WO2018126133A1 - Skin-penetrating formulation of taurolidine - Google Patents

Skin-penetrating formulation of taurolidine Download PDF

Info

Publication number
WO2018126133A1
WO2018126133A1 PCT/US2017/068956 US2017068956W WO2018126133A1 WO 2018126133 A1 WO2018126133 A1 WO 2018126133A1 US 2017068956 W US2017068956 W US 2017068956W WO 2018126133 A1 WO2018126133 A1 WO 2018126133A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrolysable
taurolidine
skin
composition
lipophilic excipient
Prior art date
Application number
PCT/US2017/068956
Other languages
French (fr)
Inventor
Bruce Reidenberg
Robert Diluccio
Original Assignee
Cormedix Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cormedix Inc. filed Critical Cormedix Inc.
Publication of WO2018126133A1 publication Critical patent/WO2018126133A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/549Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame having two or more nitrogen atoms in the same ring, e.g. hydrochlorothiazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics

Definitions

  • This invention relates to medical treatments in general, and more particularly to medical treatments utilizing taurolidine.
  • Excipients designed to improve skin penetration of water-soluble drugs is a well-established field.
  • the usual goal of applying excipients to the skin is to induce a temporary break in the barrier function of the skin so that a sufficient amount of a drug can be systemically absorbed using the subdermal venous plexus .
  • Taurolidine is a well-known antimicrobial with a published mechanism of action and antimicrobial spectrum. Taurolidine is unstable in circulation and therefore has not been successfully developed for systemic infections. Taurolidine has demonstrated efficacy in local application for peritonitis and for the prevention of infection when infused as a
  • Taurolidine is an antimicrobial with a broad spectrum of activity due to its hydrolysis products
  • taurolidine i.e., methylol groups
  • the use of taurolidine in skin infections is impaired by the breakdown (i.e., the hydrolysis) of the taurolidine at the skin surface, which prevents the hydrolysis products from passing through the skin and reaching the site of infection.
  • the present invention provides a specialized taurolidine formulation which is designed to maintain taurolidine stability during the skin penetration process.
  • taurolidine formulation has facilitated passage of the taurolidine through the stratum corneum, lucidum, and spinosum layers of the skin (see Figs. 1 and 2), the taurolidine in the specialized taurolidine formulation is exposed to the anatomy and hydrolyzes to the active moieties of taurolidine (i.e., methylol groups), whereby to treat skin infections and to prevent skin infections.
  • This specialized taurolidine formulation comprises lipid-soluble excipients that are
  • lipid-soluble excipients include small peptides with lipophilic side chains and fatty acid esters.
  • taurolidine a hydrolysable composition
  • the taurolidine can hydrolyze into the active moieties of taurolidine (i.e., methylol groups) to achieve local antimicrobial effects.
  • formulation may also comprise a pharmaceutical carrier (e.g., an emulsion), with the taurolidine and the lipid-soluble excipient being carried by the pharmaceutical carrier (e.g., an emulsion), with the taurolidine and the lipid-soluble excipient being carried by the pharmaceutical carrier (e.g., an emulsion), with the taurolidine and the lipid-soluble excipient being carried by the pharmaceutical carrier (e.g., an emulsion), with the taurolidine and the lipid-soluble excipient being carried by the
  • composition e.g., with the taurolidine and the lipid-soluble excipient being suspended in the emulsion.
  • a further refinement of the present invention includes creating nanoparticles with taurolidine centers and lipophilic exteriors suspended in a pharmaceutical carrier (e.g., an emulsion) .
  • a pharmaceutical carrier e.g., an emulsion
  • the specialized taurolidine formulation is intended to be administered once or twice daily until the skin is healed.
  • This product can be for local skin infections or as a part of comprehensive burn treatment.
  • skin penetrant enhancers are optionally used.
  • lipid-soluble excipients may be incorporated into the specialized taurolidine formulation to allow for enhanced delivery of the taurolidine through the skin.
  • composition comprising:
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient.
  • taurolidine or a pharmaceut ically-acceptable salt thereof ;
  • hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin; and (iii) a suitable pharmaceutical carrier.
  • a method for treating a patient comprising:
  • composition comprising:
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic
  • the lipophilic excipient is
  • composition comprising: hydrolysable taurolidine ;
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient
  • hydrolysable lipophilic excipient is myristic acid.
  • taurolidine or a pharmaceut ically-acceptable salt thereof ;
  • hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin, wherein the hydrolysable lipophilic excipient is myristic acid;
  • a method for treating a patient comprising:
  • composition comprising:
  • hydrolysable lipophilic excipient wherein the hydrolysable lipophilic excipient is hyaluronic acid
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic
  • the lipophilic excipient is
  • a pharmaceutical patch comprising :
  • composition applied to the substrate comprising:
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic
  • a method for treating a patient comprising:
  • a pharmaceutical patch comprising:
  • composition applied to the substrate comprising: hydrolysable taurolidine ; and a hydrolysable lipophilic excipient;
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic
  • the lipophilic excipient is
  • a pharmaceutical system comprising :
  • a novel pharmaceutical composition comprising: (i) a therapeutically-effective amount of taurolidine or a pharmaceutically-acceptable salt thereof ;
  • a method for treating a patient comprising:
  • composition comprising:
  • hydrolysable taurolidine is contained within the hydrolysable lipophilic
  • the lipophilic excipient is
  • Fig. 1 is a schematic view showing one form of the specialized taurolidine formulation of the present invention penetrating the skin of a patient;
  • Fig. 2 is a schematic view showing another form of the specialized taurolidine formulation of the present invention penetrating the skin of a patient;
  • Fig. 3 is a graph showing the activity of
  • Fig. 4 is another graph showing the activity of taurolidine-loaded hydrogels against biofilm on a Pig Skin Explant Model.
  • Fig. 5 is a table showing the efficacy of various taurolidine formulations, wherein the taurolidine formulations comprise taurolidine and myristic acid in a hyaluronic acid gel.
  • the present invention comprises the provision and use of a novel skin-penetrating formulation of taurolidine designed to deliver the taurolidine to an internal infection site, whereby to treat skin
  • Transdermal drug delivery is distinguished from topical drug delivery by the fact that, while a transdermal formulation is specifically designed to provide a predictable and therapeutically significant rate of delivery of the drug to the systemic
  • a topical formulation is specifically designed to provide a therapeutic effect to only the local area where the drug is applied. Furthermore, topical formulations are often designed to prevent any systemic delivery of the drug in order to minimize side effects from the drug. However, where the topical delivery of a drug results in systemic absorption, the amount of drug delivery to the
  • the goal of the present invention is the
  • taurolidine that penetrates and resides in several layers of the skin including the epidermis, dermis, and subcutaneous layers of the skin. See Figs. 1 and 2. Although some of the taurolidine may end up in systemic circulation, the present invention is designed so that the bulk of the taurolidine remains localized to the point of application.
