WO2018126411A1 - 无线通信方法和装置 - Google Patents

无线通信方法和装置 Download PDF

Info

Publication number
WO2018126411A1
WO2018126411A1 PCT/CN2017/070323 CN2017070323W WO2018126411A1 WO 2018126411 A1 WO2018126411 A1 WO 2018126411A1 CN 2017070323 W CN2017070323 W CN 2017070323W WO 2018126411 A1 WO2018126411 A1 WO 2018126411A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
transmit
beams
correspondence
network device
Prior art date
Application number
PCT/CN2017/070323
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CN201780077055.4A priority Critical patent/CN110073605B/zh
Priority to EP17890352.2A priority patent/EP3537618B1/en
Priority to US16/470,852 priority patent/US10715236B2/en
Priority to PCT/CN2017/070323 priority patent/WO2018126411A1/zh
Priority to TW106145170A priority patent/TWI694689B/zh
Publication of WO2018126411A1 publication Critical patent/WO2018126411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to a wireless communication method and apparatus.
  • a terminal device and a network device can train multiple beams by beamforming, and different beams can correspond to different directions and different coverage areas.
  • the terminal device may have multiple uplink transmit beams and multiple downlink receive beams
  • the network device may have multiple uplink receive beams and multiple downlink transmit beams.
  • the terminal device and the network device need to separately determine the uplink transmit beam and the uplink receive beam used in the current data transmission, and before performing the specific downlink data transmission, the terminal device and the network device need to be separately determined.
  • the downlink transmit beam and the downlink receive beam used in the downlink data transmission have a large signaling overhead and a heavy equipment load.
  • Embodiments of the present invention provide a wireless communication method and apparatus, which can reduce signaling overhead.
  • a wireless communication method comprising: a plurality of terminal equipment using the uplink transmit an uplink signal to the network for each transmission beam device uplink transmit beam; the terminal device and a network device receives the uplink transmission of M 1 M 1 metrics set information corresponding to the transmit beam, the M 1 uplink transmit a first uplink beam emitted beam corresponding to the first metric information comprises a set of at least one of the following information: the first uplink transmission beam Identification information, identification information of each uplink receiving beam of the M 2 uplink receiving beams of the network device, metric value information corresponding to the first uplink transmitting beam, the first uplink transmitting beam, and the M 2 uplink receiving M 2 beam configuration of uplink beams for each metric information uplink beams, wherein the first uplink transmission beams constituting the first pair of the uplink beam M 2 of first uplink beams received in the uplink reception beam,
  • the metric of the first uplink beam pair is that the network device uses the first uplink receive beam to measure the terminal device to use
  • M 1 and M 2 are both integer equal to or greater than 1, and M 1 and M 2 are not simultaneously equal to 1; the use of each terminal device receives a plurality of downlink measurement beam receiving the downlink beams network devices transmit a downlink signal using a plurality of downlink beam to be transmitted, the downlink measurement results obtained; and the terminal apparatus to the downlink measurement results M 1 based on the information set metrics, determine a transmit / receive beam corresponding to the result of the correspondence.
  • the metric value information of the first uplink beam pair formed by the first uplink transmit beam and the first uplink receive beam may be that the network device uses the first uplink receive beam to measure the uplink sent by the terminal device by using the first uplink transmit beam. The signal is obtained.
  • the metric information of the first uplink beam pair may be determined by the network device according to the measurement value corresponding to the first uplink beam pair.
  • the metric information corresponding to the first uplink transmit beam may be that the network device obtains, by using each of the uplink receive beams of the multiple uplink receive beams, the uplink signal sent by the terminal device by using the first uplink transmit beam. of.
  • the metric value information corresponding to the first uplink transmit beam may be that the network device is configured according to each of the plurality of uplink beam pairs formed by the first uplink transmit beam and the multiple uplink receive beams. Corresponding measured values are determined.
  • the plurality of terminal devices transmit uplink beam includes the uplink transmit beam M 1, the plurality of network devices comprising the uplink reception beam M 2 uplink receive beams.
  • the correspondence result of the transmit/receive beam correspondence may include whether the transmit/receive beam correspondence is established and/or at least one transmit/receive beam pair that satisfies the beam correspondence.
  • the network device may use a plurality of uplink terminal device transmits uplink signals transmitted beam is measured, metrics M 1 to set information terminal device transmits uplink transmit beam M 1 corresponding
  • the first metric information set corresponding to the first uplink transmit beam may include at least one of the following information: the identifier information of the first uplink transmit beam, and the metric value information corresponding to the first uplink transmit beam.
  • metric information terminal device may be the downlink measurement results obtained in accordance with the downlink signal of the metrics M 1 and the information set by the network equipment using a plurality of downlink transmission beam to be transmitted, determine a transmit / receive beam corresponding to the result of the correspondence, It is beneficial to reduce signaling overhead and has better accuracy.
  • the terminal apparatus based on the information set metrics M 1 and the downlink measurement results, determines the transmit / receive beams corresponding to the result of the correspondence, comprising: the terminal apparatus based on the Determining, by the M 1 metric information set and the downlink measurement result, a correspondence result of the transmit/receive beam correspondence at the terminal device; and/or determining, by the terminal device, the M 1 metric information set and the downlink measurement result, The result of the correspondence of the transmit/receive beam correspondence at the network device.
  • the method further includes: the terminal device sends a correspondence indication message to the network device, where the correspondence indication message is used Corresponding results indicating the correspondence of the transmit/receive beams.
  • the method further includes: when the time interval between the current first moment and the second moment before the first moment reaches a preset time interval, the terminal device determines to perform the determining the transmit/receive beam correspondence A flow of correspondence results, wherein the second moment is a nearest neighboring start time for which the transmit/receive beam correspondence is determined.
  • the network device and the terminal device may continue to maintain the correspondence of the transmit/receive beam by default within a preset time interval, and when the preset time interval is reached, The network device and the terminal device can determine whether the transmit/receive beam correspondence is still valid.
  • the method further includes, in a case where the terminal device needs to change a transmission mode or a transmission parameter for performing data transmission with the network device, the terminal device determines a flow of performing a correspondence result of determining the correspondence of the transmission/reception beam.
  • the terminal device may determine, according to the current state, for example, the current channel state of the network device and the terminal device, that a transmission mode or a transmission parameter for performing data transmission with the terminal device needs to be changed.
  • the terminal device may also determine, according to an indication of the network device, that a transmission mode or a transmission parameter used for data transmission with the network device needs to be changed.
  • the method further includes: receiving, by the terminal device, configuration indication information sent by the network device, where the configuration indication information is used to indicate that the terminal device sends an uplink signal configuration; and the terminal device uses each of the multiple uplink transmit beams. And sending the uplink signal to the network device, where the terminal device sends the uplink signal to the network device by using each of the multiple uplink transmit beams according to the configuration indication information.
  • the terminal device uses each of the multiple uplink transmit beams to set the network to the network
  • the sending of the uplink signal includes: the terminal device sends an uplink signal to the network device by using each of the multiple uplink transmit beams according to the original configuration, where the original configuration is used by the terminal device to perform the determined transmission last time. / The process of receiving the correspondence result of the beam correspondence sends an uplink signal to the network device.
  • a method for wireless communication comprising: using, by the network device, a plurality of uplink receive beam measurement terminal devices, using an uplink signal sent by each of the plurality of uplink transmit beams, to obtain an uplink measurement result; network equipment according to the uplink measurement results, to the terminal device transmits uplink transmit beam M 1 corresponding metrics information sets M 1, M 1 of the first degree of the first uplink transmit uplink transmit beam corresponding to the beam
  • the quantity information set includes at least one of the following: the identifier information of the first uplink transmit beam, the metric value information corresponding to the first uplink transmit beam, and each uplink receive beam of the M 2 uplink receive beams of the network device.
  • the first uplink receiving beam in the beam constitutes a first uplink beam pair
  • the metric of the first uplink beam pair is that the network device uses the first uplink receiving beam to measure an uplink signal sent by the terminal device by using the first uplink transmitting beam.
  • both M 1 and M 2 are integers greater than or equal to 1, and M 1 and M 2 are not equal to 1 at the same time.
  • the method further includes: the network device transmitting, by using each of the plurality of downlink transmit beams, a downlink signal.
  • the method further includes: receiving, by the network device, a correspondence indication message sent by the terminal device, where the correspondence indication message is used Corresponding results indicating the correspondence of transmit/receive beams.
  • the network device uses multiple uplink receive beam measurement terminal devices to use each of the multiple uplink transmit beams.
  • the method further includes: the network device sending configuration indication information to the terminal device, where the configuration indication information is used to indicate that the terminal device sends the configuration of the uplink signal.
  • a wireless communication device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus includes any possible implementation for performing the first aspect or the first aspect described above
  • the unit of the method in the current mode includes any possible implementation for performing the first aspect or the first aspect described above.
  • a wireless communication apparatus for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a wireless communication apparatus comprising: a memory for storing instructions for executing instructions stored in the memory, and a processor, when the processor executes the instructions stored by the memory, The execution causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • a wireless communication apparatus comprising: a memory for storing instructions for executing instructions stored in the memory, and a processor, when the processor executes the instructions stored by the memory, The execution causes the processor to perform the method of the second aspect or any possible implementation of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • the metric corresponding to the first uplink transmit beam is specifically a metric value of an uplink beam pair corresponding to a maximum value in the first set of measurement values, where the first set of measured values
  • the network device obtains the uplink signal sent by the terminal device by using the first uplink transmit beam by using multiple uplink receive beams.
  • the network device measures the uplink signal sent by the terminal device by using the first uplink transmit beam by using multiple uplink receive beams to obtain a first set of measured values. Assume that the measurement value corresponding to the first uplink beam pair is the maximum value in the first measurement value set, and the metric value corresponding to the first uplink transmission beam may be the metric value of the first uplink beam pair. The metric of the first uplink beam pair is obtained according to the measured value corresponding to the first uplink beam pair.
  • the first set of measured values comprises at least one of the following: signal strength, SNR, SINR, and rank value.
  • the M 2 uplink beam pairs are the first M 2 uplink beam pairs corresponding to the highest metric values of the plurality of uplink beam pairs, wherein the multiple uplink beam pairs are An uplink transmit beam is formed with a plurality of uplink receive beams of the network device.
  • the first uplink beam pair is the uplink beam pair with the highest metric value corresponding to the plurality of uplink beam pairs, wherein the multiple uplink beam pairs are the first uplink transmit beam
  • the M 2 uplink receive beams further include at least one second uplink receive beam, wherein the at least one second uplink receive beam and the first uplink transmit beam form at least A second uplink beam pair, the difference between the metric of each of the at least one second uplink beam pair and the metric of the first uplink beam pair is less than the first threshold.
  • the at least one second uplink beam pair is a pre-M 2 -1 uplink beam pair having the highest metric value other than the first uplink beam pair among the plurality of uplink beam pairs.
  • the uplink beams M 2 metric information of the beam upstream of the second upstream comprises a front pair of the second uplink beam measurement values corresponding to the second uplink beam pairs beam corresponding to a difference between the measured value; M 2, or the uplink beams to the metric information of the second uplink beam includes second uplink beams to the corresponding measured values of the plurality of uplink beams The difference between the measured values corresponding to the upstream beam pair in the first row.
  • the uplink beam pair ranked first may be the uplink beam pair having the largest metric or the smallest metric or the smallest number among the multiple uplink beam pairs.
  • the M 1 uplink transmit beams are the first M 1 uplink transmit beams with the highest metric values of the plurality of uplink transmit beams.
  • the M 1 uplink transmit beam further includes at least one second uplink transmit.
  • the difference between the metric value corresponding to each second uplink transmit uplink beam and the metric value corresponding to the first uplink transmit uplink beam in the at least one second uplink transmit beam is smaller than the second threshold value.
  • the at least one second uplink transmit beam is a pre-M 1 -1 uplink transmit beam having the highest metric value other than the first uplink transmit beam among the plurality of uplink transmit beams.
  • the correspondence indication message is specifically used to indicate at least one of: whether a transmit/receive beam correspondence is established at the terminal device; and a transmit/receive beam correspondence at the network device Whether the location is established; the terminal device includes at least a beam correspondence a transmit/receive beam pair; the network device includes at least one transmit/receive beam pair that satisfies beam correspondence.
  • the configuration indication information is used to indicate at least one of the following configuration parameters: a measurement order of the multiple uplink transmit beams, a repeated measurement number of the multiple uplink transmit beams, the multiple Corresponding relationship between the uplink transmit beam and the at least one uplink signal, and a correspondence between the multiple uplink transmit beams and the transmission resource.
  • the uplink signal comprises at least one of the following: SRS, PRACH, DMRS, and beam measurement dedicated uplink signals.
  • FIG. 1 is a schematic structural diagram of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a wireless communication apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a wireless communication apparatus according to another embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a wireless communication apparatus according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present invention is applied.
  • the wireless communication system 100 can include at least one network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Each network device 100 can provide communication coverage for a particular geographic area and can communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system (Evolutional Node B).
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • WCDMA Long Term Evolution
  • Evolutional Node B evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • Network side devices, transmission points, or network devices in a future evolved PLMN may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • the wireless communication system 100 also includes a plurality of terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 can be mobile or fixed.
  • the terminal device 120 can refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The embodiment of the invention does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • the wireless communication system 100 can employ multiple beam techniques. Specifically, for the downlink, the network device may have multiple downlink transmit beams (DL Tx Beam), and the terminal device may have multiple downlink receive beams (DL Rx Beam); for the uplink, the terminal device may have multiple uplinks. With a transmit beam (UL Tx Beam), the network device can have multiple uplink receive beams (UL Rx Beam).
  • DL Tx Beam downlink transmit beams
  • DL Rx Beam downlink receive beams
  • UL Rx Beam uplink receive beams
  • the terminal device has U 1 uplink transmit beams and D 1 downlink receive beams
  • the network device has U 2 uplink receive beams and D 2 downlink transmit beams, where U 1 , U 2 , D 1 And D 2 are integers greater than one.
  • the network device and the terminal device need to separately determine the beam currently used for downlink transmission and the beam currently used for uplink transmission, thereby causing large signaling overhead and heavy equipment burden.
  • the network devices need to use all of the downlink transmit beams to each transmit beam downlink D 1 the terminal apparatus transmits an uplink signal to the downlink.
  • the terminal device may employ the received downlink beams D 1 were measured using the same network device transmit a downlink an uplink signal D 1 downlink beam to be transmitted, to obtain measured values D 1.
  • the terminal device needs to perform D 1 ⁇ D 2 measurements, obtain D 1 ⁇ D 2 measurement values, and determine the currently used downlink transmit beam from all downlink transmit beams and downlink receive beams according to the obtained set of measured values. And downlink receive beams.
  • the terminal device needs to transmit an uplink signal to the network device using each of the uplink transmission beams.
  • the network device needs to perform measurement on each uplink transmit beam of the terminal device by using each uplink receive beam in all uplink receive beams, obtain multiple measured values, and obtain multiple uplink transmit beams and uplinks according to the obtained set of measured values.
  • the currently used uplink transmit beam and uplink receive beam are determined in the receive beam.
  • the transmit/receive beam correspondence may be established. If the transmit/receive beam correspondence is established, the beam for downlink transmission may be determined according to the beam for uplink transmission, or the beam for uplink transmission may be determined according to the beam for downlink transmission. In this way, the network device and the terminal device only need to perform beam selection in one link direction to obtain a beam for data transmission in another link direction, thereby reducing signaling overhead and device burden.
  • the transmit/receive uplink beam correspondence at the terminal device is established:
  • the terminal device is capable of determining a UL Tx Beam for uplink transmission according to the measurement of the one or more DL Rx beams by the terminal device;
  • the terminal device is capable of determining a DL Rx Beam for downlink transmission based on an indication of the network device, wherein the indication of the network device is based on measuring one or more UL Tx Beams of the terminal device.
  • the transmit/receive uplink beam correspondence at the network device is established:
  • the network device can be based on one or more DL Tx Beams of the network device of the terminal device Measuring, determining the UL Rx Beam for uplink transmission;
  • the network device can determine the DL Tx Beam for downlink transmission based on measurements of one or more UL Rx Beams by the network device.
  • FIG. 2 shows a wireless communication method 200 provided by an embodiment of the present invention.
  • the wireless communication method 200 can be applied to the wireless communication system 100 shown in FIG. 1, but the embodiment of the present invention is not limited thereto.
  • the terminal device sends an uplink signal to the network device by using each of the multiple uplink transmit beams.
  • the terminal device has U 1 uplink transmit beams and D 1 downlink receive beams
  • the network device has U 2 uplink receive beams and D 2 downlink transmit beams, wherein the U 1 uplink transmit beams and D 1 downlink receive beams
  • the mapping relationship may be a one-to-one mapping, a one-to-many mapping or a many-to-many mapping.
  • the downlink receiving beam that arrives is the uplink transmitting beam itself, but the embodiment of the present invention is not limited thereto.
  • the number of the multiple uplink transmit beams may be the number of uplink transmit beams that the terminal device needs to measure, and the multiple uplink transmit beams may be part or all of the uplink transmit beams of the U 1 uplink transmit beams of the terminal device.
  • the beam is not limited in this embodiment of the present invention.
  • the terminal device may send, by using each of the uplink transmit beams of the U 1 uplink transmit beams, at least one uplink signal to the network device.
  • the number of uplink signals sent by the terminal device to the network device by using different uplink transmit beams may be the same or different.
  • the following description is made by taking the example that the terminal device can send U 2 uplink signals to the network device by using each uplink transmit beam, but the embodiment of the present invention is not limited thereto.
  • the type of the uplink signal sent by the terminal device to the network device by using the different uplink transmit beams may be the same or different, and the at least one uplink signal sent by the terminal device to the network device by using the same uplink transmit beam may be the same type of uplink signal.
  • the terminal device may use the uplink transmit beam to transmit the uplink signal to the network device at least once, but the embodiment of the present invention does not limit this.
  • the uplink signal sent by the terminal device by using multiple uplink transmit beams may include at least one of the following uplink signals: a Sounding Reference Signal (SRS), Physical Random Access Channel (PRACH), Demodulation Reference Signal (DMRS), and beam measurement dedicated uplink signals.
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • DMRS Demodulation Reference Signal
  • the beam measurement dedicated uplink signal may be an uplink signal dedicated to beam measurement.
  • the uplink signal sent by the terminal device may also include other types of signals, which is not limited in this embodiment of the present invention.
  • the configuration that the terminal device sends the uplink signal to the network device may be defined by a protocol, or may be an original configuration of the terminal device, for example, the last time the terminal device performs beam selection or determines the correspondence between the transmit/receive beams.
  • the configuration adopted may be dynamically configured by the network device, which is not limited in this embodiment of the present invention.
  • the method 200 further includes: the network device sending configuration indication information to the terminal device, where the configuration indication information is used to indicate that the terminal device sends the configuration of the uplink signal.
  • the terminal device when receiving the configuration indication information sent by the network device, may send an uplink signal to the network device by using each of the multiple uplink transmit beams according to the configuration indication information.
  • the terminal device may send an uplink signal by using the configuration parameter indicated by the configuration indication information.
  • the terminal device may further determine, according to the protocol specification or the original configuration, the configuration indication information is not indicated according to the protocol configuration. Parameters, but embodiments of the invention are not limited thereto.
  • the configuration indication information may be used to indicate at least one of the following configuration parameters: a measurement order of the uplink transmit beam, a repeated measurement number of the uplink transmit beam, a correspondence between the uplink transmit beam and the uplink signal, and an uplink transmission. The correspondence between the beam and the transmission resource.
  • the configuration indication information may be used to indicate a measurement order of the uplink transmit beams, that is, an order in which the terminal device sends the uplink signals by using the multiple uplink transmit beams.
  • the configuration indication information may also be used to indicate the number of repeated measurements of the uplink transmit beam.
  • the number of repeated measurements of the uplink transmit beam is used to indicate the number of uplink signals sent by the terminal device to the network device by using the uplink transmit beam.
  • the number of repeated measurements of different uplink transmit beams in the multiple uplink transmit beams may be the same or different, which is not limited in this embodiment of the present invention.
  • the configuration indication information may also be used to indicate a correspondence between the multiple uplink transmit beams and multiple uplink signals.
  • the terminal device may according to the correspondence between the uplink transmit beam and the uplink signal. And determining a type of an uplink signal sent by each of the plurality of uplink transmit beams.
