozen soil wall around the contaminated site by artificial freezing on the area and depth range of the proven contaminated site, using the frozen soil
  • the wall has its own anti-seepage function, which closes the contaminated site to avoid further expansion of the pollutants.
  • the freezing rate of /day ⁇ 10 cm / day from the outside to the inside using the principle of freezing purification gradually freezes the pollutants in the contaminated soil, concentrates the pollutants, and the contaminated soil with high residual concentration is treated with chemical treatment.
  • the position of the artificially frozen borehole is determined, and the position of the frozen hole is 2 to 6 m away from the contaminated site, the depth of the frozen hole exceeds the depth of the contaminated site by 3 to 10 m, or the depth is deep and stable.
  • the interval of the water barrier is more than 3m.
  • the spacing of the frozen holes is determined to be 1 ⁇ 3m according to the hydrogeological conditions of the site.
  • the form of the frozen wall is determined according to the shape of the contaminated site, and a closed freezing curtain is formed on the periphery of the contaminated site.
  • the pollution types of the contaminated sites are determined, the precipitation characteristics of the pollutants are determined, and the freeze-precipitation experiments are carried out in the laboratory to determine the freezing parameters: freezing temperature and freezing rate, to achieve the most efficient effect of freezing displacement.
  • the artificial freezing method adopts an ammonia refrigeration unit and a brine circulation system; the power of the refrigeration unit is determined according to the volume of the frozen soil, the ground temperature, the temperature, the freezing temperature, and the freezing front propulsion rate, and the freezing tube is welded by a seamless steel pipe.
  • the tube is made of plastic tube.
  • the brine circulation system uses a positive circulation in the brine circulation system. After the frozen wall overlaps, the inner freezing front is pushed from the outside to the inside, and the freezing tube is gradually arranged inward as the inner freezing front advances, and the displacement is determined. Area, pull out the freezing tube, naturally thaw, monitor the freezing advancement through the temperature measurement point of the layout; set the temperature measuring point to monitor the freezing advancement process, the freezing front advances more than 2m, the frozen wall inside fills the freezing hole, and the freezing hole distance Layer freezing The front surface is not less than 0.5m, and the outer freezing hole stops freezing and naturally thaws, adopting alternate propulsion mode.
  • the pollution content of the frozen soil is monitored, the displacement effect is monitored, the freezing parameters are optimized, and the freezing speed is advanced.
  • the pollution is concentrated in a small enclosed area, and the traditional chemical treatment measures of the pollutants are used to concentrate the remaining contaminated soil, and the freezing state is maintained during the treatment to avoid improper leakage of the pollutants.
  • the freezing is stopped and the frozen wall is naturally melted.
  • the beneficial effect is that, by adopting the above scheme, the principle of freezing and purifying the pollutants formed by water freezing in the artificial freezing process is utilized, and the green non-polluting artificial freezing technology is used to inject only the cold amount into the contaminated site, thereby not only achieving the purpose of closing the contaminated site. Moreover, it is also possible to displace the pollutants in the contaminated soil through the freezing method of the test, and avoid the risk of direct chemical treatment cost and secondary pollution.
  • the layout of the artificial frozen frozen soil curtain is flexible, and it is flexibly arranged according to the characteristics of the contaminated site.
  • the depth of the urban contaminated site is small.
  • the accuracy of the frozen hole drilling can meet the requirements of the frozen curtain layout.
  • the real-time temperature and pollutant concentration detection during the freeze flooding process is further optimized to adjust the freezing parameters: freezing temperature and freezing rate to ensure that the pollution displacement meets the requirements.
  • Figure 1 (a) is a schematic view of the contaminated site of the artificial freezing method of the present invention.
  • Fig. 1(b) is a schematic view showing the closed contaminated site of the artificial freezing method of the present invention.
  • Fig. 1(c) is a schematic view showing the contaminated site of the closed-loop displacement of the artificial freezing method of the present invention.
  • Fig. 1(d) is a schematic view showing the contaminated site of the closed displacement of the three cycles of the artificial freezing method of the present invention.
  • Figure 2 is a schematic view of a freeze tube of the present invention.
  • the artificial freezing method of the invention closes the method for displacing pollutants in the soil: the area and the depth range of the proven contaminated site are artificially frozen to form a closed frozen soil wall around the contaminated site, and the frozen soil wall itself is excellent.