  • the skin is an excellent barrier to the
  • taurolidine through the skin requires that a
  • taurolidine therapeutic quantity, and/or rate of delivery, of taurolidine be delivered through the skin. Normally this cannot be achieved with taurolidine, due to the substantial barrier properties of the skin.
  • topical delivery of taurolidine can be made possible if the skin is made more permeable to the taurolidine (and/or if the taurolidine is protected from premature hydrolysis of the taurolidine in the outer layers of the skin) . This may be accomplished by modifying the taurolidine permeability of the skin and/or by using a "vehicle" to carry the taurolidine through the skin, whereby to facilitate topical delivery of the
  • Factors that determine the permeability of the skin to a particular drug include drug diffusivity through the skin, vehicle/skin drug partitioning, and drug concentration in the vehicle.
  • certain materials used as adjuvants in vehicles may affect the characteristics of the skin barrier and thus alter the permeability of the skin to the drug. Such materials are referred to as skin penetration enhancers. These skin penetration enhancers are important in the optimization of topical drug delivery because of the necessity for the maximization of penetration rates and the minimization of lag times in the drug penetration through the skin.
  • the permeability of the skin to a drug is influenced by a combination of physico-chemical parameters for both the drug and the vehicle, as discussed above.
  • effective topical delivery of a particular drug requires the selection of an appropriate vehicle.
  • the optimum vehicle for one drug may not be effective for topical delivery of another drug since the properties of the vehicle and the drug must be matched to ensure a therapeutic rate of drug delivery through the skin.
  • the present invention relates to a novel
  • composition that provides topical delivery of therapeutically-effeetive amounts of taurolidine to desired regions of mammalian skin.
  • the novel pharmaceutical composition comprises:
  • hydrolysable taurolidine e.g., taurolidine or a pharmaceutically-acceptable salt thereof, sometimes referred to herein as simply "the taurolidine”
  • an effective penetration-enhancing amount of a hydrolysable lipophilic excipient e.g., at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or of an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms
  • the novel pharmaceutical composition may also comprise a suitable pharmaceutical carrier (e.g., an emulsion) for carrying the therapeutically- effective amount of hydrolysable taurolidine and the effective penetration-enhancing amount of a
  • hydrolysable lipophilic excipient to the skin of a patient .
  • the hydrolysable lipophilic excipient of the novel pharmaceutical composition protects the hydrolysable lipophilic excipient of the novel pharmaceutical composition
  • taurolidine from hydrolysis while the taurolidine is diffusing through the superficial layers of the skin, then releases the taurolidine at the site of infection in the stratum granulosum or the dermis, whereupon the taurolidine hydrolyzes to its active moieties (i.e., methylol groups), whereby to treat the infection (or to prevent infection) .
  • This selective delivery of the taurolidine is accomplished with the lipophilic excipient acting on the tissue to facilitate passage of the composition through the tissue and with the lipophilic excipient also acting to shield the
  • excipient is hydrolysable by tissue enzymes in the deeper layers of skin.
  • the lipophilicity of the hydrolysable excipient allows the "protected"
  • hydrophobic excipient and expose the taurolidine to local hydrolysis, thereby creating the active moieties (i.e., methylol groups) which treat the infection.
  • a mass of the therapeutically-effective amount of hydrolysable taurolidine is mixed into a mass of the effective penetration-enhancing amount of a hydrolysable
  • lipophilic excipient covers the hydrolysable
  • hydrolysable taurolidine is encapsulated within the hydrolysable lipophilic excipient so as to form nanoparticles (comprising taurolidine centers and lipophilic exteriors) so that the hydrolysable
  • lipophilic excipient covers the hydrolysable
  • the hydrolysable taurolidine is covered by a hydrolysable lipophilic excipient, with either the hydrolysable taurolidine being mixed into a mass of a hydrolysable lipophilic excipient (the mixture form of the novel taurolidine formulation) or with the hydrolysable taurolidine being encapsulated by a hydrolysable lipophilic excipient, i.e., so as to form
  • nanoparticles the nanoparticle form of the novel taurolidine formulation
  • the hydrolysable lipophilic excipient facilitates passage of the mixture or nanoparticles through the skin.
  • the lipophilic excipient is hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties (i.e., methylol groups) which treat the infection (or prevent infection) .
  • the mixture (of the hydrolysable lipophilic excipient and the hydrolysable taurolidine) or the nanoparticles (hydrolysable taurolidine covered by a hydrolysable lipophilic excipient) are delivered to the skin in a suitable pharmaceutical carrier, e.g., an emulsion.
  • the hydrolysable lipophilic excipient comprises at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms.
  • fatty alcohol and/or “fatty acid” are meant to mean any saturated fatty acid or fatty alcohol having from 8 to 15 carbon atoms or any unsaturated fatty acid or fatty alcohol having from 8 to 18 carbon atoms which is effective in enhancing the penetration of taurolidine through desired regions of the mammalian skin .
  • the present invention may utilize any combination of fatty acids and/or fatty alcohols having the above-specified number of carbon atoms, which is effective in
  • Preferred penetration-enhancing fatty acids and fatty alcohols are those with 10-15 carbon atoms or any mixture thereof.
  • Especially preferred penetration-enhancing fatty acids and fatty alcohols are those with 14 carbon atoms such as myristic acid and myristyl alcohol. It should be understood that the terms
  • penetration enhancer and/or "fatty acid” and/or “fatty alcohol” are used interchangeably throughout the present disclosure.
  • hydrolysable lipophilic excipient comprises small peptides with lipophilic side chains and fatty acid esters.
  • the small peptides may comprise a high percentage of valine, leucine, proline, phenylalanine, tryptophan and/or leucine-enkephalin.
  • the fatty acid esters may include 10-15 carbon saturated and
  • the fatty acid esters may include compositions comprising diglycerides ,
  • suitable pharmaceutical carrier any non-toxic pharmaceutically-suitable vehicle, e.g., an emulsion.
  • the suitable pharmaceutical carrier may comprise any polar protic solvent with a molecular weight of less than 600.
  • Suitable carriers include propylene glycol, polyethylene glycol, petrolatum, glycerin, polyvinylpyrrolidone and hyaluronic acid. Propylene glycol is a preferred carrier or vehicle, and any other carriers that may be used are then considered to be excipients.
  • the present invention comprises the
  • topical formulation comprising taurolidine wherein the topical formulation is designed to deliver the taurolidine to an internal infection site, whereby to treat skin infections and to prevent skin infections, e.g., such as in burn victims .
  • a novel pharmaceutical composition which comprises :
  • hydrolysable lipophilic excipient (sometimes referred to herein as “the hydrolysable excipient” or “the lipophilic excipient") which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from
  • a suitable pharmaceutical carrier e.g., an emulsion
  • excipient comprises at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or of an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms .
  • the suitable pharmaceutical carrier comprises any nontoxic pharmaceutically suitable vehicle that comprises any polar protic solvent with a molecular weight of less than 600 (e.g., propylene glycol or polyethylene glycol ) .
