WO2018124407A1 - Vaccine composition containing attenuated salmonella mutant as active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and salmonella - Google Patents

Vaccine composition containing attenuated salmonella mutant as active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and salmonella Download PDF

Info

Publication number
WO2018124407A1
WO2018124407A1 PCT/KR2017/006150 KR2017006150W WO2018124407A1 WO 2018124407 A1 WO2018124407 A1 WO 2018124407A1 KR 2017006150 W KR2017006150 W KR 2017006150W WO 2018124407 A1 WO2018124407 A1 WO 2018124407A1
Authority
WO
WIPO (PCT)
Prior art keywords
salmonella
attenuated salmonella
strain
antigen
opta
Prior art date
Application number
PCT/KR2017/006150
Other languages
French (fr)
Korean (ko)
Inventor
이존화
원가연
김제형
박수연
문성철
정호경
Original Assignee
주식회사 코미팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코미팜 filed Critical 주식회사 코미팜
Publication of WO2018124407A1 publication Critical patent/WO2018124407A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/195Antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/025Enterobacteriales, e.g. Enterobacter
    • A61K39/0275Salmonella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/105Delta proteobacteriales, e.g. Lawsonia; Epsilon proteobacteriales, e.g. campylobacter, helicobacter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/255Salmonella (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/42Salmonella
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and salmonellosis comprising attenuated Salmonella mutant strain as an active ingredient.
  • Porcine proliferative enteritis is a disease caused by Lawsonia intracellularis , which is widespread all over the world, causing significant damage to pig farmers. The incidence rate is known to be around 30% worldwide, and in 2000, the US National Animal Health Monitoring System (NAHMS) survey reported that more than one-third of all farms and 75% of large farms were infected. In Korea, more than 53% of the positive rates of individual pigs surveyed were reported.
  • NAHMS National Animal Health Monitoring System
  • PPE-based diseases caused by thickening of the ileum wall due to proliferation of enterocytes can be divided into proliferative hemorrhagic enteropathy and chronic incineinal adenomatosis, acute type of pig hemorrhagic intestine.
  • the disease develops in recently stocked pigs or pigs, with red and black tars around the anus before mortality, weakness, anemia, and anorexia.
  • Chronic type has slower feed intake, weight loss, and major clinical symptoms are brown, watery diarrhea that lasts from several days to four weeks.
  • Statistics show that during the PPE epidemic, daily weight gains are reduced by 9-35% and feed efficiency is 6-20%, causing significant economic losses to farmers.
  • Antibiotics susceptible to intracellular proliferation Gram-negative bacteria such as tyrosin, tetratracyclines, and lyomycin, have been used to prevent the treatment of this disease, but have been practiced in Korea since July 2011. Prohibition of antibiotics in feeds has increased the need to develop effective vaccines to control the bacteria present on pig farms.
  • Pigs with diarrhea may not be able to pinpoint the cause of the disease based solely on clinical symptoms or diarrhea.
  • diarrhea caused by fibrous necrotic ulcerative colitis caused by swine salmonellosis which is a representative swine diarrheal disease
  • Salmonella a Gram-negative bacterium that is characterized by intracellular proliferation, such as Lawsonia
  • Salmonella has been shown to have the same clinical symptoms as well as a significant correlation with Salsonella in pigs with Salmonella.
  • Korean Patent No. 0758614 discloses 'Cultivation of Lausonia Intracellulose, Anti-Lausonia Intracellular Vaccine and Diagnostic Reagent'
  • Korean Patent No. 1151004 discloses that the adhesion factor of bovine pathogenic E. coli Transformed attenuated Salmonella mutants and vaccine compositions for preventing and treating Escherichia coli and Salmonella bacterium comprising the same are disclosed, but pig proliferative ileitis comprising the attenuated Salmonella mutants of the present invention as an active ingredient and There is no description of vaccine compositions for simultaneous prophylaxis or treatment of Salmonellosis.
  • the present invention is derived from the above requirements, the inventors of the present invention to enhance the immune response due to the vaccine and to prevent two types of swine diarrhea at the same time four antigens derived from Lawsonia Intracellulose (OptA, OptB, FliC, Hly) was cloned into a recombinant vector for a live vaccine containing a Bla signal sequence to transform the LPS O-antigen-deficient attenuated Salmonella strain and inoculated with the humoral and cellular antigens in the mice inoculated with the transformed Salmonella mixture. By confirming that a mediated immune response is induced, the present invention has been completed.
  • the present invention provides attenuated Salmonella mutants comprising any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigen derived from Lawsonia intracellularis .
  • the present invention is Lawsonia Intracellulose ( Lawsonia) Preparation of attenuated Salmonella mutant strain for simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising amplifying any one gene selected from the group consisting of genes encoding OptA, OptB, FliC and Hly antigens derived from intracellularis ) Provide a method.
  • the present invention also provides an attenuated Salmonella mutant mixture comprising two or more of the mutants.
  • the present invention provides a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
  • the present invention provides a feed additive for the simultaneous prevention of pig proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
  • the attenuated Salmonella mutant strain of the present invention has an outer shell structure and shell structure similar to that of the Salmonella spp., And expresses the Lawsonia intracellularis-derived OptA, OptB, FliC or Hly antigen to the outside of the cell, thereby humoral and cellular Since it is possible to induce a mediated immune response, the mutant strain of the present invention is expected to be useful as a vaccine that can simultaneously prevent and treat swine proliferative ileitis and salmonellosis, which can be safely, economically and easily inoculated.
  • the rfaL of the present invention Gene-deleted Salmonella mutants not only enhance the expression of selected Lawsonia antigens outside the cell, but also expand the availability of Salmonella probiotic vaccines, which have been limited in use due to misdiagnosis of serological tests using antibodies with LPS antigen. It is expected to do.
  • FIG. 1 is a simplified illustration of gene conversion when DNA fragments prepared with pKD3 as a template and pKD46 were transformed into a Salmonella strain ( S. Typhimurium ) having a target gene.
  • FIG. 2 is a result of comparing the surface O-antigen expression of JOL912, a strain containing O-antigen synthesis-related rfaL gene, and JOL1800, a strain lacking O-antigen synthesis-related rfaL gene, and is a result of silver staining.
  • Figure 3 is a result of confirming the degree of cell death of wild-type strains JOL401, mutant JOL912 and JOL1800 through the complement-dependent cytotoxicity test using rabbit serum complement.
  • Figure 4 shows the invasion / phagocytosis (4 hours, 24 hours, 48 hours after infection) of the Salmonella strains. Blue is macrophage, fluorescent green is Salmonella strain ( S. Typhimurium ). A) JOL401, B) JOL912, C) JOL1800.
  • FIG. 6 is a result of Western blot analysis of each Lawsonia protein expressed in JOL1800-derived strains (JOL1809, JOL1810, JOL1811 or JOL1812) expressing each Lawsonia antigen. Arrows indicate the expected size of each protein.
  • M Marker, A) Periplasmic sample of control strain, A ') Supernatant sample of control strain, B) Interspace sample of OptA expressing strain JOL1809, C) OptB Intercellular sample of the expression strain JOL1810, C ') Supernatant sample of the OptB expression strain JOL1810, D) Intercellular sample of the FliC expression strain JOL1811, E) Intercellular sample of the Hly expression strain JOL1812, E') Hly expression Supernatant samples of strain JOL1812.
  • Fig. 7 shows the result of confirming the titer of IgG for each antigen in the mouse group immunized by mixing four kinds of JOL1800-derived strains expressing each Lawsonia antigen. Comparison of non-immunized mice (Group A, white bars) and mice immunized with all four antigens (Group J, gray bars). I) IgG that specifically responds to OptA, II) IgG that specifically responds to OptB, III) IgG that specifically responds to FliC, IV) IgG that specifically responds to Hly. * Marked when there is the largest significant difference between control and immunized groups ( P ⁇ 0.02).
  • FIG. 8 shows the results of confirming the titer of secreted IgA for each antigen in the mouse group immunized by mixing four strains of JOL1800 expressing each Lawsonia antigen.
  • FIG. 8A shows the vaginal mucosal secretion IgA (viginal sIgA), and
  • FIG. 8B shows the titer of intestinal secretion IgA (intestinal sIgA).
  • Non-immunized mice Group A, white bars
  • mice immunized with all four antigens Group J, gray bars).
  • Figure 9 shows the results of the T cell immune response of splenocytes isolated from mice using FACS.
  • I Comparison of T cell changes of CD3 + CD4 + T cells and CD3 + CD8 + in non-immunized and immunized mice.
  • II The extent of CD3 + T cells, CD3 + CD4 + T cells and CD3 + CD8 + T cells increase in immunized mice against non-immunized mice.
  • FIG. 10 shows mRNA expression results of cytokine genes measured by re-stimulation of splenocytes isolated from mice immunized by mixing immunized mice with four strains of JOL1800 expressing each of the Lawsonia antigens. The amount of cytokine expressed in non-immunized mouse group A was increased to 1 relative expression level. The spleen cells of mice belonging to group J were divided and stimulated with OptA, OptB, FliC, and Hly, respectively, and the cytokine expression levels were measured.
  • the present invention provides an attenuated Salmonella mutant comprising any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigens derived from Lawsonia intracellularis .
  • L. intracellularis Gram-negative intracellular parasites are known as causative agents of swine proliferative ileitis.
  • Autotransporter one of the Gram-negative bacteria outer membrane proteins, is an N-terminal signal peptide, a passenger domain, and a ⁇ -domain.
  • the N-terminal signal peptide transports the protein synthesized in the passenger domain to the cytoplasmic membrane and expresses the protein transported by the ⁇ -domain to the cytoplasmic membrane to the outer membrane. It creates a path that can be made.
  • These expressed passenger domain proteins are known to play a role in bacterial adhesion to the host's target organs or cells, invasion, and bacterial virulence, but have been attempted in live vaccines to prevent PPE.
  • the OptA and OptB antigens are 101-200 including a portion of the first site, the passenger domain, which is expected to be the most antigenic of the LI0649 genes (802639-805194) encoding the Lawsonia intracellularis derived autotransporter protein.
  • the first amino acid sequence portion was selected as the first candidate protein (OptA), and the 534-851th amino acid sequence portion including the portion of the passenger domain and the entirety of the ⁇ -domain was determined as the second candidate protein (OptB).
  • the range of OptA antigens according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 1 and functional equivalents thereof.
  • “Functional equivalent” means at least 60%, preferably at least 80%, more preferably at least 90%, even more preferably at least 60% of the amino acid sequence represented by SEQ ID NO: 1 as a result of the addition, substitution, or deletion of the amino acid
  • “Substantially homogeneous physiological activity” means swine proliferative ileitis vaccine activity.
  • the invention also includes fragments, derivatives and analogues of the OptA antigen.
  • the range of OptB antigens according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 2 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of OptB.
  • the FliC antigen was selected from a gene encoding hook associated flagella C (Lasonia PHE / MN gene map LI0570 gene) that synthesizes flagellin, a protein constituting flagella. .
  • Flagella on the cell surface that regulates bacterial movement usually acts as pathogen-associated molecular patterns (PAMPs) to activate the acquired immune system as a component of the innate immunity in the host. It interacts with Toll like receptor 5 (TLR5), one of the stimulating factors, and activates NF- ⁇ B in macrophage and contributes to the activation of the acquired immune system.
  • PAMPs pathogen-associated molecular patterns
  • TLR5 Toll like receptor 5
  • the flagella gene has not yet been used as a candidate gene for PPE live vaccines.
  • Lawsonia intracellularis has one long flagella, and in this study, the protein associated with the flagella hook was selected as the antigen.
  • the site of selection of the antigen is the flagellin N-terminal helical portion and the C-terminal spiral (C-terminal helical), which are conserved regions of 885nt (701958-702842). It may be more effective in inducing immune responses due to PAMPs, including the moiety.
  • FliC includes proteins having the amino acid sequence represented by SEQ ID NO: 3 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of FliC.
  • the Hly antigen of the present invention was selected from Lawsonia intracellularis derived hemolysin (Hly) gene (LI0004 gene of the Lawsonia PHE / MN gene map).
  • Lossonia intracellular lyse breaks down the entry vacuole that forms when it enters the cytoplasm and escapes from the host's phagolysosomal fusion.
  • Hemolysin releases membrane-damaging cytolytic enzymes. It is known to produce and help break down inlet vesicles. On the 5th day of infection, the vesicles escaped from the vacuoles in the small intestine villus and gland cells (crypt cells) and grew freely in the cytoplasm.
  • the Hly antigen selection site synthesizes a hemolysin A protein known as bacterial pore forming toxin at a size of 756 nt (3454-4209).
  • a hemolysin gene has been widely used as a candidate gene for vaccine development of other bacteria, but it has not been used as a candidate gene for PPE live vaccine.
  • Hly includes proteins having the amino acid sequence represented by SEQ ID NO: 4 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of Hly.
  • the attenuated Salmonella mutant strain of the present invention may be deleted asd gene.
  • Salmonella mutant strains lon, cpxR and asd genes are deleted, more preferably lon, cpxR , rfaL And Salmonella mutants lacking the asd gene, but are not limited thereto.
  • Salmonella mutants in which lon, cpxR and asd genes are deleted ⁇ cpxR ⁇ asd Salmonella Typhimurium (JOL912) is a DAP (diaminopimellic acid) requester that lacks the asd gene, and is designed to select antigen-recombinant strains without antibiotics.
  • JOL912 is a DAP (diaminopimellic acid) requester that lacks the asd gene, and is designed to select antigen-recombinant strains without antibiotics.
  • DAP diaminopimellic acid
  • lymphocyte penetration is increased to increase immunogenicity
  • lon Deletion of the gene can attenuate pathogenicity. It is known that the strain has no effect on the production of extracellular polysaccharide (EPS), which can act as an antigen, and thus acts as an antigen by itself, resulting in sufficient humoral mucosal cellular immune response.
  • EPS extracellular polysaccharide
  • LPS Salmonella lipopolysaccharide
  • O-PS O-antigen polysaccharide
  • the O-antigen free rough Salmonella mutants ( ⁇ lon) ⁇ cpxR ⁇ asd ⁇ rfaL , JOL1800 maintains the antigenicity of LPS and exerts an immune response stimulated by external antigens by exposing the host's immune system to obscuring the LPS during the expression of the extracellular membrane of the selected Losonia intracellulase antigen gene.