  • the anti-seepage function closes the contaminated site to avoid further expansion of the pollutants; then, for the characteristics of the freezing temperature and the precipitation rate of the pollutants, the freezing temperature of -10 ° C to -30 ° C is selected to control 1 cm / day ⁇
  • the freezing rate of 10 cm/day uses the principle of freezing and purging from the outside to the inside to gradually displace the pollutants in the contaminated soil, concentrate the pollutants, and use the chemical treatment for the contaminated soil with high residual concentration.
  • the location of the frozen hole is 2 to 6 m away from the contaminated site.
  • the depth of the frozen hole exceeds the depth of the contaminated site by 3 to 10 m, or the depth is deep into the stable aquifer.
  • the range is more than 3m.
  • the spacing of the frozen holes is determined to be 1 ⁇ 3m according to the hydrogeological conditions of the site.
  • the form of the frozen soil wall is determined according to the shape of the contaminated site, and a closed freezing curtain is formed on the periphery of the contaminated site.
  • the artificial freezing method adopts ammonia refrigeration unit and brine circulation system; the power of the refrigeration unit is based on the frozen soil.
  • the volume, ground temperature, temperature, freezing temperature and freezing front propulsion rate are determined together.
  • the freezing pipe is welded by a seamless steel pipe, and the liquid supply pipe is made of a plastic pipe.
  • the brine circulation system uses a positive circulation in the brine circulation system.
  • the inner freezing front is pushed from the outside to the inside.
  • the freezing tube is gradually arranged inward to determine the area where the displacement is completed.
  • the freezing tube is naturally thawed, and the freezing point is monitored by the temperature measuring point.
  • the temperature measuring point is set to monitor the freezing progress.
  • the freezing front is pushed more than 2m, the frozen wall is filled with the freezing hole, and the freezing hole is away from the inner freezing front.
  • the outer freezing hole stops freezing and naturally thaws, and adopts alternate pushing mode.
  • the brine circulation adopts a positive cycle as the low temperature brine is fed from the liquid supply pipe, and the liquid return pipe is returned.
  • the pollution content of the frozen soil is monitored, the displacement effect is measured, the freezing parameters are optimized, and the freezing speed is advanced.
  • the pollution is concentrated in a small enclosed area, and the traditional chemical treatment measures of the pollutants are used to centrally treat the remaining contaminated soil, and the frozen state is maintained during the treatment to avoid improper leakage of the pollutants.
  • the freezing is stopped and the frozen wall is naturally melted.
  • Example 1 As shown in Fig. 1 (a) and (h), the artificial freezing method for closing the pollutants in the soil is firstly based on the characteristics of the contaminated site 1: the site range and depth, 2 to 6 m outside the contaminated site. Arrange at least one working freezing pipe in the range; the freezing pipes shown in Figures 1(c) and (d) are arranged in 2 and 3 turns, and the distance between the rings and the freezing pipes is 1.5 to 2.0 m. The spacing is 1 ⁇ 3m, and the difference between the freezing tubes between the rings and the rings is arranged. The depth of the freezing pipes exceeds the depth of the contaminated site by 3 ⁇ 10m.
  • the method of artificial refrigeration ammonia refrigeration, working brine tube 5 is circulating in the brine, see Figure 2, the low temperature brine is fed by the liquid supply pipe 8, the liquid return pipe is 7, the outer pipe of the freezing pipe is in direct contact with the soil; After the curtain 4 is in the circle, the frozen inner wall front surface 2 and the frozen wall outer front surface 3 are implemented by a preset temperature measuring point;
  • the inner ring freezing tube 5 is arranged in the flower arrangement manner on the inner side of the freezing curtain 4, and the freezing of the outer ring freezing tube 5 is gradually stopped, and the displacement effect is naturally thawed after the displacement effect is determined.
  • the diameter is 10-20 m
  • the concentration of pollutants is 150-200% higher than that in the undisplaced state.
  • the concentrated contaminated site The soil in the range is chemically treated.
  • Pre-examine the scope of the measured contaminated site: area and depth; determine the layout of the artificially frozen curtain according to the characteristics of the contaminated site: the location and depth of the frozen pipe;
  • the freezing tube is welded by seamless steel pipe, and the liquid supply tube is made of plastic. tube;
  • the inner frozen front gradually advances from the outside to the inside, displaces the pollutants, fills the frozen holes inside the frozen wall, and the outer freezing holes stop freezing and naturally thaw, using alternate propulsion mode;
  • the pollution content of the frozen soil is monitored and the freezing parameters are optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种人工冻结法封闭驱替土壤中污染物的方法,属于绿色污染土壤处理方法。驱替土壤中污染物的方法:对探明的污染场地(1)的面积和深度范围,采用人工冻结方式在污染场地四周形成封闭的冻土墙,利用冻土墙自身优良的防渗功能,将污染场地封闭起来,避免污染物进一步扩大;然后,针对污染物的结冰温度和析出速率的特性,选择-10℃~-30℃的冻结温度,控制1厘米/天~10厘米/天的冻结速率,由外向内利用冻结净化原理逐步冻结驱替污染土壤中的污染物,将污染物集中,剩余浓度高的污染土壤再采用化学处理。充分利用了水结冰相变析出污染物的冻结净化功能,治理过程中只向地层中输入冷量,该方法无污染、施工简单、性价比高。