  • composition of the present invention e.g., hydrolysable taurolidine in combination with a hydrolysable lipophilic excipient, and optionally in combination with one or more additional components such as a suitable pharmaceutical carrier
  • a suitable pharmaceutical carrier e.g., as an emulsion, a gel, a solution, etc.
  • composition is applied directly to the skin of the user, e.g., by topically applying the novel pharmaceutical composition to the skin of the user as an emulsion, a gel, a solution, etc.
  • the novel pharmaceutical composition is applied to a substrate (e.g., so as to form a "patch") and the patch is applied to the skin of the user so that the novel pharmaceutical composition contacts the skin of the user.
  • the substrate comprises a hydrogel and the pharmaceutical composition (containing a hydrolysable form of the taurolidine covered by a lipophilic excipient that is also hydrolysable) is carried by the hydrogel
  • the substrate may comprise a hydrogel (e.g., hyaluronic acid) and a mixture of hydrolysable taurolidine and hydrolysable lipophilic excipient is applied to the hydrogel substrate so as to form the patch.
  • a hydrogel e.g., hyaluronic acid
  • hydrolysable taurolidine and hydrolysable lipophilic excipient is applied to the hydrogel substrate so as to form the patch.
  • the substrate may comprise a hydrogel (e.g., hyaluronic acid) and nanoparticles comprising hydrolysable taurolidine encapsulated within a hydrolysable lipophilic
  • excipient are applied to the hydrogel substrate so as to form the patch.
  • the substrate may comprise a hydrogel (e.g., hyaluronic acid) and a mixture of hydrolysable taurolidine and hydrolysable lipophilic excipient are mixed into the hydrogel substrate so as to form the patch.
  • a hydrogel e.g., hyaluronic acid
  • hydrolysable taurolidine and hydrolysable lipophilic excipient are mixed into the hydrogel substrate so as to form the patch.
  • substrate may comprise a hydrogel (e.g., hyaluronic acid) and nanoparticles comprising hydrolysable taurolidine encapsulated within a hydrolysable
  • lipophilic excipient are mixed into the hydrogel substrate so as to form the patch.
  • the pharmaceutical composition may or may not also comprise a pharmaceutical carrier when it is applied to the substrate.
  • the pharmaceutical composition is in its nanoparticle form (i.e., with the hydrolysable taurolidine being
  • the pharmaceutical composition preferably comprises a pharmaceutical carrier when it is applied to the substrate .
  • the novel pharmaceutical composition is topically applied to the skin of the user (e.g., as an emulsion, a gel, a solution, etc.), and then the novel pharmaceutical composition is covered (e.g., with a bandage, gauze, etc . ) .
  • Formulations of taurolidine in aqueous solutions of hyaluronic acid (HA) crosslinked with 1,4- butanediol diglycidyl ether (BDDE) were prepared.
  • HA hyaluronic acid
  • BDDE 1,4- butanediol diglycidyl ether
  • LMW molecular weight
  • MMW medium molecular weight
  • HMW high molecular weight
  • compositions of each formulation are given.
  • biopsied explants (3-4 mm thick) prepared from freshly harvested, shaved and cleaned porcine skin obtained from a local abattoir (Chiefland Custom Meat, Trenton, FL) .
  • the mechanically created "wound bed” (3 mm high speed, round cutter bit; Dremel ® , Robert Bosch Tool Corporation, Racine, WI) was 3 mm in diameter and approximately 1.5 mm in depth at the center of each explant.
  • the chlorine gas (45 minutes ) -sterilised explants were placed on soft Trypticase Soy Agar (TSA) plates containing 0.5% agar and 50 pg/ml gentamicin.
  • TSA soft Trypticase Soy Agar
  • gentamicin ⁇ 30 ⁇ minimal inhibitory concentration
  • wound bed of the explants was inoculated with 10 ⁇ early-logarithmic (log) -phase PAOl suspension culture (106 colony-forming units, CFU) and cultured at 37°C with 5% C02 and saturated humidity. Explants were transferred daily to fresh soft TSA plates containing
  • TLB Tryptic Soy Broth
  • each explant was aseptically placed into a 15 ml sterile tube (on ice) containing cold 7 ml sterile phosphate- buffered saline (PBS) with 5 ⁇ / ⁇ Tween-80.
  • the explants in the tubes were sonicated with a 23 kHz ultrasonic dismembrator (Model 100, Fisher Scientific, Pittsburgh, PA) probe for 30 seconds at approximately 20 Watts on ice, which liberated bacteria from the biofilm into the suspension.
  • the setting on the dismembrator probe tip was adjusted to maintain the target watt output.
  • the sonication probe was
  • PAOl biofilms cultured 3 days on porcine skin explants were transferred to sterile 24-well MicrotiterTM plates and each explant was treated for 24 hours by submersion in 2 ml TSB media containing 200 pg/ml gentamicin. This level of antibiotic was used because it was capable of
  • the antibiotic pre- treated explants containing only mature PAOl biofilm, were each rinsed thrice with 2 ml of sterile PBS, washed in 2 ml PBS for 10 minutes and then rinsed thrice with 2 ml PBS to remove unattached bacteria.
  • the rinsed biofilm explants were transferred to soft TSA plates containing 0.5% agar and 50 pg/ml
  • gentamicin three or four explants per plate.
  • biofilm explants that were used to determine the "standard" baseline total microbial load were covered with sterile double distilled H20-saturated (5 ml) "wet” cotton gauze sponge (2" ⁇ 2") .
  • the rest of the biofilm explants were covered and treated with 1 ml of Hyaluronic Acid-loaded hydrogels as shown in Table 1.
  • the treated biofilm explants were each processed by sonication in 7 ml PBS with 5 ⁇ / ⁇ Tween- 80, as previously described. Bacterial suspensions were immediately serially diluted and plated in triplicate on TSB, and the average CFU/ml was
  • Day 3 put 3 day cultured explants in 24 well treat with 1 ml different solution.
  • Mature biofilms from Pseudomonas aeruginosa were prepared on pig-skin explants in order to test the efficacy of hyaluronic acid hydrogels containing taurolidine and myristic acid. See Table 2 below, which provides the compositions of each formulation.
  • Table 2 Fig. 4 is a graph showing the efficacy of
  • compositions comprising taurolidine and myristic acid carried by hyaluronic acid
  • compositions comprising taurolidine and myristic acid carried by hyaluronic acid hydrogels can effectively penetrate and break-up biofilms and kill biofilm embedded microorganisms such as Pseudomonas aeruginosa (PA01) .
  • PA01 Pseudomonas aeruginosa
  • Fig. 5 is a table listing 15 different
  • Formulation 2 Medium Molecular Weight (MMW) Hyaluronic Acid (HA) Control (Cntr);
  • Hyaluronic Acid (HA) and 0.5% Taurolidine Formulation 5 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 0.5% Taurolidine;
  • Formulation 6 High Molecular Weight (HMW) Hyaluronic Acid (HA) and 0.5% Taurolidine;
  • Formulation 7 Low Molecular Weight (LMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
  • Formulation 8 Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
  • Formulation 9 High Molecular Weight (HMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
  • Formulation 10 Low Molecular Weight (LMW) Hyaluronic Acid (HA) and 1.5% Taurolidine;
  • Formulation 11 Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 1.5% Taurolidine;
  • Formulation 13 Low Molecular Weight (LMW) Hyaluronic Acid (HA) 1.0% Taurolidine and 0.25% Myristic Acid (MRA) ; Formulation 14 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA), 1.0% Taurolidine and 0.25% Myristic Acid (MRA) ; and
  • Formulation 15 High Molecular Weight (HMW) Hyaluronic Acid (HA), 1.0% Taurolidine and 0.25%
  • MRA Myristic Acid
  • Formulations 11, 12 and 15 have proven to be highly efficacious against biofilms on a pig skin explant model (i.e., Formulations 11, 12 and 15 all provided an effectiveness of less than l.OOE+00.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A composition comprising: hydrolysable taurolidine; and a hydrolysable lipophilic excipient; wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient.

