WO2018126748A1 - 保护电路及方法、像素电路、以及显示装置 - Google Patents

保护电路及方法、像素电路、以及显示装置 Download PDF

Info

Publication number
WO2018126748A1
WO2018126748A1 PCT/CN2017/104718 CN2017104718W WO2018126748A1 WO 2018126748 A1 WO2018126748 A1 WO 2018126748A1 CN 2017104718 W CN2017104718 W CN 2017104718W WO 2018126748 A1 WO2018126748 A1 WO 2018126748A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
protection circuit
predetermined range
coupled
Prior art date
Application number
PCT/CN2017/104718
Other languages
English (en)
French (fr)
Inventor
卢鹏程
陈小川
杨盛际
王磊
刘冬妮
付杰
肖丽
岳晗
高健
李昌峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/778,047 priority Critical patent/US10657887B2/en
Publication of WO2018126748A1 publication Critical patent/WO2018126748A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/10Dealing with defective pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the present disclosure relates to the field of display, and more particularly to a protection circuit, a pixel circuit and a method of driving the same, and a display device.
  • OLED Organic Light Emitting Diode
  • LCDs liquid crystal displays
  • OLED displays have the advantages of low energy consumption, low production cost, self-illumination, wide viewing angle and fast response.
  • OLED displays have begun to replace traditional LCD displays in various display fields such as mobile phones, personal digital assistants (PDAs), and digital cameras.
  • OLEDs in OLED displays are driven by current and require a steady current to control illumination. Therefore, when the OLED is in operation, there is a possibility of a large current. Once the OLED in a pixel unit, or the drive circuit of the OLED, fails, especially a short circuit, a larger current will flow to an undesired location or device. A plurality of pixel units around the faulty pixel unit may be affected. Therefore, there is a need in the display, and in particular in OLED displays, to provide a protection circuit.
  • Embodiments of the present disclosure provide a protection circuit, a pixel circuit and a method of driving the same, and a display device.
  • a first aspect of an embodiment of the present disclosure provides a protection circuit including: determining a circuit, a first coupling circuit, a first end, and a second end.
  • the determining circuit is coupled to the first end and the first coupling circuit, and configured to determine whether the voltage of the first end of the protection circuit belongs to one of the first predetermined range and the second predetermined range.
  • the first coupling circuit is coupled to the first end, the second end, and the determining circuit, and configured to: couple the first end and the second end in response to the voltage of the first end belongs to the first predetermined range; The first end and the second end are decoupled in response to the voltage at the first end falling within a second predetermined range.
  • the determining circuit includes an amplifier including a first input, a second input, and an output.
  • a first input of the amplifier is coupled to the first end of the protection circuit.
  • a second input of the amplifier is coupled to the reference voltage terminal.
  • the output of the amplifier is coupled to the first coupling circuit.
  • the second input of the amplifier is coupled to the reference voltage terminal through a first resistor.
  • a second input of the amplifier is coupled to the output of the amplifier via a second resistor.
  • the first coupling circuit includes a first transistor.
  • the control electrode of the first transistor is coupled to the determining circuit, the first pole of the first transistor is coupled to the first end of the protection circuit, and the second pole of the first transistor is coupled to the second end of the protection circuit.
  • the protection circuit further includes a second coupling circuit.
  • the second coupling circuit is coupled to the first end of the protection circuit and is configured such that the voltage of the first end of the protection circuit belongs to a first predetermined range.
  • the second coupling circuit includes a second transistor.
  • the control electrode of the second transistor is coupled to the first control signal end, the first electrode of the second transistor is coupled to the first end of the protection circuit, and the second electrode of the second transistor is coupled to the second end of the protection circuit.
  • the protection circuit further includes: a voltage detection line.
  • the voltage detection line is configured to couple the first end of the protection circuit to the voltage detection device.
  • the second transistor is configured to be turned on in response to the voltage of the first end of the protection circuit falling within a third predetermined range.
  • the voltage in the first predetermined range is greater than the first voltage.
  • the voltage in the second predetermined range is less than the second voltage.
  • the first voltage is equal to the second voltage.
  • a second aspect of the present disclosure provides a protection method including: determining whether a voltage of a first end belongs to one of a first predetermined range and a second predetermined range; and responsive to a voltage of the first end The first end and the second end are coupled to each other in a first predetermined range; and the first end and the second end are decoupled in response to the voltage of the first end being in a second predetermined range.
  • the protection method further includes: determining whether a voltage of the first end of the protection circuit belongs to a third predetermined range; and responsive to the voltage of the first end belongs to a third predetermined range, causing the voltage of the first end to fall The first predetermined range.
  • a third aspect of the present disclosure provides a pixel circuit including the above-described protection circuit.
  • the first end of the protection circuit is coupled to the light emitting device in the pixel circuit; and the second end of the protection circuit is coupled to the drive circuit in the pixel circuit.
  • a fourth aspect of the present disclosure provides a display device including the above-described pixel circuit.
  • Embodiments of the present disclosure provide a protection circuit, a pixel circuit and a driving method thereof, and a display device capable of determining an operation state of a pixel circuit by detecting a voltage, and cutting a current path in the pixel circuit when a failure is found.
  • FIG. 1 is an exemplary schematic diagram of a pixel circuit structure
  • FIG. 2 is an exemplary block diagram of a protection circuit provided by an embodiment of the present disclosure
  • FIG. 3 is an exemplary flow chart of a protection method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic view showing the protection circuit shown in FIG. 2 disposed in a pixel circuit
  • Figure 5 is an exemplary circuit diagram of the protection circuit of Figure 2;
  • FIG. 6 is another exemplary circuit diagram of the protection circuit of FIG. 2;
  • FIG. 7 is another exemplary block diagram of a protection circuit provided by an embodiment of the present disclosure.
  • FIG. 8 is an exemplary circuit diagram of a pixel circuit including the protection circuit of FIG. 7;
  • FIG. 9 is another exemplary circuit diagram of a pixel circuit including the protection circuit of FIG. 7;
  • FIG. 10 is an exemplary flowchart of a driving method of the pixel circuit shown in FIG. 9;
  • FIG. 11 is an exemplary timing diagram of the circuit shown in FIG. 8 or 9.
  • FIG. 1 is an exemplary schematic diagram of a pixel circuit structure.
  • the pixel circuit includes: a switching transistor M1, a driving transistor M2, and a storage capacitor Cs.
  • This pixel circuit is also referred to as two transistors and one capacitor (2M1C) circuit.
  • 2M1C two transistors and one capacitor
  • the pixel circuit is also coupled to the first power source VDD and the second power source VSS.
  • the first power source VDD provides, for example, a positive voltage
  • the second power source VSS provides a voltage of, for example, 0V, or a negative voltage.
  • the protection circuit 1 includes a determination circuit 2, a first coupling circuit 3, a first end 4, and a second end 5.
  • the determining circuit 2 is coupled to the first end 4 and the first coupling circuit 3 and is configured to determine whether the voltage of the first end 4 of the protection circuit 1 belongs to one of the first predetermined range and the second predetermined range.
  • the first coupling circuit 3 is coupled to the first end 4, the second end 5, and the determining circuit 2, and is configured to: in response to the voltage of the first end 4 belonging to the first predetermined range, the first end 4 and the first The two ends 5 are coupled; and the first end 4 and the second end 5 are decoupled in response to the voltage of the first end 4 falling within a second predetermined range.
  • “coupling” includes straight Connected or indirectly connected.
  • the protection circuit 1 can be coupled in any of the current paths in the pixel circuit shown in FIG. Setting the first predetermined range and the second predetermined range, so that the voltage of the first end 4 belongs to the first predetermined range when the pixel circuit operates normally, and the voltage of the first end 4 belongs to the second predetermined when the pixel circuit is not working normally range.
  • the determining circuit 2 can obtain the state of the voltage of the first end 4 to determine whether the pixel circuit works normally, and then control the first coupling circuit 3 such that the first end 4 and the second end 5 are coupled to maintain the current path in the pixel circuit. Or decoupling the first end 4 and the second end 5 to break the current path in the pixel circuit.
  • the protection circuit 1 is compact in structure, requires a small number of ports, and can be closely integrated with existing pixel circuits. Further, with the voltage as the detection target, the determination circuit 2 can perform fast and accurate judgment.