Description

一种人工冻结法封闭驱替土壤中污染物的方法 技术领域
本发明涉及一种绿色污染土壤处理方法,特别是一种人工冻结法封闭驱替土壤中污染物的方法。
背景技术
由于城市地域的不断发展,原本位于市郊的化工厂逐渐包含于城市内部,为了避免污染,这些化工厂外迁,增加了城市发展的空间,同时也遗留下大量受污染的场地,为了达到对污染场地治理,目前常用的方法是采用化学反应的方法向污染场地注入能够反应的化学物质,或者将其与污染土搅拌;这些方法存在以下两方面的问题:(一)注入的化学物质可能造成场地的二次污染(污染本身扩散不均匀,部分未受到污染土会在治理中造成二次污染);(二)污染场地范围大,彻底处理涉及的工程量惊人,以4平方公里的面积,污染场地深度10m计算,需要处理的污染土达到:4000万立方米。
综上所述,现场迫切需要一种既能达有效治理污染土,同时避免二次污染的方法。
发明内容
技术问题:发明的目的是针对现有处理污染土技术不能达有效治理污染土,同时产生二次污染的弊端,提供一种人工冻结法封闭驱替土壤中污染物的方法。
技术方案:本发明的人工冻结法封闭驱替土壤中污染物的方法:对探明的污染场地的面积和深度范围,采用人工冻结的方式在污染场地四周形成封闭的冻土墙,利用冻土墙自身优良的防渗功能,将污染场地封闭起来,避免污染物进一步扩大;然后,针对污染物的结冰温度和析出速率的特性,选择-10℃~-30℃的冻结温度,控制1厘米/天~10厘米/天的冻结速率,由外向内利用冻结净化原理逐步冻结驱替污染土壤中的污染物,将污染物集中,剩余浓度高的污染土壤再采用化学处理。
进一步的,依据探明的污染场地的面积和深度范围,确定人工冻结钻孔的位置,冻结孔的位置远离污染场地2~6m,冻结孔深度超过污染场地深度3~10m,或者深度深入到稳定隔水层范围3m以上,具体依据场地的水文地质条件决定冻结孔间距1~3m,冻土墙的形式据污染场地的形状确定,在污染场地外围构成封闭冻结帷幕。
进一步的,确定污染场地的污染种类,明确污染物的析出特性,在实验室内进行冻结析出实验,确定冻结参数:冻结温度和冻结速率,达到最高效的冻结驱替的效果。
进一步的,人工冻结方式采用氨制冷机组,盐水循环系统;制冷机组的功率依据冻结土体的体积、地温、气温、冻结温度和冻结锋面推进速率共同决定,冻结管采用无缝钢管焊接,供液管采用塑料管。
进一步的,氨制冷机组,盐水循环系统中盐水循环采用正循环,冻结壁交圈后,内侧冻结锋面由外向内推进,随着内侧冻结锋面的推进冻结管逐渐向内布置,确定驱替完成的区域,拔出冻结管,自然解冻,通过布设的温度测点监测冻结方面的推进;布设的温度测点监测冻结的推进过程,冻结锋面推进2m以上,冻结壁内侧补冻结孔,冻结孔距离内层冻结 锋面不小于0.5m,外侧冻结孔停止冻结自然解冻,采用交替推进方式。
进一步的,冻结驱替过程中,对冻结土体的污染含量进行实施监测,监测驱替效果,优化调整冻结参数,推进冻结速度。
进一步的,通过冻结驱替将污染集中于封闭的小区域内,采用污染物传统的化学处理措施,对剩余污染土进行集中处理,处理过程中保持冻结状态,避免污染物处理不当二次泄露。
进一步的,确定剩余污染场地处理达标后,停止冻结,冻结壁自然融化。
有益效果,由于采用了上述方案,利用人工冻结过程水结冰析出污染物的冻结净化原理,借助绿色无污染的人工冻结技术,只向污染场地内注入冷量,不仅能够达到封闭污染场地的目的,而且还能够通过试验的冻结方式驱替污染土中污染物的目标,避免直接化学处理成本大,二次污染的危险。
人工冻结冻土帷幕的布置灵活,依据污染场地的特征灵活布置,城市污染场地深度范围较小,目前冻结孔钻孔精度可以满足冻结帷幕布置的要求。
冻结驱替过程中实时温度和污染物浓度检测,进一步优化调整冻结参数:冻结温度和冻结速率,确保污染驱替达到要求。
附图说明
图1(a)是本发明人工冻结法污染场地示意图。
图1(b)是本发明人工冻结法1圈封闭污染场地示意图。
图1(c)是本发明人工冻结法2圈封闭驱替污染场地示意图。
图1(d)是本发明人工冻结法3圈封闭驱替污染场地示意图。
图2是本发明的冻结管示意图。
图中:1-污染场地;2-冻结内锋面;3-冻结外锋面;4-冻土帷幕;5-冻结管;6-回液管;7-供液管;8-冻结管外管。
具体实施方式
