WO2018124838A1 - 데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템 - Google Patents
데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템 Download PDFInfo
- Publication number
- WO2018124838A1 WO2018124838A1 PCT/KR2018/000002 KR2018000002W WO2018124838A1 WO 2018124838 A1 WO2018124838 A1 WO 2018124838A1 KR 2018000002 W KR2018000002 W KR 2018000002W WO 2018124838 A1 WO2018124838 A1 WO 2018124838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- database
- scanning
- energy
- radioactivity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/164—Scintigraphy
- G01T1/166—Scintigraphy involving relative movement between detector and subject
- G01T1/1663—Processing methods of scan data, e.g. involving contrast enhancement, background reduction, smoothing, motion correction, dual radio-isotope scanning, computer processing ; Ancillary equipment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/29—Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
- G01T1/2914—Measurement of spatial distribution of radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/36—Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
Definitions
- the present invention relates to a method and a radiometric measuring system for measuring radioactivity with high accuracy in a short time using data extension.
- Conventional radioactivity measuring method is a method of measuring the total amount of radioactivity by directly measuring a sample or radioactive material through a detector.
- the radioactivity measurement method calculates the nuclear radioactivity by analyzing the final cumulative result while waiting for the real-time cumulative final result, which is inconvenient to wait until the measurement is completed.
- the conventional radioactivity measuring method is particularly problematic in the case of a situation in which an analysis result is urgently required because a long time measurement is required for a long time of 2-3 days or longer in the case of a nuclide that is difficult to detect or does not collapse well.
- the long measurement time required in the conventional radioactivity measuring method is problematic.
- An object of the present invention is a method for measuring radioactivity using data extension, comprising: measuring radioactivity while performing energy scanning and time scanning; Providing a database from a data set relating to time-energy resulting from said scanning; Expanding the database through random distribution fitting; And obtaining the radioactivity measurements of the desired time from the database.
- the Poisson distribution is fitted, and the step of obtaining the radioactivity measurement may use an extended database.
- a data random extraction technique may be used.
- the data random extraction technique may include a Monte Carlo technique.
- the energy scanning may be performed by dividing the measured energy range into a plurality of equal energy intervals.
- the number of radioactive decay times may be counted for each energy section at regular time intervals.
- the data set forming the extended database may be 3,000 to 6,000.
- An object of the present invention is a method for measuring radioactivity using data expansion, comprising: measuring a radionuclide decay characteristic at a plurality of times during a first time period to create a database; Extending the database through random fit; Predicting radionuclide radioactive decay characteristics for a second time after the first time using the extended database.
- a Poisson distribution may be fitted, and in the prediction step, a data random extraction technique may be used.
- An object of the present invention is a radioactivity measuring system using data expansion, radioactivity measuring unit;
- a scanning unit which performs energy scanning and time scanning in association with the radioactivity measuring unit;
- a database unit for forming a database from a data set for time-energy obtained by the scanning unit;
- a random distribution fitting unit for expanding the database using Poisson distribution fitting; It is achieved by including an extraction section for extracting the radioactivity measurement value of the desired time using the extended database of the database section.
- the extractor may use a data random extraction technique to extract radioactivity measurements.
- the random data extraction technique may include a Monte Carlo technique.
- the energy scanning may be performed by dividing the measured energy range into a plurality of equal energy intervals.
- the number of radioactive decay times may be counted for each energy section at regular time intervals.
- the data set forming the extended database may be 3,000 to 6,000.
- FIG. 1 is a flow chart showing a radioactivity measuring method according to an embodiment of the present invention
- FIG. 2 is a view for explaining the energy scanning in the radioactivity measuring method according to an embodiment of the present invention
- FIG. 3 is a view for explaining the time scanning in the radioactivity measuring method according to an embodiment of the present invention.
- FIG. 4 is a view for explaining a method for scanning per unit time in the radioactivity measuring method according to an embodiment of the present invention
- FIG. 5 is a view showing a radioactivity measuring system according to an embodiment of the present invention.
- the present invention shortens the measurement time and predicts and quantifies the final radioactivity when radioactive samples in a power plant, radioactive samples in the environment and various other radioactivity measurements are required.
- random sampling and Monte Carlo simulation are applied to the initial measurement data to predict the final radioactivity value and calculate the final appearance of the spectrum.
- the measurement result was analyzed and evaluated.
- a long time measurement such as a low level radioactive sample
- a measurement of 1 day to 3 days or more may be required.
- the present invention applies time scanning in such a conventional measuring method to grasp the characteristics of radionuclide radiation decay and the detection pattern of a detector, and database the data measured initially. Using the created database, it is possible to calculate the measurement result in a short time by predicting the final measurement value.
- the radioactive pattern is stored and the stored pattern is predicted from the data of about 3000 seconds to 10,000 seconds by using the Monte Carlo method.
- the present invention relates to a method of predicting and completing a measurement peak in a short time by predicting measurement peaks and the like.
- each energy information is stored separately in the unit energy interval (for example 0.1eV, 0.1keV, 0.1MeV ).
- the existing measurement spectrum and radioactive decay pattern information by time scanning are accumulated to a significant level, thereby providing a database.
- the constant time here is, for example, sufficient time to statistically represent the measurement pattern (or radioactivity pattern), and the time to obtain more than 2,000 seconds or more than 3,000 seconds or more than 2,000 data or more than 3,000 data Can be. More specifically 2,000 to 10,000 seconds, 2,500 to 8,000 seconds, 2,500 to 6,000 seconds or 3,000 to 5,000 seconds, or 2,000 to 10,000, 2,500 to 8,000, 2,500 to 6,000 or 3,000 to 5,000 It may be time to obtain data.
- This database is used to predict and derive the final measurement and the final spectrum corresponding to the traditional measurement method.
- the information of time scanning and energy scanning contains the decay characteristics of radioactive material or radionuclide to be measured.
- the prepared database collects intrinsic patterns that reflect the inherent radioactivity characteristics that can represent the decay characteristics of the radioactive material or radionuclide to be measured.