Description

SKIN-PENETRATING FORMULATION OF TAUROLIDINE
Reference To Pending Prior Patent Applications
This patent application:
(1) is a continuation-in-part of pending prior U.S. Patent Application Serial No. 15/287,822, filed 10/07/2016 by CorMedix Inc. and Bruce Reidenberg et al. for SKIN-PENETRATING FORMULATION OF TAUROLIDINE
(Attorney's Docket No. CORMEDIX-13 ) , which patent application in turn claims benefit of:
(A) prior U.S. Provisional Patent Application Serial No. 62/238,167, filed 10/07/2015 by CorMedix Inc. and Bruce Reidenberg et al . for SKIN- PENETRATING FORMULATION OF TAUROLIDINE (Attorney's Docket No. CORMEDIX-13 PROV) ; and
(2) claims benefit of pending prior U.S.
Provisional Patent Application Serial No. 62/440,054, filed 12/29/2016 by CorMedix Inc. and Bruce Reidenberg et al. for SKIN-PENETRATING FORMULATION OF TAUROLIDINE (Attorney's Docket No. CORMEDIX-20 PROV) .
The three (3) above-identified patent
applications are hereby incorporated herein by
reference .
Field Of The Invention
This invention relates to medical treatments in general, and more particularly to medical treatments utilizing taurolidine.
Background Of The Invention
Excipients designed to improve skin penetration of water-soluble drugs is a well-established field. The usual goal of applying excipients to the skin is to induce a temporary break in the barrier function of the skin so that a sufficient amount of a drug can be systemically absorbed using the subdermal venous plexus .
Taurolidine is a well-known antimicrobial with a published mechanism of action and antimicrobial spectrum. Taurolidine is unstable in circulation and therefore has not been successfully developed for systemic infections. Taurolidine has demonstrated efficacy in local application for peritonitis and for the prevention of infection when infused as a
catheter-lock solution.
Summary Of The Invention
Taurolidine is an antimicrobial with a broad spectrum of activity due to its hydrolysis products
(i.e., methylol groups) . The use of taurolidine in skin infections is impaired by the breakdown (i.e., the hydrolysis) of the taurolidine at the skin surface, which prevents the hydrolysis products from passing through the skin and reaching the site of infection. The present invention provides a specialized taurolidine formulation which is designed to maintain taurolidine stability during the skin penetration process. Once this specialized
taurolidine formulation has facilitated passage of the taurolidine through the stratum corneum, lucidum, and spinosum layers of the skin (see Figs. 1 and 2), the taurolidine in the specialized taurolidine formulation is exposed to the anatomy and hydrolyzes to the active moieties of taurolidine (i.e., methylol groups), whereby to treat skin infections and to prevent skin infections. This specialized taurolidine formulation comprises lipid-soluble excipients that are
hydrolysable by enzymes in the stratum granulosum or the dermis layers of the skin. Such lipid-soluble excipients include small peptides with lipophilic side chains and fatty acid esters.
Note that the present invention is not directed to the use of an excipient to promote systemic
absorption of the taurolidine - rather, it is designed to deliver taurolidine, a hydrolysable composition, to the site of infection beneath the skin surface where the taurolidine can hydrolyze into the active moieties of taurolidine (i.e., methylol groups) to achieve local antimicrobial effects.
If desired, the specialized taurolidine
formulation may also comprise a pharmaceutical carrier (e.g., an emulsion), with the taurolidine and the lipid-soluble excipient being carried by the
pharmaceutical carrier (e.g., with the taurolidine and the lipid-soluble excipient being suspended in the emulsion) .
A further refinement of the present invention includes creating nanoparticles with taurolidine centers and lipophilic exteriors suspended in a pharmaceutical carrier (e.g., an emulsion) .
The specialized taurolidine formulation is intended to be administered once or twice daily until the skin is healed. This product can be for local skin infections or as a part of comprehensive burn treatment. Optionally, skin penetrant enhancers
(e.g., additional types of lipid-soluble excipients) may be incorporated into the specialized taurolidine formulation to allow for enhanced delivery of the taurolidine through the skin.
In one preferred form of the present invention, there is provided a composition comprising:
hydrolysable taurolidine; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient.
In another preferred form of the present
invention, there is provided a novel pharmaceutical composition comprising:
(i) a therapeut ically-effect ive amount of
taurolidine or a pharmaceut ically-acceptable salt thereof ;
(ii) an effective penetration-enhancing
hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin; and (iii) a suitable pharmaceutical carrier.
In another preferred form of the present
invention, there is provided a method for treating a patient, the method comprising:
applying a composition to the skin of a patient, the composition comprising:
hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient; and
leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects. In another preferred form of the present
invention, there is provided a composition comprising: hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient;
and further wherein the hydrolysable lipophilic excipient is myristic acid.
In another preferred form of the present
invention, there is provided a novel pharmaceutical composition comprising:
(i) a therapeut ically-effect ive amount of
taurolidine or a pharmaceut ically-acceptable salt thereof ;
(ii) an effective penetration-enhancing
hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin, wherein the hydrolysable lipophilic excipient is myristic acid; and
(iii) a suitable pharmaceutical carrier.
In another preferred form of the present
invention, there is provided a method for treating a patient, the method comprising:
applying a composition to the skin of a patient, the composition comprising:
hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient, wherein the hydrolysable lipophilic excipient is hyaluronic acid;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient; and
leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects.
In another preferred form of the present
invention, there is provided a pharmaceutical patch comprising :
a substrate; and
a composition applied to the substrate, the composition comprising:
hydrolysable taurolidine; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient .
In another preferred form of the present
invention, there is provided a method for treating a patient, the method comprising:
providing a pharmaceutical patch comprising:
a substrate; and
a composition applied to the substrate, the composition comprising: hydrolysable taurolidine ; and a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient ;
applying the pharmaceutical patch to the skin of a patient; and
leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects.
In another preferred form of the present
invention, there is provided a pharmaceutical system comprising :
a novel pharmaceutical composition comprising: (i) a therapeutically-effective amount of taurolidine or a pharmaceutically-acceptable salt thereof ;
(ii) an effective penetration-enhancing hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin; and
(iii) a suitable pharmaceutical carrier; and a bandage for covering the novel pharmaceutical composition after the novel pharmaceutical composition has been applied to the skin of a patient.
In another preferred form of the present
invention, there is provided a method for treating a patient, the method comprising:
applying a composition to the skin of a patient, the composition comprising:
hydrolysable taurolidine; and
a hydrolysable lipophilic excipient; wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient ;
covering the composition with a bandage; and leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects. Brief Description Of The Drawings
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
Fig. 1 is a schematic view showing one form of the specialized taurolidine formulation of the present invention penetrating the skin of a patient;
Fig. 2 is a schematic view showing another form of the specialized taurolidine formulation of the present invention penetrating the skin of a patient;
Fig. 3 is a graph showing the activity of