本发明的人工冻结法封闭驱替土壤中污染物的方法:对探明的污染场地的面积和深度范围,采用人工冻结的方式在污染场地四周形成封闭的冻土墙,利用冻土墙自身优良的防渗功能,将污染场地封闭起来,避免污染物进一步扩大;然后,针对污染物的结冰温度和析出速率的特性,选择-10℃~-30℃的冻结温度,控制1厘米/天~10厘米/天的冻结速率,由外向内利用冻结净化原理逐步驱替污染土壤中的污染物,将污染物集中,剩余浓度高的污染土壤再采用化学处理。
依据探明的污染场地的面积和深度范围,确定人工冻结钻孔的位置,冻结孔的位置远离污染场地2~6m,冻结孔深度超过污染场地深度3~10m,或者深度深入到稳定隔水层范围3m以上,具体依据场地的水文地质条件决定冻结孔间距1~3m,冻土墙的形式依据污染场地的形状确定,在污染场地外围构成封闭冻结帷幕。
确定污染场地的污染种类,明确污染物的析出特性,在实验空内进行冻结析出实验,确定冻结参数:冻结温度和冻结速率,达到最高效的冻结驱替的效果。
人工冻结方式采用氨制冷机组,盐水循环系统;制冷机组的功率依据冻结土体的 体积、地温、气温、冻结温度和冻结锋面推进速率共同决定,冻结管采用无缝钢管焊接,供液管采用塑料管。
氨制冷机组,盐水循环系统中盐水循环采用正循环,冻结壁交圈后,内侧冻结锋面由外向内推进,随着内侧冻结锋面的推进冻结管逐渐向内布置,确定驱替完成的区域,拔出冻结管,自然解冻,通过布设的温度测点监测冻结方面的推进;布设的温度测点监测冻结的推进过程,冻结锋面推进2m以上,冻结壁内侧补冻结孔,冻结孔距离内层冻结锋面不小于0.5m,外侧冻结孔停止冻结自然解冻,采用交替推进方式。所述的盐水循环采用正循环为低温盐水由供液管进,回液管回。
冻结驱替过程中,对冻结土体的污染含量进行实施监测,临测驱替效果,优化调整冻结参数,推进冻结速度。
通过冻结驱替将污染集中于封闭的小区域内,采用污染物传统的化学处理措施,对剩余污染土进行集中处理,处理过程中保持冻结状态,避免污染物处理不当二次泄露。
确定剩余污染场地处理达标后,停止冻结,冻结壁自然融化。
下面结合附图中的实施例对本发明作进一步的说明:
实施例1:如图1(a)、(h)所示,人工冻结法封闭驱替土壤中污染物的方法,首先依据污染场地1的特征:场地范围、深度,在污染场地外围2~6m范围布置至少一圈工作冻结管;图1(c)、(d)所示冻结管布置为2圈和3圈,圈与圈之间的冻结管距离为1.5~2.0m,冻结管之间的间距为1~3m,圈与圈之间的冻结管间差排列,冻结管深度超过污染场地深度为3~10m。
采用人工制冷的方式:氨制冷、工作冻结管5内盐水正循环,见图2,低温盐水由供液管8进,回液管7回,冻结管外管9和土体直接接触;当冻结帷幕4交圈后,通过预设的温度测点实施临测冻结壁内锋面2和冻结壁外锋面3;
当冻结壁的内锋面向污染场地扩展2m以上,在冻结帷幕4内侧插花方式布置内圈冻结管5,并逐步停止外圈冻结管5的冻结,确定驱替效果后自然解冻。
为了达到最优化的驱替效果,需要针对污染的特性,开展合适冻结参数的室内实验,确定污染物的结冰温度和析出效率与冻结速率,并通过现场驱替效果的检验,调整和优化冻结参数:冻结温度和冻结速率。
采用人工冻结驱替方式将污染场地1缩小到一定范围后,直径10~20m,污染物的浓度大于未驱替状态下150~200%,在保持冻结帷幕4的条件下,对集中的污染场地范围的土进行化学处理,经检验确定场地范围污染物达标后,停止所有冻结管5的冻结,自然解冻。
本发明的人工冻结法封闭驱替土壤中污染物方法步骤概括如下:
1.预先考察实测污染场地的范围:面积和深度;依据污染场地的特征确定人工冻结帷幕的布置形式:冻结管布置位置和深度;
2.确定污染物的类型,实验污染物的析出特性和冻结参数:冻结温度和冻结速率;3.采用氨制冷机组和盐水正循环开始冻结,冻结管采用无缝钢管焊接,供液管采用塑料管;
4.冻结壁交圈后,内侧冻结锋面由外向内逐渐推进,驱替污染物,冻结壁内侧补冻结孔,外侧冻结孔停止冻结自然解冻,采用交替推进方式;
5.冻结驱替过程中,对冻结土体的污染含量进行实施监测,优化调整冻结参数;
6.对于驱替后富集的污染场地,采用传统的化学处理措施,处理过程中保持冻结状态,避免污染物的二次泄露;
7.确定剩余污染场地达到处理标准后,停止冻结,冻结壁自然融化。