  • FIG. 3 is an exemplary flow chart of a protection method according to an embodiment of the present disclosure.
  • the driving method of the pixel circuit includes: step S301, determining whether the voltage of the first end 4 of the protection circuit belongs to one of the first predetermined range and the second predetermined range; and in step S302, the voltage in response to the first end 4 belongs to the first predetermined
  • the first end 4 and the second end 5 are coupled to each other; and in step S303, the first end 4 and the second end 5 are decoupled in response to the voltage of the first end 4 falling within a second predetermined range.
  • the protection method provided by the embodiments of the present disclosure does not affect the driving manner of the existing pixel circuit, and does not affect the normal operation of the pixel circuit. In the event of a pixel circuit failure, the current path in the pixel circuit can be quickly and accurately cut off.
  • the protection circuit 1 is disposed between the OLED and the drive circuit 6 of the OLED.
  • the protection circuit 1 may be disposed between the OLED and the driving transistor M2.
  • the first end 4 of the protection circuit 1 is coupled to the anode of the OLED, and the second end 5 of the protection circuit 1 is coupled to the driving transistor M2.
  • the protection circuit 1 is configured to disconnect the coupling of the driving transistor M2 and the OLED when an abnormality occurs in the voltage of the anode of the OLED.
  • the protection circuit 1 shown in FIG. 4 can well cope with the abnormality of the voltage of the anode of the OLED, especially when the anode and cathode of the OLED are short-circuited.
  • the first predetermined range can be set to include A voltage greater than the first voltage, the second predetermined range including a voltage less than the second voltage. That is, when the voltage of the anode of the OLED is greater than the first voltage, the OLED is considered to be in a normal state, and the coupling of the anode of the OLED and the driving transistor M2 is maintained.
  • the first voltage may be the minimum of the anode voltage during normal operation of the OLED, or a smaller value.
  • the second voltage may be any value less than or equal to the first voltage.
  • the second power source VSS is used to provide a negative voltage as an example.
  • the anode and cathode of the OLED are short-circuited, the anode voltage of the OLED will become a negative value. Therefore, it is possible to set a voltage in which both the first voltage and the second voltage are 0V. That is, when the voltage of the anode of the OLED is greater than 0 V, the OLED is considered to be in a normal state, and the coupling of the anode of the OLED and the driving transistor M2 is maintained. When the voltage of the anode of the OLED is less than 0 V, the OLED is considered to be in an abnormal state, so that the anode of the OLED and the driving transistor M2 are uncoupled.
  • the first predetermined range corresponds to the case where the anode and the negative electrode of the OLED are not short-circuited
  • the second predetermined range corresponds to the case where the anode and the negative electrode of the OLED are short-circuited.
  • the first predetermined range and the second predetermined range are exemplified, however, these are not limitations of the present disclosure.
  • the anode voltage of the OLED is greater than the voltage of the second power source VSS and less than the voltage of the first power source VDD minus the voltage drop of the drive circuit 6, it can be considered that there is no short circuit.
  • Both the first predetermined range and the first voltage can be set accordingly with reference to this principle.
  • the first voltage can be selected from a range of more than -1 V and less than 5 V, thereby setting the first predetermined range.
  • the first voltage can also be, for example, -1V.
  • the second voltage can also be -1V.
  • FIG. 5 is an exemplary circuit diagram of the protection circuit of FIG. 2.
  • the determination circuit 2 includes an amplifier 7.
  • the amplifier 7 includes a first input, a second input, and an output.
  • the first input of the amplifier 7 is coupled to the first end 4 of the protection circuit 1, ie the anode of the OLED.
  • a second input of the amplifier 7 is coupled to the reference voltage terminal.
  • the output of the amplifier 7 is coupled to the first Circuit 3 is coupled.
  • the first coupling circuit 3 includes a first transistor T1.
  • the control electrode of the first transistor T1 is coupled to the determination circuit 2.
  • the first pole of the first transistor T1 is coupled to the first end 4 of the protection circuit 1, ie the anode of the OLED.
  • the second pole of the first transistor T1 is coupled to the second end 5 of the protection circuit 1, that is, the driving circuit 6.
  • the first input of amplifier 7 is the forward input and the second input is the inverting input.
  • the first transistor is an N-type transistor.
  • the reference voltage is set to a ground voltage of 0V.
  • the amplification characteristics of the amplifier 7 can be configured to be linear or non-linear.
  • amplifier 7 can be configured to operate as a non-linear voltage comparator. At this time, when the voltage of the anode of the OLED is greater than 0 V, the output terminal of the amplifier 7 outputs a predetermined positive voltage, so that the first transistor T1 is turned on, coupling the driving circuit 6 and the anode of the OLED. When the voltage of the anode of the OLED is less than 0 V, the output of the amplifier 7 outputs a predetermined voltage of 0 V or a negative voltage, so that the first transistor T1 is turned off, and the driving circuit 6 and the anode of the OLED are decoupled.
  • the first input is an inverting input and the second input is a forward input, the first transistor being a P-type transistor.
  • the output of the amplifier 7 When the voltage of the anode of the OLED is greater than 0 V, the output of the amplifier 7 outputs a predetermined negative voltage, so that the first transistor T1 is turned on.
  • the output of the amplifier 7 When the voltage of the anode of the OLED is less than 0 V, the output of the amplifier 7 outputs a predetermined positive voltage, so that the first transistor T1 is turned off. This can also achieve the same function.
  • the first voltage is set equal to the second voltage.
  • the determination circuit 2 can be implemented using an amplifier 7.
  • the amplifier 7 can be implemented by a thin film transistor, which is advantageous for wide application in pixel circuits.
  • the amplifier 7 composed of a thin film transistor can be uniformly fabricated in the fabrication process of the array substrate in which the pixel circuit is located, thereby saving manufacturing steps.
  • a thin film transistor of a silicon substrate fabricated based on a semiconductor process can be selected to conveniently form a PMOS thin film transistor, an NMOS thin film transistor, to provide higher precision and more stable performance, and to facilitate miniaturization of a pixel.
  • the amplifier 7 can adopt any circuit structure, which is not limited herein.
  • FIG. 6 is another exemplary circuit diagram of the protection circuit of FIG. 2.
  • the second input terminal of the amplifier 7 is coupled to the reference voltage terminal through the first resistor R1.
  • the second input of amplifier 7 is coupled to the output of amplifier 7 via a second resistor R2.
  • the amplifier 7 has a linear amplification characteristic.
  • the voltage Vin of the first input terminal will be equal to the voltage Vvss of the second power source VSS.
  • the amplification characteristics of the amplifier 7 can also be adjusted by more resistors.
  • the first resistor R1 and the second resistor R2 can be realized by a thin film resistor, which is advantageous for wide application in a pixel circuit.
  • FIG. 7 is another exemplary block diagram of a protection circuit provided by an embodiment of the present disclosure.
  • the protection circuit 1 further includes a second coupling circuit 8.
  • the second coupling circuit 8 is connected to the first end 4 of the protection circuit 1 and is configured such that the voltage of the first end 4 of the protection circuit 1 belongs to a first predetermined range.
  • the reference voltage is set to 0V. Once the voltage of the anode of the OLED is negative, the first transistor T1 is turned off. Under normal conditions, the anode voltage of the OLED may also be maintained at 0V. The voltage of 0 V also fails to make the first transistor T1 turn on, or the first transistor T1 cannot be stably turned on, which is disadvantageous for the driving of the OLED.
  • the second coupling circuit 8 can be at a predetermined time such that the voltage of the first end 4 of the protection circuit 1 belongs to the first predetermined range.
  • the first coupling circuit 3 will couple the driver circuit 6 and the OLED, and the OLED can operate under the driving of the driver circuit 6. Thereafter, the drive circuit 6 can provide a positive voltage to the anode of the OLED, and the first coupling circuit 3 will remain conductive until the driving of the OLED is completed, or a short circuit or the like occurs.
  • the second coupling circuit 8 can be implemented in various ways, for example, can be directly through the signal line
  • the first end 4 of the protection circuit 1 is coupled to a signal source for applying a positive pulse signal to the first end 4 of the protection circuit 1 at a predetermined time.
  • FIG. 8 is an exemplary circuit diagram of a pixel circuit including the protection circuit of FIG. 7.
  • the second coupling circuit 8 includes a second transistor T2.
  • the control electrode of the second transistor T2 is coupled to the first control signal terminal C1.