taurolidine-loaded hydrogels against biofilm on a Pig Skin Explant Model;
Fig. 4 is another graph showing the activity of taurolidine-loaded hydrogels against biofilm on a Pig Skin Explant Model; and
Fig. 5 is a table showing the efficacy of various taurolidine formulations, wherein the taurolidine formulations comprise taurolidine and myristic acid in a hyaluronic acid gel.
Detailed Description Of The Preferred Embodiments
The present invention comprises the provision and use of a novel skin-penetrating formulation of taurolidine designed to deliver the taurolidine to an internal infection site, whereby to treat skin
infections and to prevent skin infections, e.g., such as in burn victims.
Transdermal drug delivery is distinguished from topical drug delivery by the fact that, while a transdermal formulation is specifically designed to provide a predictable and therapeutically significant rate of delivery of the drug to the systemic
circulation, a topical formulation is specifically designed to provide a therapeutic effect to only the local area where the drug is applied. Furthermore, topical formulations are often designed to prevent any systemic delivery of the drug in order to minimize side effects from the drug. However, where the topical delivery of a drug results in systemic absorption, the amount of drug delivery to the
circulation is variable and uncontrolled.
The goal of the present invention is the
localized delivery (i.e., topical drug delivery) of taurolidine that penetrates and resides in several layers of the skin including the epidermis, dermis, and subcutaneous layers of the skin. See Figs. 1 and 2. Although some of the taurolidine may end up in systemic circulation, the present invention is designed so that the bulk of the taurolidine remains localized to the point of application.
The skin is an excellent barrier to the
penetration of many foreign substances. The
feasibility of using topical delivery to pass
taurolidine through the skin requires that a
therapeutic quantity, and/or rate of delivery, of taurolidine be delivered through the skin. Normally this cannot be achieved with taurolidine, due to the substantial barrier properties of the skin. However, topical delivery of taurolidine can be made possible if the skin is made more permeable to the taurolidine (and/or if the taurolidine is protected from premature hydrolysis of the taurolidine in the outer layers of the skin) . This may be accomplished by modifying the taurolidine permeability of the skin and/or by using a "vehicle" to carry the taurolidine through the skin, whereby to facilitate topical delivery of the
taurolidine .
Factors that determine the permeability of the skin to a particular drug include drug diffusivity through the skin, vehicle/skin drug partitioning, and drug concentration in the vehicle. In addition, certain materials used as adjuvants in vehicles may affect the characteristics of the skin barrier and thus alter the permeability of the skin to the drug. Such materials are referred to as skin penetration enhancers. These skin penetration enhancers are important in the optimization of topical drug delivery because of the necessity for the maximization of penetration rates and the minimization of lag times in the drug penetration through the skin.
The permeability of the skin to a drug is influenced by a combination of physico-chemical parameters for both the drug and the vehicle, as discussed above. Thus, effective topical delivery of a particular drug requires the selection of an appropriate vehicle. The optimum vehicle for one drug may not be effective for topical delivery of another drug since the properties of the vehicle and the drug must be matched to ensure a therapeutic rate of drug delivery through the skin.
The present invention relates to a novel
pharmaceutical composition that provides topical delivery of therapeutically-effeetive amounts of taurolidine to desired regions of mammalian skin.
In one preferred form of the present invention, the novel pharmaceutical composition comprises:
a therapeutically-effeetive amount of
hydrolysable taurolidine (e.g., taurolidine or a pharmaceutically-acceptable salt thereof, sometimes referred to herein as simply "the taurolidine"); and an effective penetration-enhancing amount of a hydrolysable lipophilic excipient (e.g., at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or of an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms) . If desired, the novel pharmaceutical composition may also comprise a suitable pharmaceutical carrier (e.g., an emulsion) for carrying the therapeutically- effective amount of hydrolysable taurolidine and the effective penetration-enhancing amount of a
hydrolysable lipophilic excipient to the skin of a patient .
The hydrolysable lipophilic excipient of the novel pharmaceutical composition protects the
taurolidine from hydrolysis while the taurolidine is diffusing through the superficial layers of the skin, then releases the taurolidine at the site of infection in the stratum granulosum or the dermis, whereupon the taurolidine hydrolyzes to its active moieties (i.e., methylol groups), whereby to treat the infection (or to prevent infection) . This selective delivery of the taurolidine is accomplished with the lipophilic excipient acting on the tissue to facilitate passage of the composition through the tissue and with the lipophilic excipient also acting to shield the
hydrolysable taurolidine from premature hydrolysis in the outer layers of the skin. The lipophilic
excipient is hydrolysable by tissue enzymes in the deeper layers of skin. The lipophilicity of the hydrolysable excipient allows the "protected"
taurolidine (contained within the hydrolysable
excipient) to pass through inter-cellular hydrophobic channels in the stratum corneum through to the stratum granulosum and, potentially, on to the dermis. Once deep in the stratum granulosum (or the dermis), local extracellular enzymes degrade the protective
hydrophobic excipient and expose the taurolidine to local hydrolysis, thereby creating the active moieties (i.e., methylol groups) which treat the infection.
In one form of the invention, a mass of the therapeutically-effective amount of hydrolysable taurolidine is mixed into a mass of the effective penetration-enhancing amount of a hydrolysable
lipophilic excipient so that the hydrolysable
lipophilic excipient covers the hydrolysable
taurolidine as the mixture penetrates the superficial layers of the skin, protecting the hydrolysable taurolidine from hydrolyzing in the superficial layers of the skin. Thereafter, the hydrolysable taurolidine is exposed to the tissue of the patient in the deeper layers of the skin, where the hydrolysable taurolidine is hydrolyzed to its active moieties (i.e., methylol groups), whereby to provide local antimicrobial effect. See Fig. 1.
In another form of the invention, the
hydrolysable taurolidine is encapsulated within the hydrolysable lipophilic excipient so as to form nanoparticles (comprising taurolidine centers and lipophilic exteriors) so that the hydrolysable
lipophilic excipient covers the hydrolysable
taurolidine as the mixture penetrates the superficial layers of the skin, protecting the hydrolysable taurolidine from hydrolyzing in the superficial layers of the skin. Thereafter, the hydrolysable taurolidine is exposed to the tissue of the patient in the deeper layers of the skin, where the hydrolysable taurolidine is hydrolyzed to its active moieties (i.e., methylol groups), whereby to provide local antimicrobial effect. See Fig. 2.
Thus, in either form of the invention, the hydrolysable taurolidine is covered by a hydrolysable lipophilic excipient, with either the hydrolysable taurolidine being mixed into a mass of a hydrolysable lipophilic excipient (the mixture form of the novel taurolidine formulation) or with the hydrolysable taurolidine being encapsulated by a hydrolysable lipophilic excipient, i.e., so as to form
nanoparticles (the nanoparticle form of the novel taurolidine formulation) . When the mixture (of the hydrolysable lipophilic excipient and the hydrolysable taurolidine) or the nanoparticles (hydrolysable taurolidine covered by a hydrolysable lipophilic excipient) are applied to the skin, the hydrolysable lipophilic excipient facilitates passage of the mixture or nanoparticles through the skin. As the mixture or nanoparticles pass through the skin, the lipophilic excipient is hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties (i.e., methylol groups) which treat the infection (or prevent infection) .