Claims (8)

  1. 一种人工冻结法封闭驱替土壤中污染物的方法,其特征在于:对探明的污染场地的面积和深度范围,采用人工冻结方式在污染场地四周形成封闭的冻土墙,利用冻土墙自身优良的防渗功能,将污染场地封闭起来,避免污染物进一步扩大;然后,针对污染物的结冰温度和析出速率的特性,选择-10℃~-30℃的冻结温度,控制1厘米/天~10厘米/天的冻结速率,由外向内利用冻结净化原理逐步冻结驱替污染土壤中的污染物,将污染物集中,剩余浓度高的污染土壤再采用化学处理。
  2. 根据权利要求1所述的人工冻结法封闭驱替土壤中污染物的方法,其特征在于:依据探明的污染场地的面积和深度范围,确定人工冻结钻孔的位置,冻结孔的位置远离污染场地2~6m,冻结孔深度超过污染场地深度3~10m,或者深度深入到稳定隔水层范围3m以上,具体依据场地的水文地质条件决定冻结孔间距1~3m,冻土墙的形式依据污染场地的形状确定,在污染场地外围构成封闭冻结帷幕。
  3. 根据权利要求1所述的人工冻结法封闭驱替土壤中污染物的方法,其特征在于:确定污染场地的污染种类,明确污染物的析出特性,在实验室内进行冻结析出实验,确定冻结参数:冻结温度和冻结速率,达到最高效的冻结驱替的效果。
  4. 根据权利要求1所述的人工冻结法封闭驱替土壤中污染物的方法,其特征在于:人工冻结方式采用氨制冷机组,盐水循环系统;制冷机组的功率依据冻结土体的体积、地温、气温、冻结温度和冻结锋面推进速率共同决定,冻结管采用无缝钢管焊接,供液管采用塑料管。
  5. 根据权利要求4所述的一种人工冻结法封闭驱替土壤中污染物的方法,其特征在于:氨制冷机组,盐水循环系统中盐水循环采用正循环,冻结壁交圈后,内侧冻结锋面由外向内推进,随着内侧冻结锋面的推进冻结管逐渐向内布置,确定驱替完成的区域,拔出冻结管,自然解冻,通过布设的温度测点监测冻结方面的推进;布设的温度测点监测冻结的推进过程,冻结锋面推进2m以上,冻结壁内侧补冻结孔,冻结孔距离内层冻结锋面不小于0.5m,外侧冻结孔停止冻结自然解冻,采用交替推进方式。
  6. 根据权利要求1所述的一种人工冻结法封闭驱替土壤中污染物的方法,其特征在于:冻结驱替过程中,对冻结土体的污染含量进行实施监测,监测驱替效果,优化调整冻结参数,推进冻结速度。
  7. 根据权利要求1所述的一种人工冻结法封闭驱替土壤中污染物的方法,其特征在于:通过冻结驱替将污染集中于封闭的小区域内,采用污染物传统的化学处理措施,对剩余污染土进行集中处理,处理过程中保持冻结状态,避免污染物处理不当二次泄露。
  8. 根据权利要求1所述的一种人工冻结法封闭驱替土壤中污染物的方法,其特征在于:确定污染处理达到要求后,停止冻结,冻结壁自然融化。
PCT/CN2017/114262 2017-01-05 2017-12-01 一种人工冻结法封闭驱替土壤中污染物的方法 WO2018126826A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/462,528 US10654082B2 (en) 2017-01-05 2017-12-01 Method using artificial freezing technique for sealing and displacement of soil pollutant
CA3045862A CA3045862C (en) 2017-01-05 2017-12-01 Method using artificial freezing technique for sealing and displacement of soil pollutant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008526.8A CN106734133A (zh) 2017-01-05 2017-01-05 一种人工冻结法封闭驱替土壤中污染物的方法
CN201710008526.8 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018126826A1 true WO2018126826A1 (zh) 2018-07-12