  • any two different uplink transmit beams may be used to transmit the same or different uplink signals, but the embodiment of the present invention is not limited thereto.
  • the configuration indication information may also be used to indicate a correspondence between the multiple uplink transmit beams and transmission resources.
  • the terminal device may determine, according to the correspondence between the uplink transmit beam and the transmission resource, the transmission resource corresponding to each uplink transmit beam of the multiple uplink transmit beams, and on the corresponding transmission resource.
  • the uplink signal is transmitted by using each of the uplink transmit beams.
  • the terminal device may occupy the same or different transmission resources when transmitting the uplink signal by using any two different uplink transmit beams, but the embodiment of the present invention is not limited thereto.
  • the configuration indication information may also be used to indicate other configuration parameters, which is not limited by the embodiment of the present invention.
  • the terminal device uses the uplink transmit beam to send the U 2 uplink signals to the network device, but the embodiment of the present invention is not limited thereto.
  • the network device may use multiple uplink receive beams to measure the uplink signal sent by the terminal device by using each uplink transmit beam of the multiple uplink transmit beams to obtain an uplink measurement result.
  • the number of the multiple uplink receive beams may be the number of uplink receive beams that the network device needs to measure.
  • the multiple uplink receiving beams may be part or all of the uplink receiving signals of the U 2 uplink receiving beams of the network device, which is not limited in this embodiment of the present invention.
  • the network device may perform one measurement by using each of the uplink transmit beams of the U 2 uplink receive beams. The measured value corresponding to the uplink beam pair formed by the first uplink transmit beam and each of the uplink receive beams.
  • the network device may use the same number of uplink receive beams to transmit the signals sent by the terminal device to the first uplink transmit beam respectively.
  • a measurement is performed to obtain a measurement value corresponding to each of the plurality of uplink beam pairs formed by the plurality of uplink receiving beams and the first uplink transmitting beam.
  • the first uplink transmit beam of the network device and the first uplink transmit beam of the terminal device form a first uplink beam pair
  • the measurement value corresponding to the first uplink beam pair may be that the network device uses the first uplink receive beam.
  • the terminal device uses the uplink signal sent by the first uplink transmit beam to measure. In this way, by using a plurality of uplink receiving beams to measure the uplink signal sent by the terminal device by using the first uplink transmit beam, the network device can obtain the first set of measured values.
  • the first set of measured values may include measured values corresponding to each of the plurality of uplink beam pairs formed by the first uplink transmit beam and the multiple uplink receive beams, where the multiple uplink receive beams may be For some or all of the uplink receiving beams of the U 2 uplink receiving beams, the embodiment of the present invention does not limit this.
  • the measured value corresponding to an uplink beam pair may include at least one of the following: a signal strength, a signal to noise ratio (SNR), a signal to interference and noise ratio (Signal-to-Interference and Noise). Ratio, SINR) and Rank values.
  • the measured value corresponding to the uplink beam pair may be specifically one of the following: signal strength, SNR, SINR, signal strength and channel rank value, SNR and channel rank value, SINR, and channel rank value.
  • the measurement value corresponding to the uplink beam pair may also include the measurement value obtained by measuring the other physical quantity, which is not limited in this embodiment of the present invention.
  • the network device may further obtain, according to the measured value corresponding to the multiple uplink beam pairs formed by the first uplink transmit beam, a metric value of each of the multiple uplink beam pairs, so that the network device A first set of metric values corresponding to the first uplink transmit beam may be obtained.
  • the metric of an uplink beam pair may be a function of a measurement value corresponding to the uplink beam pair.
  • the metric of an uplink beam pair may be equal to the measurement corresponding to the uplink beam pair, or the metric of an uplink beam pair may be equal to a weighted average of multiple measurements of the uplink beam pair, the multiple The measured value may be a measured value corresponding to different measured quantities of the uplink beam pair, but the embodiment of the present invention is not limited thereto.
  • the network device may further determine, according to the first set of measurement values, a metric value corresponding to the first uplink transmit beam.
  • the metric corresponding to the first uplink transmit beam may be obtained by the network device by using each of the plurality of uplink receive beams to measure an uplink signal sent by the terminal device by using the first uplink transmit beam, where The metric corresponding to the first uplink transmit beam may be obtained according to a metric of each of the plurality of uplink beam pairs formed by the first uplink transmit beam and the multiple uplink receive beams.
  • the metric corresponding to the first uplink transmit beam may be a metric of an uplink beam pair having a largest measured value among the plurality of uplink beam pairs formed by the first uplink transmit beam, that is, the first a maximum value in the set of metric values; or the metric value corresponding to the first uplink transmit beam may be a mathematical mean or a weighted average of at least two metric values in the first set of metric values, but the present invention The embodiment is not limited to this.
  • the network device may measure, by using the uplink signal sent by each of the multiple uplink transmit beams, a measurement set corresponding to each uplink transmit beam, and according to the multiple uplink transmissions.
  • a set of measurement values corresponding to each uplink transmit beam in the beam, and M 1 uplink transmit beams are determined from the plurality of uplink transmit beams.
  • the M 1 may be an integer greater than or equal to 1, and the M 1 may be less than or equal to the number of the multiple uplink transmit beams, that is, the M 1 uplink transmit beams may be specifically in multiple uplink transmit beams of the terminal device. All or part of the uplink transmit beam is not limited in this embodiment of the present invention.
  • the network device may determine, according to the set of measurement values corresponding to each of the uplink transmit beams, the metric value corresponding to each of the uplink transmit beams, where the determining manner may refer to the foregoing
  • the description of the uplink transmit beam will not be repeated here for brevity.
  • the network device may measure the uplink transmission in accordance with a plurality of beams for each transmit beam corresponding to the uplink, M 1 is determined uplink transmit beams emitted from the plurality of uplink beams.
  • the uplink transmit beams M 1 that can transmit a plurality of uplink beams corresponding to the highest metric value M 1 before the uplink transmission beam.
  • the network device may measure according to a descending order, sort the plurality of uplink transmission beams, and select the first uplink transmission beam M 1 sorted, but the embodiment of the present invention is not limited thereto.
  • the M 1 uplink transmit beams may include a first uplink transmit beam and at least one a second uplink transmit beam, where a difference between a metric corresponding to each second uplink transmit beam and a metric corresponding to the first uplink transmit beam may be smaller than a second Threshold.
  • the network device may first determine an uplink transmit beam having the highest metric among the plurality of uplink transmit beams, which is referred to herein as a first uplink transmit beam.
  • the network device may compare the metric value corresponding to the first uplink transmit beam with the metric value corresponding to the remaining uplink transmit beam, and determine, from the remaining uplink transmit beam, a difference between the maximum metric value and the maximum metric value.
  • At least one uplink transmit beam of the second threshold which is referred to herein as a second uplink transmit beam, where the remaining uplink transmit beams may be specifically other than the first uplink transmit beam of the plurality of uplink transmit beams. Uplink transmit beam.
  • the second threshold value may be specified by the protocol, or may be determined by the network device according to the current network state or other parameters, or may be determined by the network device and the terminal device, and the embodiment of the present invention determines Not limited.
  • the at least one second uplink transmit beam may be all or part of the uplink transmit beams of the remaining uplink transmit beams and the maximum metric value being less than the second threshold.
  • the network device may determine, as the at least one second uplink transmit beam, all uplink transmit beams that have a difference between the remaining uplink transmit beams and the maximum metric value that is less than a second threshold. .
  • the network device may The first M 1 -1 uplink transmit beams with the highest metric values in the remaining uplink transmit beams are determined as the at least one second uplink transmit beam, but the embodiment of the present invention is not limited thereto.
  • the network device may also determine uplink transmission beam M 1, this embodiment is not limited to the embodiment of the present invention from a plurality of uplink transmission beams by other means.
  • the network device may also be set based on the first metric, i.e., the configuration based on the uplink is received by a first beam and a plurality of uplink transmission beams A metric of each of the plurality of uplink beam pairs, and M 2 uplink beam pairs are determined from the plurality of uplink beam pairs.
  • the M 2 may be an integer greater than or equal to 1, and the M 2 may be less than or equal to the number of the multiple uplink receiving beams, that is, the uplink receiving beam included in the M 2 uplink beam pairs may specifically be the multiple uplink receiving. All or part of the uplink receiving beam in the beam is not limited in this embodiment of the present invention.
  • the M 2 uplink beam pairs are the first M 2 uplink beam pairs with the highest metric values corresponding to the plurality of uplink beam pairs formed by the first uplink transmit beam.
  • the M 2 uplink beam pairs may include a first uplink beam pair and at least one second uplink beam pair, wherein a metric value of an uplink beam pair formed by each of the at least one second uplink receiving beam and the first uplink transmitting beam is The difference between the corresponding metric values of the first uplink beam pair may be less than the first threshold value.
  • the network device may first determine an uplink beam pair having the highest metric among the plurality of uplink beam pairs formed by the first uplink transmit beam, and determine an uplink receive beam in the uplink beam pair with the highest metric, where This is called the first uplink receive beam. Then, the network device may compare the metric value of the first uplink beam pair with the metric value of the remaining uplink beam pair, and determine, from the remaining uplink beam pair, that the difference between the maximum metric value and the maximum metric value is less than the first threshold value.
  • At least one second uplink beam pair and determining an uplink receiving beam included in each second uplink beam pair of the at least one second uplink beam pair, which is referred to herein as a second uplink receiving beam, where the remaining uplink is
  • the beam pair may be specifically an uplink beam pair of the plurality of uplink beam pairs formed by the first uplink transmit beam except the first uplink beam pair.
  • the first threshold value may be specified by a protocol, or may be determined by the network device according to the current network state or other parameters, or may be determined by the network device and the terminal device, and the embodiment of the present invention determines Not limited.
  • the at least one second uplink beam pair may be all or part of uplink beam pairs in which the difference between the remaining uplink beam pairs and the maximum metric value is less than the first threshold.
  • the network device may determine, as the at least one second uplink beam pair, all uplink beam pairs in which the difference between the remaining uplink beam pairs and the maximum metric value is less than the first threshold value. .
  • the network device may The first M 2 -1 uplink beam pairs having the highest metric values in the remaining uplink beam pairs are determined as the at least one second uplink beam pair, but the embodiment of the present invention is not limited thereto.
  • the network device may further determine the M 2 uplink beam pairs from the plurality of uplink beam pairs formed by the first uplink transmit beam, which is not limited in this embodiment of the present invention.
  • the network device may transmit a beam to measure each uplink beam P i of the i th uplink beams composed of M 1 based on the uplink in the uplink transmit beams, determining K P i from the uplink beams pairs i uplink beam pair, and transmits to the terminal equipment transmit beam i i corresponding metrics information set in the uplink, metric information may include uplink transmission beam corresponding to the i and / or said determination of K i-th uplink beam metric information for each of the uplink beam, where, i can take the values from 1 to M 1, P i may be an integer greater than or equal to 2, K i can be an integer greater than or equal to 1, embodied Reference may be made to the foregoing description of the first uplink transmit beam, which is not described herein for brevity.
  • the network device corresponding to the terminal device transmits uplink transmit beams M 1 M 1 information set metrics
  • M 1 sets the first metric information of a first uplink transmission uplink transmission beam corresponding to the beam comprises the following At least one of the identifier information of the first uplink transmit beam, the metric value information corresponding to the first uplink transmit beam, and the identifier information of each uplink receive beam of the M 2 uplink receive beams of the network device, Metric information of each of the M 2 uplink beam pairs formed by the first uplink transmit beam and the M 2 uplink receive beams, where M 1 and M 2 are not equal to 1 at the same time.
  • the metric information of each of the uplink beam pairs of the M 2 uplink beam pairs may be specifically a metric of each uplink beam pair.
  • the metric information of an uplink beam pair may include a difference between the metric value of the uplink beam pair and a preset reference value.
  • the metric information of the M 2 uplink beam pairs may be sequentially arranged in a certain order, for example, according to the magnitude of the metric value of the uplink beam pair, or sequentially according to the number of the uplink receiving beam included in the uplink beam pair. and many more.
  • the metric value information of an uplink beam pair may include a difference between the metric value of the uplink beam pair and the metric value of the previous uplink beam pair.
  • the metric information of the uplink beam pair that is ranked in the first place may be empty or set to a default value or a meaningless value, which is not limited in this embodiment of the present invention.
  • the metric information of an uplink beam pair may include a difference between a metric of the uplink beam pair and a metric of an uplink beam pair ranked first or last, or an uplink beam pair.
  • the metric information may include a difference between a metric value of the uplink beam pair and a maximum or minimum value of the metric values of the M 2 uplink beam pairs, optionally as a reference uplink beam pair (eg, the above row).
  • the metric information corresponding to the uplink beam pair of the first or last bit or the uplink beam pair corresponding to the maximum metric or the minimum metric may be null or set to a default value or a meaningless value, in the embodiment of the present invention There is no limit to this.
  • the network device may send a metric information set to the terminal device, for example, a first metric information set corresponding to the first uplink transmit beam, where the first metric information set may include multiple uplink receive Identification information of each uplink receiving beam in the beam and/or metric information of each of the plurality of uplink beam pairs formed by the first uplink transmitting beam and the plurality of uplink receiving beams, optionally, the The first metric information set may further include the metric value information corresponding to the first uplink transmit beam, which is not limited in this embodiment of the present invention.
  • the network device may send, to the terminal device, multiple metric information sets corresponding to the multiple uplink transmit beams, where the ith metric information set corresponding to the uplink transmit beam i may include the following information.
  • the identification information of the uplink transmit beam i the metric value information corresponding to the uplink transmit beam i, the identification information of one or more uplink receive beams, and the uplink transmit beam i and the one or more uplink receive
  • the metric value information of one or more uplink beam pairs formed by the beam but the embodiment of the present invention is not limited thereto.
  • the first metric information set may further include other information, and the embodiment of the present invention is not limited thereto.
  • the network device sends, by using each of the downlink transmit beams, a downlink signal to the terminal device.
  • the terminal device adopts each downlink connection of multiple downlink receiving beams.
  • the receiving beam measures the downlink signal sent by the network equipment by using multiple downlink transmitting beams to obtain downlink measurement results.
  • the multiple downlink transmit beams may be part or all of the downlink transmit beams of the D 2 downlink transmit beams of the network device, where the multiple downlink receive beams may be in the D 1 downlink receive beams of the terminal device.
  • Some or all of the downlink receiving beams are not limited in this embodiment of the present invention.
  • the downlink signal sent by the downlink device is used by the network device, and the terminal device may perform measurement by using each of the multiple downlink receiving beams to obtain the downlink receiving beam and the downlink.
  • the measured value of the downlink beam pair formed by the transmit beam may be measured.
  • the terminal device may measure the signal sent by each downlink transmit beam of the multiple downlink transmit beams to obtain a downlink measurement result.
  • the downlink measurement result may include a measurement value corresponding to each downlink beam pair of the multiple downlink beam pairs formed by the multiple downlink receive beams and the multiple downlink transmit beams.
  • the terminal device may further obtain, according to the measured value corresponding to each downlink beam pair of the multiple downlink beam pairs, a metric value of each downlink beam pair in the multiple downlink beams.
  • the metric of each downlink beam pair may be a function corresponding to the downlink beam pair, for example, the metric value of each downlink beam pair may be equal to the measurement value corresponding to the downlink beam pair, but the embodiment of the present invention Not limited to this.
  • the S240 and the S210-S230 may be executed in any order, which is not limited by the embodiment of the present invention.
  • the terminal device receives M of the network device transmits the link metric information set, according to the M 1 metric information collection and downlink measurement results in S240 obtained, determining a transmit / receive beams correspondence correspondences result.
  • the result of the correspondence of the transmit/receive beam correspondence may include whether the transmit/receive correspondence is established, or may further include a transmit/receive beam pair that satisfies the beam correspondence, which is not limited in this embodiment of the present invention. .
  • the terminal device may metrics M 1 based on the information sets and downlink measurement results, the transmit / receive beam corresponding to the result of the correspondence of the terminal at the device.
  • the terminal device may be based on the information set metrics M 1 and downlink measurement results, the transmit / receive beam correspondence is established in the terminal device.
  • the terminal device may determine a target downlink receiving beam from multiple downlink receiving beams of the terminal device according to the downlink measurement result, where, optionally, the target downlink receiving beam may be the terminal device.
  • the downlink receiving beam corresponding to the largest metric value among the plurality of downlink receiving beams, but the embodiment of the present invention is not limited thereto.
  • the terminal device may determine whether the M 1 metric information set includes a metric information set corresponding to the target uplink transmit beam. Alternatively, if the metrics M 1 does not include information sets the target metric information sets uplink transmission beam corresponding to, the terminal device may determine a transmit / receive beam correspondence is not established in the terminal device.
  • the terminal device may be determined directly transmit / receive beam correspondence established in the terminal device; Alternatively, the terminal device may further determine whether the metric information set corresponding to the target uplink transmit beam meets the first preset condition. If the metric information set corresponding to the target uplink transmit beam does not satisfy the first preset condition, the terminal device may determine that the transmit/receive beam correspondence is not established at the terminal device.
  • the terminal device may determine that the transmit/receive beam correspondence is established at the terminal device. Alternatively, the terminal device may further determine, according to other conditions, whether the transmit/receive beam correspondence is established at the terminal device.
  • the first preset condition may include: the metric value corresponding to the target uplink transmit beam The difference between the maximum metric values corresponding to the M 1 uplink transmit beams is less than the third threshold.
  • the first preset condition may include: If the downlink beam pair with the largest metric value among the plurality of downlink beam pairs formed by the target downlink receiving beam is referred to as a target downlink beam pair, the uplink receiving beam mapped by the downlink transmitting beam included in the target downlink beam pair is referred to as a target uplink.
  • the difference between the metric value of the uplink beam pair formed by the target uplink receiving beam and the target uplink transmitting beam and the maximum metric value of the plurality of uplink beam pairs formed by the target uplink transmitting beam is smaller than the fourth gate Limit.
  • the first preset condition may further include other specific conditions, and the embodiment of the present invention is not limited thereto.
  • the terminal device considering the influence of factors such as measurement error and random interference during uplink signal transmission, even if the metric corresponding to the target uplink transmit beam is not the largest metric in the M 1 uplink transmit beam uplink transmission beams, if the difference between the maximum value of the magnitude of the uplink transmission beam corresponding to the metric value M 1 corresponding uplink transmit beam is less than the third threshold value, the terminal device can still be considered the The target downlink receive beam and the target uplink transmit beam satisfy the transmit/receive beam correspondence.
  • the third threshold or the fourth threshold may be defined by a protocol, or may be configured by a network device, or may be determined by the terminal device according to the transmission requirement, and the embodiment of the present invention does not do this. limited.
  • the terminal device may further metrics M 1 based on the information sets and downlink measurement results, determining a plurality of uplink transmission beams and a plurality of the terminal device receiving the downlink beams of the beam corresponds to satisfy at least one transmitting / receiving Beam pairs, but embodiments of the invention are not limited thereto.
  • the terminal device may be based on the information set metrics M 1 and the downlink measurement results, determines the transmit / receive beams corresponding to the result of the correspondence of the network device.
  • the terminal device may be based on the information set metrics M 1 and downlink measurement results, the transmit / receive beam correspondence is established in the network device.
  • the terminal device may determine a target downlink transmit beam from multiple downlink transmit beams of the network device according to the downlink measurement result.
  • the target downlink transmit beam may be a downlink transmit beam with the largest metric value corresponding to the multiple downlink transmit beams.
  • the terminal device may determine at least one target downlink beam pair from the plurality of downlink beam pairs formed by the plurality of downlink receiving beams of the terminal device and the plurality of downlink transmitting beams of the network device according to the downlink measurement result.
  • the at least one target downlink beam pair may be the previous one or more downlink beam pairs with the largest metric among the plurality of downlink beam pairs, but the embodiment of the present invention is not limited thereto.
  • the terminal device may determine that the transmit/receive beam correspondence is established at the network device, but the embodiment of the present invention is not limited thereto.
  • the terminal device may determine that the transmit/receive beam correspondence is established at the network device, but the embodiment of the present invention is not limited thereto.
  • the terminal device may further based on the information set metrics M 1 and the downlink measurement results, determining a plurality of downlink transmit beams of the network device and receiving a plurality of uplink beams meet the transmit beam of the corresponding / receive beam pair.
  • the method 200 may further include: the terminal device sending a correspondence indication message to the network device, where the correspondence indication message is used to indicate a correspondence result of the transmit/receive beam correspondence.
  • the correspondence indication message may only indicate that the transmit/receive beam correspondence is true or not.