- there is a lack of initial information for example, when there is only data of about 1,000 seconds or less or about 500 seconds (the number of data sets is 2,000 or less, 1,000 or less, or 500 or less).
- the lack of initial data should be used to derive the pattern of counts per unit time in the corresponding energy channel. This requires random distribution fitting.
- the frequency distribution of counters per unit time of initial relatively small data is arranged first, and then the Poisson distribution expected from such frequency distribution is fitted. Fitting the Poisson distribution yields a complete set of interpolated and fitted Poisson distribution curves for each counter per unit time.
- the final spectrum can be predicted with a relatively small initial measurement value.
- the database storing the unique patterns of radioactive decay prepared in this way is randomly generated by the Monte Carlo method, randomly generating the radionuclide characteristics of the radioactive material or radionuclide to be measured by the process and randomly generating the spectrum of the final measurement result. Produce it in advance.
- the storage of the radiation pattern information by the Monte Carlo method implemented in the present invention may be performed using a separate storage unit, and time scanning and energy scanning may be simultaneously performed.
- Time scanning is to store the number of radioactive decay at regular time intervals, where the energy scanning information is stored together.
- Energy scanning defines the range of radioactive decay energy that can be measured by the detector, and breaks down the energy in the unit intervals to form individual channels.
- each 3MeV / 4000 channel is divided into 0.00075MeV / channel, and the unit energy interval is 0.00075MeV, and the maximum energy is 3MeV at this interval. Energy is distributed until.
- the radioactive decay for each energy band is counted in the corresponding energy channel.
- the count per unit time in each corresponding energy channel is also stored in a database.
- the database of counts and patterns of radiation decay corresponding to 600 keV, or 0.6 MeV energy channel means that the unit collapses twice during the first 1 second in the 0.6 MeV channel for 1 second, then 1 second. 1 decay, then 3 decay in 1 second, 1 decay in 1 second, 2 decay in 1 second, 1 decay in 1 second, then 3 decay in 1 second This is to database the coefficients collapsed during each second.
- This database patterned the frequency distribution as a whole, from one collapsed to two collapsed to three collapsed or to four collapsed in one second. This has a kind of statistical distribution, where a statistical pattern is determined when enough data is collected.
- radioactive decay can be reproduced by the Monte Carlo method. If the method is extended to the point where the existing measurement time is required, the final spectrum and the measured value can be derived.
- FIG. 1 is a flow chart showing a radioactivity measuring method according to an embodiment of the present invention.
- the radioactivity of the sample is measured (S101). This means preparation for radioactivity measurement using a detector.
- energy scanning S102
- time scanning S103
- energy scanning is performed to store the energy of the radiation measured from the radiometric detector in the corresponding channel.
- time scanning for measuring the coefficient that is, the radioactivity count, per unit time when stored in the corresponding channel during energy scanning is performed at the same time.
- the count and energy information measured for each unit time constitute one data set (S104).
- a database is a set of data sets, which means a set of data sets containing radiation energy and radiation count information measured at unit time generated by energy scanning and time scanning when radioactivity is measured.
- This step involves fitting the time-scanning pattern of the corresponding energy channel per unit time to produce a precise radiation decay pattern when the initial number of measurements is small.
- a frequency distribution of radioactive counts per unit time corresponding to the Poisson distribution is produced.
- an appropriate frequency distribution is interpolated / extrapolated to make a possible frequency distribution of the radio count per unit time, and then count data per unit time corresponding to the frequency distribution is generated.
- This random distribution fitting can be omitted if the data set is sufficient.
- a step of randomly extracting the sequentially stored database (S109).
- the information of the data set stored in the database retains the pattern of the radioactivity spectrum to be measured, so it is randomly extracted from the set of data sets in the database and added to the measurement at random.
- the final spectrum is completed through random extraction (S110).
- the final spectrum can be completed by summing the simulated values obtained from the random extraction process and the results of the initial measurement spectrum.
- FIG. 2 is a view for explaining the energy scanning in the radioactivity measuring method according to an embodiment of the present invention
- Figure 3 is a view for explaining the time scanning in the radioactivity measuring method according to an embodiment of the present invention
- 4 is a view for explaining a method for scanning per unit time in the radioactivity measuring method according to an embodiment of the present invention.
- 2 is for explaining energy scanning, and shows a total energy range of 4MeV divided by 8,000. Since the total energy range is 4MeV, the energy of one channel at regular intervals is 0.0005MeV. Whenever a certain interval (channel) is increased, the energy is constantly increased, so the 500th channel is 0.25MeV. Each time a radiation decays, a channel that separates energy is configured to perform energy scanning.
- Time scanning shows how radioactive decay of energy is measured every unit time. Time scanning perfectly reflects the characteristics of radioactive decay expressed as probability of decay per unit time.
- the radiation energy is energy of 0.25MeV, which is the 500th channel, as shown in FIG. 3, whenever a radiation decay corresponding to the 500th 0.25MeV occurs, the count is counted on the 500th channel.
- the counted spectrum is counted as a spectrum every unit time, for example, as a red bar on the screen.
- FIG. 3 illustrates a spectrum measured at a specific time
- FIG. 4 illustrates the concept of time scanning in more detail.
- Figure 4 shows how the time scanning in the energy channel that the radioactive decay occurs in each unit time by applying a time scanning assuming a unit time of 1 second, the decay spectrum of each unit time for 4 seconds Is showing. Even after the measurement is performed for 4 seconds from the specific time, 1 second in the fourth unit time, time scanning is continuously performed on the corresponding energy channel every unit time, and this time scanning is performed from 3000 times to about 5000 times. Becomes
- FIG. 5 is a view showing a radioactivity measuring system according to an embodiment of the present invention.
- the radioactivity measuring system 1 includes a radioactivity measuring unit 10, a scanning unit 20, a database 30, a random distribution fitting unit 40, and an extraction unit 50.
- the radioactivity measuring system 1 may further include a user interface or an output unit.
- the data set measured by the radiation measuring unit 10 and the scanning unit 20 forms a database 30.
- the random distribution fitting unit 40 expands the database 30, and the extraction unit 50 prepares a measurement spectrum using the expanded database 30.