  • the first pole of the second transistor T2 is coupled to the anode of the OLED (ie, the first end 4 of the protection circuit 1).
  • the second pole of the second transistor T2 is coupled to the driving transistor M2 (ie, the second end 5 of the protection circuit 1).
  • the control signal from the first control signal terminal C1 can cause the second transistor T2 to be turned on.
  • the voltage of the anode of the OLED becomes a positive voltage as long as the voltage stored in the storage capacitor Cs causes the driving transistor M2 to operate to generate a driving current. That is, the second coupling circuit 8 utilizes the driving transistor M2 to cause the voltage of the anode of the OLED (ie, the first end 4 of the protection circuit 1) to fall within the first predetermined range. Thereafter, the first transistor T1 is also turned on.
  • the first transistor T1 can maintain the on state until the voltage of the anode of the OLED becomes 0 V or a negative voltage because the driving for the OLED or the occurrence of a short circuit or the like is completed.
  • the protection circuit 9 is another exemplary circuit diagram of a pixel circuit including the protection circuit of FIG.
  • the protection circuit 1 further includes a voltage detection line L.
  • the voltage detection line L is configured to couple the first end 4 of the protection circuit 1 to the voltage detecting device 9.
  • the second transistor T2 is configured to be turned on in response to the voltage of the first end 4 of the protection circuit 1 falling within a third predetermined range.
  • the control signal from the first control signal terminal C1 can cause the second transistor T2 to be turned on.
  • the voltage of the anode of the OLED becomes a positive voltage, so that the first transistor T1 is also turned on.
  • the voltage detecting line L couples the first end 4 of the protection circuit 1 (ie, the anode of the OLED) to the voltage detecting device 9.
  • the voltage detecting means 9 detects the voltage of the anode of the OLED and sends it to the signal control means 10 to judge whether it belongs to the third predetermined range.
  • the third predetermined range may be a range indicating a voltage at which the anode and cathode of the OLED are not short-circuited. In general, not being In the case of driving, the voltage of the anode of the OLED is 0V.
  • the third predetermined range may be a relatively small range including a voltage of 0 V in consideration of other reasonable variations such as noise.
  • the third predetermined range may be determined by, for example, an experiment or the like according to an actual application environment. Further, it is also possible to set the third predetermined range in consideration of the case when the OLED is driven. For example, the third predetermined range may be a range greater than -1 V and less than 5V.
  • the signal control device 10 turns on the second transistor T2 when it is determined that the voltage of the anode of the OLED belongs to the third predetermined range. In this way, it is possible to prevent the application of a driving voltage to the OLED in the case where the anode and the cathode of the OLED have been short-circuited.
  • the voltage detecting device 9 and the signal control device 10 may be integrated in the scan driving circuit of the pixel circuit, or may be separately provided.
  • FIG. 10 is an exemplary flowchart of a driving method of the pixel circuit shown in FIG. As shown in FIG. 10, in step S1001 of the driving method, it is determined whether the voltage of the anode of the OLED (the first end 4 of the protection circuit 1) belongs to the third predetermined range.
  • step S1002 in response to the voltage of the anode of the OLED not belonging to the third predetermined range, the second transistor T2 is turned off to disconnect the anode of the OLED and the driving transistor M2 (ie, the first end 4 of the protection circuit 1) Coupling with the second end 5).
  • step S1003 the voltage in response to the anode of the OLED falls within a third predetermined range such that the second transistor T2 is turned on.
  • the second transistor T2 can remain in an on state for a predetermined period of time.
  • the driving transistor M2 is coupled to the OLED.
  • the driving transistor M2 generates a driving current.
  • the drive current reaches the anode of the OLED such that the OLED emits light and the voltage of the anode rises to fall within a first predetermined range.
  • the method of causing the first end 4 of the protection circuit 1 to fall within the first predetermined range is illustrated here by taking the circuit shown in FIG. 9 as an example, however, this is not a limitation of the present disclosure.
  • the first terminal 4 can be directly connected to other signal sources or power sources such that the voltage at the first terminal 4 of the protection circuit 1 falls within a first predetermined range, thereby causing the first transistor T1 to conduct.
  • step S301 it is determined whether the voltage of the first end 4 of the protection circuit belongs to the first predetermined range and the second predetermined range. one of.
  • step S302 in response to the voltage of the first terminal 4 belonging to the first predetermined range, the first end 4 and the second end 5 are coupled.
  • step S303 the first end 4 and the second end 5 are decoupled in response to the voltage of the first end 4 belonging to the second predetermined range.
  • the protection circuit 1 can maintain the coupling of the driving transistor M2 and the OLED until the anode of the OLED is made because the driving for the OLED or the occurrence of a short circuit or the like is completed.
  • the voltage becomes 0V or a negative voltage.
  • the second transistor T2 is turned on or off. This can prevent the application of a drive current to the OLED in the event that the OLED has been short-circuited, preventing damage that may be caused by an excessive transient circuit.
  • FIG. 11 is an exemplary timing diagram of the circuit shown in FIG. 8 or 9.
  • the voltage on the scan line Gate is a valid voltage, so that the switching transistor M1 is turned on.
  • the switching transistor M1 is a P-type as an example, and therefore, the effective voltage on the scanning line Gate is a voltage having a low level.
  • the driving transistor M2 is a P-type as an example, and therefore, the effective voltage on the data line Data is a low-level voltage.
  • the second transistor T2 is turned on by the effective voltage from the first control terminal C1. Because, in the first phase T1, the voltage stored in the storage capacitor Cs can cause the driving transistor M2 to operate to generate a driving current.
  • the voltage of the anode of the OLED is a positive voltage that causes the first transistor T1 to conduct. The state in which the first transistor T1 is turned on is maintained until the driving of the OLED or the occurrence of a short circuit or the like is completed such that the voltage of the anode of the OLED becomes 0 V or a negative voltage.
  • the second transistor T2 is an N-type transistor as an example, and therefore, the effective voltage from the first control terminal C1 shown in FIG. 9 is a high-level voltage.
  • the start timing and duration of the effective voltage from the first control terminal C1 are the same as the effective voltages on the scan line Gate and the data line Data.
  • the data line Data The voltage on the voltage can be stored in the storage capacitor Cs for a period of time, so that the same effect can be achieved as long as the second switching transistor T2 is turned on in the first phase T1 or within a period of time after the first phase T1. . That is, the second transistor T2 can also function to control the start time of the light emitting phase of the pixel circuit.
  • the OLED can maintain stable brightness.
  • the protection circuit and the protection method provided by the embodiments of the present disclosure can quickly and accurately cut off the current path in the pixel circuit when the pixel circuit fails, but not for existing pixels.
  • the circuit structure and driving method of the circuit have an effect.
  • the manner of application of the protection circuit 1 is not limited thereto.
  • the protection circuit 1 can also be disposed between the storage capacitor Cs and the control electrode of the drive transistor M2.
  • the first predetermined range of voltages of the control electrodes of the driving transistor M2 may be a range of data voltages
  • the second predetermined range may be a range other than the data voltages. If the two plates of the storage capacitor Cs are short-circuited, the determining circuit 2 can detect that the voltage of the control electrode of the driving transistor M2 is equal to the voltage of the positive power source VDD, which voltage is usually greater than the maximum value of the data voltage, thereby falling into the second predetermined range. At this time, the protection circuit 1 can disconnect the driving transistor M2 and the storage capacitor Cs to protect the pixel circuit.
  • the configuration of the pixel circuit shown in FIG. 1 has been described as an example, this is not a limitation of the present disclosure, and the protection circuit in the embodiment of the present disclosure can be applied to any pixel circuit structure.
  • Embodiments of the present disclosure also provide a display device including the above-described pixel circuit.
  • the display device may specifically be a product or a component having any display function such as a display, a television, an electronic paper, a mobile phone, a tablet computer, and a digital photo frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种保护电路(1)、像素电路及其驱动方法、以及显示装置。保护电路(1)包括确定电路(2)、第一耦接电路(3)、第一端(4)、以及第二端(5)。确定电路(2)与第一端(4)、以及第一耦接电路(3)耦接,并被配置为:确定保护电路(1)的第一端(4)的电压是否属于第一预定范围和第二预定范围中的一个。第一耦接电路(3)与第一端(4)、第二端(5)、以及确定电路(2)耦接,并被配置为:响应于第一端(4)的电压属于第一预定范围,使第一端(4)和第二端(5)耦接;以及响应于第一端(4)的电压属于第二预定范围,使第一端(4)和第二端(5)解除耦接。保护电路(1)可以通过检测电压,判断像素电路的工作状态,并且在发现故障时,切断像素电路中的电流路径。