  • the correspondence indication message may be specifically used to indicate whether the transmit/receive beam correspondence is established at the terminal device and/or the network device, which is not limited by the embodiment of the present invention.
  • the correspondence indication message may also be used to indicate a transmit/receive beam pair of the terminal device that satisfies beam correspondence, and/or a transmit/receive beam pair of the network device that satisfies beam correspondence, but the present invention The embodiment is not limited to this.
  • the network device may send an acknowledgement message to the terminal device, but the embodiment of the present invention is not limited thereto.
  • the terminal device may further store the correspondence result of the transmit/receive beam correspondence determined in S250, and may subsequently report the stored correspondence result of the transmit/receive beam correspondence to the network device, but the embodiment of the present invention Not limited to this.
  • the correspondence result of the transmit/receive beam correspondence is determined by the terminal device.
  • the terminal device may perform the foregoing process of determining a correspondence result of the transmit/receive beam correspondence periodically or in a trigger manner.
  • the terminal device may receive indication information of the network device for indicating a correspondence result of the transmission/reception beam correspondence of the terminal device, and correspondingly, the terminal device may be configured according to the received indication information. The above-described process of determining the correspondence result of the transmit/receive beam correspondence is performed, but the embodiment of the present invention is not limited thereto.
  • the terminal device may consider that the transmit/receive is performed within a preset time period starting from the first time. Beam correspondence remains established.
  • the terminal device may perform the above-described process of determining the correspondence result of the transmit/receive beam correspondence. For example, the terminal device may start a timer at a first moment, and perform the above-described process of determining a correspondence result of the transmit/receive beam correspondence when the timer expires.
  • the length of the preset time period may be It is defined in the protocol, or may be configured by the network device, which is not limited by the embodiment of the present invention.
  • the terminal device may also perform the above determination when determining a transmission mode to be used when the data transmission with the network device needs to be changed, or when it is determined that a part of the transmission parameters in the current transmission mode needs to be changed.
  • the flow of the correspondence result of the transmit/receive beam correspondence but the embodiment of the present invention is not limited thereto.
  • the radio communication method a plurality of uplink transmission beams an uplink signal sent by the terminal device through a network measurement device, and metrics M 1 M 1 terminal device transmits uplink transmit beam corresponding information set
  • the metric for M 1 of first set of information in the information set includes at least one of: the M 1 a logo information of uplink transmission beams first transmit beam in the uplink, the first uplink transmission beam metric corresponding to the information, the network device M 2 each uplink receive beams received identification information of the uplink beam, the first uplink transmission beams uplink beam M 2 M 2 to the uplink receive beam pair configuration each uplink beam metric information terminal device based on the correspondence beams M 1 and a set of metrics information for the downlink measurement results obtained by using a plurality of downlink transmit an uplink signal beam to be transmitted to the network device, determines the transmit / receive Corresponding results are beneficial to reduce signaling overhead and have better accuracy.
  • the terminal device has 4 beams, which can be used as both an uplink transmit beam and a downlink receive beam.
  • the network device has 8 beams, which can be used as both an uplink receiving beam and a downlink transmitting beam.
  • the terminal device can use the four beams to send uplink signals according to the configuration of the network device.
  • the network device can receive and measure with 8 uplink receive beams, and obtain 8 measured values, and the optimal measurement value of the 8 measured values can be determined according to a certain value.
  • the rule is mapped to the metric value V i , wherein the optimal measurement value may correspond to the optimal channel state, and the determination of the optimal measurement value may be dependent on the measurement quantity, which is not limited by the embodiment of the present invention.
  • the network device may select two metrics from the ⁇ V i ⁇ , for example, two metrics with a larger value, and send indication information to the terminal device, where the indication information is used to indicate two metric values selected by the network device.
  • the indication information may optionally include the following information: ⁇ number of uplink transmit beam 1 UL_Tx_Beam_1, V 1 ⁇ And ⁇ number of uplink transmit beam 4 UL_Tx_Beam_4, V 4 ⁇ .
  • the indication information may include the following information: ⁇ UL_Tx_Beam 1,0 ⁇ and ⁇ UL_Tx_Beam 4, ⁇ 14 ⁇ , where ⁇ 14 may represent the absolute value of the difference or difference between V 4 and V 1 .
  • the indication information may also include the following information: ⁇ UL_Tx_Beam 1, UL_Tx_Beam 4, ⁇ 14 ⁇ , where the metric value corresponding to the uplink transmit beam 1 is omitted, but the embodiment of the present invention is not limited thereto.
  • the network device can transmit downlink signals to the terminal device by using eight downlink transmit beams.
  • the terminal device may determine, by measuring the downlink signal sent by the network device, the optimal beam combination for downlink transmission as the downlink transmit beam n (denoted as DL_Tx_Beam n) of the network device and the beam m of the terminal device (ie, DL_Rx_Beam m) .
  • the terminal device can judge whether the transmit/receive beam correspondence is established by judging whether the following two conditions are satisfied at the same time:
  • the difference between the metric value corresponding to UL_Tx_Beam m and the maximum metric value indicated by the indication information is less than the third threshold value.
  • the network device measures the uplink signal sent by the terminal device using four uplink transmit beams by using eight uplink receive beams, and obtains an uplink measurement result.
  • the network device may select the four uplink beam pairs with the highest metric value from the 32 uplink beam pairs formed by the eight uplink receiving beams and the four uplink transmitting beams according to the uplink measurement result, and send an indication to the terminal device.
  • Information, the indication information may include information of each of the four uplink beam pairs.
  • the four uplink beam pairs and their corresponding metrics can be as follows:
  • the terminal device can measure the downlink signal sent by the network device using 8 downlink transmit beams to obtain downlink measurement results.
  • the terminal device determines the downlink beam pair composed of DL_Tx_Beam 4 and DL_Rx_Beam 4 as the target downlink beam pair according to the downlink measurement result. For example, the metric value of the downlink beam pair formed by DL_Tx_Beam 4 and DL_Rx_Beam 4 is the highest, and the terminal device can determine Whether the following two conditions are satisfied at the same time to determine whether UL_Tx_Beam_4 and DL_Rx_Beam_4 satisfy the beam correspondence:
  • the indication information sent by the network device to the terminal device may include information of each of the four uplink beam pairs.
  • the four uplink beam pairs and their corresponding metrics can be as follows:
  • the terminal device can measure the downlink signal sent by the network device using 8 downlink transmit beams to obtain downlink measurement results.
  • the terminal device may determine the network device DL_Tx_Beam_1 and UL_Rx_Beam_1 and DL_Tx_Beam_4 and UL_Rx_Beam_4 satisfy beam correspondence.
  • the terminal may determine that the DL_Tx_Beam_4 and UL_Rx_Beam_4 of the network device do not satisfy the beam correspondence.
  • FIG. 3 shows a wireless communication device 300 according to an embodiment of the present invention, including:
  • the sending unit 310 is configured to send, by using each of the multiple uplink transmit beams, an uplink signal to the network device.
  • Receiving unit 320 the network device for receiving a set of metrics information transmitted with the uplink transmit beam M 1 corresponding to the M, M 1 of the first measure and uplink transmit a first uplink transmit beam corresponding to the beam
  • the information set includes at least one of the following: the metric value information corresponding to the first uplink transmit beam, and the M 2 uplink beam pairs formed by the first uplink transmit beam and the M 2 uplink receive beams of the network device.
  • the beam comprises a plurality of uplink transmit the uplink transmit beam M 1, the first uplink transmission beams constituting the first beam and the uplink receiving the uplink receive beams M 2 in the first An uplink beam pair
  • the metric of the first uplink beam pair is obtained by using, by using the first uplink receiving beam, the uplink signal sent by the sending unit 310 by using the first uplink transmitting beam, where M 1 and M 2 are both An integer greater than or equal to 1, and M 1 and M 2 are not equal to 1 at the same time;
  • Processing unit 330 a downlink reception using a plurality of receiving beams each downlink beam measuring apparatus using the network transmit a plurality of downlink signal beams transmitted by downlink, the downlink measurement results obtained, and based on the M received by the receiving unit 320 1
  • the metric information set and the downlink measurement result determine a correspondence result of the transmit/receive beam correspondence.
  • the first metric information set further includes at least one of the following: identifier information of the first uplink transmit beam, and identifier information of each uplink receive beam of the M 2 uplink receive beams.
  • the metric corresponding to the first uplink transmit beam is specifically a metric of an uplink beam pair corresponding to the maximum value in the first set of measurement values, where the first set of measured values is adopted by the network device.
  • the plurality of uplink receiving beam pairs are measured by using the uplink signal sent by the first uplink transmitting beam.
  • the first set of measured values comprises at least one of the following: signal strength, SNR, SINR, and rank value.
  • the M 2 uplink beam pairs are the first M 2 uplink beam pairs with the highest metric values of the plurality of uplink beam pairs, wherein the multiple uplink beam pairs are the first uplink transmit beam and the The network device is composed of multiple uplink receiving beams.
  • the first uplink beam pair may be an uplink beam pair with the highest metric value corresponding to the plurality of uplink beam pairs, where the multiple uplink beam pairs are caused by the first uplink transmit beam and the network device.
  • the uplink receiving beam is formed.
  • the M 2 uplink receive beams may further include at least one second uplink receive beam, where the at least one second uplink receive beam and the first uplink transmit beam form at least one second uplink beam pair. And a difference between a metric of each of the at least one second uplink beam pair and a metric of the first uplink beam pair is less than a first threshold.
  • the at least one second uplink beam pair is the first M 2 -1 uplink beam pair with the highest metric except the first uplink beam pair among the multiple uplink beam pairs.
  • the uplink beam M 2 metric information of the beam upstream of the second uplink beam includes a second pair of the measured values corresponding to a previous uplink beams and the uplink beam to a second measurement of the corresponding The difference between the values.
  • the metric value information of the second uplink beam pair of the M 2 uplink beam pairs includes a measurement value corresponding to the second uplink beam pair and an uplink beam pair ranked first in the multiple uplink beam pairs. The difference between the corresponding measured values.
  • the M 1 uplink transmit beams are the first M 1 uplink transmit beams with the highest metric values of the multiple uplink transmit beams.
  • the first uplink transmit beam is an uplink transmit beam with the highest metric value corresponding to the multiple uplink transmit beams.
  • the M 1 uplink transmit beam further includes at least one second uplink transmit beam, and a metric corresponding to each second uplink transmit uplink beam of the at least one second uplink transmit beam and the first uplink transmit The difference between the metrics corresponding to the uplink beams is less than the second threshold.
  • the at least one of the second plurality of uplink transmission beams is a measure of uplink transmission beams other than the first maximum uplink transmission beam former M 1 -1 uplink transmission beam.
  • processing unit 330 is specifically configured to:
  • the sending unit 310 is further configured to send, to the network device, a correspondence indication message, where the correspondence indication message is used to indicate the transmit/receive beam correspondence determined by the processing unit 330. Corresponding results.
  • the correspondence indication message is specifically used to indicate at least one of the following:
  • the terminal device includes at least one transmit/receive beam pair that satisfies beam correspondence
  • the network device includes at least one transmit/receive beam pair that satisfies beam correspondence.
  • the processing unit 330 is further configured to: when the time interval between the current first moment and the second moment before the first moment reaches a preset time interval, determine to perform the determining to transmit/receive A flow of correspondence results of beam correspondence, wherein the second moment is a nearest neighboring start time for which the transmit/receive beam correspondence is determined.
  • the processing unit 330 is further configured to: determine, when the terminal device needs to change a transmission mode or a transmission parameter used for data transmission with the network device, perform a correspondence result of performing the determined transmit/receive beam correspondence. Process.
  • the receiving unit 320 is further configured to receive configuration indication information that is sent by the network device, where the configuration indication information is used to indicate a sending configuration of the uplink signal.
  • the sending unit 310 is specifically configured to send, by using each of the multiple uplink transmit beams, an uplink signal to the network device according to the configuration indication information.
  • the configuration indication information is used to indicate at least one of the following configuration parameters: a measurement order of the multiple uplink transmit beams, a repeated measurement number of the multiple uplink transmit beams, the multiple uplink transmit beams, and at least one Corresponding relationship between uplink signals, correspondence between the plurality of uplink transmit beams and transmission resources.
  • the sending unit 310 is configured to send, by using each of the multiple uplink transmit beams, an uplink signal to the network device according to the original configuration, where the original configuration is used to perform the determined transmission/reception on the last execution.
  • the uplink signal is sent to the network device in the flow of the correspondence result of the beam correspondence.
  • the uplink signal includes at least one of the following: a sounding reference signal SRS, a physical random access channel PRACH, a demodulation reference signal DMRS, and a beam measurement dedicated uplink signal.
  • the apparatus 300 herein is embodied in the form of a functional unit.
  • the device 300 may be specifically the terminal device in the foregoing embodiment, and the device 300 may be used to perform various processes and/or steps corresponding to the terminal device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 4 shows a wireless communication device 400 according to another embodiment of the present invention, including:
  • the processing unit 410 is configured to use multiple uplink receive beam measurement terminal devices to use the uplink signals sent by each of the plurality of uplink transmit beams to obtain an uplink measurement result.
  • Transmitting unit 420 transmits uplink transmit beam M 1 corresponding to the information set metrics M 1,
  • M 1 is the uplink transmit beams the first metric information corresponding to a first uplink transmit beam set comprising at least one of: uplink transmit the M 1 metric information in a first uplink transmission beam corresponding to the beam, the first beam and transmitting the uplink M 2 network device configured uplink receive beams 2 M uplink beams metric information for each of the uplink beam, wherein the beam comprises a plurality of uplink transmit the uplink transmit beam M 1, the plurality of uplink receiving The beam includes the M 2 uplink receiving beams, and the first uplink transmitting beam and the first uplink receiving beam of the M 2 uplink receiving beams form a first uplink beam pair, and the metric of the first uplink beam pair is the network.
  • the device obtains, by using the first uplink receiving beam, the uplink signal sent by the terminal device by using the first uplink transmit beam, where both M 1 and M 2 are integers greater than or equal to 1. And M 1 and M 2 are not equal to 1 at the same time.
  • the first metric information set further includes at least one of the following: identifier information of the first uplink transmit beam, and identifier information of each uplink receive beam of the M 2 uplink receive beams.
  • the metric corresponding to the first uplink transmit beam is specifically a metric of an uplink beam pair corresponding to the maximum value in the first set of measurement values, where the first set of measured values is adopted by the network device.
  • the plurality of uplink receiving beams are measured by using the uplink signal sent by the terminal equipment by using the first uplink transmit beam.
  • the first set of measured values comprises at least one of the following: signal strength, SNR, SINR, and rank value.
  • the M 2 uplink beam pairs are the first M 2 uplink beam pairs with the highest metric values of the plurality of uplink beam pairs, wherein the multiple uplink beam pairs are the first uplink transmit beam and the The network device is composed of multiple uplink receiving beams.
  • the first uplink beam pair is an uplink beam pair with the highest metric value corresponding to the plurality of uplink beam pairs, where the multiple uplink beam pairs are multiple by the first uplink transmit beam and the network device.
  • the uplink receiving beam is formed.
  • the M 2 uplink receive beams further include at least one second uplink receive beam, where the at least one second uplink receive beam and the first uplink transmit beam form at least one second uplink beam pair, A difference between a metric of each of the at least one second uplink beam pair and a metric of the first uplink beam pair is less than a first threshold.
  • the at least one second uplink beam pair is the first M 2 -1 uplink beam pair with the highest metric except the first uplink beam pair among the multiple uplink beam pairs.
  • the uplink beam M 2 metric information of the beam upstream of the second uplink beam includes a second pair of the measured values corresponding to a previous uplink beams and the uplink beam to a second measurement of the corresponding The difference between the values.
  • the metric value information of the second uplink beam pair of the M 2 uplink beam pairs includes a measurement value corresponding to the second uplink beam pair and an uplink beam pair ranked first in the multiple uplink beam pairs. The difference between the corresponding measured values.
  • the M 1 uplink transmit beams are the first M 1 uplink transmit beams with the highest metric values of the multiple uplink transmit beams.
  • the first uplink transmit beam is an uplink transmit beam with the highest metric value corresponding to the multiple uplink transmit beams.
  • the M 1 uplink transmit beam further includes at least one second uplink transmit beam, and the metric corresponding to each second uplink transmit uplink beam of the at least one second uplink transmit beam and the first uplink The difference between the metrics corresponding to the transmit uplink beam is less than the second threshold.
  • the at least one second uplink transmit beam is a pre-M 1 -1 uplink transmit beam with the highest metric value other than the first uplink transmit beam among the multiple uplink transmit beams.
  • the sending unit 420 is further configured to send a downlink signal by using each of the plurality of downlink transmit beams.
  • the apparatus 400 further includes: a receiving unit 430, configured to receive a correspondence indication message sent by the terminal device, where the correspondence indication message is used to indicate that the terminal device sends according to the sending unit 420. Correspondence results of the transmit/receive beam correspondence obtained by the M 1 metric information set.
  • the correspondence indication message is specifically used to indicate at least one of the following:
  • the terminal device includes at least one transmit/receive beam pair that satisfies beam correspondence
  • the network device includes at least one transmit/receive beam pair that satisfies beam correspondence.
  • the sending unit 420 is further configured to: use, by the processing unit 410, a plurality of uplink receive beam measurement terminal devices to transmit by using each of the plurality of uplink transmit beams.
  • the configuration indication information is sent to the terminal device, where the configuration indication information is used to indicate that the terminal device sends the configuration of the uplink signal.
  • the configuration indication information is used to indicate at least one of the following configuration parameters: a measurement order of the multiple uplink transmit beams, a repeated measurement number of the multiple uplink transmit beams, the multiple uplink transmit beams, and at least one Corresponding relationship between uplink signals, correspondence between the plurality of uplink transmit beams and transmission resources.
  • the uplink signal sent by the terminal device by using the multiple uplink transmit beams includes at least one of the following: an SRS, a PRACH, a DMRS, and a beam measurement dedicated uplink signal.
  • the apparatus 400 herein is embodied in the form of a functional unit.
  • the device 400 may be specifically the network device in the foregoing embodiment, and the device 500 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiments. To avoid repetition, we will not repeat them here.
  • unit may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, sharing). Processors, proprietary processors or group processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • FIG. 5 shows a wireless communication device 500 according to an embodiment of the present invention, including: a processor 510 and a memory 520, wherein the memory 520 is configured to store an instruction, and the processor 510 is configured to execute an instruction stored by the memory 520, where Execution of the instruction causes the processor 510 to perform the following operations:
  • the network device receiving the metrics M 1 M 1 uplink information corresponding to the transmit beam set transmitted, the M 1 uplink transmit first uplink transmission beam corresponding to the beam set comprising a first metric information of At least one of: the metric value information corresponding to the first uplink transmit beam, the metric of each of the M 2 uplink beam pairs formed by the first uplink transmit beam and the M 2 uplink receive beams of the network device value information, wherein the beam comprises a plurality of uplink transmit the uplink transmit beam M 1, the first uplink transmission beams constituting the first beam and the uplink receiving the uplink receive beams M 2 in the first uplink beam pair, the second The metric of an uplink beam pair is obtained by using the uplink signal sent by the first uplink transmit beam by using the first uplink receive beam measurement, and both M 1 and M 2 are integers greater than or equal to 1, and M 1 When it is different from M 2, it is equal to 1;
  • the device 500 may be specifically the terminal device in the foregoing embodiment, and the device 500 may be used to perform various processes and/or steps corresponding to the terminal device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 6 shows a wireless communication device 600 according to another embodiment of the present invention, including: a processor 610 and a memory 620, wherein the memory 620 is configured to store an instruction, and the processor 610 is configured to execute the instruction stored in the memory 620.
  • the execution of the instruction causes the processor 610 to perform the following operations:
  • the terminal device transmits uplink transmit beam M 1 corresponding metrics information sets M 1, M 1 Messages with the uplink transmission of the first uplink transmit a first metric corresponding to a beam of beam set comprising at least one of: the M 1 M 2 metric values beam information of the first uplink transmission beam corresponding to the uplink transmission, uplink transmit beam with the first network device M 2 uplink reception beam configuration Measured value information for each of the uplink beam pairs, wherein the plurality of uplink transmit beams include the M 1 uplink transmit beams, and the plurality of uplink receive beams include the M 2 uplink receive beams, the first The uplink transmit beam and the first uplink receive beam of the M 2 uplink receive beams form a first uplink beam pair, and the metric of the first uplink beam pair is that the network device uses the first uplink receive beam to measure the terminal device.
  • the uplink signals sent by the first uplink transmit beam are obtained, and both M 1 and M 2 are integers greater than or equal to 1, and M 1 and
  • the device 600 may be specifically the network device in the foregoing embodiment, and the device 600 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital uplink signal processors (DSPs), and application specific integrated circuits ( ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • CPU central processing unit
  • DSPs digital uplink signal processors
  • ASIC application specific integrated circuits
  • FPGA off-the-shelf programmable gate array
  • the processor can be a microprocessor or the processor can be any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor can be used to execute instructions stored in the memory, and when the processor executes the instructions, the processor can perform the steps corresponding to the terminal device in the above method embodiments.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线通信方法和装置,能够降低信令开销。该方法包括:终端设备采用多个上行发射波束向网络设备发送上行信号;该终端设备接收该网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,其中,第一度量信息集合包括下列中的至少一种:第一上行发射波束所对应的度量值信息、该第一上行发射波束构成的M2个上行波束对中每个上行波束对的度量值信息,M1和M2不同时等于1;该终端设备采用多个下行接收波束中的每个下行接收波束测量该网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果;该终端设备根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性的对应性结果。