  • ⁇ lon ⁇ cpxR ⁇ asd ⁇ rfaL , JOL1800
  • JOL1800 survived in the spleen of the host to effectively penetrate macrophages in mice and induce an immune response regardless of the inoculation route.
  • serum complement was more easily killed than attenuated Salmonella strain derived from wild strain (JOL912).
  • the attenuated JOL1800 eliminates O-antigens is more sensitive to serum complement but is thought to complement the weakened defense mechanism by avoiding LPS-specific antibodies in individuals that have already been exposed to Salmonella strains.
  • DIVA Differentiation of Infected and Vaccinated Animals
  • the attenuated Salmonella strain of the present invention is any one of the genes selected from the group consisting of Bla ( ⁇ -lactamse) signal sequence, genes encoding OptA, OptB, FliC and Hly antigens linked thereto; And asd gene; but may be transformed with a recombinant vector comprising, but is not limited thereto.
  • the recombinant vector may be pJHL65 (asd + vector, pBR ori, 6xHis) or pJHL80 (asd + vector, p15A ori, 6xHis) having a secretion system based on the Bla signal sequence.
  • Salmonella mutants of the present invention wherein the Salmonella is Salmonella typhimurium (Salmonella typhimurium), Salmonella tie blood (Salmonella typi), Salmonella para tie blood (Salmonella paratyphi), Salmonella Sendai (Salmonella sendai), Salmonella Galina Solarium ( Salmonella gallinarium ) or Salmonella enteritidis ( Salmonella enteritidis ) and the like, preferably Salmonella typhimurium, but is not limited thereto.
  • step (b) cloning the amplified gene of step (a) into a recombinant vector having an asd gene;
  • step (c) transforming the cloned plasmid of step (b) into an attenuated Salmonella strain
  • step (d) provides a method for producing attenuated Salmonella mutant strain for simultaneously preventing or treating swine proliferative ileitis and Salmonellosis comprising the step of selecting the transformed Salmonella mutant strain of step (c).
  • the present invention also provides an attenuated Salmonella mutant mixture comprising two or more of the mutants.
  • Salmonella mutant mixture of the present invention is lon, cpxR , rfaL And asd Salmonella mutants having a gene deleted are mixtures containing two or more Salmonella mutants expressing any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigens in the extracellular membrane or extracellular.
  • the mixture of Salmonella mutants may be a mixture comprising all of Salmonella mutants expressing OptA, Salmonella mutants expressing OptB, Salmonella mutants expressing FliC and Salmonella mutants expressing Hly, but are not limited thereto.
  • the present invention provides a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
  • the vaccine composition of the present invention is a Lawsonia intracellular cellulose to Salmonella attenuated by gene deletion (lawsonia) Intracellularis ) containing a mixture containing one or more Salmonella mutants expressing OptA, OptB, FliC and Hly antigens as an active ingredient, by treating the vaccine composition in humans or animals to prevent or prevent pig hyperplasia ileitis and Salmonellosis It can be cured.
  • the Salmonella mutant strain mixture may be prepared in the form of mutant strains or dead bacteria, preferably in the form of mutant strains, but is not limited thereto.
  • composition of the present invention may be administered orally or parenterally (eg, applied intramuscularly, intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, preferably orally or subcutaneously.
  • parenterally eg, applied intramuscularly, intravenously, subcutaneously, intraperitoneally or topically
  • the dosage of the composition varies depending on the weight, age, sex, health status, diet, administration time, administration method, excretion rate and severity of the disease or the like of the human or animal.
  • the vaccine composition may be inoculated in humans or mammals, and the mammal may be cows, deer, goats, goats, dogs, pigs, and the like, and preferably inoculated in pigs, but is not limited thereto.
  • the term “vaccine” refers to a biological agent containing an antigen that immunizes a living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal for the prevention of infection.
  • In vivo immunization is largely divided into automatic immunity obtained automatically by the in vivo immunity after infection of a pathogen and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of production of immune-related antibodies and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
  • the vaccine composition includes stabilizers, emulsifiers, aluminum hydroxide, aluminum phosphate, pH adjusters, surfactants, liposomes, iscom adjuvants, synthetic glycopeptides, extenders, carboxypolymethylene, subviral particle adjuvants, cholera toxin , N, N-dioctadecyl-N ', N'-bis (2-hydroxyethyl) -propanediamine, monophosphoryl lipid A, dimethyldioctadecyl-ammonium bromide and mixtures thereof
  • the second adjuvant may be further contained.
  • the vaccine composition may comprise a veterinary acceptable carrier.
  • veterinary acceptable carrier includes any and all solvents, dispersion media, coatings, antigen adjuvant, stabilizers, diluents, preservatives, antibacterial and antifungal agents, isotonic agents, adsorption delaying agents, and the like.
  • Carriers, excipients, and diluents that may be included in the composition for vaccines include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, maltitol, starch, glycerin, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like.
  • the vaccine composition is an oral formulation such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and nasal formulations such as drips or sprays and sterile injectable solutions, respectively, according to a conventional method.
  • Formulated in the form of can be used.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used can be prepared.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate and sucrose in the lecithin-like emulsifier. Or lactose, gelatin, etc. can be mixed and prepared. In addition to simple excipients, lubricants such as magnesium styrate talc may also be used. As a liquid preparation for oral administration, suspending agents, liquid solutions, emulsions, syrups, etc. may be used. In addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be used.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations.
  • non-aqueous preparation and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used, but are not limited thereto.
  • Suitable penetrants for formulations for intranasal administration are generally known to those skilled in the art. Such suitable formulations are formulated to be preferably sterile, isotonic and buffered for stability and compliance.
  • Formulations for intranasal administration are also formulated to stimulate mucus secretion in several aspects to maintain normal ciliary action, and suitable formulations are preferably slightly buffered formulations that maintain isotonicity, pH 5.5 to 6.5, and most preferably Antimicrobial preservatives and suitable drug stabilizers.
  • the present invention provides a feed additive for the simultaneous prevention of pig proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
  • the feed additive of the invention rosoni ah intra-cell-less (Lawsonia intracellularis) derived OptA, OptB, including a Salmonella mutant, or a mixture thereof to express and secrete FliC and Hly antigen as an active ingredient, a Salmonella mutant, or a mixture thereof rosoni O And as well as the protective effect on Salmonella, effectively induces cellular and humoral immune response in animals, when used as feed additives can contribute to the simultaneous prevention and immune boosting of pig proliferative ileitis and Salmonellosis in livestock.
  • the feed additive of the present invention may use the Salmonella mutant mixture as it is or additionally add known carriers, stabilizers and the like, such as grains and by-products allowed for livestock, citric acid, fumaric acid, adipic acid, lactic acid, if necessary.
  • Organic acids such as malic acid, phosphates such as sodium phosphate, potassium phosphate, acid pyrophosphate and polyphosphate (polyphosphate), polyphenols, catechins, alpha-tocopherols, rosemary extracts, vitamin C, green tea extracts, licorice extracts, chitosan, Natural antioxidants such as tannic acid and phytic acid, antibiotics, antibacterial agents, and other additives may be added, and the shape may be in a suitable state such as powder, granules, pellets, suspensions, and the like. It may be supplied alone or mixed with the feed.
  • Salmonella typhimurium (hereinafter, referred to as S. Typhimurium ) strain from which the asd gene was removed was cultured by adding 50 ⁇ g / ml DAP at 37 ° C in LB medium. Temperature sensitive strains were cultured in LB medium, 28 ° C. Strains with lambda-red genes were cultured in LB medium containing 0.2% L-arabinose. All strains were stored at ⁇ 80 ° C. in LB liquid medium containing 20% glycerol.
  • the O-antigen ligase gene, rfaL was removed from the existing attenuated S. Typhimurium to develop a strain without O-antigen in LPS on the bacterial surface. Plasmid pKD46 containing lambda red, which induces recombination, was transformed by electric shock into S. Typhimurium JOL912 ( ⁇ cpxR, ⁇ lon, ⁇ asd ) , which is attenuated live bacteria. After culturing at 32 ° C. or lower (28-30 ° C.), PCR was confirmed whether the plasmid was successfully introduced.
  • the pKD3 plasmid as a template was amplified by PCR using a 40-nucleotide-long primer containing the rfaL gene and a portion of the pKD3 plasmid.
  • the amplified PCR product was extracted and transformed into S. Typhimurium competent cells into which pKD46 was introduced. It was plated on LB (Luria-Bertani) solid medium to which arabinos was added and incubated at 37 ° C. Recombined strains were selected in LB solid medium containing 25 ⁇ g / ml chloramphenicol. Knock-out was confirmed by PCR using primers.
  • competent cells were made from colonies confirmed to be transgenic, and the pCP20 plasmid was transformed. Cultured in LB medium, 37 °C was selected bacteria without chloramphenicol resistance. LPS was extracted and confirmed by SDS-PAGE for comparison with wild S. Typhimurium . The finally identified O-antigen deleted Salmonella strain was named JOL1800.
  • Serum complement sensitivity of S. Typhimurium was measured using rabbit serum. Serum free of anti-salmonella antibodies was taken from rabbits and used for analysis. All strains used were incubated until late log phase and diluted to 1 ⁇ 10 7 cfu / 100 ⁇ l.
  • mice The primary peritoneal macrophage of mice was infected with JOL401, JOL912, and JOL1800, and the phagocytosis and infiltration were observed using a fluorescence microscope. Macrophages were harvested by injecting 5% BSA into the abdominal cavity of 4 week old mice. Macrophages were treated aseptically and covered with 0.2% gelatin-coated coverglass slip in a 5 ⁇ 10 6 cell number. Thereafter, RPMI [RPMI 1640, 10% FBS (heat-inactivated fetal bovine serum), 1 ⁇ Antibiotic-Antimycotic (Gibco, Life technologies, USA)] was poured into 6-well cell culture plates.
  • S. Typhimurium was infected with MOI 10: 1. After bacterial treatment, the cells were incubated in 37%, 5% CO 2 incubator for 30 minutes. The phagocytic or non-penetrating bacteria were washed with PBS and placed in the incubator for 48 hours with the addition of RPMI containing antibiotics. Cover glass slip cells were fixed with 3% paraformaldehyde diluted with PBS and subjected to immunofluorescence staining.
  • the primary antibody is chicken anti-912 polyclonal sera when infected with JOL401, JOL912, or chicken anti-1800 polyclonal sera when infected with JOL1800.
  • S. Typhimurium strain of the present invention was carried out to determine how long the remaining in the host organs.
  • Four-week-old mice were orally inoculated with JOL401 and JOL1800 at 1 ⁇ 10 7 cfu, respectively, and the third group was intramuscularly inoculated with JOL1800.
  • the ⁇ asd strain JOL1800 was inoculated by transforming the asd + plasmid pJHL65 by electric shock. Spleens were harvested aseptically by anesthetizing 8 mice of each group every 3, 7, 14, 21, 28 days after inoculation.
  • the spleen was homogenized with 2 ml BPW (buffered peptone water, Becton, MD, USA) using a homogenizer. 100 ⁇ l of the homogenized solution was immediately inoculated evenly into Brilliant green agar (BGA) plates and incubated overnight at 37 ° C. Simultaneously, the remaining BPW samples were inoculated in Rappaport-Vassiliadis (RV) medium and incubated at 37 ° C. for 48 hours. The colonies obtained were finally S. Typhimurium PCR was confirmed using specific primers.
  • BPW Brilliant green agar
  • Purified antigenic protein, LPS was coated on an ELISA plate by dispensing at a concentration of 200 ng / well.
  • Mouse serum, the primary antibody was diluted 1: 100 with PBS, and HRP-condensed anti-mouse IgG, the secondary antibody, was diluted at a ratio of 1: 8,000.
  • HRP-condensed anti-mouse IgG the secondary antibody
  • 100 ⁇ l per well of the OPD (Sigma-Aldrich, US) reaction solution was dispensed for 5 minutes and then stopped with 3M H 2 SO 4 , and the OD value was measured at 492 nm.
  • the value of serum IgG attached to LPS was expressed as the average OD value.
  • the bacterial strain, plasmid used in the present invention is listed in Table 1.
  • Commercially available vectors for expression of E. coli proteins, pET28a and pET32a plasmids have kanamycin resistance, so the strains were cultured in the presence of kanamycin (50 ⁇ g / ml).
  • the Bl21 (DE3) pLysS strain was used for purifying Lawsonia antigen protein.
  • the strain was cultured in the presence of 0.1M IPTG (Isopropyl ⁇ -D-1-thiogalactopyranoside) when inducing overexpression during protein purification.
  • pJHL65 and pJHL80 asd + plasmids were used as vectors to secrete and deliver antigen proteins cloned in a Bla signal sequence-based periplasmic secretion manner. All strains were incubated at 37 ° C. using LB medium and stored at ⁇ 80 ° C. using LB liquid medium containing 20% glycerol. DAP is at a concentration of asd 50 ⁇ g / ml - was added to culture the strain JOL1800.
  • Candidate antigens of L. intracellularis are OptA and OptB, which are involved in autotransporter synthesis, FliC, which synthesizes flagella related proteins, and Hly, which is considered to be involved in cell infiltration. Genes required for the expression of antigenic proteins were all obtained using gene synthesis (Bioneer, Korea). The genes of L. intracellularis that synthesize each protein were examined through GenBank of the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). Each L.
  • intracellularis antigen was analyzed by Peptide Property Calculator software (http://www.biosyn.com/peptidepropertycalculator/), and then synthesized by selecting the nucleotide sequence of the high antigenicity.
  • the genes were cloned into the pBHA vector, with the restriction sites identified at each end.
  • the restriction sites added at both ends of the L. intracellularis antigen gene are OptA for Sal I and Xho I, OptB for Sal I and Pst I, FliC for EcoR I and Sal I, and Hly for EcoR I and Hind III.
  • Recombinant plasmids pET32a-OptA, pET28a-OptB, pET28a-FliC, and pET28a-Hly were prepared by cloning into the plasmids pET28a and pET32a, respectively, using the designated restriction enzymes.
  • OptA was not inserted into pET28a and cloned into pET32a, a similar strain of plasmid.
  • the resulting recombinant plasmid was transformed into E. coli BL21 (DE3) pLysS by a thermal shock method to prepare a strain for protein purification overexpressing the antigenic protein in the presence of IPTG. L.
  • OptA, OptB, FliC, and Hly proteins in each strain were purified using Ni-nitrilotriacetic acid (NTA) agarose (Qiagen, Valencia, CA).