Description

保护电路及方法、像素电路、以及显示装置
相关申请的交叉引用
本申请要求2017年1月3日递交的中国专利申请第201710002572.7号的优先权,在此全文引用上述中国专利申请所公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示领域,尤其涉及保护电路、像素电路及其驱动方法、以及显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)是当今显示器研究领域的热点之一。与液晶显示器(Liquid Crystal Display,LCD)相比,OLED显示器具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、掌上电脑(Personal Digital Assistant,PDA)、数码相机等各种显示领域,OLED显示器已经开始取代传统的LCD显示器。
与LCD显示器中的像素单元利用稳定的电压控制亮度不同,OLED显示器中的OLED由电流驱动,需要稳定的电流来控制发光。因此,在OLED工作时,有可能存在较大的电流。一旦某个像素单元中的OLED,或者OLED的驱动电路发生故障,尤其是短路,则较大的电流将流向不期望的位置或者器件。故障像素单元的周边的多个像素单元都可能受到影响。因此,在显示器,尤其是OLED显示器中存在提供保护电路的需求。
发明内容
本公开的实施例提供保护电路、像素电路及其驱动方法、以及显示装置。
本公开的实施例的第一个方面提供一种保护电路,包括:确定电路、 第一耦接电路、第一端、以及第二端。确定电路与第一端、以及第一耦接电路耦接,并且被配置为:确定保护电路的第一端的电压是否属于第一预定范围和第二预定范围中的一个。第一耦接电路与第一端、第二端、以及确定电路耦接,并且被配置为:响应于第一端的电压属于第一预定范围,使第一端和第二端耦接;以及响应于第一端的电压属于第二预定范围,使第一端和第二端解除耦接。
在本公开的实施例中,确定电路包括放大器,其包括第一输入端、第二输入端、输出端。放大器的第一输入端与保护电路的第一端耦接。放大器的第二输入端与参考电压端耦接。放大器的输出端与第一耦接电路耦接。
在本公开的实施例中,放大器的第二输入端通过第一电阻与参考电压端耦接。放大器的第二输入端通过第二电阻与放大器的输出端耦接。
在本公开的实施例中,第一耦接电路包括第一晶体管。第一晶体管的控制极与确定电路耦接,第一晶体管的第一极与保护电路的第一端耦接,第一晶体管的第二极与保护电路的第二端耦接。
在本公开的实施例中,保护电路还包括第二耦接电路。第二耦接电路与保护电路的第一端连接,并且被配置为使得保护电路的第一端的电压属于第一预定范围。
在本公开的实施例中,第二耦接电路包括第二晶体管。第二晶体管的控制极与第一控制信号端耦接,第二晶体管的第一极与保护电路的第一端耦接,第二晶体管的第二极与保护电路的第二端耦接。
在本公开的实施例中,保护电路还包括:电压检测线。电压检测线被配置为将保护电路的第一端耦接至电压检测装置。第二晶体管被配置为响应于保护电路的第一端的电压属于第三预定范围而导通。
在本公开的实施例中,第一预定范围中的电压大于第一电压。第二预定范围中的电压小于第二电压。
在本公开的实施例中,第一电压等于第二电压。
本公开的第二个方面提供了一种保护方法,包括:确定第一端的电压是否属于第一预定范围和第二预定范围中的一个;响应于第一端的电压属 于第一预定范围,使第一端和第二端耦接;以及响应于第一端的电压属于第二预定范围,使第一端和第二端解除耦接。
在本公开的实施例中,保护方法还包括:确定保护电路的第一端的电压是否属于第三预定范围;响应于第一端的电压属于第三预定范围,使第一端的电压落入第一预定范围。
本公开的第三个方面提供了一种像素电路,包括上述的保护电路。
在本公开的实施例中,保护电路的第一端与像素电路中的发光器件连接;并且保护电路的第二端与像素电路中的驱动电路连接。
本公开的第四个方面提供了一种显示装置,包括上述的像素电路。
本公开的实施例提供保护电路、像素电路及其驱动方法、以及显示装置,能够通过检测电压,判断像素电路的工作状态,并且在发现故障时,切断像素电路中的电流路径。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1是像素电路结构的一个示例性的示意图;
图2是本公开的实施例提供的保护电路的一个示例性的框图;
图3是本公开的实施例提供的保护方法的一个示例性的流程图;
图4是将图2所示的保护电路设置在像素电路中的示意图;
图5是图2中的保护电路的一个示例性的电路图;
图6是图2中的保护电路的另一个示例性的电路图;
图7是本公开的实施例提供的保护电路的另一个示例性的框图;
图8是包含了图7的保护电路的像素电路的一个示例性的电路图;
图9是包含了图7的保护电路的像素电路的另一个示例性的电路图;
图10是图9中所示的像素电路的驱动方法的示例性的流程图;
图11是图8或者图9所示的电路的一个示例性的时序图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和技术效果更加清楚,下面将结合本公开的实施例中的附图,对本公开的实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他的实施例,都属于本公开保护的范围。
图1是像素电路结构的一个示例性的示意图。如图1所示,像素电路包括:一个开关晶体管M1、一个驱动晶体管M2、以及一个存储电容Cs。该像素电路也被称为两个晶体管一个电容(2M1C)电路。当该像素电路所耦接的扫描线Gate上的电压是有效的低电平信号时,P型的开关晶体管M1导通,数据线Data上的电压写入存储电容Cs。扫描结束后,扫描线Gate上的电压变为高电平,P型的开关晶体管M1关断,存储电容Cs存储的电压控制驱动晶体管M2产生电流来驱动OLED发光。像素电路还耦接到第一电源VDD,以及第二电源VSS。第一电源VDD提供例如正电压,第二电源VSS提供例如0V的电压,或者负电压。
在图1中的OLED工作时,有可能存在较大的电流。一旦OLED的阳极和阴极发生短路,电流将直接从驱动晶体管M2流向第二电源VSS,这可能对于像素电路造成损害。
图2是本公开的实施例提供的保护电路的一个示例性的框图。如图2所示,保护电路1包括:确定电路2、第一耦接电路3、第一端4、以及第二端5。确定电路2与第一端4、以及第一耦接电路3耦接,并且被配置为:确定保护电路1的第一端4的电压是否属于第一预定范围和第二预定范围中的一个。第一耦接电路3与第一端4、第二端5、以及确定电路2耦接,并且被配置为:响应于第一端4的电压属于第一预定范围,使第一端4和第二端5耦接;以及响应于第一端4的电压属于第二预定范围,使第一端4和第二端5解除耦接。按照本领域技术人员的通常理解,“耦接”包括直 接或者间接的电连接。