Description

无线通信方法和装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及无线通信方法和装置。
背景技术
在多波束(multi-beam)系统中,终端设备与网络设备可以通过波束赋形训练多个波束,不同的波束可以对应的不同的方向和不同的覆盖区域。具体地,终端设备可以具有多个上行发射波束和多个下行接收波束,网络设备可以具有多个上行接收波束和多个下行发射波束。在进行具体的上行数据传输之前,终端设备和网络设备需要分别确定本次数据传输所采用的上行发射波束和上行接收波束,并且在进行具体的下行数据传输之前,终端设备和网络设备需要分别确定本次下行数据传输所采用的下行发射波束和下行接收波束,由此造成的信令开销较大,设备负担较重。
发明内容
本发明实施例提供一种无线通信方法和装置,能够降低信令开销。
第一方面,提供了一种无线通信方法,包括:终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号;该终端设备接收该网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列信息中的至少一种:该第一上行发射波束的标识信息、该网络设备的M2个上行接收波束中每个上行接收波束的标识信息、该第一上行发射波束所对应的度量值信息、该第一上行发射波束与该M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1;该终端设备采用多个下行接收波束中的每个下行接收波束测量该网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果;该终端设备根据该M1个度量信息集合以 及该下行测量结果,确定发射/接收波束对应性的对应性结果。
该第一上行发射波束与该第一上行接收波束构成的第一上行波束对的度量值信息可以是该网络设备通过采用第一上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的。可选地,该第一上行波束对的度量值信息可以是该网络设备根据该第一上行波束对所对应的测量值确定的。
可选地,该第一上行发射波束所对应的度量值信息可以是该网络设备通过采用多个上行接收波束中每个上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的。可选地,该第一上行发射波束所对应的度量值信息可以是该网络设备根据由该第一上行发射波束与该多个上行接收波束构成的多个上行波束对中每个上行波束对所对应的测量值确定的。
具体地,该终端设备的多个上行发射波束包括该M1个上行发射波束,该网络设备的多个上行接收波束包括该M2个上行接收波束。
可选地,发射/接收波束对应性的对应性结果可以包括:发射/接收波束对应性是否成立和/或满足波束对应性的至少一个发射/接收波束对。
本发明实施例提供的无线通信方法,网络设备可以对终端设备采用多个上行发射波束发送的上行信号进行测量,并向终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,其中,与第一上行发射波束所对应的第一度量信息集合可以包括信息下列中的至少一种:该第一上行发射波束的标识信息、该第一上行发射波束所对应的度量值信息、该网络设备的M2个上行接收波束中每个上行接收波束的标识信息、该第一上行发射波束与该M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,终端设备可以根据该M1个度量信息集合以及通过对网络设备采用多个下行发射波束发送的下行信号进行测量得到的下行测量结果,确定发射/接收波束对应性的对应性结果,有利于降低信令开销,并且具有较好的准确性。
在第一方面的第一种可能的实现方式中,该终端设备根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性的对应性结果,包括:该终端设备根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该终端设备处的对应性结果;和/或该终端设备根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该网络设备处的对应性结果。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,该方法还包括:该终端设备向该网络设备发送对应性指示消息,该对应性指示消息用于指示该发射/接收波束对应性的对应性结果。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,在该终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,该方法还包括:在当前的第一时刻与位于该第一时刻之前的第二时刻之间的时间间隔达到预设时间间隔的情况下,该终端设备确定执行该确定发射/接收波束对应性的对应性结果的流程,其中,该第二时刻为发射/接收波束对应性确定成立的最邻近起始时刻。
可选地,若确定发射/接收波束对应性成立,则该网络设备和终端设备可以在预设时间间隔内默认该发射/接收波束对应性持续保持成立,在达到该预设时间间隔时,该网络设备和终端设备可以确定发射/接收波束对应性是否仍然成立。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,在该终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,该方法还包括:在该终端设备需要改变用于与该网络设备进行数据传输的传输模式或传输参数的情况下,该终端设备确定执行该确定发射/接收波束对应性的对应性结果的流程。
可选地,该终端设备可以根据当前状态,例如该网络设备与终端设备的当前信道状态,确定需要改变用于与该终端设备进行数据传输的传输模式或传输参数。可选地,该终端设备也可以根据该网络设备的指示,确定需要改变用于与该网络设备进行数据传输的传输模式或传输参数。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,在该终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,该方法还包括:该终端设备接收该网络设备发送的配置指示信息,该配置指示信息用于指示该终端设备发送上行信号的配置;该终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,包括:该终端设备根据该配置指示信息,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,该终端设备采用多个上行发射波束中的每个上行发射波束向网络设 备发送上行信号,包括:该终端设备根据原有配置,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,该原有配置用于该终端设备在上一次执行确定发射/接收波束对应性的对应性结果的流程中向网络设备发送上行信号。
第二方面,提供了另一种无线通信方法,包括:网络设备采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号,得到上行测量结果;该网络设备根据该上行测量结果,向该终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该第一上行发射波束的标识信息、该第一上行发射波束所对应的度量值信息、该网络设备的M2个上行接收波束中每个上行接收波束的标识信息、该第一上行发射波束与该M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该多个上行发射波束包括该M1个上行发射波束,该多个上行接收波束包括该M2个上行接收波束,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1。
在第二方面的第一种可能的实现方式中,该方法还包括:该网络设备采用多个下行发射波束中的每个下行发射波束发送下行信号。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,该方法还包括:该网络设备接收该终端设备发送的对应性指示消息,该对应性指示消息用于指示发射/接收波束对应性的对应性结果。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,在该网络设备采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号之前,该方法还包括:该网络设备向该终端设备发送配置指示信息,该配置指示信息用于指示该终端设备发送上行信号的配置。
第三方面,提供了一种无线通信装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实 现方式中的方法的单元。
第四方面,提供了一种无线通信装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种无线通信装置,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种无线通信装置,包括:存储器和处理器,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
在本发明实施例的某些方面,该第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,该第一测量值集合是该网络设备通过采用多个上行接收波束对该终端设备采用该第一上行发射波束发送的上行信号进行测量得到的。
该网络设备通过采用多个上行接收波束对该终端设备采用该第一上行发射波束发送的上行信号进行测量,得到第一测量值集合。假设第一上行波束对所对应的测量值为该第一测量值集合中的最大值,则该第一上行发射波束所对应的度量值可以为该第一上行波束对的度量值。其中,该第一上行波束对的度量值是根据该第一上行波束对所对应的测量值得到的。
在本发明实施例的某些方面,该第一测量值集合包括下列中的至少一种:信号强度、SNR、SINR和秩值。
在本发明实施例的某些方面,该M2个上行波束对是多个上行波束对中 对应的度量值最高的前M2个上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的。
在本发明实施例的某些方面,如果该第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的,则该M2个上行接收波束还包括至少一个第二上行接收波束,其中,该至少一个第二上行接收波束与该第一上行发射波束构成至少一个第二上行波束对,该至少一个第二上行波束对中每个第二上行波束对的度量值与该第一上行波束对的度量值之间的差值小于第一门限值。
在本发明实施例的某些方面,该至少一个第二上行波束对是该多个上行波束对中除该第一上行波束对之外的度量值最高的前M2-1个上行波束对。
在本发明实施例的某些方面,该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该第二上行波束对的前一上行波束对所对应的测量值之间的差值;或者该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
可选地,排在第一位的上行波束对可以为该多个上行波束对中具有最大度量值或具有最小度量值或编号最小的上行波束对。
在本发明实施例的某些方面,该M1个上行发射波束为该多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
在本发明实施例的某些方面,如果该第一上行发射波束为该多个上行发射波束中对应的度量值最高的上行发射波束,则该M1上行发射波束还包括至少一个第二上行发射波束,该至少一个第二上行发射波束中每个第二上行发射上行波束对应的度量值与该第一上行发射上行波束对应的度量值之间的差值小于第二门限值。
在本发明实施例的某些方面,该至少一个第二上行发射波束是该多个上行发射波束中除该第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
在本发明实施例的某些方面,该对应性指示消息具体用于指示下列中的至少一种:发射/接收波束对应性在该终端设备处是否成立;发射/接收波束对应性在该网络设备处是否成立;该终端设备包括的满足波束对应性的至少 一个发射/接收波束对;该网络设备包括的满足波束对应性的至少一个发射/接收波束对。
在本发明实施例的某些方面,该配置指示信息用于指示下列配置参数中的至少一种:该多个上行发射波束的测量次序、该多个上行发射波束的重复测量次数、该多个上行发射波束与至少一种上行信号之间的对应关系、该多个上行发射波束与传输资源之间的对应关系。
在本发明实施例的某些方面,该上行信号包括下列中的至少一种:SRS、PRACH、DMRS和波束测量专用上行信号。
附图说明
图1是本发明实施例应用的无线通信系统的示意性架构图。
图2是本发明实施例提供的无线通信方法的示意性流程图。
图3是本发明实施例提供的无线通信装置的示意性框图。
图4是本发明另一实施例提供的无线通信装置的示意性框图。
图5是本发明另一实施例提供的无线通信装置的示意性框图。
图6是本发明另一实施例提供的无线通信装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)或未来的5G系统等。
图1示出了本发明实施例应用的无线通信系统100。该无线通信系统100可以包括至少一个网络设备110。网络设备100可以是与终端设备通信的设备。每个网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备、传输点或者未来演进的PLMN中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例不限于此。
无线通信系统100可以采用多波束技术。具体地,对于下行链路,网络设备可以具有多个下行发射波束(DL Tx Beam),终端设备可以具有多个下行接收波束(DL Rx Beam);对于上行链路,终端设备可以具有多个上行发射波束(UL Tx Beam),网络设备可以具有多个上行接收波束(UL Rx Beam)。
为了便于理解,这里假设终端设备具有U1个上行发射波束和D1个下行接收波束,网络设备具有U2个上行接收波束和D2个下行发射波束,其中, U1、U2、D1和D2均为大于1的整数。
在通信过程中,网络设备和终端设备需要分别确定当前用于下行传输的波束和当前用于上行传输的波束,由此造成的信令开销较大,设备负担较重。
具体地,对于用于下行传输的波束的选择,网络设备需要采用所有下行发射波束中的每个下行发射波束向终端设备发送D1个下行上行信号。终端设备可以采用D1个下行接收波束分别测量网络设备采用同一个下行发射波束发送的D1个下行上行信号,得到D1个测量值。这样,终端设备需要进行D1×D2次测量,得到D1×D2个测量值,并根据得到的测量值集合,从所有的下行发射波束和下行接收波束中确定当前采用的下行发射波束和下行接收波束。
类似地,对于用于上行传输的波束的选择,终端设备需要采用所有上行发射波束中的每个上行发射波束向网络设备发送上行信号。网络设备需要采用所有上行接收波束中的每个上行接收波束对终端设备的每个上行发射波束进行一次测量,得到多个测量值,并根据得到的测量值集合,从多个上行发射波束和上行接收波束中确定当前采用的上行发射波束和上行接收波束。
为了降低波束选择造成的信令开销和设备负担,可以确定发射/接收波束对应性是否成立。如果发射/接收波束对应性成立,则可以根据用于上行传输的波束确定用于下行传输的波束,或根据用于下行传输的波束确定用于上行传输的波束。这样,网络设备和终端设备只需要进行一个链路方向上的波束选择,即可得到用于另一个链路方向上的数据传输的波束,从而降低信令开销和设备负担。
可选地,如果以下条件中的至少一个满足,则终端设备处的发射/接收上行波束对应性成立:
1、终端设备能够根据该终端设备对一个或多个DL Rx Beam的测量,确定用于上行传输的UL Tx Beam;
2、终端设备能够基于网络设备的指示,确定用于下行传输的DL Rx Beam,其中,网络设备的指示是基于对于终端设备的一个或多个UL Tx Beam进行测量得到的。
可选地,如果以下条件中的至少一个满足,则网络设备处的发射/接收上行波束对应性成立:
1、网络设备能够根据终端设备对网络设备的一个或多个DL Tx Beam的 测量,确定用于上行传输的UL Rx Beam;
2、网络设备能够基于网络设备对一个或多个UL Rx Beam的测量,确定用于下行传输的DL Tx Beam。
下面将结合具体例子详细描述本发明实施例提供的确定发射/接收波束对应性的技术方案。
图2示出了本发明实施例提供的无线通信方法200。该无线通信方法200可以应用于图1所示的无线通信系统100,但本发明实施例不限于此。
S210,终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
假设终端设备具有U1个上行发射波束和D1个下行接收波束,网络设备具有U2个上行接收波束和D2个下行发射波束,其中,该U1个上行发射波束和D1个下行接收波束之间可以具有某种映射关系,该映射关系可以是一对一映射、一对多映射或多对多映射。例如,该终端设备可以包括U1个波束,该U1个波束中的每个波束既可以作为上行发射波束,也可以作为下行接收波束,此时,D1=U1并且每个上行发射波束映射到的下行接收波束为该上行发射波束本身,但本发明实施例不限于此。
可选地,该多个上行发射波束的数量可以为终端设备需要测量的上行发射波束的数量,该多个上行发射波束可以为该终端设备的U1个上行发射波束中的部分或全部上行发射波束,本发明实施例对此不做限定。
可选地,终端设备可以采用U1个上行发射波束中的每个上行发射波束向网络设备发送至少一个上行信号。可选地,终端设备采用不同的上行发射波束向网络设备发送的上行信号数量可以相同或不同。为了便于理解,下面以该终端设备可以采用每个上行发射波束向网络设备发送U2个上行信号为例进行描述,但本发明实施例不限于此。
可选地,终端设备采用不同的上行发射波束向网络设备发送的上行信号类型可以相同或不同,并且终端设备采用同一个上行发射波束向网络设备发送的至少一个上行信号可以为相同类型的上行信号或不同类型的上行信号,例如,终端设备可以采用每个上行发射波束向网络设备重复发送至少一次上行信号,但本发明实施例对此不做限定。
可选地,终端设备采用多个上行发射波束发送的上行信号可以包括下列上行信号中的至少一种:探测参考信号(Sounding Reference Signal,SRS)、 物理随机接入信道(Physical Random Access Channel,PRACH)、解调参考信号(Demodulation Reference Signal,DMRS)和波束测量专用上行信号。
这里的波束测量专用上行信号可以是专门用于进行波束测量的上行信号。可选地,该终端设备发送的上行信号也可以包括其它类型的信号,本发明实施例对此不做限定。
在S210中,终端设备向网络设备发送上行信号的配置可以是协议定义的,也可以是终端设备的原有配置,例如是终端设备上次进行波束选择或确定发射/接收波束对应性的过程中采用的配置,也可以是网络设备动态配置的,本发明实施例对此不做限定。
可选地,在S210之前,该方法200还包括:网络设备向终端设备发送配置指示信息,该配置指示信息用于指示该终端设备发送上行信号的配置。此时,该终端设备在接收到网络设备发送的该配置指示信息时,可以根据该配置指示信息,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
具体地,若该配置指示信息指示了该终端设备发送上行信号所需的所有配置参数,则在S210中,该终端设备可以采用该配置指示信息指示的配置参数发送上行信号。可选地,若该配置指示信息指示了该终端设备发送上行信号所需的部分配置参数,则在S210中,该终端设备还可以根据协议规定或原有配置确定该配置指示信息未指示的配置参数,但本发明实施例不限于此。
可选地,该配置指示信息可以用于指示下列配置参数中的至少一种:上行发射波束的测量次序、上行发射波束的重复测量次数、上行发射波束与上行信号之间的对应关系、上行发射波束与传输资源之间的对应关系。
可选地,该配置指示信息可以用于指示上行发射波束的测量次序,即该终端设备采用该多个上行发射波束发送上行信号的次序。可选地,该配置指示信息也可以用于指示上行发射波束的重复测量次数。具体地,上行发射波束的重复测量次数用于表示该终端设备采用该上行发射波束向网络设备发送的上行信号数量。可选地,该多个上行发射波束中不同的上行发射波束的重复测量次数可以相同或不同,本发明实施例对此不做限定。可选地,该配置指示信息也可以用于指示该多个上行发射波束与多个上行信号之间的对应关系。此时,终端设备可以根据该上行发射波束与上行信号之间的对应关 系,确定采用该多个上行发射波束中每个上行发射波束发送的上行信号的类型。可选地,任意两个不同的上行发射波束可以用于发送相同或不同的上行信号,但本发明实施例不限于此。可选地,该配置指示信息也可以用于指示该多个上行发射波束与传输资源之间的对应关系。此时,终端设备可以根据上行发射波束与传输资源之间的对应关系,确定采用该多个上行发射波束中每个上行发射波束发送上行信号时对应的传输资源,并在该对应的传输资源上采用该每个上行发射波束发送上行信号。可选地,终端设备在采用任意两个不同的上行发射波束发送上行信号时可以占用相同或不同的传输资源,但本发明实施例不限于此。
可选地,该配置指示信息也可以用于指示其它配置参数,本发明实施例对此不做限定。
为了便于理解,下面以终端设备采用每个上行发射波束向网络设备发送U2个上行信号为例进行描述,但本发明实施例不限于此。
S220,网络设备可以采用多个上行接收波束测量该终端设备采用多个上行发射波束中每个上行发射波束发送的上行信号,得到上行测量结果。
该多个上行接收波束的数量可以为网络设备需要测量的上行接收波束的数量。该多个上行接收波束可以为该网络设备的U2个上行接收波束中的部分或全部上行接收信号,本发明实施例对此不做限定。
具体地,对于终端设备采用该多个上行发射波束中的第一上行发射波束发送的U2个上行信号,网络设备可以采用U2个上行接收波束中的每个上行接收波束进行一次测量,得到该第一上行发射波束与该每个上行接收波束构成的上行波束对所对应的测量值。或者,如果该终端设备采用该第一上行发射波束发送的上行信号的个数小于U2,该网络设备可以采用相同数量的上行接收波束对该终端设备采用该第一上行发射波束发送的信号分别进行一次测量,得到由多个上行接收波束与该第一上行发射波束构成的多个上行波束对中每个上行波束对所对应的测量值。
具体地,假设网络设备的第一上行接收波束与终端设备的第一上行发射波束构成第一上行波束对,则第一上行波束对所对应的测量值可以是网络设备通过采用第一上行接收波束对终端设备采用第一上行发射波束发送的上行信号进行测量得到的。这样,通过采用多个上行接收波束对该终端设备采用该第一上行发射波束发送的上行信号进行测量,该网络设备可以得到第一 测量值集合。其中,该第一测量值集合可以包括由该第一上行发射波束与该多个上行接收波束构成的多个上行波束对中每个上行波束对所对应的测量值,该多个上行接收波束可以为该U2个上行接收波束中的部分或全部上行接收波束,本发明实施例对此不做限定。