  • NTA Ni-nitrilotriacetic acid
  • the antigenic protein of L. intracellularis obtained by culturing and purifying each strain was used to detect specific antibodies against each antigen in mice.
  • the antigen genes were cloned into pJHL65 and pJHL80 plasmids that express heterologous antigens in the intercellular space, and then pJHL80-OptA, pJHL65-OptB, pJHL65-FliC. pJHL65-Hly was obtained.
  • JOL1800 was transformed into JOL1800 by electric shock, respectively.
  • the JOL1800 was washed twice with distilled water containing 10% glycerol, placed in a cuvette and mixed with 0.1 ⁇ g of purified plasmid, subjected to electric shock with Bio-Rad MicroPulser (Bio-Rad, USA), and recovered. LB liquid medium without DAP was recovered. 1 ml was incubated at 37 ° C. for 1 hour.
  • Plasmids were recovered from the selected strains, digested with restriction enzymes corresponding to the respective antigens, and confirmed by electrophoresis and PCR on agarose gels.
  • the antigens of L. intracellularis expressed in the outer membrane and periplasmic space of the prepared vaccine strain were confirmed by Western blot.
  • Antigen proteins expressed in the recombinant strains were obtained in cell-free supernatants through TCA precipitation.
  • the cells were cultured at 37 ° C and LB liquid medium until the optical density (OD 600 ) was measured at 600 nm, and centrifuged at 3,400 ⁇ g for 20 minutes. The supernatant was then separated.
  • Each protein sample was separated by SDS-PAGE for Western blot analysis and transferred to a 0.2 ⁇ m PVDF membrane (Millipore, Billerica, Mass., USA) at 4 ° C. with blocking buffer (3% BSA, PBS, 0.1% Tween-20). The reaction was overnight. The next day, the anti-his-tag antibody (IG Therapy Co., Ltd., Korea) was diluted to 1: 5,000 and reacted for 1 hour, followed by HRP (horseradish peroxidase) -condensed goat anti-mouse IgG diluted to 1: 5,000. Time was processed.
  • HRP horseradish peroxidase
  • strains and plasmids used in this experiment were recombinant attenuated Salmonella strains JOL1809, JOL1810, JOL1811, and JOL1812, which express the L. intracellularis antigens in Table 1.
  • JOL1809, JOL1810, JOL1811, and JOL1812 strains were mixed by 5 ⁇ 10 7 CFU, respectively, and a total of 2 ⁇ 10 8 CFU / 100 ⁇ l strains were determined as the final inoculation amount.
  • Each rat feces collected on the plate was treated with 500 ⁇ l of 50mM EDTA, centrifuged at 3,400 ⁇ g for 15 minutes, and the supernatant was separated and stored at -20 ° C. and used for the experiment.
  • Serum was collected by orbital venous blood collection and centrifuged at 4,000 ⁇ g for 5 minutes to separate serum, which was supernatant, and stored at -20 ° C.
  • ELISA was performed to measure sIgA and IgG specific for L. intracellularis OptA, OptB, FliC, and Hly antigens expressed in recombinant vaccine strains.
  • As the coating antigen OptA, OptB, FliC, and Hly antigen proteins purified from JOL1586, JOL1593, JOL1682, and JOL1742 strains were used. Purified antigenic protein was administered at a concentration of 500 ng / well, and standard protein wells were coated with goat-anti mouse IgG or goat anti-mouse sIgA at a concentration of 200 ng / well, respectively, and then coated overnight at 4 ° C.
  • the coated plate was washed three times with PBS (PBST) containing 0.05% of Tween 20 and then blocked with blocking buffer (3% skim milk in PBS) at 37 ° C. for 1 hour.
  • Serum and PBS were diluted 1: 100, vaginal lavage was diluted 1: 3, intestinal lavage was diluted 1: 4, and 100 ⁇ l was dispensed into the wells, followed by reaction at 37 ° C. for 1 hour.
  • In the case of serum, goat anti-mouse IgG HRP and vaginal lavage were diluted 1: 5,000 in goat anti-mouse IgA HRP, and 100 ⁇ l was dispensed into each well, followed by reaction at 37 ° C. for 1 hour.
  • FACS fluorescence activated cell sorting
  • Anti-mouse CD3e-PE, anti-mouse CD4-perCP-vio700, and anti-mouse CD8a-FITC were reacted at 4 ° C. for 15 minutes in dark conditions. Stained cells were washed three times with 200 ⁇ l FACS buffer and analyzed using the MACSQuant ® analyzer (miltenyi Biotec, Germany).
  • RNA samples were divided into 96 well plates in the same manner as in 3.7.
  • OptA, OptB, FliC, and Hly were stimulated at 200 ng / ⁇ l for 1 hour at 5% CO 2 environmental conditions in 1x10 6 cells for 48 hours.
  • total RNA was extracted using GeneAll ® Hybrid-RTM kit and synthesized into cDNA using ReverTra Ace ® qPCR RT Kit.
  • Primers of mouse interferon-gamma (IFN- ⁇ ), interleukin (IL) -4, and IL-17 used for real-time PCR are listed in Table 3.
  • Real-time PCR was measured by using SYBR ® Green Real-Time PCR Master Mix (QPK-201, TOYOBO, Japan). It was measured using a Step One plus Real Time PCR system (Applied Biosystems). For each cytokine, the amount of RT-PCR product was normalized to ⁇ -actin values using internal standards.
  • Primer used in RT-PCR of the present invention antigen Primer direction Sequence (5 ' ⁇ 3') SEQ ID NO: IFN- ⁇ Forward direction TCA AGT GGC ATA GAT GTG GAA GAA 13 Reverse TGG CTC TGC AGG ATT TTC ATG 14 IL-4 Forward direction ACA GGA GAA GGG ACG CCA T 15 Reverse GAA GCC CTA CAG ACG AGC TCA 16 IL-17 Forward direction ACC GCA ATG AAG ACC CTG AT 17 Reverse TCC CTC CGC ATT GAC ACA 18
  • JOL912 has three genes ( ⁇ lon ⁇ cpxR ⁇ asd Auxotrophic mutant strains asd Deletion of the gene necessitates DAP upon replication. Thus, asd + plasmids are used as vectors expressing antigen genes to satisfy balanced-lethal complementation.
  • Exo acts at both ends of the ds DNA to create a 3-overhang, and bet binds to 3 ss DNA, causing strand exchange by RecA.
  • the cat gene cassette exchanged here made the plasmid pKD3 a template.
  • JOL912 with pKD46 and linear DNA was introduced to replace rfaL with the cat gene cassette.
  • pKD46 exits the cell. Removal of the target gene was confirmed by PCR using primers from the rfaL flanking region.
  • wild rfaL is changed to cat gene cassette ( ⁇ 1.1kb)
  • the size of the amplicon which is 1.9kb in total, is shortened to 1.7kb.
  • Plasmid pCP20 was transformed into a strain in which removal of the rfaL gene was confirmed. pCP20 was introduced to remove antibiotic resistance genes and expressed FLP recombinase that acts directly on the FLP recognition target (FRT) sites present at both ends of the antibiotic resistance gene cassette. After culturing at 30 °C to obtain a strain from which the cat gene cassette was removed, and further cultured at 37 °C or 40 °C to obtain a final strain without the plasmid pCP20. The last strain obtained was not resistant to antibiotics derived from JOL912. lon, cpxR , asd , rfaL The mutant strain JOL1800 was deleted.
  • JOL1800 rfaL It is a rough Salmonella strain without O-antigen due to the gene removal. After PAGE separation and purified LPS extraction in JOL1800 it can be confirmed that there is no O-antigen on the surface of the bacteria (Fig. 2). In the S-type JOL912 used as a control, long-expressed O-antigens can be seen.
  • complement sensitivity analysis was performed by culturing wild S. Typhimurium JOL401, attenuated strain JOL912, and JOL1800, a strain derived from JOL912. R-type JOL1800 showed a more sensitive response to rabbit complement than the other S-type strains. JOL1800 showed a marked bacterial count reduction compared to wild JOL401 and JOL912 (FIG. 3).
  • Macrophages of mice were infected with O-antigen-deleted S. Typhimurium JOL1800 from wild S. Typhimurium JOL401, attenuated S. Typhimurium JOL912, JOL912 to identify differences in the ability of the three strains to feed or penetrate macrophages. .
  • JOL401, JOL912, JOL1800 all confirmed the infiltration of bacteria into macrophages 4 hours after infection.
  • Salmonella have an infection pathway that survives in the macrophages of the host and spreads the bacteria systemically.
  • JOL1800 which additionally removed the O-antigen of the bacterial surface LPS by deleting the rfaL gene, was found to have the ability to invade and survive macrophages (FIG. 4). ).
  • Mutant strains produced by the deletion of several genes are very attenuated and sometimes do not reach the real organs or die easily, sometimes causing infection. When attenuated strains are used as vaccines, proper attenuation control is required so that the vaccine strains do not survive for too long in the host to cause disease or to survive too short to cause an immune response.
  • the mice were infected with JOL401, JOL912, and JOL1800 three days later, seven days later, 14 days later, and 21 days later. The spleens were collected and tested for the presence of bacteria (Table 4). All strains were detected in the spleen 3, 7, 14 days after inoculation. JOL401, JOL912 survived in the spleen until 21 days after inoculation. The recovery time of JOL1800 was 12 days and was investigated by PROBIT analysis. It can be seen that JOL1800 can invade the host's immune system and sufficiently induce an immune response.
  • ELISA was performed on the sera of mice inoculated with LPS extracted from S. Typhimurium to investigate the possibility of DIVA of the developed JOL1800 strain.
  • S-type strains with O-antigens, JOL401 and JOL912 showed LPS-specific antibodies, whereas L-type strains without O-antigen were detected in JOL1800 (Fig. 5).
  • Boosting was performed three weeks after the first inoculation, considering that LPS-specific antibodies could not be induced due to rapid in vivo clearance due to attenuation of JOL1800.
  • the plasmids pJHL80-OptA, pJHL65-OptB, pJHL65-FliC, pJHL65-Hly which were prepared by cloning the synthesized L. intracellularis antigens OptA, OptB, FliC, and Hly into the antigen expression plasmids pJHL65 and pJHL80, do not have O-antigens.
  • the vaccine strain was completed by electroshock to DIOL-capable attenuated S. Typhimurium strain JOL1800.
  • pJHL65 and pJHL80 express the cloned antigen in the intercellular space or surface of the bacteria.
  • JOL1809 OptA expression JOL1800
  • JOL1810 OptB expression JOL1800, respectively.
  • JOL1811 FliC expressing JOL1800
  • JOL1812 Hly expressing JOL1800
  • T lymphocyte subpopulation using FACS in splenocytes isolated from all immunized and non-immunized control mice to assess cellular immune responses following inoculation with recombinant attenuated S. Typhimurium live vaccines JOL1809, JOL1810, JOL1811, JOL1812 was analyzed.
  • Total T cells are expressed as CD3 +
  • CD4 + and CD8 + are helper T cells and cytotoxic T cells, respectively.
  • 9 days after the inoculation also CD3 + CD4 + and CD3 + CD8 + with the overall increase in the CD3 + It rose significantly (FIG. 9).
  • CD3 + T cells showed an increase of 50% or more, CD4 + increased by 45% or more, and CD8 + increased by 55% or more compared to the control group.
  • RT-PCR was performed to measure the mRNA expression level of IFN- ⁇ , IL-4, and IL-17 to evaluate the expression level of cytokines that regulate cellular immune responses.
  • cytokines were significantly increased in OptA (FIG. 10).
  • OptB IL-4 and IFN- ⁇ were significantly increased in all antigens.
  • IL-17 is a cytokine secreted by differentiated Th17 cells, indicating that all antigens stimulate secretion. It is believed that CD4 + T cells have differentiated into Th1 and Th2 cells, and it is estimated that the differentiation of Th17 cells occurs.

Abstract

The present invention relates to a vaccine composition containing an attenuated Salmonella mutant as an active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and Salmonella. The present invention was confirmed to induce humoral and cell-mediated immune responses to antigens in a mouse vaccinated with a mixture of the attenuated Salmonella mutant, when the attenuated salmonella was transformed using a vector developed to increase secretion of Lawsonia intracellularis-derived OptA, Optb, FliC or Hly antigens. Therefore, the mutant according to the present invention is expected to be useful as a vaccine for simultaneously preventing or treating porcine proliferative enteropathy and Salmonella, which is safe, economical, and safely inoculated.

Description

약독화된 살모넬라 변이주를 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물Vaccine composition for simultaneous prevention or treatment of pig proliferative ileitis and Salmonellosis comprising attenuated Salmonella mutants
본 발명은 약독화된 살모넬라 변이주를 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물에 관한 것이다.The present invention relates to a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and salmonellosis comprising attenuated Salmonella mutant strain as an active ingredient.
돼지 증식성 회장염(Porcine proliferative enteritis, PPE)은 로소니아 인트라셀룰라리스(Lawsonia intracellularis)에 의해 발생되는 질병으로 전 세계에 만연하여 양돈농가에 큰 피해를 주고 있다. 전 세계적으로 발병률은 약 30% 정도인 것으로 알려져 있으며 2000년에 미국의 국립 동물건강 모니터링 시스템(NAHMS)의 조사에서는 전체 농가의 1/3 이상, 대규모 농가의 75%가 감염된 것으로 보고되었다. 국내에서도 전국 양돈장을 표본으로 조사한 개체별 양성률은 53% 이상이 감염된 것으로 보고된 바 있다.Porcine proliferative enteritis (PPE) is a disease caused by Lawsonia intracellularis , which is widespread all over the world, causing significant damage to pig farmers. The incidence rate is known to be around 30% worldwide, and in 2000, the US National Animal Health Monitoring System (NAHMS) survey reported that more than one-third of all farms and 75% of large farms were infected. In Korea, more than 53% of the positive rates of individual pigs surveyed were reported.