保护电路1可以耦接在图1所示的像素电路中的任意的电流路径中。设定第一预定范围和第二预定范围,使得在像素电路正常工作时,第一端4的电压属于第一预定范围,在像素电路不能正常工作时,第一端4的电压属于第二预定范围。确定电路2可以获取第一端4的电压的状态,以判断像素电路是否正常工作,然后控制第一耦接电路3使得第一端4和第二端5耦接以保持像素电路中的电流路径,或者使得第一端4和第二端5解除耦接以断开像素电路中的电流路径。
保护电路1结构紧凑,需要的端口数量少,可以与现有的像素电路紧密结合。此外,以电压作为检测对象,确定电路2可以进行快速准确的判断。
图3是本公开的实施例所述的保护方法的一个示例性的流程图。像素电路的驱动方法包括:步骤S301,确定保护电路的第一端4的电压是否属于第一预定范围和第二预定范围中的一个;步骤S302,响应于第一端4的电压属于第一预定范围,使第一端4和所述第二端5耦接;以及步骤S303,响应于第一端4的电压属于第二预定范围,使第一端4和第二端5解除耦接。
本公开的实施例提供的保护方法不会对于现有的像素电路的驱动方式产生影响,不影响像素电路的正常工作。在像素电路故障时,可以快速准确的切断像素电路中的电流路径。
图4是将图2所示的保护电路设置在像素电路中的示意图。如图3所示,保护电路1被设置在OLED和OLED的驱动电路6之间。参照图1,保护电路1可以设置在OLED和驱动晶体管M2之间。保护电路1的第一端4与OLED的阳极耦接,保护电路1的第二端5与驱动晶体管M2耦接。保护电路1被配置为在OLED的阳极的电压出现异常时,断开驱动晶体管M2和OLED的耦接。
图4所示的保护电路1能够很好的应对OLED的阳极的电压出现异常情况,尤其是在OLED的阳极和阴极短路时。可以设置第一预定范围包括 大于第一电压的电压,第二预定范围包括小于第二电压的电压。即,在OLED的阳极的电压大于第一电压时,认为OLED处于正常状态,保持OLED的阳极和驱动晶体管M2的耦接。在OLED的阳极的电压小于第二电压时,认为OLED处于非正常状态,使得OLED的阳极和驱动晶体管M2解除耦接。第一电压可以是OLED正常工作时的阳极电压的最小值,或者更小一些的值。第二电压可以是小于等于第一电压的任意值。
例如,以第二电源VSS提供负电压为例。OLED的阳极和负极短路时,则OLED的阳极电压将成为负值。因此,可以设定第一电压和第二电压都是0V的电压。即,在OLED的阳极的电压大于0V时,认为OLED处于正常状态,保持OLED的阳极和驱动晶体管M2的耦接。在OLED的阳极的电压小于0V时,认为OLED处于非正常状态,使得OLED的阳极和驱动晶体管M2解除耦接。
此时,可以理解,第一预定范围对应于OLED的阳极和负极没有短路的情况,第二预定范围对应于OLED的阳极和负极短路的情况。
当然,也可以设定第一电压为0V至OLED正常工作时的阳极电压的最小值之间的任意一个正值。也可以设定第二电压为0V至第二电源VSS提供的负电压之间的任意一个负值。
应当理解,在上述描述中,举例说明了第一预定范围、第二预定范围,然而,这些并不是对于本公开的限制。在OLED的阳极电压大于第二电源VSS的电压,并且小于第一电源VDD的电压减去驱动电路6的压降时,都可以认为没有短路。第一预定范围和第一电压都可以相应地参考这个原则而设定。例如,根据这样的原则,可以从大于-1V小于5V的范围中,选择第一电压,进而设定第一预定范围。例如,第一电压也可以是例如-1V。相应的,第二电压也可以是-1V。
图5是图2中的保护电路的一个示例性的电路图。如图5所示,确定电路2包括放大器7。放大器7包括第一输入端、第二输入端、输出端。放大器7的第一输入端与保护电路1的第一端4,即OLED的阳极,耦接。放大器7的第二输入端与参考电压端耦接。放大器7的输出端与第一耦接 电路3耦接。
第一耦接电路3包括第一晶体管T1。第一晶体管T1的控制极与确定电路2耦接。第一晶体管T1的第一极与保护电路1的第一端4,即OLED的阳极,耦接。第一晶体管T1的第二极与保护电路1的第二端5,即驱动电路6,耦接。
作为一个示例,放大器7的第一输入端是正向输入端,第二输入端是反向输入端。第一晶体管是N型晶体管。此处,参考电压被设置为0V的接地电压。
此外,放大器7的放大特性可以被配置为线性或者非线性。例如,放大器7可以被配置作为非线性的电压比较器工作。此时,在OLED的阳极的电压大于0V时,放大器7的输出端输出预定的正电压,使得第一晶体管T1导通,耦接驱动电路6和OLED的阳极。在OLED的阳极的电压小于0V时,放大器7的输出端输出预定的0V电压或者负电压,使得第一晶体管T1截止,驱动电路6和OLED的阳极解除耦接。
作为另一个示例,第一输入端是反向输入端,第二输入端是正向输入端,第一晶体管是P型晶体管。在OLED的阳极的电压大于0V时,放大器7的输出端输出预定的负电压,使得第一晶体管T1导通。在OLED的阳极的电压小于0V时,放大器7的输出端输出预定的正电压,使得第一晶体管T1截止。这也可以实现同样的功能。
在图4描述的电路中,设置了第一电压等于第二电压。从而,可以使用一个放大器7来实现确定电路2。
放大器7可以由薄膜晶体管实现,这有利于在像素电路中广泛应用。此外,薄膜晶体管构成的放大器7能够在像素电路所在的阵列基板的制作工艺中统一制作,节省制作步骤。例如,可以选择基于半导体工艺制作的硅衬底的薄膜晶体管,以方便地形成PMOS薄膜晶体管、NMOS薄膜晶体管,提供更高的精度和更稳定的性能,并且有利于实现像素的小型化。应当理解,在实现放大功能的前提下,放大器7可以采用任意的电路结构,在此不作限定。
图6是图2中的保护电路的另一个示例性的电路图。如图6所示,放大器7的第二输入端通过第一电阻R1与参考电压端耦接。放大器7的第二输入端通过第二电阻R2与放大器7的输出端耦接。通过这样的配置,放大器7具有线性的放大特性。放大器7的输出端的电压Vo=(R2/R1+1)Vin,式中,R1表示第一电阻R1的阻值,R2表示第二电阻R2的阻值,Vin表示第一输入端的电压。通过这样的配置,一旦OLED的阳极和阴极之间发生短路,第一输入端的电压Vin将等于第二电源VSS的电压Vvss。而放大器7的输出端的电压可以是Vo=(R2/R1+1)Vvss。以Vvss为负值为例,第一晶体管T1的控制极将被施加一个大的负电压,以使得第一晶体管T1快速进入截止状态,尤其适用于希望快速、稳定切断短路电路的情况。