可选地,某个上行波束对所对应的测量值可以包括下列中的至少一种:信号强度、信噪比(Signal to Noise Ratio,SNR)、信干噪比(Signal-to-Interference and Noise Ratio,SINR)和秩(Rank)值。例如,上行波束对所对应的测量值可以具体为下列中的一种:信号强度、SNR、SINR、信号强度和信道秩值、SNR和信道秩值、SINR和信道秩值。可选地,上行波束对所对应的测量值也可以包括通过对其他物理量进行测量得到的测量值,本发明实施例对此不做限定。
可选地,该网络设备还可以根据第一上行发射波束构成的多个上行波束对所对应的测量值,得到该多个上行波束对中每个上行波束对的度量值,这样,该网络设备可以得到该第一上行发射波束所对应的第一度量值集合。其中,可选地,某个上行波束对的度量值可以是该上行波束对所对应的测量值的函数。例如,某个上行波束对的度量值可以等于该上行波束对所对应的测量值,或者,某个上行波束对的度量值可以等于该上行波束对的多个测量值的加权平均,该多个测量值可以是该上行波束对的不同测量量所对应的测量值,但本发明实施例不限于此。
可选地,该网络设备还可以根据该第一测量值集合,确定该第一上行发射波束所对应的度量值。这里的第一上行发射波束所对应的度量值可以是该网络设备通过采用多个上行接收波束中的每个上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的,具体地,该第一上行发射波束所对应的度量值可以是根据该第一上行发射波束与该多个上行接收波束所构成的多个上行波束对中每个上行波束对的度量值得到的。可选地,该第一上行发射波束所对应的度量值可以是由该第一上行发射波束所构成的多个上行波束对中具有最大测量值的上行波束对的度量值,也就是该第一度量值集合中的最大值;或者,该第一上行发射波束所对应的度量值可以是该第一度量值集合中的至少两个度量值的数学平均值或加权平均值,但本发明实施例不限于此。
可选的,该网络设备可以对该多个上行发射波束中的每个上行发射波束 发送的上行信号进行测量,得到该每个上行发射波束所对应的测量值集合,并且根据该多个上行发射波束中每个上行发射波束所对应的测量值集合,从该多个上行发射波束中确定M1个上行发射波束。其中,M1可以为大于或等于1的整数,并且M1可以小于或等于该多个上行发射波束的数量,即该M1个上行发射波束可以具体为该终端设备的多个上行发射波束中的全部或部分上行发射波束,本发明实施例对此不做限定。
具体地,该网络设备可以根据该多个上行发射波束中每个上行发射波束所对应的测量值集合,确定该每个上行发射波束所对应的度量值,其中,确定方式可以参照上述对第一上行发射波束的描述,为了简洁,这里不再赘述。
可选地,该网络设备可以根据该多个上行发射波束中每个上行发射波束所对应的度量值,从该多个上行发射波束中确定M1个上行发射波束。作为一个可选实施例,该M1个上行发射波束可以为该多个上行发射波束中对应的度量值最高的前M1个上行发射波束。例如,该网络设备可以按照度量值由大到小的顺序,将该多个上行发射波束排序,并选择排序后的前M1个上行发射波束,但本发明实施例不限于此。
作为另一个可选实施例,假设该第一上行发射波束是该多个上行发射波束中具有最高度量值的上行发射波束,则该M1个上行发射波束可以包括第一上行发射波束和至少一个第二上行发射波束,其中,该至少一个第二上行发射波束中每个第二上行发射波束所对应的度量值与该第一上行发射波束所对应的度量值之间的差值可以小于第二门限值。具体地,该网络设备可以首先确定该多个上行发射波束中具有最高度量值的上行发射波束,这里将其称为第一上行发射波束。然后,该网络设备可以通过比较该第一上行发射波束所对应的度量值与剩余上行发射波束所对应的度量值,从该剩余上行发射波束中确定与该最大度量值之间的差值小于第二门限值的至少一个上行发射波束,这里将其称为第二上行发射波束,其中,这里的剩余上行发射波束可以具体为该多个上行发射波束中除该第一上行发射波束之外的上行发射波束。
可选地,该第二门限值可以是协议规定的,也可以是该网络设备根据当前网络状态或其它参数确定的,也可以是网络设备与终端设备协商确定的,本发明实施例对此不做限定。
可选地,该至少一个第二上行发射波束可以为上述剩余的上行发射波束 中与该最大度量值之间的差值小于第二门限值的所有或部分上行发射波束。作为一个可选实施例,该网络设备可以将该剩余的上行发射波束中与该最大度量值之间的差值小于第二门限值的所有上行发射波束确定为该至少一个第二上行发射波束。作为另一个可选实施例,如果该剩余的上行发射波束中与该最大度量值之间的差值小于第二门限值的所有上行发射波束的数量大于M1-1,则该网络设备可以将该剩余的上行发射波束中对应度量值最高的前M1-1个上行发射波束确定为该至少一个第二上行发射波束,但本发明实施例不限于此。
可选地,该网络设备还可以通过其它方式从该多个上行发射波束中确定M1个上行发射波束,本发明实施例对此不做限定。
可选地,若该M1个上行发射波束包括第一上行发射波束,该网络设备还可以根据该第一度量值集合,即根据由该第一上行发射波束与多个上行接收波束构成的多个上行波束对中每个上行波束对的度量值,从该多个上行波束对中确定M2个上行波束对。M2可以为大于或等于1的整数,并且,M2可以小于或等于该多个上行接收波束的数量,即该M2个上行波束对中包括的上行接收波束可以具体为该多个上行接收波束中的全部或部分上行接收波束,本发明实施例对此不做限定。
作为一个可选实施例,该M2个上行波束对是由该第一上行发射波束构成的多个上行波束对中对应的度量值最高的前M2个上行波束对。
作为另一个可选实施例,假设该第一上行波束对是该第一上行发射波束所构成的多个上行波束对中具有最高度量值的上行波束对,则该M2个上行波束对可以包括第一上行波束对和至少一个第二上行波束对,其中,该至少一个第二上行接收波束中每个第二上行接收波束与该第一上行发射波束所构成的上行波束对的度量值与该第一上行波束对相对应的度量值之间的差值可以小于第一门限值。具体地,该网络设备可以首先确定该第一上行发射波束构成的多个上行波束对中具有最高度量值的上行波束对,并确定该具有最高度量值的上行波束对中的上行接收波束,这里将其称为第一上行接收波束。然后,该网络设备可以通过比较该第一上行波束对的度量值与剩余上行波束对的度量值,从该剩余上行波束对中确定与该最大度量值之间的差值小于第一门限值的至少一个第二上行波束对,并确定该至少一个第二上行波束对中每个第二上行波束对包括的上行接收波束,这里将其称为第二上行接收 波束,其中,这里的剩余上行波束对可以具体为该第一上行发射波束构成的多个上行波束对中除该第一上行波束对之外的上行波束对。
可选地,该第一门限值可以是协议规定的,也可以是该网络设备根据当前网络状态或其它参数确定的,也可以是网络设备与终端设备协商确定的,本发明实施例对此不做限定。
可选地,该至少一个第二上行波束对可以为上述剩余的上行波束对中与该最大度量值之间的差值小于第一门限值的所有或部分上行波束对。作为一个可选实施例,该网络设备可以将该剩余的上行波束对中与该最大度量值之间的差值小于第一门限值的所有上行波束对确定为该至少一个第二上行波束对。作为另一个可选实施例,如果该剩余的上行波束对中与该最大度量值之间的差值小于第一门限值的所有上行波束对的数量大于M2-1,则该网络设备可以将该剩余的上行波束对中对应度量值最高的前M2-1个上行波束对确定为该至少一个第二上行波束对,但本发明实施例不限于此。
可选地,该网络设备还可以通过其它方式从该第一上行发射波束构成的多个上行波束对中确定M2个上行波束对,本发明实施例对此不做限定。
类似地,该网络设备可以根据该M1个上行发射波束中的上行发射波束i构成的Pi个上行波束对中每个上行波束对的度量值,从该Pi个上行波束对中确定Ki个上行波束对,并且在向该终端设备发送的与该上行发射波束i对应的度量信息集合i中,可以包括该上行发射波束i所对应的度量值信息和/或上述确定的Ki个上行波束对中每个上行波束对的度量值信息,其中,i可以从1取值到M1,Pi可以为大于或等于2的整数,Ki可以为大于或等于1的整数,具体实现可以参照上文对第一上行发射波束的相关描述,为了简洁,这里不再赘述。
S230,网络设备向终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该第一上行发射波束的标识信息、该第一上行发射波束所对应的度量值信息、该网络设备的M2个上行接收波束中每个上行接收波束的标识信息、该第一上行发射波束与该M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,M1和M2不同时等于1。
可选地,该M2个上行波束对中每个上行波束对的度量值信息可以具体 为该每个上行波束对的度量值。或者,某个上行波束对的度量值信息可以包括该上行波束对的度量值与预设参考值之间的差值。或者,该M2个上行波束对的度量值信息可以按照一定顺序依次排列,例如,按照上行波束对的度量值的大小依次排列,或者按照上行波束对中包括的上行接收波束的编号依次排列,等等。此时,某个上行波束对的度量值信息可以包括该上行波束对的度量值与前一个上行波束对的度量值之间的差值。可选地,排在第一位的上行波束对的度量值信息可以为空或者设置为默认值或者无意义的值,本发明实施例对此不做限定。或者,某个上行波束对的度量值信息可以包括该上行波束对的度量值与排在第一位或最后一位的上行波束对的度量值之间的差值,或者某个上行波束对的度量值信息可以包括该上行波束对的度量值与该M2个上行波束对的度量值中的最大值或最小值之间的差值,可选地,作为参照的上行波束对(例如上述排在第一位或最后一位的上行波束对或者对应最大度量值或最小度量值的上行波束对)所对应的度量值信息可以为空或者设置为默认值或者无意义的值,本发明实施例对此不做限定。
在本发明实施例中,M1和M2不同时等于1。作为一个可选实施例,该网络设备可以向终端设备发送一个度量信息集合,例如与该第一上行发射波束对应的第一度量信息集合,该第一度量信息集合可以包括多个上行接收波束中每个上行接收波束的标识信息和/或由该第一上行发射波束与该多个上行接收波束构成的多个上行波束对中每个上行波束对的度量值信息,可选地,该第一度量信息集合还可以进一步包括该第一上行发射波束所对应的度量值信息,本发明实施例对此不做限定。
作为另一个可选实施例,该网络设备可以向终端设备发送与多个上行发射波束对应的多个度量信息集合,其中,与上行发射波束i对应的第i个度量信息集合可以包括下列信息中的一种或多种:上行发射波束i的标识信息、上行发射波束i所对应的度量值信息、一个或多个上行接收波束的标识信息、由上行发射波束i与该一个或多个上行接收波束构成的一个或多个上行波束对的度量值信息,但本发明实施例不限于此。
可选地,该第一度量信息集合还可以包括其它信息,本发明实施例不限于此。
S240,网络设备采用多个下行发射波束中每个下行发射波束向终端设备发送下行信号。相应地,该终端设备采用多个下行接收波束中的每个下行接 收波束测量该网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果。
可选地,该多个下行发射波束可以为该网络设备的D2个下行发射波束中的部分或全部下行发射波束,该多个下行接收波束可以为该终端设备的D1个下行接收波束中的部分或全部下行接收波束,本发明实施例对此不做限定。
可选地,针对该网络设备采用某个下行发射波束发送的下行信号,该终端设备可以采用该多个下行接收波束中的每个下行接收波束进行测量,得到该每个下行接收波束与该下行发射波束构成的下行波束对的测量值。该终端设备可以对该网络设备采用该多个下行发射波束中每个下行发射波束发送的信号进行测量,得到下行测量结果。
可选地,该下行测量结果可以包括由该多个下行接收波束与该多个下行发射波束构成的多个下行波束对中每个下行波束对所对应的测量值。可选地,该终端设备还可以根据该多个下行波束对中每个下行波束对所对应的测量值,得到该多个下行波束中每个下行波束对的度量值。可选地,每个下行波束对的度量值可以为该下行波束对所对应的函数,例如,每个下行波束对的度量值可以等于该下行波束对所对应的测量值,但本发明实施例不限于此。具体实现可以参照上文对上行方向的描述,为了简洁,这里不再赘述。
可选地,S240与S210-S230可以以任意先后顺序执行,本发明实施例对此不做限定。
S250,该终端设备在接收到该网络设备发送的M1个度量信息集合时,可以根据该M1个度量信息集合以及S240中得到的该下行测量结果,确定发射/接收波束对应性的对应性结果。
可选地,发射/接收波束对应性的对应性结果可以包括该发射/接收对应性是否成立,或者还可以进一步包括满足波束对应性的发射/接收波束对,本发明实施例对此不做限定。
可选地,该终端设备可以根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该终端设备处的对应性结果。例如,该终端设备可以根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该终端设备处是否成立。作为一个可选实施例,该终端设备可以根据该下行测量结果,从该终端设备的多个下行接收波束中确定目标下行接 收波束,其中,可选地,该目标下行接收波束可以为该终端设备的多个下行接收波束中对应的度量值最大的下行接收波束,但本发明实施例不限于此。
如果将该目标下行接收波束映射到的上行发射波束称为目标上行发射波束,则该终端设备可以确定该M1个度量信息集合是否包括与该目标上行发射波束所对应的度量信息集合。可选地,如果该M1个度量信息集合中不包括与该目标上行发射波束所对应的度量信息集合,则该终端设备可以确定发射/接收波束对应性在该终端设备处不成立。
可选地,如果该M1个度量信息集合包括与该目标上行发射波束所对应的度量信息集合,则可选地,该终端设备可以直接确定发射/接收波束对应性在该终端设备处成立;或者,该终端设备可以进一步确定该目标上行发射波束所对应的度量信息集合是否满足第一预设条件。如果该目标上行发射波束所对应的度量信息集合不满足第一预设条件,则该终端设备可以确定发射/接收波束对应性在该终端设备处不成立。
可选地,如果该目标上行发射波束所对应的度量信息集合满足第一预设条件,则可选地,该终端设备可以确定发射/接收波束对应性在该终端设备处成立。或者,该终端设备可以进一步根据其他条件确定发射/接收波束对应性在该终端设备处是否成立。
可选地,如果该目标上行发射波束所对应的度量信息集合包括该目标上行发射波束所对应的度量值信息,则该第一预设条件可以包括:该目标上行发射波束所对应的度量值与该M1个上行发射波束所对应的最大度量值之间的差值小于第三门限值。
可选地,如果该目标上行发射波束所对应的度量值集合包括该目标上行发射波束构成的多个上行波束对中每个上行波束对的度量值信息,则该第一预设条件可以包括:如果将该目标下行接收波束构成的多个下行波束对中对应的度量值最大的下行波束对称为目标下行波束对,该目标下行波束对包括的下行发射波束所映射的上行接收波束称为目标上行接收波束,则由该目标上行接收波束与该目标上行发射波束构成的上行波束对的度量值与该目标上行发射波束构成的多个上行波束对的最大度量值之间的差值小于第四门限值。可选地,该第一预设条件还可以包括其它具体条件,本发明实施例不限于此。
在本发明实施例中,考虑到测量误差和上行信号传输过程中的随机干扰 等因素的影响,即使该目标上行发射波束所对应的度量值不是该M1个上行发射波束中具有最大度量值的上行发射波束,如果该上行发射波束所对应的度量值与该M1个上行发射波束所对应的度量值中的最大值之间的差值小于第三门限值,该终端设备仍可以认为该目标下行接收波束与该目标上行发射波束满足发射/接收波束对应性。
可选地,该第三门限值或第四门限值可以是协议定义的,也可以是网络设备配置的,或者也可以是终端设备根据传输需求确定的,本发明实施例对此不做限定。
可选地,该终端设备还可以根据该M1个度量信息集合以及该下行测量结果,确定该终端设备的多个上行发射波束和多个下行接收波束中满足波束对应性的至少一个发射/接收波束对,但本发明实施例不限于此。
可选地,该终端设备也可以根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该网络设备处的对应性结果。例如,该终端设备也可以根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该网络设备处是否成立。
作为一个可选实施例,该终端设备可以根据该下行测量结果,从该网络设备的多个下行发射波束确定目标下行发射波束。其中,该目标下行发射波束可以是该多个下行发射波束中对应的度量值最大的下行发射波束。或者,该终端设备可以根据该下行测量结果,从由该终端设备的多个下行接收波束和该网络设备的多个下行发射波束构成的多个下行波束对中确定至少一个目标下行波束对。其中,该至少一个目标下行波束对可以是该多个下行波束对中度量值最大的前一个或多个下行波束对,但本发明实施例不限于此。
可选地,若该M1个度量信息集合包括由该目标下行发射波束映射到的上行接收波束构成的上行波束对的度量值信息,并且该上行波束对的度量值与该M1个度量信息集合中的最大度量值之间的差值小于第五门限值,则该终端设备可以确定发射/接收波束对应性在该网络设备处成立,但本发明实施例不限于此。
可选地,若该M1个度量信息集合包括该至少一个目标下行波束对中一个或多个目标下行波束对的度量值信息,并且该目标下行波束对的度量值与该M1个度量信息集合中的最大度量值之间的差值小于第六门限值,则该终端设备可以确定发射/接收波束对应性在该网络设备处成立,但本发明实施例 不限于此。
该终端设备还可以根据该M1个度量信息集合以及该下行测量结果,确定该网络设备的多个下行发射波束和多个上行接收波束中满足波束对应性的发射/接收波束对。
可选地,该方法200还可以包括:该终端设备向该网络设备发送对应性指示消息,该对应性指示消息用于指示该发射/接收波束对应性的对应性结果。
该对应性指示消息可以仅指示发射/接收波束对应性成立或不成立。或者,该对应性指示消息可以具体用于指示发射/接收波束对应性在终端设备处和/或网络设备处是否成立,本发明实施例对此不做限定。
可选地,该对应性指示消息还可以用于指示该终端设备的满足波束对应性的发射/接收波束对,和/或该网络设备的满足波束对应性的发射/接收波束对,但本发明实施例不限于此。
可选地,该网络设备在接收到终端设备发送的对应性指示消息之后,可以向该终端设备发送确认消息,但本发明实施例不限于此。
可选地,该终端设备还可以存储S250中确定的发射/接收波束对应性的对应性结果,后续可以向网络设备上报存储的该发射/接收波束对应性的对应性结果,但本发明实施例不限于此。
在本发明实施例中提供的无线通信方法,由终端设备确定发射/接收波束对应性的对应性结果。可选地,该终端设备可以周期性或触发性地执行上述确定发射/接收波束对应性的对应性结果的流程。作为一个可选实施例,该终端设备可以接收网络设备的用于指示终端设备上报发射/接收波束对应性的对应性结果的指示信息,相应地,该终端设备可以根据接收到的该指示信息,执行上述确定发射/接收波束对应性的对应性结果的流程,但本发明实施例不限于此。
作为另一个可选实施例,如果终端设备在第一时刻确定发射/接收波束对应性成立,则该终端设备可以认为在以该第一时刻为起始时刻的预设时间段内,发射/接收波束对应性保持成立。在该预设时间段结束时,该终端设备可以执行上述确定发射/接收波束对应性的对应性结果的流程。例如,该终端设备可以在第一时刻开启定时器,并且在定时器超时时执行上述确定发射/接收波束对应性的对应性结果的流程。其中,可选地,该预设时间段的长度可以 在协议中定义,或者可以是网络设备配置的,本发明实施例对此不做限定。
作为另一个可选实施例,该终端设备也可以在确定需要改变与网络设备进行数据传输时所采用的传输模式时,或者在确定需要改变当前的传输模式中的部分传输参数时,执行上述确定发射/接收波束对应性的对应性结果的流程,但本发明实施例不限于此。
因此,本发明实施例提供的无线通信方法,通过网络设备对终端设备采用多个上行发射波束发送的上行信号进行测量,并向终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,该M1个度量信息集合中的第一度量信息集合包括下列中的至少一种:该M1个上行发射波束中的第一上行发射波束的标识信息、该第一上行发射波束所对应的度量值信息、该网络设备的M2个上行接收波束中每个上行接收波束的标识信息、该第一上行发射波束与该M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,终端设备根据该M1个度量信息集合以及通过对网络设备采用多个下行发射波束发送的上行信号进行测量得到的下行测量结果,确定发射/接收波束对应性的对应性结果,有利于降低信令开销,并且具有较好的准确性。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下面将结合具体例子,详细描述本发明实施例提供的无线通信方法。在以下例子中,假设终端设备具有4个波束,这4个波束既可以作为上行发射波束,又可以作为下行接收波束。网络设备具有8个波束,这8个波束既可以作为上行接收波束,又可以作为下行发射波束。
示例1
终端设备可以根据网络设备的配置,采用这4个波束发送上行信号。针对终端设备采用上行发射波束i发送的上行信号,网络设备可以采用8个上行接收波束进行接收和测量,得到8个测量值,并且可以将这8个测量值中的最优测量值按照一定的规则映射为度量值Vi,其中,该最优测量值可以对应于最优信道状态,并且该最优测量值的确定可以依赖于测量量,本发明实施例对此不做限定。
i可以依次从1取值到4,这样,网络设备可以得到与该4个上行发射波 束对应的4个度量值{Vi,i=1,2,3,4}。该网络设备可以从{Vi}中选择两个度量值,例如数值较大的两个度量值,并向终端设备发送指示信息,该指示信息用于指示该网络设备选择的两个度量值。
假设该网络设备选择的两个度量值为V1和V4,其中,V1>V4,则可选地,该指示信息可以包括以下信息:{上行发射波束1的编号UL_Tx_Beam_1,V1}和{上行发射波束4的编号UL_Tx_Beam_4,V4}。或者,该指示信息可以包括以下信息:{UL_Tx_Beam 1,0}和{UL_Tx_Beam 4,Δ14},其中,Δ14可以表示V4与V1之间的差值或差值的绝对值。或者,该指示信息也可以包括以下信息:{UL_Tx_Beam 1,UL_Tx_Beam 4,Δ14},这里省略与上行发射波束1所对应的度量值,但本发明实施例不限于此。
此外,网络设备可以采用8个下行发射波束向终端设备发送下行信号。终端设备可以通过对网络设备发送的下行信号的测量,确定用于下行传输的最优波束组合为网络设备的下行发射波束n(记为DL_Tx_Beam n)和终端设备的波束m(即为DL_Rx_Beam m)。终端设备可以通过判断下列两个条件是否同时满足来判断发射/接收波束对应性是否成立:
1、DL_Rx_Beam m映射的UL_Tx_Beam m是否包括在网络设备发送的指示信息中;
2、UL_Tx_Beam m对应的度量值与该指示信息指示的最大度量值之间的差值小于第三门限值。
示例2