장내세포(enterocyte)의 증식으로 인한 회장벽의 비후로 인해 발생하는 PPE를 위주로 한 질병은 급성 출혈성 장병증(proliferative hemorrhagic enteropathy)과 만성 소모성 설사(porcine intestinal adenomatosis)로 나눌 수 있으며 급성형인 돼지 출혈성 장병증은 최근에 입식한 돼지나 출하돈에서 발생하며 폐사 전에 항문 주위에 붉고 검은 타르 같은 변이 보이며 허약, 빈혈, 식욕결핍 등의 증상을 보인다. 만성형은 사료섭취가 둔화되고 체중이 감소하며 주요한 임상증상은 수일 내지 4주이상 지속되는 갈색의 수양성 설사를 한다. 통계에 따르면 PPE 유행시 일당 증체량은 9~35%, 사료 효율은 6~20% 저하되어 농가에 막대한 경제적 손실을 끼치는 것으로 보고되고 있다.PPE-based diseases caused by thickening of the ileum wall due to proliferation of enterocytes can be divided into proliferative hemorrhagic enteropathy and chronic incineinal adenomatosis, acute type of pig hemorrhagic intestine. The disease develops in recently stocked pigs or pigs, with red and black tars around the anus before mortality, weakness, anemia, and anorexia. Chronic type has slower feed intake, weight loss, and major clinical symptoms are brown, watery diarrhea that lasts from several days to four weeks. Statistics show that during the PPE epidemic, daily weight gains are reduced by 9-35% and feed efficiency is 6-20%, causing significant economic losses to farmers.
농장에서의 유행률과 그 심각성에 비해 절대 세포 내 기생성 세균(obligate intracellular bacteria)인 로소니아 인트라셀룰라리스는 체외에서의 배양이 매우 힘들고 그 성장속도에 편차가 심하다. 이로 인한 이 질병의 진단 분석의 한계로 인해 자세한 병인기전 뿐만 아니라 치료, 진단 방법의 개발에 한계를 보이고 있다. 기존의 PCR 방법이나 혈청학적인 진단법은 임상병변을 보이는 환축의 진단에 활용될 뿐 의심 환축이나 숙주로 의심되는 종의 진단에는 그 민감도가 떨어지고 있다. 이로 인하여 설사 외의 임상증상이 뚜렷하지 않은 질병의 특성상 축산 농가들이 자신의 농장에 질병이 발생되고 있는지조차 파악하기 어려운 형편이다. 티로신(tyrosin), 테트라사이클린(tetracyclines), 리코마이신(licomycin) 등 세포 내 증식 그람 음성균에 감수성을 가지는 항생제가 이 질병의 치료 예방을 위해 사용되어져 왔으나 2011년 7월부터 시행된 국내에서의 돼지 배합 사료 내 항생제 첨가 금지 조항은 돼지 농가에 상재되고 있는 이 세균을 통제하기 위한 유효한 백신 개발의 필요성을 증가시키고 있다.Compared to the prevalence and severity of farms, Rossonia Intracellularis, an obligate intracellular bacterium, is difficult to culture in vitro and has a wide variation in its growth rate. As a result, the limitations of the diagnostic analysis of this disease have limited the development of therapeutic and diagnostic methods as well as detailed pathogenesis. Conventional PCR and serological diagnostic methods are used to diagnose clinical lesions, but their sensitivity is low in the diagnosis of suspected disease or suspected host species. Because of this, it is difficult for livestock farmers to find out whether the disease is occurring on their own farms due to the nature of the disease, which is not obvious in diarrhea. Antibiotics susceptible to intracellular proliferation Gram-negative bacteria, such as tyrosin, tetratracyclines, and lyomycin, have been used to prevent the treatment of this disease, but have been practiced in Korea since July 2011. Prohibition of antibiotics in feeds has increased the need to develop effective vaccines to control the bacteria present on pig farms.
설사증을 보이는 돼지는 임상증상이나 설사변의 형태만으로는 그 질병의 원인을 정확하게 파악하기가 힘들다. 특히 PPE와 함께 대표적인 돼지 설사병인 돼지 살모넬라증(salmonellosis)으로 발생하는 섬유성의 괴사성 궤양성 대장염으로 인한 설사는 살모넬라 티피무리움(Salmonella typhimurium)에 의해 주로 발생하고 있다. 로소니아(Lawsonia)균과 같이 세포 내에서 증식하는 특징을 가진 그람 음성균인 살모넬라균은 같은 임상 증상뿐만 아니라 살모넬라균을 보유한 돼지가 로소니아균과의 유의한 상관관계가 최근의 연구에서 밝혀졌다. 그 연구는 돼지에서 장내 미생물총의 작용으로 인해 로소니아균에 감염된 돼지가 살모넬라균의 집락화를 증가시키며 배출(shedding)을 증진시킨다고 밝혔다. 이러한 두 세균의 상호작용은 두 가지 질병을 동시에 예방하기 위한 백신의 개발의 시급함을 시사한다.Pigs with diarrhea may not be able to pinpoint the cause of the disease based solely on clinical symptoms or diarrhea. In particular, diarrhea caused by fibrous necrotic ulcerative colitis caused by swine salmonellosis, which is a representative swine diarrheal disease, is mainly caused by Salmonella typhimurium . Salmonella, a Gram-negative bacterium that is characterized by intracellular proliferation, such as Lawsonia , has been shown to have the same clinical symptoms as well as a significant correlation with Salsonella in pigs with Salmonella. The study found that due to the action of the intestinal microflora in pigs, pigs infected with Rossonia bacteria increased the colonization of Salmonella and improved shedding. The interaction between these two bacteria suggests an urgent need for the development of a vaccine to prevent both diseases at the same time.
로소니아 인트라셀룰라리스에 심하게 감염된 돼지에서 체액성 면역에 관여하는 B 세포, 세포성 면역에 관여하는 T 세포의 수, 및 T 세포의 발현 수용체인 SLAM7(signaling lymphocytic activation molecule)의 현저한 감소가 관찰되었다. 이런 감염된 부위에서 전체 림프구 수의 감소와 세포독성(cytotoxic) T 세포의 제한된 활성화는 로소니아 인트라셀룰라리스가 살아남기 위해 적합한 환경 조성과 이에 따른 면역 반응 조절과 관련이 있다고 알려져 있다. 이러한 PPE 발병시 일어날 수 있는 면역 억제 반응을 극복하기 위한 높은 항원성을 지니면서 안정성이 있는 백신의 개발이 요구되어진다. Significant decreases in B cells involved in humoral immunity, the number of T cells involved in cellular immunity, and the signaling lymphocytic activation molecule (SLAM7), the receptor for expression of T cells, were observed in pigs heavily infected with Lawsonia intracellularis. . Reduction of total lymphocyte counts and limited activation of cytotoxic T cells at these infected sites is known to be related to the composition of the environment and hence the regulation of immune responses that are suitable for survival of Lawsonia intracellularis. There is a need for the development of a vaccine having high antigenicity and stability to overcome the immunosuppressive response that may occur in the development of such PPE.
한편, 한국등록특허 제0758614호에는 '라우소니아 인트라셀룰라리스의 배양, 항-라우소니아 인트라셀룰라리스 백신 및 진단시약'이 개시되어 있고, 한국등록특허 제1151004호에는 '소의 병원성 대장균의 부착인자가 형질전환된 약독화된 살모넬라 변이주 및 이를 포함하는 소의 대장균증 및 살모넬라균증의 예방 및 치료용 백신조성물'이 개시되어 있으나, 본 발명의 약독화된 살모넬라 변이주를 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent No. 0758614 discloses 'Cultivation of Lausonia Intracellulose, Anti-Lausonia Intracellular Vaccine and Diagnostic Reagent', and Korean Patent No. 1151004 discloses that the adhesion factor of bovine pathogenic E. coli Transformed attenuated Salmonella mutants and vaccine compositions for preventing and treating Escherichia coli and Salmonella bacterium comprising the same are disclosed, but pig proliferative ileitis comprising the attenuated Salmonella mutants of the present invention as an active ingredient and There is no description of vaccine compositions for simultaneous prophylaxis or treatment of Salmonellosis.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자는 백신으로 인한 면역 반응의 증강과 두 종류의 돼지 설사증을 동시에 예방하기 위해 로소니아 인트라셀룰라리스 유래의 4종의 항원(OptA, OptB, FliC, Hly)을 Bla 신호 서열을 포함하는 생균 백신용 재조합 벡터에 클로닝하여 LPS O-항원 결손 약독화 살모넬라 균주에 형질전환시키고 상기 형질전환된 살모넬라 혼합물을 접종시킨 마우스에서 항원에 대한 체액성 및 세포 매개 면역 반응이 유도됨을 확인함으로써, 본 발명을 완성하였다.The present invention is derived from the above requirements, the inventors of the present invention to enhance the immune response due to the vaccine and to prevent two types of swine diarrhea at the same time four antigens derived from Lawsonia Intracellulose (OptA, OptB, FliC, Hly) was cloned into a recombinant vector for a live vaccine containing a Bla signal sequence to transform the LPS O-antigen-deficient attenuated Salmonella strain and inoculated with the humoral and cellular antigens in the mice inoculated with the transformed Salmonella mixture. By confirming that a mediated immune response is induced, the present invention has been completed.
상기 과제를 해결하기 위해, 본 발명은 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원으로 이루어진 군에서 선택된 어느 하나의 항원을 포함하는 약독화된 살모넬라 변이주를 제공한다.In order to solve the above problems, the present invention provides attenuated Salmonella mutants comprising any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigen derived from Lawsonia intracellularis .
또한, 본 발명은 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원을 코딩하는 유전자로 이루어진 군에서 선택된 어느 하나의 유전자를 증폭시키는 단계를 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 약독화된 살모넬라 변이주의 제조방법을 제공한다.In addition, the present invention is Lawsonia Intracellulose ( Lawsonia) Preparation of attenuated Salmonella mutant strain for simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising amplifying any one gene selected from the group consisting of genes encoding OptA, OptB, FliC and Hly antigens derived from intracellularis ) Provide a method.
또한, 본 발명은 상기 변이주 중 둘 이상을 포함하는 약독화된 살모넬라 변이주 혼합물을 제공한다.The present invention also provides an attenuated Salmonella mutant mixture comprising two or more of the mutants.
또한, 본 발명은 상기 약독화된 살모넬라 변이주 또는 이의 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물을 제공한다.In addition, the present invention provides a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
또한, 본 발명은 상기 약독화된 살모넬라 변이주 또는 이의 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방용 사료 첨가제를 제공한다.In addition, the present invention provides a feed additive for the simultaneous prevention of pig proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
본 발명의 약독화된 살모넬라 변이주는 살모넬라 야외균주와 유사한 외각성분 및 외각구조를 가지면서 로소니아 인트라셀룰라리스 유래 OptA, OptB, FliC 또는 Hly 항원을 세포 외부에 발현시켜 상기 항원에 대하여 체액성 및 세포 매개 면역 반응을 유도할 수 있으므로 본 발명의 변이주는 안전하고 경제적이며 간편하게 접종할 수 있는 돼지 증식성 회장염과 살모넬라증을 동시에 예방 및 치료할 수 있는 백신으로 유용하게 사용될 것으로 기대된다. 또한, 본 발명의 rfaL 유전자가 결실된 살모넬라 변이주는 선별된 로소니아 항원의 세포 외부로의 발현 증진 뿐만 아니라, LPS를 항원으로 하는 항체를 이용하는 혈청학적 검사의 오진단으로 인해 사용이 제한되던 살모넬라 생균 백신의 이용 가능성을 확대할 것으로 기대된다.The attenuated Salmonella mutant strain of the present invention has an outer shell structure and shell structure similar to that of the Salmonella spp., And expresses the Lawsonia intracellularis-derived OptA, OptB, FliC or Hly antigen to the outside of the cell, thereby humoral and cellular Since it is possible to induce a mediated immune response, the mutant strain of the present invention is expected to be useful as a vaccine that can simultaneously prevent and treat swine proliferative ileitis and salmonellosis, which can be safely, economically and easily inoculated. In addition, the rfaL of the present invention Gene-deleted Salmonella mutants not only enhance the expression of selected Lawsonia antigens outside the cell, but also expand the availability of Salmonella probiotic vaccines, which have been limited in use due to misdiagnosis of serological tests using antibodies with LPS antigen. It is expected to do.
도 1은 pKD3을 주형으로 제작한 DNA 절편과 pKD46을 목적 유전자를 가진 살모넬라 균주(S. Typhimurium)에 형질전환시켰을 때 유전자 전환이 일어나는 간략한 도해이다. FIG. 1 is a simplified illustration of gene conversion when DNA fragments prepared with pKD3 as a template and pKD46 were transformed into a Salmonella strain ( S. Typhimurium ) having a target gene.
도 2는 O-항원 합성 관련 rfaL 유전자가 포함된 균주인 JOL912와 O-항원 합성 관련 rfaL 유전자가 결실된 균주인 JOL1800의 표면 O-항원 발현을 비교한 결과로, 실버 염색 결과 사진이다.FIG. 2 is a result of comparing the surface O-antigen expression of JOL912, a strain containing O-antigen synthesis-related rfaL gene, and JOL1800, a strain lacking O-antigen synthesis-related rfaL gene, and is a result of silver staining.
도 3은 토끼 혈청 보체를 이용한 보체의존성세포상해작용 검사를 통하여 야생형 균주 JOL401, 변이주 JOL912 및 JOL1800의 세포 사멸 정도를 확인한 결과이다.Figure 3 is a result of confirming the degree of cell death of wild-type strains JOL401, mutant JOL912 and JOL1800 through the complement-dependent cytotoxicity test using rabbit serum complement.
도 4는 살모넬라 균주의 대식세포 내 침입/탐식(감염 후 4시간, 24시간, 48시간) 모습을 나타낸다. 푸른색은 대식세포, 형광 녹색은 살모넬라 균주(S. Typhimurium). A) JOL401, B) JOL912, C) JOL1800.Figure 4 shows the invasion / phagocytosis (4 hours, 24 hours, 48 hours after infection) of the Salmonella strains. Blue is macrophage, fluorescent green is Salmonella strain ( S. Typhimurium ). A) JOL401, B) JOL912, C) JOL1800.
도 5는 살모넬라 균주(JOL401, JOL912, JOL1800)의 LPS에 대한 혈청 IgG 반응을 확인한 결과이다. OD492에서 측정한 상대적인 값을 표시한다.5 is a result of confirming the serum IgG response to LPS of Salmonella strains (JOL401, JOL912, JOL1800). Displays the relative value measured at OD 492 .