应当理解,也可以由更多的电阻来调整放大器7的放大特性。
第一电阻R1、第二电阻R2可以由薄膜电阻实现,这有利于在像素电路中广泛应用。
图7是本公开的实施例提供的保护电路的另一个示例性的框图。如图7所示,保护电路1还包括第二耦接电路8。第二耦接电路8与保护电路1的第一端4连接,并且被配置为使得保护电路1的第一端4的电压属于第一预定范围。
参见图5,图6中的具体电路结构,为了使得保护电路1能够快速响应于短路状态,参考电压设定为0V。一旦OLED的阳极的电压为负值,就会使得第一晶体管T1截止。而在正常状态下,OLED的阳极的电压也可能始终维持在0V。该0V的电压同样不能使得第一晶体管T1导通,或者不能使得第一晶体管T1稳定地导通,这不利于OLED的驱动。
第二耦接电路8可以在预定的时间,使得保护电路1的第一端4的电压属于第一预定范围。如此,第一耦接电路3将使得驱动电路6和OLED耦接,OLED可以在驱动电路6的驱动下工作。此后,驱动电路6可以为OLED的阳极提供了正电压,第一耦接电路3将维持导通,直到完成对于OLED的驱动,或者出现短路等情况。
第二耦接电路8可以由各种方式实现,例如,可以直接通过信号线将 保护电路1的第一端4与信号源耦接,在预定的时间向保护电路1的第一端4施加正脉冲信号。
图8是包含了图7的保护电路的像素电路的一个示例性的电路图。如图8所示,所述第二耦接电路8包括第二晶体管T2。第二晶体管T2的控制极与第一控制信号端C1耦接。第二晶体管T2的第一极与OLED的阳极(即,保护电路1的第一端4)耦接。第二晶体管T2的第二极与驱动晶体管M2(即,保护电路1的第二端5)耦接。
根据图8所示的电路,来自第一控制信号端C1的控制信号可以使得第二晶体管T2导通。在第二晶体管T2导通的情况下,只要存储电容Cs中存储的电压使得驱动晶体管M2工作产生驱动电流,则OLED的阳极的电压就会成为正电压。即,第二耦接电路8利用了驱动晶体管M2来使得OLED的阳极(即,保护电路1的第一端4)的电压落入第一预定范围。此后,第一晶体管T1也导通。之后,即使第二晶体管T2截止,第一晶体管T1也能够维持导通的状态,直到因为完成对于OLED的驱动或者出现短路等而使得OLED的阳极的电压成为0V或者负电压。
图9是包含了图7的保护电路的像素电路的另一个示例性的电路图。保护电路1还包括:电压检测线L。电压检测线L被配置为将保护电路1的第一端4耦接至电压检测装置9。第二晶体管T2被配置为响应于保护电路1的第一端4的电压属于第三预定范围而导通。
如上所述,来自第一控制信号端C1的控制信号可以使得第二晶体管T2导通。在第二晶体管T2导通的情况下,只要存储电容Cs中存储的电压使得驱动晶体管M2工作产生驱动电流,则OLED的阳极的电压就会成为正电压,使得第一晶体管T1也导通。然而,在OLED已经短路的情况下,如果直接使得第二晶体管T2导通,则可能在瞬间产生过大的电流,损害像素电路。电压检测线L将保护电路1的第一端4(即,OLED的阳极)耦接至电压检测装置9。电压检测装置9检测OLED的阳极的电压,并且发送至信号控制装置10,以判断是否属于第三预定范围。第三预定范围可以是表示OLED的阳极和阴极没有短路的电压的范围。一般而言,在没有被 驱动的情况下,OLED的阳极的电压为0V。考虑到噪声等其它合理的变化,第三预定范围可以是包含0V电压的一个相对较小的范围。第三预定范围可以根据实际的应用环境,通过例如实验等手段确定。此外,也可以考虑OLED被驱动时的情况而设定第三预定范围。例如,第三预定范围可以是大于-1V小于5V的范围。
信号控制装置10在判断为OLED的阳极的电压属于第三预定范围时,才会将第二晶体管T2导通。这样,可以防止在OLED的阳极和阴极已经短路的情况下,向OLED施加驱动电压。
此外,作为一个示例,电压检测装置9和信号控制装置10可以集成在像素电路的扫描驱动电路中,也可以单独设置。
图10是图9中所示的像素电路的驱动方法的示例性的流程图。如图10所示,在驱动方法的步骤S1001中,确定OLED的阳极(保护电路1的第一端4)的电压是否属于第三预定范围。
在步骤S1002中,响应于OLED的阳极的电压不属于第三预定范围,使得第二晶体管T2截止,以断开OLED的阳极和驱动晶体管M2的耦接(即,保护电路1的第一端4和第二端5的耦接)。
在步骤S1003中,响应于OLED的阳极的电压属于第三预定范围,使得第二晶体管T2导通。第二晶体管T2可以在预定的时间段内都保持导通状态。在第二晶体管T2导通时,驱动晶体管M2与OLED耦接。此时,只要存储电容Cs存储的电压能够使得驱动晶体管M2导通,驱动晶体管M2就会产生驱动电流。驱动电流到达OLED的阳极,使得OLED发光,并且,阳极的电压升高至落入第一预定范围。
应当理解,此处以图9所示的电路为例,说明了使得保护电路1的第一端4落入第一预定范围的方法,然而,这并不是对于本公开的限制。例如,可以将第一端4直接连接到其它信号源或者电源,使得保护电路1的第一端4的电压落入第一预定范围,进而使得第一晶体管T1导通。
此外,保护电路1也会继续执行图3中示出的步骤。在步骤S301中,确定保护电路的第一端4的电压是否属于第一预定范围和第二预定范围中 的一个。在步骤S302中,响应于第一端4的电压属于第一预定范围,使第一端4和所述第二端5耦接。在步骤S303中,响应于第一端4的电压属于第二预定范围,使第一端4和第二端5解除耦接。
也就是说,即使第二耦接电路8中的第二晶体管T2截止,保护电路1也可以保持驱动晶体管M2和OLED的耦接,直到因为完成对于OLED的驱动或者出现短路等而使得OLED的阳极的电压成为0V或者负电压。
对于OLED的阳极(保护电路1的第一端4)的电压是否属于第三预定范围进行判断,然后使得第二晶体管T2导通或者截止。这可以防止在OLED已经短路的情况下,向OLED施加驱动电流,防止了过大的瞬态电路可能造成的损害。
图11是图8或者图9所示的电路的一个示例性的时序图。如图8所示,在第一阶段T1中,扫描线Gate上的电压为有效的电压,使得开关晶体管M1导通。此处以开关晶体管M1是P型为例,因此,扫描线Gate上的有效的电压是具有低电平的电压。在开关晶体管M1导通后,数据线Data上的有效的电压被存储到存储电容Cs中,以用于之后对于驱动晶体管M2的驱动。此处以驱动晶体管M2是P型为例,因此,数据线Data上的有效的电压是低电平的电压。
此外,在第一阶段T1中,通过来自第一控制端C1的有效的电压,使得第二晶体管T2导通。因为,在第一阶段T1中,存储电容Cs中存储的电压可以使得驱动晶体管M2工作,产生驱动电流。OLED的阳极的电压为正电压,该正电压使得第一晶体管T1导通。第一晶体管T1导通的状态被维持,直到完成对于OLED的驱动或者出现短路等而使得OLED的阳极的电压成为0V或者负电压。