- Fig. 6 shows the results of I-131 (637keV).
- the simulation results generated by randomly extracting 5,000 data and generating 80,000 are compared with the actual final measurement of 80,000 seconds. As shown in the figure, the simulation and the actual measurement results are almost identical.
- Fig. 7 shows the results of Cs-137 (661.3keV).
- the simulation results generated by randomly extracting 5,000 data and generating 80,000 were compared with the actual final measurement of 80,000 seconds. As shown in the figure, the simulation and the actual measurement results are almost identical.
- FIG. 8 shows the sample data and the theoretical value when the occurrence rate per minute is 0.67 using 2,000-second data (1 data per second, total 2,000 data) of I-131.
- FIG. 9 shows the sample data and the theoretical value when the incidence rate per minute is 1.85 using 2,000 seconds of CsI-137 ((2,000 thousand data in total, one data per second)).
- the x-axis is the number of collapses per unit time and the y-axis is the frequency distribution accumulated for each count.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Measurement Of Radiation (AREA)
Abstract
본 발명은 데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템에 관한 것이다. 본 발명에 따른 데이터 확장을 이용한 방사능 측정방법은 에너지 스캐닝과 시간 스캐닝을 하면서 방사능을 측정하는 단계와; 상기 스캐닝 결과 얻어지는 시간-에너지에 관한 데이터 세트로부터 데이터베이스를 마련하는 단계와; 랜덤분포핏팅을 통해 상기 데이터베이스를 확장하는 단계와; 상기 데이터베이스로부터 원하는 시간의 방사능 측정값을 얻는 단계를 포함한다.
Description
본 발명은 데이터 확장을 이용하며 단시간 내에 높은 정확도로 방사능을 측정하는 방법 및 방사능 측정시스템에 관한 것이다.
종래 방사능 측정방법은 검출기를 통하여, 시료 혹은 방사성을 띄는 물질을 직접 측정하여, 총방사능량이 얼마인지 측정하는 방식이다.
이러한 방사능 측정방법은 실시간의 누적된 최종결과가 나올 때까지 기다리면서 최종 누적된 결과를 분석하여 핵종방사능값을 산정하는데, 측정이 완료되는 시점까지 기다려야 하는 불편함이 있다.
특히, 종래 방사능측정방법은 검출이 어렵거나 붕괴가 잘되지 않는 핵종의 경우는 2~3일 혹은 그 이상 장시간 측정이 요구되기 때문에 시급히 분석결과가 나와야 하는 상황일 경우 특히 문제된다. 예를 들어, 발전소 내의 이상징후를 급히 방사성분석을 통해서 판단해야 할 경우에 종래 방사능 측정방법에서 필요한 긴 측정시간이 문제된다.
따라서 본 발명의 목적은 데이터 확장을 이용하며 단시간 내에 높은 정확도로 방사능을 측정하는 방법 및 방사능 측정시스템을 제공하는 것이다.
상기 본 발명의 목적은 데이터 확장을 이용한 방사능 측정방법에 있어서, 에너지 스캐닝과 시간 스캐닝을 하면서 방사능을 측정하는 단계와; 상기 스캐닝 결과 얻어지는 시간-에너지에 관한 데이터 세트로부터 데이터베이스를 마련하는 단계와; 랜덤분포핏팅을 통해 상기 데이터베이스를 확장하는 단계와; 상기 데이터베이스로부터 원하는 시간의 방사능 측정값을 얻는 단계를 포함하는 것에 의해 달성된다.
상기 랜덤분포핏팅에서는 포아송분포를 핏팅하며, 상기 방사능 측정값을 얻는 단계에서는 확장된 데이터베이스를 이용할 수 있다.
상기 방사능 측정값을 얻는 단계에서는 데이터 랜덤 추출 기법을 이용할 수 있다.
상기 데이터 랜덤 추출 기법은 몬테칼로 기법을 포함할 수 있다.
상기 에너지 스캐닝은 측정 에너지 범위를 다수의 동일 에너지 구간으로 나누어 수행될 수 있다.
상기 시간 스캐닝에서는 일정한 시간 간격 별로 상기 에너지 구간 별로 방사능 붕괴회수를 카운트할 수 있다.
상기 확장된 데이터베이스를 형성하는 데이터 세트는 3,000개 내지 6,000개일 수 있다.
상기 본 발명의 목적은 데이터 확장을 이용한 방사능 측정방법에 있어서, 제1시간동안 복수의 시각에서의 핵종별 방사능 붕괴 특성을 측정하여 데이터베이스를 만드는 단계와; 랜덤분포 핏팅을 통해 상기 데이터베이스를 확장하는 단계와; 상기 확장된 데이터베이스를 이용하여 상기 제1시간 이후의 제2시간 동안의 핵종별 방사능 붕괴 특성을 예측하는 단계를 포함하는 것에 의해 달성된다.
상기 랜덤분포핏팅에서는 포아송 분포로 핏팅하고, 상기 예측단계에서는 데이터 랜덤 추출 기법을 이용할 수 있다.
상기 본 발명의 목적은 데이터 확장을 이용한 방사능 측정시스템에 있어서, 방사능 측정부; 상기 방사능 측정부와 연계되어 에너지 스캐닝과 시간 스캐닝을 하는 스캐닝부; 상기 스캐닝부에서 얻은 시간-에너지에 대한 데이터 세트로부터 데이터베이스를 형성하는 데이터베이스부; 포아송 분포 핏팅을 이용하여 상기 데이터베이스를 확장하는 랜덤분포 핏팅부와; 상기 데이터베이스부의 확장된 데이터베이스를 이용하여 원하는 시간의 방사능 측정값을 추출하는 추출부를 포함하는 것에 의해 달성된다.
상기 추출부는 방사능 측정값을 추출하기 위해 데이터 랜덤 추출 기법을 이용할 수 있다.
상기 데이터 랜덤 추출 기법은 몬테카를로 기법을 포함할 수 있다.
상기 에너지 스캐닝은 측정 에너지 범위를 다수의 동일 에너지 구간으로 나누어 수행될 수 있다.