도 6은 각 로소니아 항원을 발현하는 JOL1800 유래 균주(JOL1809, JOL1810, JOL1811 또는 JOL1812)에 표현된 각 로소니아 단백질의 웨스턴 블롯 분석 결과이다. 화살표는 각 단백질의 예상 크기를 나타내었다. M) 마커(marker), A) 대조군 균주의 세포사이공간 시료(periplasmic sample), A') 대조군 균주의 상층액 시료(supernatant sample), B) OptA 발현 균주 JOL1809의 세포사이공간 시료, C) OptB 발현 균주 JOL1810의 세포사이공간 시료, C') OptB 발현 균주 JOL1810의 상층액 시료, D) FliC 발현 균주 JOL1811의 세포사이공간 시료, E) Hly 발현 균주 JOL1812의 세포사이공간 시료, E') Hly 발현 균주 JOL1812의 상층액 시료.6 is a result of Western blot analysis of each Lawsonia protein expressed in JOL1800-derived strains (JOL1809, JOL1810, JOL1811 or JOL1812) expressing each Lawsonia antigen. Arrows indicate the expected size of each protein. M) Marker, A) Periplasmic sample of control strain, A ') Supernatant sample of control strain, B) Interspace sample of OptA expressing strain JOL1809, C) OptB Intercellular sample of the expression strain JOL1810, C ') Supernatant sample of the OptB expression strain JOL1810, D) Intercellular sample of the FliC expression strain JOL1811, E) Intercellular sample of the Hly expression strain JOL1812, E') Hly expression Supernatant samples of strain JOL1812.
도 7은 각 로소니아 항원을 발현하는 JOL1800 유래 균주 4종류를 혼합하여 면역화한 마우스 그룹에서의 각각의 항원에 대한 IgG의 역가를 확인한 결과이다. 비면역된 마우스(Group A, 흰색 바), 네 가지 항원에 모두 면역된 마우스(Group J, 회색 바)의 비교. I) OptA에 특이적으로 반응하는 IgG, II) OptB에 특이적으로 반응하는 IgG, III) FliC에 특이적으로 반응하는 IgG, IV) Hly에 특이적으로 반응하는 IgG. * 표시는 대조군과 면역화된 그룹 사이에 가장 큰 유의적인 차이가 있는 경우이다(P < 0.02).Fig. 7 shows the result of confirming the titer of IgG for each antigen in the mouse group immunized by mixing four kinds of JOL1800-derived strains expressing each Lawsonia antigen. Comparison of non-immunized mice (Group A, white bars) and mice immunized with all four antigens (Group J, gray bars). I) IgG that specifically responds to OptA, II) IgG that specifically responds to OptB, III) IgG that specifically responds to FliC, IV) IgG that specifically responds to Hly. * Marked when there is the largest significant difference between control and immunized groups ( P <0.02).
도 8은 각 로소니아 항원을 발현하는 JOL1800 유래 균주 4종류를 혼합하여 면역화한 마우스 그룹에서의 각각의 항원에 대한 분비 IgA의 역가를 확인한 결과이다. 도 8a는 질점막 분비 IgA(viginal sIgA), 도 8b는 장점막 분비 IgA(intestinal sIgA)의 역가를 확인한 결과이다. 비면역된 마우스(Group A, 흰색 바), 네 가지 항원에 모두 면역된 마우스(Group J, 회색 바). V, IX) OptA에 특이적으로 반응하는 IgA, VI, X) OptB에 특이적으로 반응하는 IgA, VII, XI) FliC에 특이적으로 반응하는 IgA, VIII, XII) Hly에 특이적으로 반응하는 IgA. * 표시는 대조군과 면역화된 그룹 사이에 가장 큰 유의적인 차이가 있는 경우이다(P < 0.02).Fig. 8 shows the results of confirming the titer of secreted IgA for each antigen in the mouse group immunized by mixing four strains of JOL1800 expressing each Lawsonia antigen. FIG. 8A shows the vaginal mucosal secretion IgA (viginal sIgA), and FIG. 8B shows the titer of intestinal secretion IgA (intestinal sIgA). Non-immunized mice (Group A, white bars), mice immunized with all four antigens (Group J, gray bars). V, IX) IgA, VI, X) Responsive to OptA, IgA, VII, XI) IgA, VIII, XII) Responsive to Hly IgA. * Marked when there is the largest significant difference between control and immunized groups ( P <0.02).
도 9는 FACS를 이용한 마우스에서 분리된 비장세포의 T 세포 면역반응 조사 결과이다. I) 비면역화된 마우스와 면역화된 마우스의 CD3+CD4+ T 세포 및 CD3+CD8+의 T 세포 변화를 비교. II) 비면역화 마우스에 대한 면역화한 마우스의 CD3+ T 세포, CD3+CD4+ T 세포 및 CD3+CD8+ T 세포 증가 정도. 비면역화 마우스(A), 각 로소니아 항원을 발현하는 JOL1800 유래 균주 4종류를 혼합하여 면역화한 마우스(JOL1800).Figure 9 shows the results of the T cell immune response of splenocytes isolated from mice using FACS. I) Comparison of T cell changes of CD3 + CD4 + T cells and CD3 + CD8 + in non-immunized and immunized mice. II) The extent of CD3 + T cells, CD3 + CD4 + T cells and CD3 + CD8 + T cells increase in immunized mice against non-immunized mice. Non-immunized mice (A) and mice immunized with a mixture of four strains derived from JOL1800 expressing each Lawsonia antigen (JOL1800).
도 10은 비면역화된 마우스와 각 로소니아 항원을 발현하는 JOL1800 유래 균주 4종류를 혼합하여 면역화한 마우스에서 분리된 비장 세포를 인 비트로에서 재 자극하여 측정한 사이토카인 유전자의 mRNA 발현 결과이다. 비면역화된 마우스 그룹 A에서 발현된 사이토카인 양을 1로 상대적인 발현량의 증가를 나타내었다. 그룹 J에 속한 마우스의 비장 세포를 나누어 OptA, OptB, FliC, Hly로 각각 따로 자극하여 사이토카인의 발현량을 측정하였다.FIG. 10 shows mRNA expression results of cytokine genes measured by re-stimulation of splenocytes isolated from mice immunized by mixing immunized mice with four strains of JOL1800 expressing each of the Lawsonia antigens. The amount of cytokine expressed in non-immunized mouse group A was increased to 1 relative expression level. The spleen cells of mice belonging to group J were divided and stimulated with OptA, OptB, FliC, and Hly, respectively, and the cytokine expression levels were measured.
본 발명의 목적을 달성하기 위하여, 본 발명은 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원으로 이루어진 군에서 선택된 어느 하나의 항원을 포함하는 약독화된 살모넬라 변이주를 제공한다.In order to achieve the object of the present invention, the present invention provides an attenuated Salmonella mutant comprising any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigens derived from Lawsonia intracellularis .
상기 로소니아 인트라셀룰라리스(이하 L. intracellularis 라고도 함)는 그람 음성의 세포내 기생균으로 돼지 증식성 회장염의 원인균으로 알려져 있다.The Lawsonia Intracellularis (hereinafter L. intracellularis Gram-negative intracellular parasites are known as causative agents of swine proliferative ileitis.
본 발명의 로소니아 항원을 선정하기 위하여 NCBI의 로소니아 인트라셀룰라리스 PHE/MN1-00 유전자 지도에서 각각 오토트랜스포터(autotransporter) 단백질을 코딩하는 LI0649(802639-805194), 플라젤린(flagellin)을 합성하는 후크 연관 플라젤라 C(hook associated flagella C)를 코딩하는 LI0570(701958-702842) 및 헤모리신(hemolysin)을 코딩하는 LI0004(3454-4209) 유전자의 게놈 서열을 확인하였다. 각 유전자의 백신 항원 적합성을 판단하기 위하여 The ProteomeBinders Epitope Choice Resource(http://bioware.ucd.ie/epic/) 프로그램을 이용하여 본 항원 단백질의 항원 결정기(epitope)를 결정하였다. 체액성 면역 반응을 위한 B 세포 발현을 위한 항원 결정기는 수용성의 항체와 직접 결합하기 때문에 이를 고려한 친수성(hydrophilicity) 잔기의 비율, 단백질의 구조를 고려한 항원성 발생 인자(antigenecity) 예측 등을 통하여 가장 항원 결정기로서의 기능이 높은 부위를 예측하였다. Synthesis of LI0649 (802639-805194) and flagellin encoding autotransporter proteins from NCBI's Lawsonia intracellular PHE / MN1-00 gene map to select Lawsonian antigens of the present invention The genomic sequences of LI0570 (701958-702842) and hook HE0004 (3454-4209) genes encoding hook associated flagella C were identified. To determine the vaccine antigen suitability of each gene, the epitope of the antigenic protein was determined using the ProteomeBinders Epitope Choice Resource (http://bioware.ucd.ie/epic/) program. Antigen determinants for B cell expression for humoral immune responses directly bind to water-soluble antibodies, so the ratio of hydrophilicity residues is considered, and antigenicity factors are predicted by protein structure. The site with high function as a determinant was predicted.
그람 음성균 외막 단백질(outer membrane protein) 중의 하나인 오토트랜스포터(autotransporter; Opt)는 N-말단 신호 펩티드(N-terminal signal peptide), 패신저 도메인(passenger domain), β-도메인(β-domain)으로 구성되어 있으며 패신저 도메인에서 합성된 단백질을 N-말단 신호 펩티드는 세포질 막(cytoplasmic membrane)까지 수송하는 역할을 하며 β-도메인이 세포질 막까지 수송된 이 단백질을 세포 외막(outer membrane)으로 발현시킬수 있는 통로를 만들어주는 기능을 한다. 이렇게 발현된 패신저 도메인 단백질은 세균이 숙주의 목표 장기나 세포에 부착(adhesion), 침입(invasion) 및 세균의 독성 발현에 그 역할을 한다고 알려져 있으나 아직까지 PPE을 예방하기 위한 생균 백신에서는 시도된 적이 없다.Autotransporter (Opt), one of the Gram-negative bacteria outer membrane proteins, is an N-terminal signal peptide, a passenger domain, and a β-domain. The N-terminal signal peptide transports the protein synthesized in the passenger domain to the cytoplasmic membrane and expresses the protein transported by the β-domain to the cytoplasmic membrane to the outer membrane. It creates a path that can be made. These expressed passenger domain proteins are known to play a role in bacterial adhesion to the host's target organs or cells, invasion, and bacterial virulence, but have been attempted in live vaccines to prevent PPE. Never
상기 OptA 및 OptB 항원은 로소니아 인트라셀룰라리스 유래 오토트랜스포터 단백질을 코딩하는 LI0649 유전자(802639-805194) 중 가장 항원성이 높을 것이라고 예측되는 첫 번째 부위, 패신저 도메인의 일부분을 포함하는 101~200번째 아미노산 서열 부분을 첫번째 후보 단백질(OptA)로 선정하였고, 패신저 도메인의 일부분과 β-도메인의 전체를 포함하는 534~851번째 아미노산 서열 부분을 두번째 후보 단백질(OptB)로 결정하였다. The OptA and OptB antigens are 101-200 including a portion of the first site, the passenger domain, which is expected to be the most antigenic of the LI0649 genes (802639-805194) encoding the Lawsonia intracellularis derived autotransporter protein. The first amino acid sequence portion was selected as the first candidate protein (OptA), and the 534-851th amino acid sequence portion including the portion of the passenger domain and the entirety of the β-domain was determined as the second candidate protein (OptB).
본 발명에 따른 OptA 항원의 범위는 서열번호 1로 표시되는 아미노산 서열을 갖는 단백질 및 이의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 1로 표시되는 아미노산 서열과 적어도 60% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 1로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 돼지 증식성 회장염 백신 활성을 의미한다. 본 발명은 또한 OptA 항원의 단편, 유도체 및 유사체(analogues)를 포함한다.The range of OptA antigens according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 1 and functional equivalents thereof. "Functional equivalent" means at least 60%, preferably at least 80%, more preferably at least 90%, even more preferably at least 60% of the amino acid sequence represented by SEQ ID NO: 1 as a result of the addition, substitution, or deletion of the amino acid Refers to a protein having a sequence homology of 95% or more and exhibiting substantially homogeneous physiological activity with the protein represented by SEQ ID NO: 1. "Substantially homogeneous physiological activity" means swine proliferative ileitis vaccine activity. The invention also includes fragments, derivatives and analogues of the OptA antigen.
본 발명에 따른 OptB 항원의 범위는 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 이의 기능적 동등물을 포함한다. 단백질의 기능적 동등물의 구체적인 내용은 전술한 바와 같다. 또한 OptB의 단편, 유도체 및 유사체(analogues)를 포함한다.The range of OptB antigens according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 2 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of OptB.
상기 FliC 항원은 편모(flagella)를 구성하는 단백질인 플라젤린(flagellin)을 합성하는 후크 연관 플라젤라 C(hook associated flagella C)를 코딩하는 유전자(Lawsonia PHE/MN 유전자 지도의 LI0570 유전자)를 선정하였다. 세균의 움직임을 조절하는 세포 표면의 편모(flagella)는 보통 병원체-관련 분자패턴(pathogen-associated molecular patterns, PAMPs)으로써 작용하여 숙주 안에서 선천성 면역체계(innate immunity)의 구성 요소로서 후천성 면역체계의 활성화를 자극시키는 요소 중 하나인 톨 유사 리셉터 5(Toll like recepter 5, TLR5)와 상호작용으로 대식세포(macrophage)에서 NF-κB의 활성화로 후천성 면역체계 활성화에 기여한다. 그러나 아직까지 플라젤라 유전자는 PPE 생균백신을 위한 후보 유전자로는 사용된 적이 없다. The FliC antigen was selected from a gene encoding hook associated flagella C (Lasonia PHE / MN gene map LI0570 gene) that synthesizes flagellin, a protein constituting flagella. . Flagella on the cell surface that regulates bacterial movement usually acts as pathogen-associated molecular patterns (PAMPs) to activate the acquired immune system as a component of the innate immunity in the host. It interacts with Toll like receptor 5 (TLR5), one of the stimulating factors, and activates NF-κB in macrophage and contributes to the activation of the acquired immune system. However, the flagella gene has not yet been used as a candidate gene for PPE live vaccines.
로소니아 인트라셀룰라리스는 하나의 긴 편모를 가지고 있으며 이 중 본 연구에서는 플라젤라 후크(flagella hook)에 연관된 단백질을 항원으로 선정하였다. 상기 항원의 선정 부위는 885nt(701958-702842)의 크기로 보존된 영역(conserved region)인 플라젤린 N-말단의 나선(flagellin N-terminal helical) 부분과 C-말단의 나선(C-terminal helical) 부분을 포함하여 PAMPs로 인한 면역 반응 유도에 좀 더 효과적일 수 있다. Lawsonia intracellularis has one long flagella, and in this study, the protein associated with the flagella hook was selected as the antigen. The site of selection of the antigen is the flagellin N-terminal helical portion and the C-terminal spiral (C-terminal helical), which are conserved regions of 885nt (701958-702842). It may be more effective in inducing immune responses due to PAMPs, including the moiety.