此处,以第二晶体管T2是N型晶体管为例,因此,图9中示出的来自第一控制端C1的有效的电压是高电平的电压。
为了便于说明,在图11中示出了来自第一控制端C1的有效的电压的开始时刻和持续时间都与扫描线Gate和数据线Data上的有效的电压相同。然而,应当理解,这并不是对于本公开的实施例的限制。因为数据线Data 上的电压可以在存储电容Cs中存储一段时间,所以,只要在第一阶段T1中,或者在第一阶段T1之后一段时间之内,使得第二开关晶体管T2导通,即可以实现相同的效果。也就是说,第二晶体管T2还可以起到控制像素电路的发光阶段的开始时间的功能。
作为一个未图示的示例,可以在第一阶段T1完成,存储电容Cs中存储的电压稳定后,使得第二开关晶体管T2导通,以使得驱动晶体管M2可以产生稳定的驱动电流。这样,OLED可以维持稳定的亮度。
结合图11所示的时序图可以进一步理解,本公开的实施例提供的保护电路和保护方法可以在像素电路故障时,快速准确的切断像素电路中的电流路径,但是不会对于现有的像素电路的电路结构和驱动方式产生影响。
应当理解,保护电路1的应用方式不限于此。例如,保护电路1也可以设置在存储电容Cs和驱动晶体管M2的控制极之间。驱动晶体管M2的控制极的电压的第一预定范围可以是数据电压的范围,第二预定范围可以是数据电压之外的范围。如果存储电容Cs的两个极板短路,则确定电路2可以检测到驱动晶体管M2的控制极的电压等于正电源VDD的电压,该电压通常会大于数据电压的最大值,从而落入第二预定范围。此时,保护电路1可以断开驱动晶体管M2和存储电容Cs的耦接,以对于像素电路进行保护。
此外,虽然以图1所示的像素电路的结构为例进行了说明,但这并不是对于本公开的限制,本公开的实施例中的保护电路可以应用在任意的像素电路结构中。
本公开的实施例还提供了显示装置,包括上述的像素电路。显示装置具体可以为显示器、电视、电子纸、手机、平板电脑以及数码相框等具有任何显示功能的产品或者部件。
以上所述,仅为本公开的具体实施方式,但是,本公开的保护范围不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替代,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种保护电路,包括:确定电路、第一耦接电路、第一端、以及第二端;
    所述确定电路与所述第一端、以及所述第一耦接电路耦接,并且被配置为:确定所述保护电路的第一端的电压是否属于第一预定范围和第二预定范围中的一个;
    所述第一耦接电路与所述第一端、所述第二端、以及所述确定电路耦接,并且被配置为:
    响应于所述第一端的电压属于所述第一预定范围,使所述第一端和所述第二端耦接;以及
    响应于所述第一端的电压属于所述第二预定范围,使所述第一端和所述第二端解除耦接。
  2. 根据权利要求1所述的保护电路,其中,所述确定电路包括放大器,其包括第一输入端、第二输入端、输出端;
    所述放大器的第一输入端与所述保护电路的第一端耦接;
    所述放大器的第二输入端与参考电压端耦接;
    所述放大器的输出端与所述第一耦接电路耦接。
  3. 根据权利要求2所述的保护电路,其中,
    所述放大器的第二输入端通过第一电阻与所述参考电压端耦接;
    所述放大器的第二输入端通过第二电阻与所述放大器的输出端耦接。
  4. 根据权利要求1至3中任一项所述的保护电路,
    其中,所述第一耦接电路包括第一晶体管,并且
    其中,所述第一晶体管的控制极与所述确定电路耦接,所述第一晶体管的第一极与所述保护电路的第一端耦接,所述第一晶体管的第二极与所述保护电路的第二端耦接。
  5. 根据权利要求1至3中任一项所述的保护电路,还包括:第二耦接电路,与所述保护电路的第一端连接,并且被配置为使得所述保护电路的第一端的电压属于第一预定范围。
  6. 根据权利要求5所述的保护电路,
    其中,所述第二耦接电路包括第二晶体管;并且
    其中,所述第二晶体管的控制极与第一控制信号端耦接,所述第二晶体管的第一极与所述保护电路的第一端耦接,所述第二晶体管的第二极与所述保护电路的第二端耦接。
  7. 根据权利要求6所述的保护电路,还包括:电压检测线;
    所述电压检测线被配置为将所述保护电路的第一端耦接至电压检测装置;
    其中,所述第二晶体管被配置为响应于所述保护电路的第一端的电压属于第三预定范围而导通。
  8. 根据权利要求1至3中任一项所述的保护电路,
    其中,所述第一预定范围中的电压大于第一电压;并且
    其中,所述第二预定范围中的电压小于第二电压。
  9. 根据权利要求8所述的保护电路,其中,所述第一电压等于所述第二电压。
  10. 一种保护方法,包括:
    确定第一端的电压是否属于第一预定范围和第二预定范围中的一个;
    响应于所述第一端的电压属于所述第一预定范围,使所述第一端和第二端耦接;以及
    响应于所述第一端的电压属于所述第二预定范围,使所述第一端和第二端解除耦接。
  11. 根据权利要求10所述的保护方法,还包括:
    确定保护电路的第一端的电压是否属于第三预定范围;
    响应于所述第一端的电压属于所述第三预定范围,使所述第一端的电压落入所述第一预定范围。
  12. 一种像素电路,包括权利要求1至9中任一项所述的保护电路。
  13. 根据权利要求12所述的像素电路,其中,
    所述保护电路的第一端与所述像素电路中的发光器件连接;并且
    所述保护电路的第二端与所述像素电路中的驱动电路连接。
  14. 一种显示装置,包括权利要求12或者13所述的像素电路。
PCT/CN2017/104718 2017-01-03 2017-09-30 保护电路及方法、像素电路、以及显示装置 WO2018126748A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/778,047 US10657887B2 (en) 2017-01-03 2017-09-30 Protection circuit and method, pixel circuit, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710002572.7 2017-01-03
CN201710002572.7A CN106486041B (zh) 2017-01-03 2017-01-03 一种像素电路、其驱动方法及相关显示装置