상기 시간 스캐닝에서는 일정한 시간 간격 별로 상기 에너지 구간 별로 방사능 붕괴회수를 카운트할 수 있다.
상기 확장된 데이터베이스를 형성하는 데이터 세트는 3,000개 내지 6,000개일 수 있다.
본 발명에 따르면 데이터 확장을 이용하며 단시간 내에 높은 정확도로 방사능을 측정하는 방법 및 방사능 측정시스템이 제공된다.
도 1은 본 발명의 일 실시예에 따른 방사능 측정방법을 나타낸 순서도이고,
도 2는 본 발명의 일 실시예에 따른 방사능 측정방법에서 에너지 스캔닝을 설명하기 위한 도면이고,
도 3은 본 발명의 일실시예에 따른 방사능 측정방법에서 시간 스캐닝을 설명하기 위한 도면이고,
도 4는 본 발명의 일실시예에 따른 방사능 측정방법에서 단위시간당 스캐닝을 하는 방법을 설명하기 위한 도면이고,
도 5는 본 발명의 일실시예에 따른 방사능 측정시스템을 나타낸 도면이고,
도 6 및 도 7은 본 발명에 따라 얻은 측정스펙트럼을 나타낸 것이고,
도 8 및 도 9는 본 발명에 따른 랜덤분포 핏팅 검증 결과를 나타낸 것이다.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다. 또한, 첨부된 도면은 각 구성요소 간의 관계를 설명하기 위해 크기와 간격 등이 실제와 달리 과장되어 있을 수 있다.
본 발명은 발전소 내의 방사성 시료, 환경 중 방사성 시료 및 기타 여러 가지 방사능측정이 필요한 경우에서 측정시간을 단축시키고 최종 방사능치를 예측 및 정량화하는 것이다.
본 발명에서는 긴급시료 및 방사능 준위가 낮은 시료의 방사능 분석에서 기존의 측정시간을 단축시키기 위하여 초기의 측정자료에서 랜덤샘플링과 몬테칼로 모사를 적용하여 최종 방사능치를 예측 및 스펙트럼의 최종모습을 계산한다.
종래의 측정방법은 검출기를 통하여 장시간 측정 후, 측정결과를 분석하고 평가하였는데, 특히 저준위 방사능 시료 등 장시간의 측정이 필요할 경우, 짧게는 1일에서 길게는 3일 이상의 측정이 요구되기도 한다.
본 발명은 이러한 종래의 측정방법에서 시간 스캐닝을 적용하여 핵종별 방사능 붕괴의 특성 및 검출기의 검출패턴을 파악하여, 초기에 측정되는 자료를 데이터베이스화한다. 만들어진 데이터베이스를 이용하여, 최종측정치를 예측함으로써 빠른 시간내에 측정결과를 산출할 수 있다.
본 발명은 측정이 어렵거나 방사능붕괴가 약한 샘플의 경우에도, 방사능패턴을 저장 및 저장된 패턴을 몬테칼로 방법에 의하여 약 3000초 ~ 10000초 정도의 데이터로부터 방사능측정의 최종측정 결과를 예측하고 검출기의 측정치 피크 등도 예측하여 최종측정을 단시간에 예상/완료하는 방법에 관한 것이다.
본 발명에서는 방사능측정 초기에 방사능 패턴을 그대로 저장 및 활용하기 위해서 단위시간마다(예: 1초 단위, 2초 단위, 5초 단위.....등등) 일정하게 방사능붕괴수를 카운트(계수)하는 시간 스캐닝의 정보와 그 측정 때마다, 단위에너지 간격(예: 0.1eV, 0.1keV, 0.1MeV.....등등)으로 각 해당 에너지별 정보를 별도로 저장한다.
저장된 정보를 일정시간 동안 모으면 기존의 측정스펙트럼과 시간 스캐닝에 의한 방사능붕괴 패턴정보가 유의한 수준으로 쌓여 데이터베이스가 마련된다. 여기서의 일정시간은, 예를 들어, 측정패턴(또는 방사능패턴)을 통계적으로 대표할 수 있는 충분한 시간을 얘기하며, 2,000초 이상 또는 3,000초 이상이거나 2,000개 이상의 데이터 또는 3,000개 이상의 데이터를 얻는 시간일 수 있다. 더 자세히는 2,000초 내지 10,000초, 2,500초 내지 8,000초, 2,500초 내지 6,000초 또는 3,000초 내지 5,000초이거나, 2,000개 내지 10,000개, 2,500개 내지 8,000개, 2,500개 내지 6,000개 또는 3,000개 내지 5,000개의 데이터를 얻는 시간일 수 있다.
이러한 데이터베이스를 가지고 기존의 측정방식인 최종측정시간대에 해당되는 최종 측정치와 최종 스펙트럼을 예측 및 도출하게 된다.
시간 스캐닝과 에너지 스캐닝의 정보를 초기측정과 동시에 별도의 저장공간에 수집함으로써, 측정된 정보에 수집된 패턴정보를 랜덤하게 뿌려주어 측정스펙트럼과 추가로 예측되는 스펙트럼을 합하여, 최종 측정결과를 예측하게 된다.
시간 스캐닝과 에너지 스캐닝의 정보에는 측정하고자 하는 방사능물질 혹은 방사성핵종의 붕괴특성이 그대로 저장되어 있다. 마련된 데이터베이스에는 측정하고자 하는 방사성물질 혹은 방사성핵종의 붕괴특성이 그대로 표현될 수 있는 고유의 방사능 특성이 반영되는 고유패턴이 수집되어 있다.
경우에 따라 데이터베이스의 정보가 충분하지 않을 수 있다. 즉 초기 정보가 부족한 경우 등인데, 예를 들면 초기 1,000초 이하 혹은 500초 정도의 자료만 있는 경우(데이터 세트의 개수도 2,000개 이하, 1,000개 이하 또는 500개 이하)이다. 부족한 초기자료를 이용하여 해당 에너지채널에서 단위시간당 카운트의 패턴을 도출해야 하는데 이때 필요한 것이 랜덤분포 핏팅이다.