In one preferred form of the invention, the mixture (of the hydrolysable lipophilic excipient and the hydrolysable taurolidine) or the nanoparticles (hydrolysable taurolidine covered by a hydrolysable lipophilic excipient) are delivered to the skin in a suitable pharmaceutical carrier, e.g., an emulsion.
In one form of the invention, the hydrolysable lipophilic excipient comprises at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms.
For the purposes of the present disclosure, the terms "fatty alcohol" and/or "fatty acid" are meant to mean any saturated fatty acid or fatty alcohol having from 8 to 15 carbon atoms or any unsaturated fatty acid or fatty alcohol having from 8 to 18 carbon atoms which is effective in enhancing the penetration of taurolidine through desired regions of the mammalian skin .
It should also be appreciated that the present invention may utilize any combination of fatty acids and/or fatty alcohols having the above-specified number of carbon atoms, which is effective in
enhancing topical taurolidine penetration. Preferred penetration-enhancing fatty acids and fatty alcohols are those with 10-15 carbon atoms or any mixture thereof. Especially preferred penetration-enhancing fatty acids and fatty alcohols are those with 14 carbon atoms such as myristic acid and myristyl alcohol. It should be understood that the terms
"penetration enhancer" and/or "fatty acid" and/or "fatty alcohol" are used interchangeably throughout the present disclosure.
And in one form of the invention, the
hydrolysable lipophilic excipient comprises small peptides with lipophilic side chains and fatty acid esters. The small peptides may comprise a high percentage of valine, leucine, proline, phenylalanine, tryptophan and/or leucine-enkephalin. The fatty acid esters may include 10-15 carbon saturated and
unsaturated fatty esters. The fatty acid esters may include compositions comprising diglycerides ,
triglycerides, and glycerol monostearate .
By the term "suitable pharmaceutical carrier" is meant any non-toxic pharmaceutically-suitable vehicle, e.g., an emulsion. In one preferred form of the invention, the suitable pharmaceutical carrier may comprise any polar protic solvent with a molecular weight of less than 600. Suitable carriers include propylene glycol, polyethylene glycol, petrolatum, glycerin, polyvinylpyrrolidone and hyaluronic acid. Propylene glycol is a preferred carrier or vehicle, and any other carriers that may be used are then considered to be excipients.
All starting materials useful in making the pharmaceutical compositions of the present invention are known to those skilled in the art.
Thus, the present invention comprises the
provision and use of a topical formulation comprising taurolidine wherein the topical formulation is designed to deliver the taurolidine to an internal infection site, whereby to treat skin infections and to prevent skin infections, e.g., such as in burn victims .
In one preferred form of the invention, there is provided a novel pharmaceutical composition which comprises :
(i) a therapeutically-effective amount of taurolidine or a pharmaceutically-acceptable salt thereof (sometimes referred to herein as "the
taurolidine") ;
(ii) an effective penetration-enhancing
hydrolysable lipophilic excipient (sometimes referred to herein as "the hydrolysable excipient" or "the lipophilic excipient") which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from
premature hydrolization to its active moieties (i.e., methylol groups) as the taurolidine passes through the outer layers of the skin; and (iii) a suitable pharmaceutical carrier (e.g., an emulsion) .
In one preferred form of the invention, the penetration-enhancing hydrolysable lipophilic
excipient comprises at least one of a saturated fatty alcohol or fatty acid of 8-15 carbon atoms or of an unsaturated fatty alcohol or fatty acid of 8-18 carbon atoms .
And in one preferred form of the invention, the suitable pharmaceutical carrier comprises any nontoxic pharmaceutically suitable vehicle that comprises any polar protic solvent with a molecular weight of less than 600 (e.g., propylene glycol or polyethylene glycol ) .
It should be appreciated that the novel
pharmaceutical composition of the present invention (e.g., hydrolysable taurolidine in combination with a hydrolysable lipophilic excipient, and optionally in combination with one or more additional components such as a suitable pharmaceutical carrier) may be delivered in various forms, e.g., as an emulsion, a gel, a solution, etc.
In one form of the invention, the novel
pharmaceutical composition is applied directly to the skin of the user, e.g., by topically applying the novel pharmaceutical composition to the skin of the user as an emulsion, a gel, a solution, etc.
In another form of the invention, the novel pharmaceutical composition is applied to a substrate (e.g., so as to form a "patch") and the patch is applied to the skin of the user so that the novel pharmaceutical composition contacts the skin of the user. In one preferred form of the invention, the substrate comprises a hydrogel and the pharmaceutical composition (containing a hydrolysable form of the taurolidine covered by a lipophilic excipient that is also hydrolysable) is carried by the hydrogel
substrate so as to form the patch.
By way of example but not limitation, the substrate may comprise a hydrogel (e.g., hyaluronic acid) and a mixture of hydrolysable taurolidine and hydrolysable lipophilic excipient is applied to the hydrogel substrate so as to form the patch.
In another form of the invention, the substrate may comprise a hydrogel (e.g., hyaluronic acid) and nanoparticles comprising hydrolysable taurolidine encapsulated within a hydrolysable lipophilic
excipient are applied to the hydrogel substrate so as to form the patch.
In still another form of the invention, the substrate may comprise a hydrogel (e.g., hyaluronic acid) and a mixture of hydrolysable taurolidine and hydrolysable lipophilic excipient are mixed into the hydrogel substrate so as to form the patch.
In yet another form of the invention, the
substrate may comprise a hydrogel (e.g., hyaluronic acid) and nanoparticles comprising hydrolysable taurolidine encapsulated within a hydrolysable
lipophilic excipient are mixed into the hydrogel substrate so as to form the patch.
Note that where the pharmaceutical composition is in its mixture form (i.e., with the hydrolysable taurolidine being mixed with a hydrolysable lipophilic excipient), the pharmaceutical composition may or may not also comprise a pharmaceutical carrier when it is applied to the substrate. Note also that where the pharmaceutical composition is in its nanoparticle form (i.e., with the hydrolysable taurolidine being
encapsulated by a hydrolysable lipophilic excipient), the pharmaceutical composition preferably comprises a pharmaceutical carrier when it is applied to the substrate .
In still another form of the invention, the novel pharmaceutical composition is topically applied to the skin of the user (e.g., as an emulsion, a gel, a solution, etc.), and then the novel pharmaceutical composition is covered (e.g., with a bandage, gauze, etc . ) .
Still other forms of applying the novel
pharmaceutical composition of the present invention will be apparent to those skilled in the art in view of the present disclosure. Examples
Hyaluronic Acid Hydrogel Preparation
Formulations of taurolidine in aqueous solutions of hyaluronic acid (HA) crosslinked with 1,4- butanediol diglycidyl ether (BDDE) were prepared. 3% taurolidine were formulated in aqueous solutions of crosslinked HA of three molecular weights: low
molecular weight (LMW) 21-40 kDa, medium molecular weight (MMW) 310-450 kDa and high molecular weight (HMW) 750 kDa-1.0 MDa. Control formulations were prepared without addition of the taurolidine. 1.5% myristic acid was added to enhance the interaction with the explant. In Table 1 (see below), the
compositions of each formulation are given.
Biofilm Porcine Skin Explant Model
The ex vivo model of biofilm on porcine skin explants used in this study consisted of 12 mm