본 발명에 따른 FliC의 범위는 서열번호 3으로 표시되는 아미노산 서열을 갖는 단백질 및 이의 기능적 동등물을 포함한다. 단백질의 기능적 동등물의 구체적인 내용은 전술한 바와 같다. 또한 FliC의 단편, 유도체 및 유사체(analogues)를 포함한다.The scope of FliC according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 3 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of FliC.
본 발명의 Hly 항원은 로소니아 인트라셀룰라리스 유래 헤모리신(hemolysin, Hly) 유전자(Lawsonia PHE/MN 유전자 지도의 LI0004 유전자)에서 선별하였다. 로소니아 인트라셀룰라리스가 숙주의 대식 작용(phagolysosomal fusion)을 피해 세포질로 침입시 형성하는 유입액포(entry vacuole)를 분해하여 자유롭게 증식하는데 헤모리신은 막-손상 세포질 효소(membrane-damaging cytolytic enzymes)를 생산하여 유입액포의 분해를 돕는다고 알려져 있다. 감염 5일 차에 소장 융모(villus)와 선와 세포(crypt cell) 내 액포에서 빠져나와 세포질에서 자유롭게 생장하는 모습이 관찰되었고 감염 10-12일 차에 회장 선와 세포의 증식이 관찰되었다. The Hly antigen of the present invention was selected from Lawsonia intracellularis derived hemolysin (Hly) gene (LI0004 gene of the Lawsonia PHE / MN gene map). Lossonia intracellular lyse breaks down the entry vacuole that forms when it enters the cytoplasm and escapes from the host's phagolysosomal fusion. Hemolysin releases membrane-damaging cytolytic enzymes. It is known to produce and help break down inlet vesicles. On the 5th day of infection, the vesicles escaped from the vacuoles in the small intestine villus and gland cells (crypt cells) and grew freely in the cytoplasm.
상기 Hly 항원의 선정 부위는 756nt(3454-4209)의 크기로 세균 포어 형성 독소(Bacterial pore forming toxin)로 알려져 있는 헤모리신 A 단백질을 합성한다. 병독 요소(virulent factor)로써 헤모리신 유전자는 다른 세균의 백신개발을 위한 후보 유전자로 널리 사용되어져 왔지만 PPE 생균백신을 위한 후보유전자로는 아직 사용된 적이 없다.The Hly antigen selection site synthesizes a hemolysin A protein known as bacterial pore forming toxin at a size of 756 nt (3454-4209). As a virulent factor, the hemolysin gene has been widely used as a candidate gene for vaccine development of other bacteria, but it has not been used as a candidate gene for PPE live vaccine.
본 발명에 따른 Hly의 범위는 서열번호 4로 표시되는 아미노산 서열을 갖는 단백질 및 이의 기능적 동등물을 포함한다. 단백질의 기능적 동등물의 구체적인 내용은 전술한 바와 같다. 또한 Hly의 단편, 유도체 및 유사체(analogues)를 포함한다.The range of Hly according to the present invention includes proteins having the amino acid sequence represented by SEQ ID NO: 4 and functional equivalents thereof. Details of the functional equivalents of the protein are as described above. Also included are fragments, derivatives and analogues of Hly.
본 발명의 약독화된 살모넬라 변이주는 asd 유전자가 결실된 것일 수 있다. 바람직하게는 lon, cpxRasd 유전자가 결실된 살모넬라 변이주, 더 바람직하게는 lon, cpxR , rfaL asd 유전자가 결실된 살모넬라 변이주일 수 있으나, 이에 제한되지 않는다. The attenuated Salmonella mutant strain of the present invention may be deleted asd gene. Preferably Salmonella mutant strains lon, cpxR and asd genes are deleted, more preferably lon, cpxR , rfaL And Salmonella mutants lacking the asd gene, but are not limited thereto.
본 발명의 일 구현 예에 따른 살모넬라 변이주에 있어서, lon, cpxRasd 유전자가 결실된 살모넬라 변이주(Δlon ΔcpxR Δasd Salmonella Typhimurium, JOL912)는 asd 유전자가 결실된 DAP(diaminopimellic acid) 요구주로서 항생제 없이 항원 재조합 균주를 선택할 수 있도록 제작되었을 뿐만 아니라, cpxR을 결실시킴으로써 림프조직 침투력이 증가되어 면역원성을 높이고, lon 유전자를 결실하여 병원성이 약독화될 수 있다. 상기 균주는 항원으로 작용할 수 있는 EPS(extracellular polysaccharide)의 생산에는 아무 영향을 주지 않아 그 자체로 항원의 역할을 하여 안정성을 지니면서 충분한 체액성 점막성 세포성 면역 반응을 일으킨다고 알려져 있다.In Salmonella mutants according to an embodiment of the present invention, Salmonella mutants ( Δlon) in which lon, cpxR and asd genes are deleted ΔcpxR Δasd Salmonella Typhimurium (JOL912) is a DAP (diaminopimellic acid) requester that lacks the asd gene, and is designed to select antigen-recombinant strains without antibiotics.In addition, by deleting cpxR , lymphocyte penetration is increased to increase immunogenicity, lon Deletion of the gene can attenuate pathogenicity. It is known that the strain has no effect on the production of extracellular polysaccharide (EPS), which can act as an antigen, and thus acts as an antigen by itself, resulting in sufficient humoral mucosal cellular immune response.
본 발명의 일 구현 예에서, 기존의 S형(smooth) 약독화 살모넬라 균주(JOL912)에서 외부 항원의 발현을 증가시키기 위하여 살모넬라의 지질다당류(Lipopolysaccharide, LPS)의 발현과 관련된 유전자의 결실을 진행하였다. LPS는 그람 음성균에서 바깥막을 형성하는 부분으로 LPS의 O-항원 다당류 중합효소(O-antigen polysaccharide(O-PS) polymerase)의 합성에 관여하는 rfaL 유전자를 제거하여 바깥막에 합성되는 LPS의 길이를 짧게 만들었다. 이렇게 개발된 O-항원이 없는 R형(rough) 살모넬라 변이주(Δlon ΔcpxR Δasd ΔrfaL , JOL1800)는 LPS의 항원성을 유지하고 세포 외막에 선별된 로소니아 인트라셀룰라리스 항원 유전자의 세포 외막 발현시 LPS에 가려지지 않고 숙주의 면역계에 노출되게 함으로써 외부항원에 의해 자극되는 면역 반응을 증강시킬 수 있었다.In one embodiment of the present invention, in order to increase the expression of foreign antigens in the existing S-type attenuated Salmonella strain (JOL912), the gene involved in the expression of Salmonella lipopolysaccharide (LPS) was progressed. . LPS is the part that forms outer membrane in Gram-negative bacteria, and removes rfaL gene involved in the synthesis of O-antigen polysaccharide (O-PS) polymerase of LPS to reduce the length of LPS synthesized in outer membrane. Made short. The O-antigen free rough Salmonella mutants ( Δlon) ΔcpxR Δasd ΔrfaL , JOL1800) maintains the antigenicity of LPS and exerts an immune response stimulated by external antigens by exposing the host's immune system to obscuring the LPS during the expression of the extracellular membrane of the selected Losonia intracellulase antigen gene. Could be augmented.
본 발명의 일 구현 예에 따르면, JOL1800은 마우스에서 효과적으로 대식세포내에 침투하고 접종 경로에 관계없이 면역 반응을 유도할 수 있을 정도로 숙주의 비장 내에서 생존하였다. 그러나 혈청 보체에 대해서는 야생 균주 유래 약독화 살모넬라 균주(JOL912)보다 더욱 쉽게 사멸되었다. O-항원을 제거한 약독화 JOL1800은 혈청 보체에 더 민감하게 반응하지만 이미 살모넬라 균주에 노출되었던 개체의 LPS 특이항체를 피할 수 있어 약해진 방어 기전을 보완하는 것으로 추정된다.According to one embodiment of the invention, JOL1800 survived in the spleen of the host to effectively penetrate macrophages in mice and induce an immune response regardless of the inoculation route. However, serum complement was more easily killed than attenuated Salmonella strain derived from wild strain (JOL912). The attenuated JOL1800 eliminates O-antigens is more sensitive to serum complement but is thought to complement the weakened defense mechanism by avoiding LPS-specific antibodies in individuals that have already been exposed to Salmonella strains.
상기 O-항원을 제거한 살모넬라 균주를 전달 벡터(delivery vector)로 사용할 때 얻을 수 있는 추가적인 이점은 DIVA(Differentiation of Infected and Vaccinated Animals)이다. LPS의 가장 바깥쪽을 구성하는 반복되는 당 중합체인 O-항원을 완전히 제거하여 제작된 균주인 JOL1800를 이종 항원을 전달하는 벡터로 이용할 경우 백신 접종 4주 이상이 지났을 때 혈청 ELISA를 통하여 야생 균주에 감염된 개체와 O-항원이 결손된 백신 균주로 면역화된 개체를 구분하는 DIVA에 활용할 수 있다.An additional benefit of using the Salmonella strain from which the O-antigen has been removed as a delivery vector is the Differentiation of Infected and Vaccinated Animals (DIVA). JOL1800, a strain produced by completely removing O-antigen, a repeating sugar polymer constituting the outermost part of LPS, was used as a vector to transfer heterologous antigens. It can be used in DIVA to distinguish between infected individuals and individuals immunized with vaccine strains lacking O-antigens.
본 발명의 약독화된 살모넬라 변이주는 Bla(β-lactamse) 신호 서열, 이에 연결된 OptA, OptB, FliC 및 Hly 항원을 코딩하는 유전자로 이루어진 군에서 선택된 어느 하나의 유전자; 및 asd 유전자;를 포함하는 재조합 벡터로 형질전환된 것일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 구현 예에서, 상기 재조합 벡터는 Bla 신호 서열을 기초로 한 분비 시스템을 지닌 pJHL65(asd+ vector, pBR ori, 6xHis) 또는 pJHL80(asd+ vector, p15A ori, 6xHis)일 수 있다. The attenuated Salmonella strain of the present invention is any one of the genes selected from the group consisting of Bla (β-lactamse) signal sequence, genes encoding OptA, OptB, FliC and Hly antigens linked thereto; And asd gene; but may be transformed with a recombinant vector comprising, but is not limited thereto. In one embodiment of the invention, the recombinant vector may be pJHL65 (asd + vector, pBR ori, 6xHis) or pJHL80 (asd + vector, p15A ori, 6xHis) having a secretion system based on the Bla signal sequence.
또한, 본 발명의 살모넬라 변이주에 있어서, 상기 살모넬라균은 살모넬라 티피무리움(Salmonella typhimurium), 살모넬라 타이피(Salmonella typi), 살모넬라 파라타이피(Salmonella paratyphi), 살모넬라 센다이(Salmonella sendai), 살모넬라 갈리나리움(Salmonella gallinarium) 또는 살모넬라 엔테리티디스(Salmonella enteritidis) 등일 수 있고, 바람직하게는 살모넬라 티피무리움일 수 있으나, 이에 제한되지 않는다.Further, in the Salmonella mutants of the present invention, wherein the Salmonella is Salmonella typhimurium (Salmonella typhimurium), Salmonella tie blood (Salmonella typi), Salmonella para tie blood (Salmonella paratyphi), Salmonella Sendai (Salmonella sendai), Salmonella Galina Solarium ( Salmonella gallinarium ) or Salmonella enteritidis ( Salmonella enteritidis ) and the like, preferably Salmonella typhimurium, but is not limited thereto.
또한, 본 발명은In addition, the present invention
(a) 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원을 코딩하는 유전자로 이루어진 군에서 선택된 어느 하나의 유전자를 증폭시키는 단계;(a) Lawsonia Intracellulose amplifying any one gene selected from the group consisting of genes encoding OptA, OptB, FliC and Hly antigens derived from intracellularis );
(b) 상기 (a) 단계의 증폭된 유전자를 asd 유전자를 가진 재조합 벡터에 클로닝하는 단계;(b) cloning the amplified gene of step (a) into a recombinant vector having an asd gene;
(c) 상기 (b) 단계의 클로닝된 플라스미드를 약독화된 살모넬라 균주에 형질전환시키는 단계; 및(c) transforming the cloned plasmid of step (b) into an attenuated Salmonella strain; And
(d) 상기 (c) 단계의 형질전환된 살모넬라 변이주를 선별하는 단계를 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 약독화된 살모넬라 변이주의 제조방법을 제공한다.(d) provides a method for producing attenuated Salmonella mutant strain for simultaneously preventing or treating swine proliferative ileitis and Salmonellosis comprising the step of selecting the transformed Salmonella mutant strain of step (c).
또한, 본 발명은 상기 변이주 중 둘 이상을 포함하는 약독화된 살모넬라 변이주 혼합물을 제공한다.The present invention also provides an attenuated Salmonella mutant mixture comprising two or more of the mutants.
본 발명의 상기 살모넬라 변이주 혼합물은 lon, cpxR , rfaL asd 유전자가 결실된 살모넬라 변이주가, OptA, OptB, FliC 및 Hly 항원으로 이루어진 군에서 선택된 어느 하나의 항원을 세포외막 또는 세포 밖에 발현하는 살모넬라 변이주를 둘 이상 포함하고 있는 혼합물이다.Salmonella mutant mixture of the present invention is lon, cpxR , rfaL And asd Salmonella mutants having a gene deleted are mixtures containing two or more Salmonella mutants expressing any one antigen selected from the group consisting of OptA, OptB, FliC and Hly antigens in the extracellular membrane or extracellular.
바람직하게는, 상기 살모넬라 변이주 혼합물은 OptA를 발현하는 살모넬라 변이주, OptB를 발현하는 살모넬라 변이주, FliC를 발현하는 살모넬라 변이주 및 Hly를 발현하는 살모넬라 변이주를 모두 포함하는 혼합물일 수 있으나, 이에 제한되지 않는다.Preferably, the mixture of Salmonella mutants may be a mixture comprising all of Salmonella mutants expressing OptA, Salmonella mutants expressing OptB, Salmonella mutants expressing FliC and Salmonella mutants expressing Hly, but are not limited thereto.