즉 초기의 비교적 적은 자료의 단위시간당 카운터의 빈도분포를 먼저 정리하고 이러한 빈도분포에서 예상되는 포아송 분포를 핏팅한다. 포아송 분포를 핏팅하게 되면, 단위시간당 각 카운터에 대한 내삽하고 핏팅된 완벽한 한조의 포아송 분포곡선을 얻게 된다. 얻어진 포아송 분포곡선에 부합되는 단위시간당 카운트의 각 빈도분포에 비례하는 분포가 되도록 필요한 만큼의 랜덤 데이터를 생성하여 랜덤추출하게 되면 비교적 적은 초기측정치로도 최종스펙트럼을 예측할 수 있다.
이렇게 마련된 방사능붕괴의 고유패턴이 저장된 데이터베이스를 몬테칼로방법에 의하여 랜덤하게 생성하면, 랜덤하게 생성하는 과정에 의해서 측정하고자 하는 방사성물질 혹은 방사성핵종의 핵종의 특성을 그대로 모사하고 최종측정결과의 스펙트럼을 미리 만들어 낸다.
이에 의해 방사능 측정시간을 크게 단축하고 분석시간도 대폭 단축하며 측정을 최적화할 수 있게 된다.
본 발명에서 구현하는 몬테칼로방법에 의한 방사능패턴정보의 저장은 별도의 저장부를 이용하여 수행될 수 있으며, 시간 스캐닝과 에너지 스캐닝이 동시에 이루어질 수 있다.
시간 스캐닝은 일정한 시간간격마다, 방사능 붕괴의 개수를 저장하는 것이며, 이때 에너지 스캐닝 정보가 함께 저장된다. 에너지 스캐닝은 검출기에서 측정할 수 있는 방사능 붕괴에너지의 범위를 정하고 그 범위의 에너지를 단위간격으로 쪼개어 각각의 채널을 구성하는 것이다.
예를 들면, 에너지 범위가 0MeV ∼ 3MeV이고 에너지 스캐닝을 위하여 4000개의 채널로 나눈다면 3MeV/4000채널이므로 각각 쪼개진 단위에너지는 0.00075MeV/채널이 되며, 단위에너지간격은 0.00075MeV로써 이 간격으로 최대 3MeV까지 에너지가 분배되는 것이다.
에너지 분배가 끝나면, 각 에너지 대역에 해당하는 방사능 붕괴는 해당되는 에너지채널에 카운트가 된다. 단 카운트가 되는 특성 즉 패턴을 그대로 간직하기 위해서 각 해당 에너지 채널에서의 단위시간당 카운트도 데이터베이스화하여 저장한다.
예를 들어, 600keV 즉 0.6MeV 에너지 채널에 해당하는 방사능 붕괴의 카운트 및 패턴을 데이터베이스화한다는 뜻은 단위시간을 1초로 했을 경우에 대해서 0.6MeV채널에서 처음 1초 동안에 2번 붕괴하고, 다음 1초 동안에 1번 붕괴, 그다음 1초 동안에 3번 붕괴, 그 다음 1초 동안에 1번 붕괴, 그 다음 1초 동안에 2번 붕괴, 그 다음 1초 동안에 1번 붕괴, 그 다음 1초 동안에 3번 붕괴하는 식으로 각각의 1초 동안에 붕괴된 계수들을 데이터베이스화하는 것이다.
이렇게 데이터베이스화하면, 1초 동안에 붕괴한 계수들을 1번 붕괴한 것 2번 붕괴한 것 그리고 3번 붕괴한 것 혹은 4번 붕괴한 것까지 전체적으로 빈도분포가 패턴화된다. 이것은 일종의 통계적인 분포를 띄게 되는데, 충분한 데이터가 수집되면 통계적인 패턴이 결정된다고 할 수 있다.
따라서 충분한 통계적 패턴이 저장된 데이터베이스를 랜덤하게 발생시키는 것 또한, 바로 방사능붕괴의 통계적 패턴을 그대로 따르게 된다. 이러한 방법을 통하여 방사능붕괴를 몬테칼로 방법으로 재현할 수 있으며, 이러한 방법을 기존의 측정시간이 요구되는 시점까지 연장하면 최종 스펙트럼과 측정치를 도출할 수 있게 되는 것이다.
이하에서는 도면을 참조하여 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 방사능 측정방법을 나타낸 순서도이다.
먼저, 시료의 방사능을 측정한다(S101). 이는 검출기를 이용한 방사능 측정 준비를 의미한다.
다음으로, 에너지 스캐닝(S102)과 시간 스캐닝(S103)을 수행한다. 이 단계에서는 방사능측정을 하는 검출기로부터 측정된 방사선의 에너지를 해당하는 채널에 저장하는 에너지 스캐닝을 수행한다. 또한, 에너지 스캐닝 때 해당하는 채널에 저장될 때의 계수 즉 방사능카운트를 단위시간마다 측정하는 시간 스캐닝을 동시에 수행한다.
이 단계에서 각 단위시간마다 측정된 카운트와 에너지정보는 한 개의 데이터 세트를 구성한다(S104).
다음으로는 시간 스캐닝과 에너지 스캐닝이 된 데이터 세트를 저장(S105)하여 데이터베이스를 형성(S107)한다.
데이터베이스는 각 데이터 세트의 집합으로, 방사능 측정이 될 때 에너지 스캐닝과 시간 스캐닝에 의해서 생성된 단위시간마다 측정된 방사선에너지와 방사선카운트의 정보가 들어진 한조의 데이터로 이루어진 집합을 의미한다.
다음으로, 랜덤분포핏팅을 수행(S108)하며, 이에 의해 데이터 세트가 추가로 생성되어 데이터베이스가 확장된다.
이 단계는 초기측정 개수가 적을 경우, 정밀한 방사능 붕괴패턴을 만들기 위하여 단위시간당 해당에너지채널의 시간스캐닝 패턴을 핏팅하는 것이다. 방사능붕괴일 경우 포아송 분포에 부합되는 단위시간당 방사능카운트의 빈도분포를 만들어 낸다. 이렇게 랜덤분포핏팅을 통하여 해당하는 포아송분포에 핏팅하여 적절한 빈도분포를 내삽/외삽하여 단위시간당 방사능카운트의 가능한 빈도분포를 만든 다음 이러한 빈도분포에 부합되는 단위시간당 카운트 데이터를 만들어낸다.