网络设备通过采用8个上行接收波束对终端设备采用4个上行发射波束发送的上行信号进行测量,得到上行测量结果。该网络设备可以根据该上行测量结果,从由这8个上行接收波束与4个上行发射波束构成的32个上行波束对中挑选出度量值最高的4个上行波束对,并向终端设备发送指示信息,该指示信息可以包括该4个上行波束对中每个上行波束对的信息。
例如,这4个上行波束对及其对应的度量值可以如下:
[UL_Tx_Beam_1 UL_Rx_Beam_1 V1];
[UL_Tx_Beam_1 UL_Rx_Beam_5 V2];
[UL_Tx_Beam_4 UL_Rx_Beam_4 V3];
[UL_Tx_Beam_4 UL_Rx_Beam_2 V4];
其中,V1≥V2≥V3≥V4
终端设备可以通过对网络设备采用8个下行发射波束发送的下行信号进行测量,得到下行测量结果。该终端设备根据下行测量结果,将由DL_Tx_Beam 4和DL_Rx_Beam 4构成的下行波束对确定为目标下行波束对,例如,由DL_Tx_Beam 4和DL_Rx_Beam 4构成的下行波束对的度量值最高,则终端设备可以通过判断以下两个条件是否同时满足来判断UL_Tx_Beam_4与DL_Rx_Beam_4是否满足波束对应性:
1、网络设备向终端设备发送的指示信息中指示了[DL_Tx_Beam 4DL_Rx_Beam 4]映射到的[UL_Tx_Beam_4 UL_Rx_Beam_4]的信息;
2、[UL_Tx_Beam_4 UL_Rx_Beam_4]的度量值与该指示信息指示的最大度量值之间的差值小于某个门限。
示例3
网络设备向终端设备发送的指示信息可以包括4个上行波束对中每个上行波束对的信息。这4个上行波束对及其对应的度量值可以如下:
[UL_Tx_Beam_1 UL_Rx_Beam_1 v_1];
[UL_Tx_Beam_2 UL_Rx_Beam_1 v_2];
[UL_Tx_Beam_3 UL_Rx_Beam_4 v_3];
[UL_Tx_Beam_4 UL_Rx_Beam_4 v_4];
其中,V1≥V2≥V3≥V4
终端设备可以通过对网络设备采用8个下行发射波束发送的下行信号进行测量,得到下行测量结果。可选地,如果[DL_Tx_Beam_1DL_Rx_Beam_1]、[DL_Tx_Beam_1 DL_Rx_Beam_2]、[DL_Tx_Beam_4DL_Rx_Beam_3]、[DL_Tx_Beam_4 DL_Rx_Beam_4]的度量值与最大度量值之间的差值均小于某个门限值,则终端设备可以确定网络设备的DL_Tx_Beam_1与UL_Rx_Beam_1以及DL_Tx_Beam_4与UL_Rx_Beam_4满足波束对应性。可选地,如果[DL_Tx_Beam_4 DL_Rx_Beam_3]、[DL_Tx_Beam_4 DL_Rx_Beam_4]的度量值与最大度量值之间的差值大于该门限值,则表明这两个下行波束对所对应的信道质量较差,则终端设备可以确定网络设备的DL_Tx_Beam_4与UL_Rx_Beam_4不满足波束对应性。
应理解,上述示例1至示例3是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,这样的修改或变化也落 入本发明实施例的范围内。
上文中结合图1至图2,详细描述了根据本发明实施例的无线通信方法,下面将结合图3至图6,详细描述根据本发明实施例的无线通信装置。
图3示出了本发明实施例提供的无线通信装置300,包括:
发送单元310,用于采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号;
接收单元320,用于接收该网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该第一上行发射波束所对应的度量值信息、该第一上行发射波束与该网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该多个上行发射波束包括该M1个上行发射波束,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量该发送单元310采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1;
处理单元330,用于采用多个下行接收波束中的每个下行接收波束测量该网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果,并且根据该接收单元320接收的该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性的对应性结果。
可选地,该第一度量信息集合还包括下列中的至少一种:该第一上行发射波束的标识信息、该M2个上行接收波束中每个上行接收波束的标识信息。
可选地,该第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,该第一测量值集合是该网络设备通过采用多个上行接收波束对采用该第一上行发射波束发送的上行信号进行测量得到的。
可选地,该第一测量值集合包括下列中的至少一种:信号强度、SNR、SINR和秩值。
可选地,该M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的。
可选地,该第一上行波束对可以为多个上行波束对中对应的度量值最高的上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的。此时,可选地,该M2个上行接收波束还可以包括至少一个第二上行接收波束,其中,该至少一个第二上行接收波束与该第一上行发射波束构成至少一个第二上行波束对,该至少一个第二上行波束对中每个第二上行波束对的度量值与该第一上行波束对的度量值之间的差值小于第一门限值。
可选地,该至少一个第二上行波束对是该多个上行波束对中除该第一上行波束对之外的度量值最高的前M2-1个上行波束对。
可选地,该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该第二上行波束对的前一上行波束对所对应的测量值之间的差值。
可选地,该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
可选地,该M1个上行发射波束为该多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
可选地,该第一上行发射波束为该多个上行发射波束中对应的度量值最高的上行发射波束。此时,可选地,该M1上行发射波束还包括至少一个第二上行发射波束,该至少一个第二上行发射波束中每个第二上行发射上行波束对应的度量值与该第一上行发射上行波束对应的度量值之间的差值小于第二门限值。
可选地,该至少一个第二上行发射波束是该多个上行发射波束中除该第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
可选地,该处理单元330具体用于:
根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在终端设备处的对应性结果;和/或
根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性在该网络设备处的对应性结果。
可选地,该发送单元310还用于向该网络设备发送对应性指示消息,该对应性指示消息用于指示该处理单元330确定的该发射/接收波束对应性的 对应性结果。
可选地,该对应性指示消息具体用于指示下列中的至少一种:
发射/接收波束对应性在终端设备处是否成立;
发射/接收波束对应性在该网络设备处是否成立;
该终端设备包括的满足波束对应性的至少一个发射/接收波束对;
该网络设备包括的满足波束对应性的至少一个发射/接收波束对。
可选地,该处理单元330还用于:在当前的第一时刻与位于该第一时刻之前的第二时刻之间的时间间隔达到预设时间间隔的情况下,确定执行该确定发射/接收波束对应性的对应性结果的流程,其中,该第二时刻为发射/接收波束对应性确定成立的最邻近起始时刻。
可选地,该处理单元330还用于:在终端设备需要改变用于与该网络设备进行数据传输的传输模式或传输参数的情况下,确定执行该确定发射/接收波束对应性的对应性结果的流程。
可选地,该接收单元320还用于接收该网络设备发送的配置指示信息,该配置指示信息用于指示上行信号的发送配置;
相应地,该发送单元310具体用于根据该配置指示信息,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
可选地,该配置指示信息用于指示下列配置参数中的至少一种:该多个上行发射波束的测量次序、该多个上行发射波束的重复测量次数、该多个上行发射波束与至少一种上行信号之间的对应关系、该多个上行发射波束与传输资源之间的对应关系。
可选地,该发送单元310具体用于根据原有配置,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,该原有配置用于在上一次执行确定发射/接收波束对应性的对应性结果的流程中向网络设备发送上行信号。
可选地,该上行信号包括下列中的至少一种:探测参考信号SRS、物理随机接入信道PRACH、解调参考信号DMRS和波束测量专用上行信号。
应理解,这里的装置300以功能单元的形式体现。在一个可选例子中,本领域技术人员可以理解,装置300可以具体为上述实施例中的终端设备,装置300可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图4示出了本发明另一实施例提供的无线通信装置400,包括:
处理单元410,用于采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号,得到上行测量结果;
发送单元420,用于根据该处理单元410得到的该上行测量结果,向该终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该M1个上行发射波束中的第一上行发射波束所对应的度量值信息、该第一上行发射波束与该网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该多个上行发射波束包括该M1个上行发射波束,该多个上行接收波束包括该M2个上行接收波束,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1。
可选地,该第一度量信息集合还包括下列中的至少一种:该第一上行发射波束的标识信息、该M2个上行接收波束中每个上行接收波束的标识信息。
可选地,该第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,该第一测量值集合是该网络设备通过采用多个上行接收波束对该终端设备采用该第一上行发射波束发送的上行信号进行测量得到的。
可选地,该第一测量值集合包括下列中的至少一种:信号强度、SNR、SINR和秩值。
可选地,该M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的。
可选地,该第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,该多个上行波束对是由该第一上行发射波束与该网络设备的多个上行接收波束构成的。此时,可选地,该M2个上行接收波束还包括至少一个第二上行接收波束,其中,该至少一个第二上行接收波束与该第一上行发射波束构成至少一个第二上行波束对,该至少一个第二上行波束对中每个第二上行波束对的度量值与该第一上行波束对的度量值之间的差值小 于第一门限值。
可选地,该至少一个第二上行波束对是该多个上行波束对中除该第一上行波束对之外的度量值最高的前M2-1个上行波束对。
可选地,该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该第二上行波束对的前一上行波束对所对应的测量值之间的差值。
可选地,该M2个上行波束对中第二上行波束对的度量值信息包括该第二上行波束对所对应的测量值与该多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
可选地,该M1个上行发射波束为该多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
可选地,该第一上行发射波束为该多个上行发射波束中对应的度量值最高的上行发射波束。此时,可选地,该M1上行发射波束还包括至少一个第二上行发射波束,该至少一个第二上行发射波束中每个第二上行发射上行波束所对应的度量值与该第一上行发射上行波束所对应的度量值之间的差值小于第二门限值。
可选地,该至少一个第二上行发射波束是该多个上行发射波束中除该第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
可选地,该发送单元420还用于采用多个下行发射波束中的每个下行发射波束发送下行信号。
可选地,如图4所示,该装置400还包括:接收单元430,用于接收该终端设备发送的对应性指示消息,该对应性指示消息用于指示该终端设备根据该发送单元420送的M1个度量信息集合得到的发射/接收波束对应性的对应性结果。
可选地,该对应性指示消息具体用于指示下列中的至少一种:
发射/接收波束对应性在该终端设备处是否成立;
发射/接收波束对应性在该网络设备处是否成立;
该终端设备包括的满足波束对应性的至少一个发射/接收波束对;
该网络设备包括的满足波束对应性的至少一个发射/接收波束对。
可选地,该发送单元420还用于:在该处理单元410采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上 行信号之前,向该终端设备发送配置指示信息,该配置指示信息用于指示该终端设备发送上行信号的配置。
可选地,该配置指示信息用于指示下列配置参数中的至少一种:该多个上行发射波束的测量次序、该多个上行发射波束的重复测量次数、该多个上行发射波束与至少一种上行信号之间的对应关系、该多个上行发射波束与传输资源之间的对应关系。
可选地,该终端设备采用该多个上行发射波束发送的上行信号包括下列中的至少一种:SRS、PRACH、DMRS和波束测量专用上行信号。
应理解,这里的装置400以功能单元的形式体现。在一个可选例子中,本领域技术人员可以理解,装置400可以具体为上述实施例中的网络设备,装置500可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
还应理解,在本发明实施例中,术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
图5示出了本发明实施例提供的无线通信装置500,包括:处理器510和存储器520,其中,该存储器520用于存储指令,该处理器510用于执行该存储器520存储的指令,其中,对该指令的执行使得该处理器510执行以下操作:
采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号;
接收该网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该第一上行发射波束所对应的度量值信息、该第一上行发射波束与该网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该多个上行发射波束包括该M1个上行发射波束,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1;
采用多个下行接收波束中的每个下行接收波束测量该网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果;
根据该M1个度量信息集合以及该下行测量结果,确定发射/接收波束对应性的对应性结果。
在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的终端设备,装置500可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图6示出了本发明另一实施例提供的无线通信装置600,包括:处理器610和存储器620,其中,该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令,其中,对该指令的执行使得该处理器610执行以下操作:
采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号,得到上行测量结果;
根据该上行测量结果,向该终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与该M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:该M1个上行发射波束中的第一上行发射波束所对应的度量值信息、该第一上行发射波束与网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,该多个上行发射波束包括该M1个上行发射波束,该多个上行接收波束包括该M2个上行接收波束,该第一上行发射波束与该M2个上行接收波束中的第一上行接收波束构成第一上行波束对,该第一上行波束对的度量值是该网络设备通过采用第一上行接收波束测量该终端设备采用该第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1。
在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的网络设备,装置600可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字上行信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用 处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与终端设备对应的各个步骤。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,上文对本发明实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和 方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (74)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号;
    所述终端设备接收所述网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,与所述M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:所述第一上行发射波束所对应的度量值信息、所述第一上行发射波束与所述网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,所述多个上行发射波束包括所述M1个上行发射波束,所述第一上行发射波束与所述M2个上行接收波束中的第一上行接收波束构成第一上行波束对,所述第一上行波束对的度量值是所述网络设备通过采用第一上行接收波束测量所述终端设备采用所述第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1;
    所述终端设备采用多个下行接收波束中的每个下行接收波束测量所述网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果;
    所述终端设备根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性的对应性结果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一度量信息集合还包括下列中的至少一种:所述第一上行发射波束的标识信息、所述M2个上行接收波束中每个上行接收波束的标识信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,所述第一测量值集合是所述网络设备通过采用多个上行接收波束对所述终端设备采用所述第一上行发射波束发送的上行信号进行测量得到的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一测量值集合包括下列中的至少一种:信号强度、信噪比SNR、信干噪比SINR和秩值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备 的多个上行接收波束构成的。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的;
    所述M2个上行接收波束还包括至少一个第二上行接收波束,其中,所述至少一个第二上行接收波束与所述第一上行发射波束构成至少一个第二上行波束对,所述至少一个第二上行波束对中每个第二上行波束对的度量值与所述第一上行波束对的度量值之间的差值小于第一门限值。
  7. 根据权利要求6所述的方法,其特征在于,所述至少一个第二上行波束对是所述多个上行波束对中除所述第一上行波束对之外的度量值最高的前M2-1个上行波束对。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述第二上行波束对的前一上行波束对所对应的测量值之间的差值;或者
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述M1个上行发射波束为所述多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一上行发射波束为所述多个上行发射波束中对应的度量值最高的上行发射波束;
    所述M1上行发射波束还包括至少一个第二上行发射波束,所述至少一个第二上行发射波束中每个第二上行发射上行波束对应的度量值与所述第一上行发射上行波束对应的度量值之间的差值小于第二门限值。
  11. 根据权利要求10所述的方法,其特征在于,所述至少一个第二上行发射波束是所述多个上行发射波束中除所述第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述终端设备根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性的对应性结果,包括:
    所述终端设备根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性在所述终端设备处的对应性结果;和/或
    所述终端设备根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性在所述网络设备处的对应性结果。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送对应性指示消息,所述对应性指示消息用于指示所述发射/接收波束对应性的对应性结果。
  14. 根据权利要求13所述的方法,其特征在于,所述对应性指示消息具体用于指示下列中的至少一种:
    发射/接收波束对应性在所述终端设备处是否成立;
    发射/接收波束对应性在所述网络设备处是否成立;
    所述终端设备包括的满足波束对应性的至少一个发射/接收波束对;
    所述网络设备包括的满足波束对应性的至少一个发射/接收波束对。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,在所述终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,所述方法还包括:
    在当前的第一时刻与位于所述第一时刻之前的第二时刻之间的时间间隔达到预设时间间隔的情况下,所述终端设备确定执行所述确定发射/接收波束对应性的对应性结果的流程,其中,所述第二时刻为发射/接收波束对应性确定成立的最邻近起始时刻。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,在所述终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,所述方法还包括:
    在所述终端设备需要改变用于与所述网络设备进行数据传输的传输模式或传输参数的情况下,所述终端设备确定执行所述确定发射/接收波束对应性的对应性结果的流程。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,在所述 终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的配置指示信息,所述配置指示信息用于指示所述终端设备发送上行信号的配置;
    所述终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,包括:
    所述终端设备根据所述配置指示信息,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
  18. 根据权利要求17所述的方法,其特征在于,所述配置指示信息用于指示下列配置参数中的至少一种:所述多个上行发射波束的测量次序、所述多个上行发射波束的重复测量次数、所述多个上行发射波束与至少一种上行信号之间的对应关系、所述多个上行发射波束与传输资源之间的对应关系。
  19. 根据权利要求1至18所述的方法,其特征在于,所述终端设备采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,包括:
    所述终端设备根据原有配置,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,所述原有配置用于所述终端设备在上一次执行确定发射/接收波束对应性的对应性结果的流程中向网络设备发送上行信号。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述上行信号包括下列中的至少一种:探测参考信号SRS、物理随机接入信道PRACH、解调参考信号DMRS和波束测量专用上行信号。
  21. 一种无线通信方法,其特征在于,包括:
    网络设备采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号,得到上行测量结果;
    所述网络设备根据所述上行测量结果,向所述终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与所述M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:所述第一上行发射波束所对应的度量值信息、所述第一上行发射波束与所述网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值 信息,其中,所述多个上行发射波束包括所述M1个上行发射波束,所述多个上行接收波束包括所述M2个上行接收波束,所述第一上行发射波束与所述M2个上行接收波束中的第一上行接收波束构成第一上行波束对,所述第一上行波束对的度量值是所述网络设备通过采用第一上行接收波束测量所述终端设备采用所述第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1。
  22. 根据权利要求21所述的方法,其特征在于,所述第一度量信息集合还包括下列中的至少一种:所述第一上行发射波束的标识信息、所述M2个上行接收波束中每个上行接收波束的标识信息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,所述第一测量值集合是所述网络设备通过采用多个上行接收波束对所述终端设备采用所述第一上行发射波束发送的上行信号进行测量得到的。
  24. 根据权利要求23所述的方法,其特征在于,所述第一测量值集合包括下列中的至少一种:信号强度、信噪比SNR、信干噪比SINR和秩值。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的。
  26. 根据权利要求21至24中任一项所述的方法,其特征在于,所述第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的;
    所述M2个上行接收波束还包括至少一个第二上行接收波束,其中,所述至少一个第二上行接收波束与所述第一上行发射波束构成至少一个第二上行波束对,所述至少一个第二上行波束对中每个第二上行波束对的度量值与所述第一上行波束对的度量值之间的差值小于第一门限值。
  27. 根据权利要求26所述的方法,其特征在于,所述至少一个第二上行波束对是所述多个上行波束对中除所述第一上行波束对之外的度量值最高的前M2-1个上行波束对。
  28. 根据权利要求27所述的方法,其特征在于,
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述第二上行波束对的前一上行波束对所对应的测量值之间的差值;或者
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
  29. 根据权利要求21至28中任一项所述的方法,其特征在于,所述M1个上行发射波束为所述多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
  30. 根据权利要求21至28中任一项所述的方法,其特征在于,所述第一上行发射波束为所述多个上行发射波束中对应的度量值最高的上行发射波束;
    所述M1上行发射波束还包括至少一个第二上行发射波束,所述至少一个第二上行发射波束中每个第二上行发射上行波束所对应的度量值与所述第一上行发射上行波束所对应的度量值之间的差值小于第二门限值。
  31. 根据权利要求30所述的方法,其特征在于,所述至少一个第二上行发射波束是所述多个上行发射波束中除所述第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
  32. 根据权利要求21至31中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备采用多个下行发射波束中的每个下行发射波束发送下行信号。
  33. 根据权利要求21至32中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的对应性指示消息,所述对应性指示消息用于指示发射/接收波束对应性的对应性结果。
  34. 根据权利要求33所述的方法,其特征在于,所述对应性指示消息具体用于指示下列中的至少一种:
    发射/接收波束对应性在所述终端设备处是否成立;
    发射/接收波束对应性在所述网络设备处是否成立;
    所述终端设备包括的满足波束对应性的至少一个发射/接收波束对;
    所述网络设备包括的满足波束对应性的至少一个发射/接收波束对。
  35. 根据权利要求21至34中任一项所述的方法,其特征在于,在所述网络设备采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号之前,所述方法还包括:
    所述网络设备向所述终端设备发送配置指示信息,所述配置指示信息用于指示所述终端设备发送上行信号的配置。
  36. 根据权利要求35所述的方法,其特征在于,所述配置指示信息用于指示下列配置参数中的至少一种:所述多个上行发射波束的测量次序、所述多个上行发射波束的重复测量次数、所述多个上行发射波束与至少一种上行信号之间的对应关系、所述多个上行发射波束与传输资源之间的对应关系。
  37. 根据权利要求21至36中任一项所述的方法,其特征在于,所述上行信号包括下列中的至少一种:探测参考信号SRS、物理随机接入信道PRACH、解调参考信号DMRS和波束测量专用上行信号。
  38. 一种多波束系统中的无线通信装置,其特征在于,包括:
    发送单元,用于采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号;
    接收单元,用于接收所述网络设备发送的与M1个上行发射波束所对应的M1个度量信息集合,与所述M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列中的至少一种:所述第一上行发射波束所对应的度量值信息、所述第一上行发射波束与所述网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,所述多个上行发射波束包括所述M1个上行发射波束,所述第一上行发射波束与所述M2个上行接收波束中的第一上行接收波束构成第一上行波束对,所述第一上行波束对的度量值是所述网络设备通过采用第一上行接收波束测量所述发送单元采用所述第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1;
    处理单元,用于采用多个下行接收波束中的每个下行接收波束测量所述网络设备采用多个下行发射波束发送的下行信号,得到下行测量结果,并且根据所述接收单元接收的所述M1个度量信息集合以及所述下行测量结果, 确定发射/接收波束对应性的对应性结果。
  39. 根据权利要求38所述的装置,其特征在于,所述第一度量信息集合还包括下列中的至少一种:所述第一上行发射波束的标识信息、所述M2个上行接收波束中每个上行接收波束的标识信息。
  40. 根据权利要求38或39所述的装置,其特征在于,所述第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,所述第一测量值集合是所述网络设备通过采用多个上行接收波束对采用所述第一上行发射波束发送的上行信号进行测量得到的。
  41. 根据权利要求40所述的装置,其特征在于,所述第一测量值集合包括下列中的至少一种:信号强度、信噪比SNR、信干噪比SINR和秩值。
  42. 根据权利要求38至41中任一项所述的装置,其特征在于,所述M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的。
  43. 根据权利要求38至41中任一项所述的装置,其特征在于,所述第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的;
    所述M2个上行接收波束还包括至少一个第二上行接收波束,其中,所述至少一个第二上行接收波束与所述第一上行发射波束构成至少一个第二上行波束对,所述至少一个第二上行波束对中每个第二上行波束对的度量值与所述第一上行波束对的度量值之间的差值小于第一门限值。
  44. 根据权利要求43所述的装置,其特征在于,所述至少一个第二上行波束对是所述多个上行波束对中除所述第一上行波束对之外的度量值最高的前M2-1个上行波束对。
  45. 根据权利要求38至44中任一项所述的装置,其特征在于,
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述第二上行波束对的前一上行波束对所对应的测量值之间的差值;或者
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述多个上行波束对中排在第一位的上行波束 对所对应的测量值之间的差值。
  46. 根据权利要求38至45中任一项所述的装置,其特征在于,所述M1个上行发射波束为所述多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
  47. 根据权利要求38至45中任一项所述的装置,其特征在于,所述第一上行发射波束为所述多个上行发射波束中对应的度量值最高的上行发射波束;
    所述M1上行发射波束还包括至少一个第二上行发射波束,所述至少一个第二上行发射波束中每个第二上行发射上行波束对应的度量值与所述第一上行发射上行波束对应的度量值之间的差值小于第二门限值。
  48. 根据权利要求47所述的装置,其特征在于,所述至少一个第二上行发射波束是所述多个上行发射波束中除所述第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
  49. 根据权利要求38至48中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性在终端设备处的对应性结果;和/或
    根据所述M1个度量信息集合以及所述下行测量结果,确定发射/接收波束对应性在所述网络设备处的对应性结果。
  50. 根据权利要求38至49中任一项所述的装置,其特征在于,所述发送单元还用于向所述网络设备发送对应性指示消息,所述对应性指示消息用于指示所述处理单元确定的所述发射/接收波束对应性的对应性结果。
  51. 根据权利要求50所述的装置,其特征在于,所述对应性指示消息具体用于指示下列中的至少一种:
    发射/接收波束对应性在终端设备处是否成立;
    发射/接收波束对应性在所述网络设备处是否成立;
    所述终端设备包括的满足波束对应性的至少一个发射/接收波束对;
    所述网络设备包括的满足波束对应性的至少一个发射/接收波束对。
  52. 根据权利要求38至51中任一项所述的装置,其特征在于,所述处理单元还用于:
    在当前的第一时刻与位于所述第一时刻之前的第二时刻之间的时间间 隔达到预设时间间隔的情况下,确定执行所述确定发射/接收波束对应性的对应性结果的流程,其中,所述第二时刻为发射/接收波束对应性确定成立的最邻近起始时刻。
  53. 根据权利要求38至52中任一项所述的装置,其特征在于,所述处理单元还用于:
    在终端设备需要改变用于与所述网络设备进行数据传输的传输模式或传输参数的情况下,确定执行所述确定发射/接收波束对应性的对应性结果的流程。
  54. 根据权利要求38至53中任一项所述的装置,其特征在于,所述接收单元还用于接收所述网络设备发送的配置指示信息,所述配置指示信息用于指示上行信号的发送配置;
    所述发送单元具体用于根据所述配置指示信息,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号。
  55. 根据权利要求54所述的装置,其特征在于,所述配置指示信息用于指示下列配置参数中的至少一种:所述多个上行发射波束的测量次序、所述多个上行发射波束的重复测量次数、所述多个上行发射波束与至少一种上行信号之间的对应关系、所述多个上行发射波束与传输资源之间的对应关系。
  56. 根据权利要求38至55所述的装置,其特征在于,所述发送单元具体用于根据原有配置,采用多个上行发射波束中的每个上行发射波束向网络设备发送上行信号,所述原有配置用于在上一次执行确定发射/接收波束对应性的对应性结果的流程中向网络设备发送上行信号。
  57. 根据权利要求38至56中任一项所述的装置,其特征在于,所述上行信号包括下列中的至少一种:探测参考信号SRS、物理随机接入信道PRACH、解调参考信号DMRS和波束测量专用上行信号。
  58. 一种无线通信装置,其特征在于,包括:
    处理单元,用于采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号,得到上行测量结果;
    发送单元,用于根据所述处理单元得到的所述上行测量结果,向所述终端设备发送与M1个上行发射波束所对应的M1个度量信息集合,与所述M1个上行发射波束中的第一上行发射波束对应的第一度量信息集合包括下列 中的至少一种:所述第一上行发射波束所对应的度量值信息、所述第一上行发射波束与网络设备的M2个上行接收波束构成的M2个上行波束对中每个上行波束对的度量值信息,其中,所述多个上行发射波束包括所述M1个上行发射波束,所述多个上行接收波束包括所述M2个上行接收波束,所述第一上行发射波束与所述M2个上行接收波束中的第一上行接收波束构成第一上行波束对,所述第一上行波束对的度量值是所述网络设备通过采用第一上行接收波束测量所述终端设备采用所述第一上行发射波束发送的上行信号得到的,M1和M2均为大于或等于1的整数,并且M1和M2不同时等于1。
  59. 根据权利要求58所述的装置,其特征在于,所述第一度量信息集合还包括下列中的至少一种:所述第一上行发射波束的标识信息、所述M2个上行接收波束中每个上行接收波束的标识信息。
  60. 根据权利要求58或59所述的装置,其特征在于,所述第一上行发射波束所对应的度量值具体为与第一测量值集合中的最大值对应的上行波束对的度量值,其中,所述第一测量值集合是所述网络设备通过采用多个上行接收波束对所述终端设备采用所述第一上行发射波束发送的上行信号进行测量得到的。
  61. 根据权利要求60所述的装置,其特征在于,所述第一测量值集合包括下列中的至少一种:信号强度、信噪比SNR、信干噪比SINR和秩值。
  62. 根据权利要求58至61中任一项所述的装置,其特征在于,所述M2个上行波束对是多个上行波束对中对应的度量值最高的前M2个上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的。
  63. 根据权利要求58至61中任一项所述的装置,其特征在于,所述第一上行波束对为多个上行波束对中对应的度量值最高的上行波束对,其中,所述多个上行波束对是由所述第一上行发射波束与所述网络设备的多个上行接收波束构成的;
    所述M2个上行接收波束还包括至少一个第二上行接收波束,其中,所述至少一个第二上行接收波束与所述第一上行发射波束构成至少一个第二上行波束对,所述至少一个第二上行波束对中每个第二上行波束对的度量值与所述第一上行波束对的度量值之间的差值小于第一门限值。
  64. 根据权利要求63所述的装置,其特征在于,所述至少一个第二上 行波束对是所述多个上行波束对中除所述第一上行波束对之外的度量值最高的前M2-1个上行波束对。
  65. 根据权利要求64所述的装置,其特征在于,
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述第二上行波束对的前一上行波束对所对应的测量值之间的差值;或者
    所述M2个上行波束对中第二上行波束对的度量值信息包括所述第二上行波束对所对应的测量值与所述多个上行波束对中排在第一位的上行波束对所对应的测量值之间的差值。
  66. 根据权利要求58至65中任一项所述的装置,其特征在于,所述M1个上行发射波束为所述多个上行发射波束中对应的度量值最高的前M1个上行发射波束。
  67. 根据权利要求58至65中任一项所述的装置,其特征在于,所述第一上行发射波束为所述多个上行发射波束中对应的度量值最高的上行发射波束;
    所述M1上行发射波束还包括至少一个第二上行发射波束,所述至少一个第二上行发射波束中每个第二上行发射上行波束所对应的度量值与所述第一上行发射上行波束所对应的度量值之间的差值小于第二门限值。
  68. 根据权利要求67所述的装置,其特征在于,所述至少一个第二上行发射波束是所述多个上行发射波束中除所述第一上行发射波束之外的度量值最高的前M1-1个上行发射波束。
  69. 根据权利要求58至68中任一项所述的装置,其特征在于,所述发送单元还用于采用多个下行发射波束中的每个下行发射波束发送下行信号。
  70. 根据权利要求58至69中任一项所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收所述终端设备发送的对应性指示消息,所述对应性指示消息用于指示所述终端设备根据所述发送单元送的M1个度量信息集合得到的发射/接收波束对应性的对应性结果。
  71. 根据权利要求70所述的装置,其特征在于,所述对应性指示消息具体用于指示下列中的至少一种:
    发射/接收波束对应性在所述终端设备处是否成立;
    发射/接收波束对应性在所述网络设备处是否成立;
    所述终端设备包括的满足波束对应性的至少一个发射/接收波束对;
    所述网络设备包括的满足波束对应性的至少一个发射/接收波束对。
  72. 根据权利要求58至71中任一项所述的装置,其特征在于,所述发送单元还用于:
    在所述处理单元采用多个上行接收波束测量终端设备采用多个上行发射波束中的每个上行发射波束发送的上行信号之前,向所述终端设备发送配置指示信息,所述配置指示信息用于指示所述终端设备发送上行信号的配置。
  73. 根据权利要求72所述的装置,其特征在于,所述配置指示信息用于指示下列配置参数中的至少一种:所述多个上行发射波束的测量次序、所述多个上行发射波束的重复测量次数、所述多个上行发射波束与至少一种上行信号之间的对应关系、所述多个上行发射波束与传输资源之间的对应关系。
  74. 根据权利要求58至73中任一项所述的装置,其特征在于,所述上行信号包括下列中的至少一种:探测参考信号SRS、物理随机接入信道PRACH、解调参考信号DMRS和波束测量专用上行信号。
PCT/CN2017/070323 2017-01-05 2017-01-05 无线通信方法和装置 WO2018126411A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780077055.4A CN110073605B (zh) 2017-01-05 2017-01-05 无线通信方法和装置
EP17890352.2A EP3537618B1 (en) 2017-01-05 2017-01-05 Wireless communication method and apparatus
US16/470,852 US10715236B2 (en) 2017-01-05 2017-01-05 Wireless communication method and apparatus
PCT/CN2017/070323 WO2018126411A1 (zh) 2017-01-05 2017-01-05 无线通信方法和装置
TW106145170A TWI694689B (zh) 2017-01-05 2017-12-21 無線通信方法和裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070323 WO2018126411A1 (zh) 2017-01-05 2017-01-05 无线通信方法和装置