또한, 본 발명은 상기 약독화된 살모넬라 변이주 또는 이의 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물을 제공한다.In addition, the present invention provides a vaccine composition for the simultaneous prevention or treatment of swine proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
본 발명의 백신 조성물은 유전자 결실에 의해 약독화된 살모넬라균에 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원을 발현하는 살모넬라 변이주를 하나 이상 포함하는 혼합물을 유효성분으로 포함하여, 상기 백신 조성물을 사람 또는 동물에 처리하여 돼지 증식성 회장염 및 살모넬라증을 동시에 예방 또는 치료할 수 있다.The vaccine composition of the present invention is a Lawsonia intracellular cellulose to Salmonella attenuated by gene deletion (lawsonia) Intracellularis ) containing a mixture containing one or more Salmonella mutants expressing OptA, OptB, FliC and Hly antigens as an active ingredient, by treating the vaccine composition in humans or animals to prevent or prevent pig hyperplasia ileitis and Salmonellosis It can be cured.
본 발명의 일 구현 예에 따른 백신 조성물에 있어서, 상기 살모넬라 변이주 혼합물은 변이주 생균 또는 사균의 형태로 준비될 수 있고, 바람직하게는 변이주 생균의 형태일 수 있으나, 이에 제한되지 않는다.In the vaccine composition according to an embodiment of the present invention, the Salmonella mutant strain mixture may be prepared in the form of mutant strains or dead bacteria, preferably in the form of mutant strains, but is not limited thereto.
본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어, 근육 내, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 바람직하게는 경구 또는 피하 투여할 수 있으나, 이에 제한되지 않는다. 또한 상기 조성물의 투여량은 사람이나 동물의 무게, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. The composition of the present invention may be administered orally or parenterally (eg, applied intramuscularly, intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, preferably orally or subcutaneously. This is not restrictive. In addition, the dosage of the composition varies depending on the weight, age, sex, health status, diet, administration time, administration method, excretion rate and severity of the disease or the like of the human or animal.
상기 백신 조성물은 사람이나 포유동물에 접종할 수 있으며, 포유동물은 소, 사슴, 산양, 염소, 개, 돼지 등일 수 있으며, 바람직하게는 돼지에 접종할 수 있으나, 이에 제한되지 않는다.The vaccine composition may be inoculated in humans or mammals, and the mammal may be cows, deer, goats, goats, dogs, pigs, and the like, and preferably inoculated in pigs, but is not limited thereto.
본 발명에서 용어 "백신"은 생체에 면역을 주는 항원을 함유한 생물학적인 제제로서, 감염증의 예방을 위하여 사람이나 동물에 주사하거나 경구 투여함으로써 생체에 면역이 생기게 하는 면역원 또는 항원성 물질을 말한다. 생체 내 면역은 병원균의 감염 후에 생체 내 면역력이 자동으로 얻어지는 자동 면역과 외부에서 주입한 백신에 의하여 얻어지는 수동 면역으로 크게 나누어진다. 자동 면역은 면역에 관계하는 항체의 생성기간이 길고 지속적인 면역력의 특징이 있는 반면, 백신에 의한 수동 면역은 감염증 치료에 즉시 작용하나 지속력이 떨어지는 단점이 있다.As used herein, the term “vaccine” refers to a biological agent containing an antigen that immunizes a living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal for the prevention of infection. In vivo immunization is largely divided into automatic immunity obtained automatically by the in vivo immunity after infection of a pathogen and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of production of immune-related antibodies and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
상기 백신 조성물은 안정제, 유화제, 수산화알루미늄, 인산알루미늄, pH 조정제, 계면활성제, 리포솜, 이스콤(iscom) 보조제, 합성 글리코펩티드, 증량제, 카복시폴리메틸렌, 서브바이랄(subviral) 입자 보조제, 콜레라 독소, N,N-디옥타데실-N',N'-비스(2-하이드록시에틸)-프로판디아민, 모노포스포릴 지질 A, 디메틸디옥타데실-암모늄 브로마이드 및 이의 혼합물로 구성된 군에서 선택된 어느 하나 이상의 제 2 보조제를 추가로 함유할 수 있다.The vaccine composition includes stabilizers, emulsifiers, aluminum hydroxide, aluminum phosphate, pH adjusters, surfactants, liposomes, iscom adjuvants, synthetic glycopeptides, extenders, carboxypolymethylene, subviral particle adjuvants, cholera toxin , N, N-dioctadecyl-N ', N'-bis (2-hydroxyethyl) -propanediamine, monophosphoryl lipid A, dimethyldioctadecyl-ammonium bromide and mixtures thereof The second adjuvant may be further contained.
또한, 상기 백신 조성물은 수의학적으로 허용 가능한 담체를 포함할 수 있다. 본 발명에서 용어 "수의학적으로 허용 가능한 담체"란 임의의 및 모든 용매, 분산 매질, 코팅제, 항원 보강제, 안정제, 희석제, 보존제, 항균제 및 항진균제, 등장성 작용제, 흡착 지연제 등을 포함한다. 백신용 조성물에 포함될 수 있는 담체, 부형제, 희석제로는 락토즈, 덱스트로스, 슈크로스, 솔비톨, 만니톨, 자일리톨, 말티톨, 전분, 글리세린, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘포스페이트, 칼슘실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수 있다.In addition, the vaccine composition may comprise a veterinary acceptable carrier. As used herein, the term "veterinary acceptable carrier" includes any and all solvents, dispersion media, coatings, antigen adjuvant, stabilizers, diluents, preservatives, antibacterial and antifungal agents, isotonic agents, adsorption delaying agents, and the like. Carriers, excipients, and diluents that may be included in the composition for vaccines include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, maltitol, starch, glycerin, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like.
또한, 상기 백신용 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형 및 드립(drip) 또는 스프레이 등의 비강용 제형 그리고 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 제제화할 경우에는 보통 사용되는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제할 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 레시틴 유사 유화제에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용할 수 있다. 경구 투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등을 사용할 수 있으며, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수용성제, 현탁제, 유제, 동결건조제제가 포함된다. 비수용성제제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리 에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있으나, 이에 제한되지 않는다. 비강내 투여를 위한 제제에 적합한 침투제는 일반적으로 당업자에게 공지되어 있다. 그러한 적합한 제형물은 안정성과 순응도를 위해 바람직하게 무균, 등장 및 완충되도록 제형화된다. 비강내 투여를 위한 제제는 또한 정상적인 섬모 작용을 유지시키기 위해 점액 분비를 여러 측면에서 자극하도록 제조되며, 적합한 제형이 바람직하게 등장성의, pH 5.5 내지 6.5를 유지하는 약간 완충된 제형이며, 가장 바람직하게 항미생물 방부제 및 적합한 약물 안정화제를 포함한다.In addition, the vaccine composition is an oral formulation such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and nasal formulations such as drips or sprays and sterile injectable solutions, respectively, according to a conventional method. Formulated in the form of can be used. When formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used can be prepared. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate and sucrose in the lecithin-like emulsifier. Or lactose, gelatin, etc. can be mixed and prepared. In addition to simple excipients, lubricants such as magnesium styrate talc may also be used. As a liquid preparation for oral administration, suspending agents, liquid solutions, emulsions, syrups, etc. may be used.In addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be used. May be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations. As the non-aqueous preparation and suspending agent, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like may be used, but are not limited thereto. Suitable penetrants for formulations for intranasal administration are generally known to those skilled in the art. Such suitable formulations are formulated to be preferably sterile, isotonic and buffered for stability and compliance. Formulations for intranasal administration are also formulated to stimulate mucus secretion in several aspects to maintain normal ciliary action, and suitable formulations are preferably slightly buffered formulations that maintain isotonicity, pH 5.5 to 6.5, and most preferably Antimicrobial preservatives and suitable drug stabilizers.
또한, 본 발명은 상기 약독화된 살모넬라 변이주 또는 이의 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방용 사료 첨가제를 제공한다.In addition, the present invention provides a feed additive for the simultaneous prevention of pig proliferative ileitis and Salmonellosis comprising the attenuated Salmonella mutant strain or a mixture thereof as an active ingredient.
본 발명의 상기 사료 첨가제는 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원을 발현 및 분비하는 살모넬라 변이주 또는 이의 혼합물을 유효성분으로 포함하여, 살모넬라 변이주 또는 이의 혼합물이 로소니아 및 살모넬라에 대한 보호 효과뿐만 아니라, 동물의 세포성 및 체액성 면역반응을 효과적으로 유도하므로 이를 사료 첨가제로 사용할 경우 가축의 돼지 증식성 회장염 및 살모넬라증 동시예방 및 면역증강에 기여할 수 있다.The feed additive of the invention rosoni ah intra-cell-less (Lawsonia intracellularis) derived OptA, OptB, including a Salmonella mutant, or a mixture thereof to express and secrete FliC and Hly antigen as an active ingredient, a Salmonella mutant, or a mixture thereof rosoni O And as well as the protective effect on Salmonella, effectively induces cellular and humoral immune response in animals, when used as feed additives can contribute to the simultaneous prevention and immune boosting of pig proliferative ileitis and Salmonellosis in livestock.
본 발명의 상기 사료 첨가제는 살모넬라 변이주 혼합물을 원형 그대로 사용하거나 또는 추가적으로 가축에 허용되는 곡류 및 그 부산물 등의 공지된 담체, 안정제 등을 가할 수 있으며, 필요에 따라 구연산, 후말산, 아디픽산, 젖산, 사과산 등의 유기산이나 인산나트륨, 인산칼륨, 산성 피로인산염, 폴리인산염(중합인산염) 등의 인산염이나, 폴리페놀, 카테킨, 알파-토코페롤, 로즈마리 추출물, 비타민 C, 녹차 추출물, 감초 추출물, 키토산, 탄닌산, 피틴산 등의 천연 항산화제, 항생물질, 항균제 및 기타의 첨가제 등을 가할 수도 있으며, 그 형상으로서는 분체, 과립, 펠릿, 현탁액 등의 적당한 상태일 수 있으며, 상기 사료첨가제를 공급하는 경우는 가축 등에 대하여 단독으로 또는 사료에 혼합하여 공급할 수 있다.The feed additive of the present invention may use the Salmonella mutant mixture as it is or additionally add known carriers, stabilizers and the like, such as grains and by-products allowed for livestock, citric acid, fumaric acid, adipic acid, lactic acid, if necessary. , Organic acids such as malic acid, phosphates such as sodium phosphate, potassium phosphate, acid pyrophosphate and polyphosphate (polyphosphate), polyphenols, catechins, alpha-tocopherols, rosemary extracts, vitamin C, green tea extracts, licorice extracts, chitosan, Natural antioxidants such as tannic acid and phytic acid, antibiotics, antibacterial agents, and other additives may be added, and the shape may be in a suitable state such as powder, granules, pellets, suspensions, and the like. It may be supplied alone or mixed with the feed.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
재료 및 방법Materials and methods
1. O-항원 결손 약독화 살모넬라 균주 개발1. Development of attenuated Salmonella strain of O-antigen deletion
1.1. 실험에 사용된 균주 및 플라스미드1.1. Strains and Plasmids Used in the Experiment
본 발명에 사용된 균주와 플라스미드는 표 1에 표시되어 있다. asd 유전자가 제거된 살모넬라 티피무리움(이하 S. Typhimurium으로 표기) 균주는 LB 배지, 37℃에서 50 ㎍/㎖의 DAP을 첨가하여 배양하였다. 온도-민감성(temperature sensitive) 균주는 LB 배지, 28℃에서 배양하였다. 람다-레드(λ Red) 유전자를 가지는 균주는 0.2% L-아라비노스를 함유한 LB 배지에서 배양하였다. 모든 균주는 20% 글리세롤을 함유하는 LB 액체 배지에서 -80℃에 보관되었다.The strains and plasmids used in the present invention are shown in Table 1. Salmonella typhimurium (hereinafter, referred to as S. Typhimurium ) strain from which the asd gene was removed was cultured by adding 50 µg / ml DAP at 37 ° C in LB medium. Temperature sensitive strains were cultured in LB medium, 28 ° C. Strains with lambda-red genes were cultured in LB medium containing 0.2% L-arabinose. All strains were stored at −80 ° C. in LB liquid medium containing 20% glycerol.
Figure PCTKR2017006150-appb-T000001
Figure PCTKR2017006150-appb-T000001
1.2. 실험동물1.2. Laboratory animals
본 발명에서 설명한 모든 실험동물 관리 및 절차는 동물관리에 대한 한국위원회의 지침에 따라 전북대학교 동물 윤리위원회(CBNU2015-00085)에서 승인되었다. 5주령의 BALB/c 암컷 마우스를 구입하여 전북대학교 실험동물사육장에서 사육하면서 약 1주일 동안 사육 적응 기간을 거친 후 실험에 사용하였다.All experimental animal care and procedures described in the present invention were approved by Chonbuk National University Animal Ethics Committee (CBNU2015-00085) in accordance with the guidelines of the Korean Committee on Animal Care. BALB / c female mice of 5 weeks of age were purchased and used in experiments after a period of adaptation for about 1 week while being bred at the experimental animal breeding center of Chonbuk National University.