본 랜덤분포핏팅은 데이터 세트가 충분한 경우에는 생략될 수 있다.
다음으로, 순차적으로 저장된 데이터베이스를 랜덤하게 추출(S109)하는 단계이다. 이 단계에서는 데이터베이스로 저장된 데이터 세트의 정보는 측정하고자 하는 방사능 스펙트럼의 패턴을 그대로 간직하기 때문에 데이터베이스에 있는 데이터 세트 집합으로부터, 랜덤하게 원하는 개수만큼 무작위로 추출해서 측정치에 더해 나간다.
예를 들어 에너지 스캐닝과 시간 스캐닝이 이루어진 단위시간이 1초라면, 앞으로 80,000초의 측정이 더 필요하다면, 80,000번을 무작위로 데이터베이스로부터 랜덤추출하면 80,000초의 측정과 동일한 효과를 나타내는 것이다. 랜덤추출에서는 몬테칼로 모사기법이 적용될 수 있다.
마지막으로 랜덤추출을 통해서 최종 스펙트럼이 완성된다(S110). 랜덤 추출 과정을 통해 얻은 측정모사값과 초기측정스펙트럼의 결과를 합하여 최종 스펙트럼을 완성할 수 있다.
도 2 내지 도 4를 참조하여 에너지 스캐닝과 시간 스캐닝에 대해 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 방사능 측정방법에서 에너지 스캔닝을 설명하기 위한 도면이고, 도 3은 본 발명의 일실시예에 따른 방사능 측정방법에서 시간 스캐닝을 설명하기 위한 도면이고, 도 4는 본 발명의 일실시예에 따른 방사능 측정방법에서 단위시간당 스캐닝을 하는 방법을 설명하기 위한 도면이다.
도 2는 에너지 스캐닝을 설명하기 위한 것으로, 4MeV의 전체에너지 범위를 8,000개로 나눈 것을 나타낸다. 에너지 전체범위가 4MeV이므로, 일정한 간격을 가지는 1개 채널의 에너지는 0.0005MeV가 된다. 일정간격(채널)이 증가될 때마다 일정하게 에너지가 증가하게 되므로 500번째 채널은 0.25MeV가 된다. 방사능 붕괴 때마다 에너지를 분별하는 채널이 구성되어 에너지 스캐닝이 이루어진다.
도 3은 시간 스캐닝을 나타낸 것이다. 시간 스캐닝은 해당에너지의 방사능 붕괴가 단위시간마다 어떻게 측정되는지를 나타낸다. 시간 스캐닝은 단위시간당 붕괴확률로써 표현되는 방사능붕괴의 특성을 완벽하게 반영하게 된다.
도 3과 같이 방사능에너지가 500번째 채널인 0.25MeV의 에너지라고 가정하면, 500번째 0.25MeV에 해당하는 방사능 붕괴가 생길 때마다, 500번째 채널에서 카운트가 된다. 카운트되는 스펙트럼은, 예를 들어, 화면 상에서 붉은색 막대처럼 단위시간마다 스펙트럼으로 카운트된다.
도 3은 특정시간에 측정되는 스펙트럼을 나타낸 것이며 도 4는 시간 스캐닝 개념을 좀 더 상세하게 설명하기 위한 것이다.
도 4는 단위시간을 1초로 가정하는 시간 스캐닝을 적용하여, 각각의 단위시간마다 방사능 붕괴가 이루어지는 것을 해당 에너지 채널에서 어떻게 시간 스캐닝을 하는지 보여주는 것으로, 4초 동안의 각각의 단위시간마다의 붕괴스펙트럼을 보여주고 있다. 특정 시간부터 4초 후인 4번째 단위시간 1초 동안에 측정된 이후에도 계속해서 단위시간마다 해당에너지채널에서 시간 스캐닝이 이루어지고, 이러한 시간 스캐닝이 3000번에서 약 5000번 정도 이루어지면 통계적으로 의미있는 데이터 세트가 된다.
도 5는 본 발명의 일실시예에 따른 방사능 측정시스템을 나타낸 도면이다.
방사능 측정시스템(1)은 방사능 측정부(10), 스캐닝부(20), 데이터베이스(30), 랜덤분포핏팅부(40) 및 추출부(50)를 포함한다. 방사능 측정시스템(1)은 이 외에 사용자 인터페이스나 출력부 등을 더 포함할 수 있다.
위에서 설명한 바와 같이 방사능 측정부(10)와 스캐닝부(20)에서 측정한 데이터 세트는 데이터베이스(30)를 형성한다. 랜덤분포핏팅부(40)에서는 테이터베이스(30)를 확장하고 추출부(50)에서는 확장된 데이터베이스(30)를 이용하여 측정스펙트럼을 마련한다.
이하에서는 실제 측정결과를 통해 본 발명을 설명한다.
도 6 및 도 7은 본 발명에 따라 얻은 측정스펙트럼을 나타낸 것이다.
I-131과 Cs-137의 방사능을 측정한 초기값으로 80,000초 측정치와 거의 같은 결과가 나오는지 모사하였다. 실제 몬테칼로에 사용된 데이터 세트는 단위시간 1초로 하여 수집된 각 스펙트럼의 에너지채널에 대한 시간 스캐닝자료로써 5,000개를 이용하였다. 즉 초기 5,000초 측정된 자료가 이용되었다.
도 6은 I-131(637keV)의 결과를 나타낸 것으로 5,000개의 자료를 랜덤추출하여 80,000개를 생성하여 만들어낸 모사결과가 실제 최종측정치 80,000초 결과와 비교한 것이다. 도면과 같이 모사와 실제 측정결과가 거의 일치하고 있다.
도 7은 Cs-137(661.3keV)의 결과를 나타낸 것으로 5,000개의 자료를 랜덤추출하여 80,000개를 생성하여 만들어낸 모사결과가 실제 최종측정치 80,000초 결과와 비교한 것이다. 도면과 같이 모사와 실제 측정결과가 거의 일치하고 있다.