Publications (1)

Publication Number Publication Date
WO2018126411A1 true WO2018126411A1 (zh) 2018-07-12

Family

ID=62789030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070323 WO2018126411A1 (zh) 2017-01-05 2017-01-05 无线通信方法和装置

Country Status (5)

Country Link
US (1) US10715236B2 (zh)
EP (1) EP3537618B1 (zh)
CN (1) CN110073605B (zh)
TW (1) TWI694689B (zh)
WO (1) WO2018126411A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740573A (zh) * 2018-09-28 2021-04-30 索尼公司 波束对应的动态控制
CN112753169A (zh) * 2018-10-03 2021-05-04 高通股份有限公司 用于报告波束对应性状态的系统和方法
WO2021138816A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 用于波束选择的方法、终端设备和网络设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128376A1 (ko) * 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
CN112512122B (zh) 2017-05-04 2022-04-08 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN111698719A (zh) * 2017-08-11 2020-09-22 Oppo广东移动通信有限公司 测量上报控制方法及相关产品
CN110838861B (zh) * 2018-08-17 2023-03-17 大唐移动通信设备有限公司 信号传输方法、波束确定方法及其装置
US20210258061A1 (en) * 2020-02-17 2021-08-19 Nokia Technologies Oy Beam correspondence verification for wireless networks
WO2024077417A1 (zh) * 2022-10-09 2024-04-18 华为技术有限公司 一种感知方法、通信装置及通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072539A (ja) * 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
CN101124734A (zh) * 2005-02-17 2008-02-13 美商内数位科技公司 选择多输入多输出天线波束组合的方法及装置
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
CN104508994A (zh) * 2012-05-29 2015-04-08 麦格诺利亚宽带公司 用于增强rf mimo系统性能的系统和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164374B (zh) * 2011-05-10 2013-09-11 华为技术有限公司 波束搜索处理方法、装置和系统
KR102016685B1 (ko) * 2011-10-19 2019-08-30 삼성전자 주식회사 무선통신 시스템에서 상향링크 제어 방법 및 장치
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和系统
KR102171561B1 (ko) 2014-04-07 2020-10-29 삼성전자주식회사 빔포밍 기반 셀룰러 시스템의 상향링크 빔 추적 방법 및 장치
CN110048749B (zh) 2014-08-18 2021-08-31 松下电器产业株式会社 多输入多输出训练方法及无线装置
US9866299B2 (en) * 2014-09-24 2018-01-09 Mediatek Inc. Synchronization in a beamforming system
BR112017003647A2 (pt) 2014-10-01 2017-12-05 Intel Ip Corp comunicação móvel em redes de pequena célula assistidas por macrocélula
US9722726B2 (en) * 2015-03-28 2017-08-01 Intel IP Corporation Reciprocity detection and utilization techniques for beamforming training
CN106162673B (zh) * 2015-04-17 2020-02-14 华为技术有限公司 波束选择方法及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072539A (ja) * 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
CN101124734A (zh) * 2005-02-17 2008-02-13 美商内数位科技公司 选择多输入多输出天线波束组合的方法及装置
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
CN104508994A (zh) * 2012-05-29 2015-04-08 麦格诺利亚宽带公司 用于增强rf mimo系统性能的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537618A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740573A (zh) * 2018-09-28 2021-04-30 索尼公司 波束对应的动态控制
CN112740573B (zh) * 2018-09-28 2023-11-14 索尼公司 波束对应的动态控制
CN112753169A (zh) * 2018-10-03 2021-05-04 高通股份有限公司 用于报告波束对应性状态的系统和方法
CN112753169B (zh) * 2018-10-03 2023-09-05 高通股份有限公司 用于报告波束对应性状态的系统和方法
WO2021138816A1 (zh) * 2020-01-07 2021-07-15 Oppo广东移动通信有限公司 用于波束选择的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US10715236B2 (en) 2020-07-14
EP3537618A1 (en) 2019-09-11
US20190326971A1 (en) 2019-10-24
TW201826735A (zh) 2018-07-16
EP3537618A4 (en) 2019-10-23
CN110073605B (zh) 2020-06-02
EP3537618B1 (en) 2021-05-19
CN110073605A (zh) 2019-07-30
TWI694689B (zh) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2018126411A1 (zh) 无线通信方法和装置
CN111314952B (zh) 一种测量上报的方法及装置
TWI785007B (zh) 通信方法、終端設備和網絡設備
CN107889141B (zh) 测量和上报方法、终端及基站
US11201681B2 (en) Signal communication method and apparatus
JP2020507949A (ja) 無線通信方法、端末デバイス、及びネットワークデバイス
TWI746573B (zh) 傳輸訊號的方法、網路設備和終端設備
US20210099270A1 (en) Resource Indicating Method, Device, And System
JP2021501537A (ja) ビーム検出の方法および装置
CN108282807B (zh) 信道质量信息的测量、选择和上报方法及装置
US11363574B2 (en) Information transmission method, terminal, and network side device
WO2022001241A1 (zh) 一种波束管理方法及装置
EP4008122A1 (en) Positioning-specific beam refinement for neighbor cell positioning reference signal (prs) transmission
AU2017398128A1 (en) Wireless communication method, terminal device and network device
WO2021081770A1 (zh) 一种测量方法及装置
CN107615821B (zh) 一种数据传输方法、设备和系统
TWI687067B (zh) 無線通信方法和裝置
WO2022086424A1 (en) Radio network node, network node, and methods performed in a wireless communication network
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
WO2018081972A1 (zh) 通信方法、终端设备和网络设备
WO2019047122A1 (zh) 信号上报的方法、终端设备和网络设备
CN116489695A (zh) Csi上报方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017890352

Country of ref document: EP

Effective date: 20190607

NENP Non-entry into the national phase

Ref country code: DE