Family

ID=58949789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114262 WO2018126826A1 (zh) 2017-01-05 2017-12-01 一种人工冻结法封闭驱替土壤中污染物的方法

Country Status (4)

Country Link
US (1) US10654082B2 (zh)
CN (1) CN106734133A (zh)
CA (1) CA3045862C (zh)
WO (1) WO2018126826A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106734133A (zh) 2017-01-05 2017-05-31 中国矿业大学 一种人工冻结法封闭驱替土壤中污染物的方法
CN107402077B (zh) * 2017-09-08 2023-10-27 湖北科技学院 一种隧道冻融圈温度监测装置
CN108217779B (zh) * 2018-02-23 2020-11-10 中国神华能源股份有限公司 一种地下水库分级净化系统及其布设方法
CN110624927A (zh) * 2018-06-25 2019-12-31 科盛环保科技股份有限公司 一种在开挖过程中降低土壤中污染物挥发性的方法
CN110397045A (zh) * 2019-08-01 2019-11-01 中国矿业大学 一种具有冻结封水功能的压入式槽钢板桩深基坑支护结构及方法
CN113617804B (zh) * 2021-08-17 2023-05-23 昆明理工大学 一种基于硫酸盐还原菌和生物质的堆场防护方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324137A (en) * 1993-02-18 1994-06-28 University Of Washington Cryogenic method and system for remediating contaminated earth
US5730550A (en) * 1995-08-15 1998-03-24 Board Of Trustees Operating Michigan State University Method for placement of a permeable remediation zone in situ
WO2003035987A2 (en) * 2001-10-24 2003-05-01 Shell Oil Company Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
CN1575376A (zh) * 2001-10-24 2005-02-02 国际壳牌研究有限公司 利用阻挡层就地回收含烃地层中的烃
JP2005270963A (ja) * 2004-02-26 2005-10-06 Mayekawa Mfg Co Ltd 汚染土壌の浄化方法及び該装置
JP2006082008A (ja) * 2004-09-16 2006-03-30 Ohbayashi Corp 汚染土壌の処理方法
JP3814716B2 (ja) * 2001-08-24 2006-08-30 独立行政法人科学技術振興機構 汚染土壌の浄化方法及び浄化装置
CN106216381A (zh) * 2016-08-05 2016-12-14 上海漕河泾桃浦科技智慧城经济发展有限公司 污染土壤的冷冻隔离与原位热解吸一体化系统及处理方法
CN106734133A (zh) * 2017-01-05 2017-05-31 中国矿业大学 一种人工冻结法封闭驱替土壤中污染物的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833796A1 (de) * 1988-10-05 1990-04-12 Linde Ag Verfahren und vorrichtung zur sanierung kontaminierter boeden
US5667339A (en) * 1993-02-18 1997-09-16 University Of Washington Cryogenic method and system for remediating contaminataed earth
BR0213512B1 (pt) * 2001-10-24 2011-09-20 método para a remediação de solo contaminado, sistema para a remediação de solo contaminado, e, método para a formação de um sistema de remediação de solo para o tratamento de solo contaminado.
CN104384178A (zh) * 2014-09-28 2015-03-04 同济大学 电子垃圾污染场地中重金属污染物的原位固定方法
CN104847262B (zh) * 2015-05-18 2018-03-13 环境保护部环境规划院 一种可移动式专业土壤修复综合钻机及环境修复的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324137A (en) * 1993-02-18 1994-06-28 University Of Washington Cryogenic method and system for remediating contaminated earth
US5730550A (en) * 1995-08-15 1998-03-24 Board Of Trustees Operating Michigan State University Method for placement of a permeable remediation zone in situ
JP3814716B2 (ja) * 2001-08-24 2006-08-30 独立行政法人科学技術振興機構 汚染土壌の浄化方法及び浄化装置
WO2003035987A2 (en) * 2001-10-24 2003-05-01 Shell Oil Company Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
CN1575376A (zh) * 2001-10-24 2005-02-02 国际壳牌研究有限公司 利用阻挡层就地回收含烃地层中的烃
JP2005270963A (ja) * 2004-02-26 2005-10-06 Mayekawa Mfg Co Ltd 汚染土壌の浄化方法及び該装置
JP2006082008A (ja) * 2004-09-16 2006-03-30 Ohbayashi Corp 汚染土壌の処理方法
CN106216381A (zh) * 2016-08-05 2016-12-14 上海漕河泾桃浦科技智慧城经济发展有限公司 污染土壤的冷冻隔离与原位热解吸一体化系统及处理方法
CN106734133A (zh) * 2017-01-05 2017-05-31 中国矿业大学 一种人工冻结法封闭驱替土壤中污染物的方法