도 8 및 도 9는 본 발명에 따른 랜덤분포 핏팅 검증 결과를 나타낸 것이다.
도 8은 I-131의 2,000초 데이터(초당 1개의 데이터로 총 2,000개 데이터)를 이용하여 1분당 발생율을 0.67로 했을 때 샘플데이터와 이론값을 같이 나타낸 것이다.
도 9는 CsI-137의 2,000초 데이터((초당 1개의 데이터로 총 2,000천개 데이터)를 이용하여 1분당 발생율을 1.85로 했을 때 샘플데이터와 이론값을 같이 나타낸 것이다.
도 8 및 도 9에서 x축은 단위시간당 붕괴횟수이며 y축은 각각의 카운트에 대해 누적한 빈도분포이다.
도 8 및 도 9를 보면 랜덤분포 핏팅이 실제 데이터를 표현하고 있음을 알 수 있다. 따라서 2,000개의 데이트 세트를 이용하여, 단위시간 1초 마다의 붕괴되는 붕괴수의 빈도분포를 포아송분포로 핏팅하면 보다 훨씬 많은 데이트 세트 개수로 확장할 수 있음을 알 수 있다.
전술한 실시예는 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
Claims (15)
- 데이터 확장을 이용한 방사능 측정방법에 있어서,에너지 스캐닝과 시간 스캐닝을 하면서 방사능을 측정하는 단계와;상기 스캐닝 결과 얻어지는 시간-에너지에 관한 데이터 세트로부터 데이터베이스를 마련하는 단계와;랜덤분포핏팅을 통해 상기 데이터베이스를 확장하는 단계와;상기 데이터베이스로부터 원하는 시간의 방사능 측정값을 얻는 단계를 포함하는 방사능 측정방법.
- 제1항에 있어서,상기 랜덤분포핏팅에서는 포아송분포를 핏팅하며,상기 방사능 측정값을 얻는 단계에서는 확장된 데이터베이스를 이용하는 것을 특징으로 하는 방사능 측정방법.
- 제1항에 있어서,상기 방사능 측정값을 얻는 단계에서는 데이터 랜덤 추출 기법을 이용하는 것을 특징으로 하는 방사능 측정방법.
- 제3항에 있어서,상기 데이터 랜덤 추출 기법은 몬테칼로 기법을 포함하는 것을 특징으로 하는 방사능 측정방법.
- 제1항에 있어서,상기 에너지 스캐닝은 측정 에너지 범위를 다수의 동일 에너지 구간으로 나누어 수행되는 것을 특징으로 하는 방사능 측정방법.
- 제5항에 있어서,상기 시간 스캐닝에서는 일정한 시간 간격 별로 상기 에너지 구간 별로 방사능 붕괴회수를 카운트하는 것을 특징으로 하는 방사능 측정방법.
- 제1항에 있어서,상기 확장된 데이터베이스를 형성하는 데이터 세트는 3,000개 내지 6,000개인 것을 특징으로 하는 방사능 측정방법.
- 데이터 확장을 이용한 방사능측정방법에 있어서,제1시간 동안 복수의 시각에서의 핵종별 방사능 붕괴 특성을 측정하여 데이터베이스를 만드는 단계와;랜덤분포 핏팅을 통해 상기 데이터베이스를 확장하는 단계와;상기 확장된 데이터베이스를 이용하여 상기 제1시간 이후의 제2시간 동안의 핵종별 방사능 붕괴 특성을 예측하는 단계를 포함하는 방사능 측정방법.
- 제8항에 있어서,상기 랜덤분포핏팅에서는 포아송 분포로 핏팅하고,상기 예측단계에서는 데이터 랜덤 추출 기법을 이용하는 것을 특징으로 하는 방사능 측정방법.
- 데이터 확장을 이용한 방사능 측정시스템에 있어서,방사능 측정부;상기 방사능 측정부와 연계되어 에너지 스캐닝과 시간 스캐닝을 하는 스캐닝부;상기 스캐닝부에서 얻은 시간-에너지에 대한 데이터 세트로부터 데이터베이스를 형성하는 데이터베이스부;포아송 분포 핏팅을 이용하여 상기 데이터베이스를 확장하는 랜덤분포 핏팅부와;상기 데이터베이스부의 확장된 데이터베이스를 이용하여 원하는 시간의 방사능 측정값을 추출하는 추출부를 포함하는 방사능 측정시스템.
- 제10항에 있어서,상기 추출부는 방사능 측정값을 추출하기 위해 데이터 랜덤 추출 기법을 이용하는 것을 특징으로 하는 방사능 측정시스템.
- 제11항에 있어서,상기 데이터 랜덤 추출 기법은 몬테카를로 기법을 포함하는 것을 특징으로 하는 방사능 측정시스템.
- 제10항에 있어서,상기 에너지 스캐닝은 측정 에너지 범위를 다수의 동일 에너지 구간으로 나누어 수행되는 것을 특징으로 하는 방사능 측정시스템.
- 제10항에 있어서,상기 시간 스캐닝에서는 일정한 시간 간격 별로 상기 에너지 구간 별로 방사능 붕괴회수를 카운트하는 것을 특징으로 하는 방사능 측정시스템.