Publications (1)

Publication Number Publication Date
WO2018126748A1 true WO2018126748A1 (zh) 2018-07-12

Family

ID=58286026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104718 WO2018126748A1 (zh) 2017-01-03 2017-09-30 保护电路及方法、像素电路、以及显示装置

Country Status (3)

Country Link
US (1) US10657887B2 (zh)
CN (1) CN106486041B (zh)
WO (1) WO2018126748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207111A1 (zh) * 2022-04-29 2023-11-02 惠科股份有限公司 像素驱动电路及显示面板

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10643728B2 (en) 2016-04-25 2020-05-05 Hefei Boe Optoelectronics Technology Co., Ltd. Display driving circuit, driving method thereof, and display device
CN105679230B (zh) 2016-04-25 2019-08-16 京东方科技集团股份有限公司 一种显示驱动电路、其驱动方法及显示装置
CN106531071B (zh) 2016-12-29 2018-06-05 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示面板
CN106531080B (zh) * 2016-12-29 2018-06-22 京东方科技集团股份有限公司 一种像素电路、像素驱动方法、显示装置
CN106486041B (zh) * 2017-01-03 2019-04-02 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关显示装置
CN107038997A (zh) 2017-05-26 2017-08-11 京东方科技集团股份有限公司 像素电路、像素驱动方法和显示装置
CN110473497B (zh) * 2018-05-09 2021-01-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN109327933A (zh) * 2018-10-22 2019-02-12 上海炬佑智能科技有限公司 光源驱动电路、光源驱动方法以及飞行时间测距传感器
CN110796976B (zh) * 2019-12-12 2022-12-30 京东方科技集团股份有限公司 一种阵列基板的检测方法及检测系统
CN111128076B (zh) * 2019-12-31 2021-06-29 合肥视涯技术有限公司 显示面板、显示面板的短路防护方法和显示装置
CN114299861B (zh) * 2021-12-30 2023-06-16 上海中航光电子有限公司 一种线路面板及其相关方法和装置
CN114743502A (zh) * 2022-04-25 2022-07-12 深圳市华星光电半导体显示技术有限公司 像素驱动电路及控制方法
CN114863879B (zh) * 2022-05-23 2023-05-02 惠科股份有限公司 有机发光二极管控制电路及显示面板
CN115938302B (zh) * 2022-12-23 2023-11-03 惠科股份有限公司 像素驱动电路、显示面板及显示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270059A1 (en) * 2004-05-31 2005-12-08 Naoki Ando Display apparatus and inspection method
CN101916550A (zh) * 2010-08-18 2010-12-15 福建捷联电子有限公司 发光二极管驱动电路
CN201689649U (zh) * 2010-08-18 2010-12-29 福建捷联电子有限公司 发光二极管驱动电路
CN102449908A (zh) * 2009-05-28 2012-05-09 高通股份有限公司 用于开关输出级的短路保护
CN104282264A (zh) * 2014-09-26 2015-01-14 京东方科技集团股份有限公司 一种有源驱动有机发光显示设备
CN204632314U (zh) * 2015-04-30 2015-09-09 武汉精测电子技术股份有限公司 一种oled面板
CN106486041A (zh) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关显示装置
CN106531071A (zh) * 2016-12-29 2017-03-22 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示面板
CN106531080A (zh) * 2016-12-29 2017-03-22 京东方科技集团股份有限公司 一种像素电路、像素驱动方法、显示装置
CN206301579U (zh) * 2016-12-29 2017-07-04 京东方科技集团股份有限公司 像素电路和显示面板
CN206301580U (zh) * 2016-12-29 2017-07-04 京东方科技集团股份有限公司 一种像素电路、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699997B1 (ko) * 2004-09-21 2007-03-26 삼성에스디아이 주식회사 다수개의 구동 트랜지스터와 다수개의 애노드 또는캐소드전극을 갖는 유기 전계 발광 표시장치
US7442950B2 (en) 2004-12-06 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN201035270Y (zh) * 2006-11-28 2008-03-12 尼克森微电子股份有限公司 液晶面板背光装置的反馈与保护电路
CN100561552C (zh) * 2007-03-28 2009-11-18 中国科学院微电子研究所 用于有机电致发光显示器或照明器件的容错电路
KR20150006967A (ko) * 2013-07-10 2015-01-20 삼성디스플레이 주식회사 Dc-dc 컨버터, 이를 포함하는 유기 전계 발광 표시 장치 및 이의 구동 방법
TWI537919B (zh) * 2014-05-23 2016-06-11 友達光電股份有限公司 顯示器及其子畫素驅動方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270059A1 (en) * 2004-05-31 2005-12-08 Naoki Ando Display apparatus and inspection method
CN102449908A (zh) * 2009-05-28 2012-05-09 高通股份有限公司 用于开关输出级的短路保护
CN101916550A (zh) * 2010-08-18 2010-12-15 福建捷联电子有限公司 发光二极管驱动电路
CN201689649U (zh) * 2010-08-18 2010-12-29 福建捷联电子有限公司 发光二极管驱动电路
CN104282264A (zh) * 2014-09-26 2015-01-14 京东方科技集团股份有限公司 一种有源驱动有机发光显示设备
CN204632314U (zh) * 2015-04-30 2015-09-09 武汉精测电子技术股份有限公司 一种oled面板
CN106531071A (zh) * 2016-12-29 2017-03-22 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示面板
CN106531080A (zh) * 2016-12-29 2017-03-22 京东方科技集团股份有限公司 一种像素电路、像素驱动方法、显示装置
CN206301579U (zh) * 2016-12-29 2017-07-04 京东方科技集团股份有限公司 像素电路和显示面板
CN206301580U (zh) * 2016-12-29 2017-07-04 京东方科技集团股份有限公司 一种像素电路、显示装置
CN106486041A (zh) * 2017-01-03 2017-03-08 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207111A1 (zh) * 2022-04-29 2023-11-02 惠科股份有限公司 像素驱动电路及显示面板
US11948511B2 (en) 2022-04-29 2024-04-02 HKC Corporation Limited Pixel driving circuit and display panel

Also Published As

Publication number Publication date
US10657887B2 (en) 2020-05-19
CN106486041A (zh) 2017-03-08
US20190043422A1 (en) 2019-02-07
CN106486041B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018126748A1 (zh) 保护电路及方法、像素电路、以及显示装置
US20210118361A1 (en) Amoled pixel driving circuit, driving method, and display panel
US10665167B2 (en) Pixel circuit including standby driving circuit and switching circuit, and driving method thereof, and display device touch display panel
US20210201792A1 (en) Power management driver and display device having the same
KR102136289B1 (ko) 픽셀 구동 회로 및 픽셀 구동 방법, 어레이 기판 및 디스플레이 디바이스
US10643536B2 (en) Pixel circuit and driving method thereof, display panel
KR101576405B1 (ko) 외부 보상 감지 회로와 그 감지 방법 및 디스플레이 디바이스
JP2020515894A (ja) 無効画素検出回路、方法および表示装置
WO2016165248A1 (zh) 一种驱动芯片、驱动板及其测试方法、显示装置
US10923041B2 (en) Detection method and detection device for array substrate driving circuit
US11900877B2 (en) Organic light-emitting diode control circuit and display panel
US11915654B1 (en) Power-supply voltage generator for outputting varied voltages to display panel
US20200342811A1 (en) Pixel driving circuit, display device and driving method
CN108399888B (zh) 像素驱动电路及其驱动方法、像素电路和显示面板
US11935444B2 (en) Detection circuit, driving circuit, and display panel and driving method therefor
WO2021042338A1 (zh) 像素驱动电路、像素驱动方法、显示装置及其控制方法
US11094257B2 (en) Pixel driving circuit, pixel driving method and display apparatus
US7812795B2 (en) Modulation of common voltage and method for controlling AMOLED panel
WO2021258283A1 (zh) 一种显示装置、子像素修复电路及其修复方法
US11455947B2 (en) Pixel circuit, driving method thereof and display device
CN111724746B (zh) 像素电路及其老化工艺方法、阵列基板
WO2022047917A1 (zh) 显示装置及其驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890626

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17890626

Country of ref document: EP

Kind code of ref document: A1