Also Published As

Publication number Publication date
CN106734133A (zh) 2017-05-31
CA3045862A1 (en) 2018-07-12
US20190275572A1 (en) 2019-09-12
CA3045862C (en) 2020-06-30
US10654082B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2018126826A1 (zh) 一种人工冻结法封闭驱替土壤中污染物的方法
CN104671385B (zh) 一种硫酸盐污染场地地下水污染治理和土壤修复方法
CN107989121B (zh) 保护城市市政管线的冻结结构
CN104213932B (zh) 一种突出煤层水力相变致裂石门揭煤方法
CN104675408B (zh) 高水压超长距离大断面隧道液氮冻结系统及盾构盾尾刷快速更换方法
CN106285605A (zh) 一种微波液氮协同冻融煤层增透方法
CA2463110A1 (en) In situ recovery from a hydrocarbon containing formation using barriers
CN104653185B (zh) 一种冻结段长可调的冻结器及其冻结方法
CN106285695B (zh) 一种盾构隧道端头微生物加固结构及其施工方法
CN104762955B (zh) 一种基于冻结法的人工挖孔扩底桩施工方法
CN104492004A (zh) 一种预防煤矸石山自燃的方法
CN104405400A (zh) 一种大直径盾构隧道端头杯型水平冻结孔布设方法
CN109488305A (zh) 一种应用在破损井筒修复过程中的冻结器布置方式
CN107746101A (zh) 一种用于铅锌废弃选厂的prb原位修复系统的施工方法
CN110847151B (zh) 一种冻结法修复隧道下穿空洞方法
CN111760217A (zh) 一种防治煤矸石山自燃及热量回收发电设备和控制方法
CN109026055B (zh) 洞门环梁施工中的冻结壁围护结构及其施工方法
WO2021212255A1 (zh) 基于气压劈裂技术的"电极移动"电渗排水固结处理方法及装置
CN106242029A (zh) 一种坎儿井式地下水污染修复系统
CN206972235U (zh) 一种融化巨型岩堆松散体下部冰冻层的结构
CN214532956U (zh) 一种可避免热力管线影响的冻结组合管
Nikolaev et al. Low-temperature ground freezing methods for underground construction in urban areas
CN205557501U (zh) 含有加热装置的微生物土系统
CN108439517B (zh) 一种利用天然冷能净化污染水体的冻结装置与方法
CN114109399A (zh) 灰岩地层冻结施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3045862

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890486

Country of ref document: EP

Kind code of ref document: A1