biopsied explants (3-4 mm thick) prepared from freshly harvested, shaved and cleaned porcine skin obtained from a local abattoir (Chiefland Custom Meat, Trenton, FL) . The mechanically created "wound bed" (3 mm high speed, round cutter bit; Dremel®, Robert Bosch Tool Corporation, Racine, WI) was 3 mm in diameter and approximately 1.5 mm in depth at the center of each explant. The chlorine gas (45 minutes ) -sterilised explants were placed on soft Trypticase Soy Agar (TSA) plates containing 0.5% agar and 50 pg/ml gentamicin. The addition of 50 pg/ml gentamicin (~30χ minimal inhibitory concentration) functions to limit bacterial growth to the explant and inhibits penetration of Pseudomonas aeruginosa PAOl biofilm through the bottom of the explant for up to 5-6 days, depending on the thickness of the explant. The partial-thickness
"wound bed" of the explants was inoculated with 10 μΐ early-logarithmic (log) -phase PAOl suspension culture (106 colony-forming units, CFU) and cultured at 37°C with 5% C02 and saturated humidity. Explants were transferred daily to fresh soft TSA plates containing
0.5% agar and antibiotic (to maintain moisture) until the desired biofilm maturity was achieved. They were submerged in Tryptic Soy Broth (TSB) media containing 200 pg/ml gentamicin for 24 hours to kill planktonic PAOl in studies used to assess antimicrobial efficacy of test agents specifically against the highly
antibiotic tolerant biofilm subpopulation attached to the porcine explants, described in more complete detail below. For clarity, exposure times to the test agents were expressed in hours and the length of biofilm culture incubation prior to treatment was expressed in days.
The bacterial load of the explants was determined in each of the assays of this study as follows: each explant was aseptically placed into a 15 ml sterile tube (on ice) containing cold 7 ml sterile phosphate- buffered saline (PBS) with 5 μΐ/ΐ Tween-80. The explants in the tubes were sonicated with a 23 kHz ultrasonic dismembrator (Model 100, Fisher Scientific, Pittsburgh, PA) probe for 30 seconds at approximately 20 Watts on ice, which liberated bacteria from the biofilm into the suspension. The setting on the dismembrator probe tip was adjusted to maintain the target watt output. The sonication probe was
disinfected between samples using cold 70% ETOH and rinsed with cold sterile PBS (on ice) . Serial
dilutions of the bacterial suspension were plated in triplicate on TSA plates and incubated overnight at 37°C with 5% C02 and saturated humidity. Colonies were counted from the plates to determine the CFU/ml of the sonicated explant bacterial suspension.
Assessment Of The Efficacy Of Antimicrobial
Dressings Against PAOl Biofilm
72-Hour Continuous Exposure.
Antimicrobial efficacy assays against mature PAOl biofilm attached to the skin were performed with 72- hour continuous exposure. PAOl biofilms cultured 3 days on porcine skin explants were transferred to sterile 24-well Microtiter™ plates and each explant was treated for 24 hours by submersion in 2 ml TSB media containing 200 pg/ml gentamicin. This level of antibiotic was used because it was capable of
restraining the PAOl biofilm to the surface of the explant. The media in the wells remained clear and no viable bacteria were detected in the media or the Microtiter™ wells during or after treatment of the explants. As stated previously, pre-treatment with high levels of antibiotics allows subsequent
assessment of the antimicrobial efficacy of the dressing agents directly against the antibiotic tolerant biofilm subpopulation . The antibiotic pre- treated explants, containing only mature PAOl biofilm, were each rinsed thrice with 2 ml of sterile PBS, washed in 2 ml PBS for 10 minutes and then rinsed thrice with 2 ml PBS to remove unattached bacteria. The rinsed biofilm explants were transferred to soft TSA plates containing 0.5% agar and 50 pg/ml
gentamicin (three or four explants per plate) .
The biofilm explants that were used to determine the "standard" baseline total microbial load were covered with sterile double distilled H20-saturated (5 ml) "wet" cotton gauze sponge (2" χ 2") . The rest of the biofilm explants were covered and treated with 1 ml of Hyaluronic Acid-loaded hydrogels as shown in Table 1. The treated biofilm explants were each processed by sonication in 7 ml PBS with 5 μΐ/ΐ Tween- 80, as previously described. Bacterial suspensions were immediately serially diluted and plated in triplicate on TSB, and the average CFU/ml was
determined for the 7ml bacterial suspension from each explant. A minimum of three separate trials were performed for each antimicrobial dressing reported in this study.
Time-Course Assay
The time-course studies were performed to
determine the antimicrobial efficacy of the
taurolidine hydrogels on biofilm maturity. The biofilm explants were continuously exposed to dressing for 72 hours. The treated explants were each
processed by sonication in 7 ml PBS with 5 μΐ/ΐ Tween- 80 as previously described. Bacterial suspensions were immediately serially diluted and plated in triplicate on TSB, and the average CFU/ml was
determined for the 7ml bacterial suspension from each explant . 6 samples from Cambridge Polymer Group
Day 0: PA01 OD600=0.243 Concentration=l .21E08 cells/ml
Day 3: put 3 day cultured explants in 24 well treat with 1 ml different solution.
Day 4: cell count.
AVG
PA01 (cells/ml) STDEV
Total (3 day cultured PA01 explants) 1 .47E+09 1 .43E+08
Biofilm, 200ug/ml Gentamicin 3.45E+07 4.68E+07
13146-1 , LMW HA control(no drug), 1 .5% Myristic
acid 9.32E+06 4.12E+06
13146-2, MMW HA control(no drug), 1 .5% Myristic
acid 4.18E+07 3.65E+07
13146-3, HMW HA control(no drug), 1 .5% Myristic
acid 5.78E+07 6.60E+07
13146-4, LMW HA ,3% drug,1 .5% Myristic acid 7.22E+01 1 .03E+02
13146-5, MMW HA 3% drug,1 .5% Myristic acid 4.44E+01 7.70E+01
13146-6, ,HMW HA 3% drug,1 .5% Myristic acid O.OOE+00 O.OOE+00
Table 1
These results show that taurolidine-loaded
hydrogels effectively penetrate and break-up the
biofilm and kill biofilm embedded microorganisms
as Pseudomonas aeruginosa (PA01) . Additional Testing Of The Efficacy Of A Taurolidine Formulation Comprising The Hydrolysable Excipient Myristic Acid And Hydrolysable Taurolidine In A Hyaluronic Acid Carrier
Mature biofilms from Pseudomonas aeruginosa were prepared on pig-skin explants in order to test the efficacy of hyaluronic acid hydrogels containing taurolidine and myristic acid. See Table 2 below, which provides the compositions of each formulation.
Figure imgf000040_0001
Table 2 Fig. 4 is a graph showing the efficacy of
pharmaceutical compositions, comprising taurolidine and myristic acid carried by hyaluronic acid
hydrogels, against biofilms on the pig skin explant models. These results show that pharmaceutical compositions comprising taurolidine and myristic acid carried by hyaluronic acid hydrogels can effectively penetrate and break-up biofilms and kill biofilm embedded microorganisms such as Pseudomonas aeruginosa (PA01) .
Fig. 5 is a table listing 15 different
formulations, as follows:
Formulation 1 - Low Molecular Weight (LMW)
Hyaluronic Acid (HA) Control (Cntr);
Formulation 2 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA) Control (Cntr);
Formulation 3 - High Molecular Weight (HMW) Hyaluronic Acid (HA) Control (Cntr);
Formulation 4 - Low Molecular Weight (LMW)
Hyaluronic Acid (HA) and 0.5% Taurolidine; Formulation 5 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 0.5% Taurolidine;
Formulation 6 - High Molecular Weight (HMW) Hyaluronic Acid (HA) and 0.5% Taurolidine;
Formulation 7 - Low Molecular Weight (LMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
Formulation 8 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
Formulation 9 - High Molecular Weight (HMW) Hyaluronic Acid (HA) and 1.0% Taurolidine;
Formulation 10 Low Molecular Weight (LMW) Hyaluronic Acid (HA) and 1.5% Taurolidine;
Formulation 11 Medium Molecular Weight (MMW) Hyaluronic Acid (HA) and 1.5% Taurolidine;
Formulation 12 High Molecular Weight (HMW) Hyaluronic Acid (HA) and 1.5% Taurolidine;
Formulation 13 Low Molecular Weight (LMW) Hyaluronic Acid (HA) 1.0% Taurolidine and 0.25% Myristic Acid (MRA) ; Formulation 14 - Medium Molecular Weight (MMW) Hyaluronic Acid (HA), 1.0% Taurolidine and 0.25% Myristic Acid (MRA) ; and
Formulation 15 - High Molecular Weight (HMW) Hyaluronic Acid (HA), 1.0% Taurolidine and 0.25%
Myristic Acid (MRA) .
Formulations 11, 12 and 15 have proven to be highly efficacious against biofilms on a pig skin explant model (i.e., Formulations 11, 12 and 15 all provided an effectiveness of less than l.OOE+00.
Modifications Of The Preferred Embodiments
It should be understood that many additional changes in the details, materials, steps and
arrangements of parts, which have been herein
described and illustrated in order to explain the nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.