- 제10항에 있어서,상기 확장된 데이터베이스를 형성하는 데이터 세트는 3,000개 내지 6,000개인 것을 특징으로 하는 방사능 측정시스템.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18734051.8A EP3564712A4 (en) | 2017-01-02 | 2018-01-02 | RADIOACTIVITY MEASUREMENT METHOD AND RADIOACTIVITY MEASUREMENT SYSTEM WITH THE USE OF DATA EXTENSION |
CN201880005749.1A CN110121664B (zh) | 2017-01-02 | 2018-01-02 | 使用数据扩展的放射性测量方法和放射性测量系统 |
US16/475,048 US11029417B2 (en) | 2017-01-02 | 2018-01-02 | Radioactivity measurement method and radioactivity measurement system using data expansion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170000294A KR101914619B1 (ko) | 2017-01-02 | 2017-01-02 | 데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템 |
KR10-2017-0000294 | 2017-01-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124838A1 true WO2018124838A1 (ko) | 2018-07-05 |
Family
ID=62711088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/000002 WO2018124838A1 (ko) | 2017-01-02 | 2018-01-02 | 데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11029417B2 (ko) |
EP (1) | EP3564712A4 (ko) |
KR (1) | KR101914619B1 (ko) |
CN (1) | CN110121664B (ko) |
WO (1) | WO2018124838A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152061A (ja) * | 1997-08-06 | 1999-02-26 | Aloka Co Ltd | 放射能測定装置 |
JP2000235077A (ja) * | 1999-02-16 | 2000-08-29 | Aloka Co Ltd | 放射線測定装置 |
JP2000258538A (ja) * | 1999-03-08 | 2000-09-22 | Natl Inst Of Radiological Sciences | 放射線測定装置及び方法 |
JP2002006046A (ja) * | 2000-06-16 | 2002-01-09 | Aloka Co Ltd | 放射線測定装置及び方法 |
JP2013036901A (ja) * | 2011-08-09 | 2013-02-21 | Jtekt Corp | 破壊検査システム、破壊検査方法、データ処理プログラムおよびプログラム記録媒体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0828349A1 (en) * | 1996-08-06 | 1998-03-11 | AMERSHAM INTERNATIONAL plc | Method of and apparatus for generating random numbers |
EP1827505A4 (en) | 2004-11-09 | 2017-07-12 | Biosensors International Group, Ltd. | Radioimaging |
WO2009036337A2 (en) * | 2007-09-12 | 2009-03-19 | University Of Florida Research Foundation, Inc. | Method and apparatus for spectral deconvolution of detector spectra |
JP2013009094A (ja) * | 2011-06-23 | 2013-01-10 | Nec Casio Mobile Communications Ltd | 防水構造及び電子機器、ならびに防水方法 |
KR101920137B1 (ko) * | 2017-01-02 | 2018-11-19 | 한국수력원자력 주식회사 | 방사능 측정방법 및 방사능 측정시스템 |
-
2017
- 2017-01-02 KR KR1020170000294A patent/KR101914619B1/ko active IP Right Grant
-
2018
- 2018-01-02 EP EP18734051.8A patent/EP3564712A4/en active Pending
- 2018-01-02 US US16/475,048 patent/US11029417B2/en active Active
- 2018-01-02 CN CN201880005749.1A patent/CN110121664B/zh active Active
- 2018-01-02 WO PCT/KR2018/000002 patent/WO2018124838A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1152061A (ja) * | 1997-08-06 | 1999-02-26 | Aloka Co Ltd | 放射能測定装置 |
JP2000235077A (ja) * | 1999-02-16 | 2000-08-29 | Aloka Co Ltd | 放射線測定装置 |
JP2000258538A (ja) * | 1999-03-08 | 2000-09-22 | Natl Inst Of Radiological Sciences | 放射線測定装置及び方法 |
JP2002006046A (ja) * | 2000-06-16 | 2002-01-09 | Aloka Co Ltd | 放射線測定装置及び方法 |
JP2013036901A (ja) * | 2011-08-09 | 2013-02-21 | Jtekt Corp | 破壊検査システム、破壊検査方法、データ処理プログラムおよびプログラム記録媒体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3564712A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3564712A1 (en) | 2019-11-06 |
US11029417B2 (en) | 2021-06-08 |
US20190331804A1 (en) | 2019-10-31 |
EP3564712A4 (en) | 2020-08-26 |
CN110121664B (zh) | 2023-06-09 |
KR20180079735A (ko) | 2018-07-11 |
KR101914619B1 (ko) | 2018-11-02 |
CN110121664A (zh) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grzywacz | Applications of digital pulse processing in nuclear spectroscopy | |
WO2018124837A1 (ko) | 방사능 측정방법 및 방사능 측정시스템 | |
Huang et al. | The Flash ADC system and PMT waveform reconstruction for the Daya Bay Experiment | |
Britton et al. | Quantifying radionuclide signatures from a γ–γ coincidence system | |
WO2018030733A1 (ko) | 계측-수율 상관성 분석 방법 및 시스템 | |
Sun et al. | The drift chamber array at the external target facility in HIRFL-CSR | |
WO2018124838A1 (ko) | 데이터 확장을 이용한 방사능 측정방법 및 방사능 측정시스템 | |
Tsyganov et al. | Detection system for heavy element research: present status | |
Bagi et al. | Neutron coincidence counting with digital signal processing | |
Alvarenga et al. | Readout electronics validation and target detector assessment for the Neutrinos Angra experiment | |
Liu et al. | Development of 4πβ (LS)-γ digital coincidence counting system at NIM | |
Britton et al. | Incorporating X–ray summing into gamma–gamma signature quantification | |
Ogren et al. | Demonstration of INCC6 for advanced list-mode data acquisition and analysis using ALMM | |
CN106405609A (zh) | 一种多粒子事件的捕获方法与装置 | |
Zimmermann | Status of the OPERA Experiment | |
KR20180099615A (ko) | 공간선량 측정방법 및 공간선량 측정시스템 | |
US7668681B2 (en) | Distributed sensor network with a common processing platform for CBMRNE devices and novel applications | |
Pozniak et al. | Automatic test-bench for GEM detectors | |
Skiba et al. | A prototype fully digital data acquisition system upgrade for the TOFOR neutron spectrometer at JET | |
WO2024205384A1 (ko) | Lc-ms/ms의 조각 이온으로부터 모분자의 분자구조를 획득하는 방법 및 시스템 | |
CN107422362A (zh) | 一种能量谱和时间谱的降噪方法 | |
Agramunt et al. | New accurate measurements of neutron emission probabilities for relevant fission products | |
Dolan et al. | Nuclear nonproliferation measurements performed on mixed-oxide fuel pins at the Idaho National Laboratory | |
Krick | Thermal neutron multiplicity counting of samples with very low fission rates | |
Materna et al. | Fission studies by prompt gamma-ray spectrometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18734051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018734051 Country of ref document: EP |