Claims

What Is Claimed Is:
1. A composition comprising:
hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic excipient;
and further wherein the hydrolysable lipophilic excipient is myristic acid.
2. A composition according to claim 1 wherein the hydrolysable taurolidine is selected from the group consisting of taurolidine and a salt thereof.
3. A composition according to claim 1 wherein, when the composition is applied to the skin, the hydrolysable lipophilic excipient facilitates passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties which treat the infection .
4. A composition according to claim 1 wherein the active moieties comprise methylol groups.
5. A composition according to claim 1 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are combined in mixture form.
6. A composition according to claim 1 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are in the form of nanoparticles , wherein the hydrolysable taurolidine comprises a core and the hydrolysable lipophilic excipient comprises an encapsulating cover over the hydrolysable taurolidine core .
7. A composition according to claim 1 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are suspended in an emulsion.
8. A composition according to claim 1 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are suspended in a gel.
9. A composition according to claim 8 wherein the gel comprises hyaluronic acid.
10. A composition according to claim 1 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are suspended in a solution.
11. A novel pharmaceutical composition
comprising :
(i) a therapeutically-effective amount of
taurolidine or a pharmaceutically-acceptable salt thereof ;
(ii) an effective penetration-enhancing
hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin, wherein the hydrolysable lipophilic excipient is myristic acid; and
(iii) a suitable pharmaceutical carrier.
12. A pharmaceutical composition according to claim 11 wherein the pharmaceutical carrier comprises an emulsion.
13. A pharmaceutical composition according to claim 11 wherein the pharmaceutical carrier comprises a gel .
14. A pharmaceutical composition according to claim 13 wherein the gel comprises hyaluronic acid.
15. A pharmaceutical composition according to claim 11 wherein the pharmaceutical carrier comprises a solution.
16. A method for treating a patient, the method comprising :
applying a composition to the skin of a patient, the composition comprising:
hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient, wherein the hydrolysable lipophilic excipient is hyaluronic acid;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient; and
leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects.
17. A composition according to claim 16 wherein the hydrolysable taurolidine and the hydrolysable lipophilic excipient are suspended in a gel.
18. A composition according to claim 17 wherein the gel comprises hyaluronic acid.
19. A pharmaceutical patch comprising:
a substrate; and
a composition applied to the substrate, the composition comprising:
hydrolysable taurolidine; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient .
20. A pharmaceutical patch according to claim 19 wherein the hydrolysable lipophilic excipient is myristic acid.
21. A pharmaceutical patch according to claim 20 wherein the hydrolysable taurolidine and the
hydrolysable lipophilic excipient are carried by a pharmaceutical carrier, and further wherein the pharmaceutical carrier is hyaluronic acid.
22. A method for treating a patient, the method comprising :
providing a pharmaceutical patch comprising:
a substrate; and
a composition applied to the substrate, the composition comprising:
hydrolysable taurolidine; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient ;
applying the pharmaceutical patch to the skin of a patient; and
leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects.
23. A pharmaceutical system comprising:
a novel pharmaceutical composition comprising:
(i) a therapeutically-effective amount of taurolidine or a pharmaceutically-acceptable salt thereof ;
(ii) an effective penetration-enhancing hydrolysable lipophilic excipient which facilitates passage of the taurolidine through the outer layers of the skin and temporarily protects the taurolidine from premature hydrolization to active moieties as the taurolidine passes through the outer layers of the skin; and
(iii) a suitable pharmaceutical carrier; and a bandage for covering the novel pharmaceutical composition after the novel pharmaceutical composition has been applied to the skin of a patient.
24. A pharmaceutical system according to claim
23 wherein the hydrolysable lipophilic excipient is myristic acid.
25. A pharmaceutical system according to claim
24 wherein the pharmaceutical carrier is hyaluronic acid .
26. A method for treating a patient, the method comprising :
applying a composition to the skin of a patient, the composition comprising:
hydrolysable taurolidine ; and
a hydrolysable lipophilic excipient;
wherein the hydrolysable taurolidine is contained within the hydrolysable lipophilic
excipient ; covering the composition with a bandage; and leaving the composition on the skin of the patient long enough for the hydrolysable lipophilic excipient to facilitate passage of the composition through the skin and, as the composition passes through the skin, the lipophilic excipient is
hydrolyzed, exposing the hydrolysable taurolidine to the anatomy, whereupon the taurolidine hydrolyzes into its active moieties so as to provide local
antimicrobial effects.
PCT/US2017/068956 2016-12-29 2017-12-29 Skin-penetrating formulation of taurolidine WO2018126133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662440054P 2016-12-29 2016-12-29
US62/440,054 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018126133A1 true WO2018126133A1 (en) 2018-07-05

Family

ID=62709968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/068956 WO2018126133A1 (en) 2016-12-29 2017-12-29 Skin-penetrating formulation of taurolidine

Country Status (1)

Country Link
WO (1) WO2018126133A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626539A (en) * 1984-08-10 1986-12-02 E. I. Dupont De Nemours And Company Trandermal delivery of opioids
US5658575A (en) * 1993-09-07 1997-08-19 L'oreal Cosmetic or dermatological composition comprising an oil-in-water emulsion based on oily globules provided with a lamellar liquid crystal coating
US20020045600A1 (en) * 1999-07-08 2002-04-18 Schwarzman Laura M. Topical skin treatment for sea lice, insect bites and skin irritation
US6488912B1 (en) * 1992-07-30 2002-12-03 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of dentoalveolar infections with taurolidine and/or taurultam
US20030100551A1 (en) * 1999-12-06 2003-05-29 Paul Calabresi Use of taurolidine to treat tumors
WO2013056994A1 (en) * 2011-10-21 2013-04-25 Jagotec Ag Improvements in or relating to organic compounds
US20170100407A1 (en) * 2015-10-07 2017-04-13 Cormedix Inc. Skin-penetrating formulation of taurolidine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626539A (en) * 1984-08-10 1986-12-02 E. I. Dupont De Nemours And Company Trandermal delivery of opioids
US6488912B1 (en) * 1992-07-30 2002-12-03 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of dentoalveolar infections with taurolidine and/or taurultam
US5658575A (en) * 1993-09-07 1997-08-19 L'oreal Cosmetic or dermatological composition comprising an oil-in-water emulsion based on oily globules provided with a lamellar liquid crystal coating
US20020045600A1 (en) * 1999-07-08 2002-04-18 Schwarzman Laura M. Topical skin treatment for sea lice, insect bites and skin irritation
US20030100551A1 (en) * 1999-12-06 2003-05-29 Paul Calabresi Use of taurolidine to treat tumors
WO2013056994A1 (en) * 2011-10-21 2013-04-25 Jagotec Ag Improvements in or relating to organic compounds
US20170100407A1 (en) * 2015-10-07 2017-04-13 Cormedix Inc. Skin-penetrating formulation of taurolidine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOKIC ET AL.: "Fatty Acid Composition of Oil Obtained from Soybeans by Extraction with Supercritical Carbon Dioxide", CZECH JOURNAL OF FOOD SCIENCES, vol. 31, no. 2, 2013, pages 116 - 125, XP055383305, Retrieved from the Internet <URL:http://www.agriculturejoumals.cz/publicFiles/89879.pdf> [retrieved on 20180207] *

Similar Documents

Publication Publication Date Title
US20220347184A1 (en) Skin-penetrating formulation of taurolidine
US8617542B2 (en) DispersinB™, 5-fluorouracil, deoxyribonuclease I and proteinase K-based antibiofilm compositions and uses thereof
Lam et al. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns
US20100316739A1 (en) Chitosan gel for dermatological use, production method therefor and use of same
EP3106157A1 (en) Antiseptic compositions comprising silver ions and menthol and uses thereof
EP2736486B1 (en) Wound-healing compositions and method of use
US20080020025A1 (en) Composition for wound care and method of using same
AU2017252085B2 (en) Methods of debridement of chronic wounds
Jacobsen Topical Wound Treatments and Wound‐Care Products
Sun et al. An Integrated Therapeutic and Preventive Nanozyme‐Based Microneedle for Biofilm‐Infected Diabetic Wound Healing
US20210093641A1 (en) Skin-penetrating formulation of taurolidine
WO2018126133A1 (en) Skin-penetrating formulation of taurolidine
KR20100017345A (en) Biocidic medical devices, implants and wound dressings
US20170042851A1 (en) Method of destroying and preventing bacterial and fungal biofilm by amino acid infusion
RU2489147C2 (en) Local pharmaceutical antibacterial composition of active biometallic complexes
KR101739646B1 (en) A composition for treatment and prevention of acne
RU2536266C2 (en) Cream for medicinal purposes, made with application of framycetin sulfate and chitosan
CN102343085B (en) Oil in water (O/W) emulsion for treating skin trauma and preparation method of oil in water emulsion
RU2758056C2 (en) Drug for the treatment of otitis of bacterial and fungal etiology in dogs
US20240050735A1 (en) Systems and methods for treating and inhibiting wound infections
RU2771864C1 (en) Method for obtaining a biocomposite with antibacterial properties based on bacterial cellulose hydrogel
CN116077708A (en) Long-acting anti-infection antibacterial disinfection liquid crystal film loaded with medicine and preparation method thereof
AU2017211721B2 (en) Debriding composition for treating wounds
CN110742905A (en) Silver-containing wound care solution and preparation method thereof
CN115350271A (en) Bio-enzyme functional cotton sheet and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886913

Country of ref document: EP

Kind code of ref document: A1