1.3. O-항원 결실 변이주의 제작1.3. Production of O-antigen Deletion Mutantism
기존의 약독화 S. Typhimurium에서 O-항원 리가제(O-antigen ligase) 유전자인 rfaL을 제거하여 세균 표면의 LPS에서 O-항원이 없는 균주를 개발하였다. 약독화 생균인 S. Typhimurium JOL912(ΔcpxR, Δlon, Δasd)에 재조합을 유도하는 람다 레드를 포함하는 플라스미드 pKD46을 전기 충격으로 형질전환하였다. 32℃ 이하(28-30℃)에서 배양 후 PCR을 통해 성공적으로 플라스미드가 도입되었는지 확인하였다. pKD3 플라스미드를 주형으로 하여 rfaL 유전자와 pKD3 플라스미드의 일부분을 포함하는 40개 뉴클레오티드 길이의 프라이머를 이용하여 PCR로 증폭하였다. 증폭된 PCR 산물을 추출하여 pKD46이 도입된 S. Typhimurium 컴피턴트 세포(competent cell)에 형질전환하였다. 아라비노스를 첨가한 LB(Luria-Bertani) 고체배지에 도말하여 37℃에서 배양하였다. 재조합된 균주는 25㎍/㎖ 클로람페니콜(chloramphenicol)이 함유된 LB 고체 배지에서 선택되었다. 녹아웃(knock-out)은 프라이머를 이용하여 PCR로 확인하였다. 항생제 저항 유전자를 제거하기 위해 유전자 전환이 확인된 콜로니균으로 컴피턴드 세포(Competent cell)를 만들어 pCP20 플라스미드를 형질전환하였다. LB 배지, 37℃에서 배양하여 클로람페니콜 저항성이 없는 균을 선택하였다. LPS를 추출하여 야생 S. Typhimurium과 비교를 위한 SDS-PAGE를 하여 확인하였다. 최종적으로 확인된 O-항원 결실 살모넬라 균주를 JOL1800으로 명명하였다.The O-antigen ligase gene, rfaL, was removed from the existing attenuated S. Typhimurium to develop a strain without O-antigen in LPS on the bacterial surface. Plasmid pKD46 containing lambda red, which induces recombination, was transformed by electric shock into S. Typhimurium JOL912 ( ΔcpxR, Δlon, Δasd ) , which is attenuated live bacteria. After culturing at 32 ° C. or lower (28-30 ° C.), PCR was confirmed whether the plasmid was successfully introduced. The pKD3 plasmid as a template was amplified by PCR using a 40-nucleotide-long primer containing the rfaL gene and a portion of the pKD3 plasmid. The amplified PCR product was extracted and transformed into S. Typhimurium competent cells into which pKD46 was introduced. It was plated on LB (Luria-Bertani) solid medium to which arabinos was added and incubated at 37 ° C. Recombined strains were selected in LB solid medium containing 25 μg / ml chloramphenicol. Knock-out was confirmed by PCR using primers. In order to remove the antibiotic resistance gene, competent cells were made from colonies confirmed to be transgenic, and the pCP20 plasmid was transformed. Cultured in LB medium, 37 ℃ was selected bacteria without chloramphenicol resistance. LPS was extracted and confirmed by SDS-PAGE for comparison with wild S. Typhimurium . The finally identified O-antigen deleted Salmonella strain was named JOL1800.
1.4. 인 비트로 보체 민감성 분석(In vitro complement sensitivity assay)1.4. In vitro complement sensitivity assay
S. Typhimurium의 혈청 보체 민감성(serum complement sensitivity)은 토끼 혈청을 이용하여 측정하였다. 항-살모넬라 항체가 없는 혈청을 토끼에서 채취하여 분석에 사용하였다. 사용되는 모든 균주는 후기 대수기(late log phase)까지 배양되어 1×107 cfu/100㎕로 희석하였다. 준비된 JOL401, JOL912, JOL1800 배양액을 각각 100㎕ PBS, 50% 혈청 보체 100㎕, 보체가 없는 혈청(DCS) 100㎕에 각각 섞어 37℃에서 1시간동안 배양하였다. 이후 모든 배양액을 각각 다른 LB 고체 배지에 도말하여 배양하였다. JOL912, JOL1800이 자라는 배지에는 DAP을 첨가하였다. 실험 결과는 % of inoculum = (CFUtreatment/CFUPBS)×100으로 나타냈다.Serum complement sensitivity of S. Typhimurium was measured using rabbit serum. Serum free of anti-salmonella antibodies was taken from rabbits and used for analysis. All strains used were incubated until late log phase and diluted to 1 × 10 7 cfu / 100 μl. The prepared JOL401, JOL912, and JOL1800 cultures were respectively mixed with 100 μl PBS, 100 μl of 50% serum complement, and 100 μl of complement-free serum (DCS), respectively, and incubated at 37 ° C. for 1 hour. All cultures were then plated in different LB solid medium and cultured. DAP was added to the medium in which JOL912 and JOL1800 grew. The experimental results were expressed as% of inoculum = (CFU treatment / CFU PBS ) × 100.
1.5. 대식세포 탐식/침투 분석1.5. Macrophage Phagocytosis / Infiltration Analysis
마우스의 1차 복막 대식세포(primary peritoneal macrophage)에 JOL401, JOL912, JOL1800을 감염시켜 균의 탐식과 침투를 형광현미경을 이용하여 관찰하였다. 4주령 마우스의 복강에 5% BSA를 주사하여 대식세포를 채취하였다. 대식세포는 무균적으로 다루어지고 5×106 세포 수로 0.2% 젤라틴 코팅된 커버글라스 슬립에 분주하였다. 이후 6-웰 세포 배양 플레이트에 RPMI[RPMI 1640, 10% FBS(heat-inactivated fetal bovine serum), 1×Antibiotic-Antimycotic(Gibco, Life technologies, USA)]를 부어 배양하였다. 37℃, 5% CO2 조건의 인큐베이터에서 24시간 배양 후 대식세포에 S. Typhimurium을 MOI 10:1로 감염시켰다. 세균 처리 후 30분동안 37℃, 5% CO2 인큐베이터에서 배양하였다. 탐식되거나 침투하지 않은 세균은 PBS로 씻어내고 항생제를 포함하는 RPMI를 첨가하여 다시 48시간동안 인큐베이터에 두었다. 커버글라스 슬립의 세포는 PBS로 희석한 3% 파라포름알데하이드로 고정하고 면역형광염색을 실시하였다. 1차 항체는 JOL401, JOL912를 감염시킨 경우 치킨 항-912 다클론 혈청(chicken anti-912 polyclonal sera)을, JOL1800을 감염시킨 경우에는 치킨 항-1800 다클론 혈청(chicken anti-1800 polyclonal sera)를 각각 0.1% tween 20 PBS에 1:1,000으로 희석하여 사용하였다. 2차 항체는 모두 염소 항-치킨 IgY H&L-Alexa Fluor® 488(Abcam, UK)을 1:5,000의 비율로 PBS에 희석하여 사용하였다. 대식세포의 핵은 DAPI(2-(4-amidinophenyl)-1H-indole-6-carboxamidine; Sigma-Aldrich, US) 0.5㎍/㎖ 농도로 대비염색(counterstain)하였다. 커버글라스 슬립을 마이크로 슬라이드(micro-slide)에 부착하여 형광 현미경(AX1 Zeiss., Germany)으로 관찰하였다. 대식세포는 감염 4시간 후, 24시간 후, 48시간 후에 각각 관찰되었다.The primary peritoneal macrophage of mice was infected with JOL401, JOL912, and JOL1800, and the phagocytosis and infiltration were observed using a fluorescence microscope. Macrophages were harvested by injecting 5% BSA into the abdominal cavity of 4 week old mice. Macrophages were treated aseptically and covered with 0.2% gelatin-coated coverglass slip in a 5 × 10 6 cell number. Thereafter, RPMI [RPMI 1640, 10% FBS (heat-inactivated fetal bovine serum), 1 × Antibiotic-Antimycotic (Gibco, Life technologies, USA)] was poured into 6-well cell culture plates. After 24 hours of incubation in an incubator at 37 ° C., 5% CO 2 , S. Typhimurium was infected with MOI 10: 1. After bacterial treatment, the cells were incubated in 37%, 5% CO 2 incubator for 30 minutes. The phagocytic or non-penetrating bacteria were washed with PBS and placed in the incubator for 48 hours with the addition of RPMI containing antibiotics. Cover glass slip cells were fixed with 3% paraformaldehyde diluted with PBS and subjected to immunofluorescence staining. The primary antibody is chicken anti-912 polyclonal sera when infected with JOL401, JOL912, or chicken anti-1800 polyclonal sera when infected with JOL1800. Each diluted 1: 1,000 in 0.1% tween 20 PBS was used. All secondary antibodies were used diluted in PBS with goat anti-chicken IgY H & L-Alexa Fluor® 488 (Abcam, UK) at a ratio of 1: 5,000. The nuclei of macrophages were counterstained at a concentration of 0.5 μg / ml DAPI (2- (4-amidinophenyl) -1H-indole-6-carboxamidine; Sigma-Aldrich, US). Cover glass slip was attached to a micro-slide and observed with a fluorescence microscope (AX1 Zeiss., Germany). Macrophages were observed 4 hours after infection, 24 hours after and 48 hours after infection.
1.6. 살모넬라 균주의 생존 분석1.6. Survival Analysis of Salmonella Strains
본 발명의 S. Typhimurium 균주가 숙주의 실질 장기 내에 얼마나 오랜 기간 잔류하는지 확인하기 위하여 실시하였다. 총 96마리의 쥐를 3그룹으로 나누었다(n=32). 4주령 마우스에 JOL401, JOL1800을 각각 1×107 cfu씩 구강 접종하고, 3번째 그룹에는 JOL1800을 근육내 접종하였다. 실험의 목적을 위해 Δasd 균주인 JOL1800은 asd+ 플라스미드인 pJHL65를 전기 충격으로 형질전환하여 접종하였다. 접종 후 3, 7, 14, 21, 28일마다 각 그룹의 마우스 8마리씩을 마취하여 무균적으로 비장을 수확하였다. 비장에서 살모넬라의 존재를 확인하기 위하여 비장을 호모게나이저(homogenizer)를 이용하여 BPW(buffered peptone water, Becton, MD, USA) 2㎖로 균질화하였다. 균질화된 용액 100㎕를 곧바로 BGA(Brilliant green agar) 플레이트에 골고루 접종하여 37℃에서 하룻밤동안 배양하였다. 동시에 남은 BPW 샘플은 RV(Rappaport-Vassiliadis) 배지에 접종하여 37℃에서 48시간동안 배양하였다. 얻어진 콜로니들은 최종적으로 S. Typhimurium 특이 프라이머를 이용하여 PCR로 확인하였다. S. Typhimurium strain of the present invention was carried out to determine how long the remaining in the host organs. A total of 96 rats were divided into three groups (n = 32). Four-week-old mice were orally inoculated with JOL401 and JOL1800 at 1 × 10 7 cfu, respectively, and the third group was intramuscularly inoculated with JOL1800. For the purpose of the experiment, the Δasd strain JOL1800 was inoculated by transforming the asd + plasmid pJHL65 by electric shock. Spleens were harvested aseptically by anesthetizing 8 mice of each group every 3, 7, 14, 21, 28 days after inoculation. To confirm the presence of Salmonella in the spleen, the spleen was homogenized with 2 ml BPW (buffered peptone water, Becton, MD, USA) using a homogenizer. 100 μl of the homogenized solution was immediately inoculated evenly into Brilliant green agar (BGA) plates and incubated overnight at 37 ° C. Simultaneously, the remaining BPW samples were inoculated in Rappaport-Vassiliadis (RV) medium and incubated at 37 ° C. for 48 hours. The colonies obtained were finally S. Typhimurium PCR was confirmed using specific primers.
1.7. 혈청 IgG에 기초한 DIVA 능력 확인1.7. Identification of DIVA Ability Based on Serum IgG
총 60마리의 마우스를 4그룹으로 나눈다(n=15). 첫 접종은 마우스가 4주령일 때 실시하고, 3주 후 2차 접종을 실시하였다. 접종 균주로는 JOL401과 JOL1800을 사용하였고, 각각 1×108 cfu/100㎕를 경구 접종하고 1×106 cfu/100㎕를 근육내 접종하였다. 혈청은 접종 후 5주까지 1주일 간격으로 채취하였다. 정제된 S. Typhimurium LPS(L6511 SIGMA, sigma-Aldrich Co. LLC, US)를 사용하여 간접 ELISA를 실시하였다. 정제된 항원 단백질인 LPS를 ELISA 플레이트에 200ng/웰의 농도로 분주하여 코팅하였다. 1차 항체인 마우스 혈청은 PBS와 1:100으로 희석하고, 2차 항체인 HRP-축합 항-마우스 IgG는 1:8,000의 비율로 희석하여 사용하였다. 발색에는 OPD(Sigma-Aldrich, US) 반응액을 웰 당 100㎕씩 분주하여 5분 동안 반응시킨 후 3M H2SO4로 멈추고 492nm에서 OD값을 측정하였다. 혈청 IgG가 LPS에 붙은 값은 평균 OD값으로 표현하였다.A total of 60 mice are divided into 4 groups (n = 15). The first inoculation was carried out when the mice are 4 weeks old, and the second dose was given 3 weeks later. JOL401 and JOL1800 were used as the inoculating strains, and 1 × 10 8 cfu / 100 μl was orally inoculated and 1 × 10 6 cfu / 100 μl was intramuscularly inoculated. Serum was collected at weekly intervals up to 5 weeks after inoculation. Indirect ELISA was performed using purified S. Typhimurium LPS (L6511 SIGMA, sigma-Aldrich Co. LLC, US). Purified antigenic protein, LPS, was coated on an ELISA plate by dispensing at a concentration of 200 ng / well. Mouse serum, the primary antibody, was diluted 1: 100 with PBS, and HRP-condensed anti-mouse IgG, the secondary antibody, was diluted at a ratio of 1: 8,000. For the color development, 100 μl per well of the OPD (Sigma-Aldrich, US) reaction solution was dispensed for 5 minutes and then stopped with 3M H 2 SO 4 , and the OD value was measured at 492 nm. The value of serum IgG attached to LPS was expressed as the average OD value.
2. 2. L. intracellularisL. intracellularis 항원을 발현하는 백신 균주의 개발 Development of vaccine strains expressing antigen
2.1. 균주 및 플라스미드2.1. Strains and Plasmids
본 발명에 사용된 박테리아 균주, 플라스미드는 상기 표 1에 나열되어 있다. 시판되는 대장균 단백질 발현용 벡터인 pET28a, pET32a 플라스미드는 카나마이신(kanamycin) 저항성을 가지므로 균주는 카나마이신(50㎍/㎖)의 존재 하에 배양하였다. Bl21(DE3)pLysS 균주는 로소니아 항원 단백질 정제에 사용되었다. 해당 균주는 단백질 정제시 과발현을 유도할 때 0.1M IPTG(Isopropyl β-D-1-thiogalactopyranoside)의 존재 하에 배양하였다. pJHL65, pJHL80 asd+ 플라스미드는 Bla 신호 서열-기반 세포사이공간 분비(periplasmic secretion) 방식으로 클로닝된 항원 단백질을 분비, 전달하는 벡터로 사용되었다. 모든 균주는 LB 배지를 사용하여 37℃에서 배양하고, 20% 글리세롤을 함유하는 LB 액체 배지를 사용하여 -80℃에서 저장하였다. DAP이 50㎍/㎖의 농도로 asd - 균주인 JOL1800을 배양할 때 첨가되었다.The bacterial strain, plasmid used in the present invention is Listed in Table 1. Commercially available vectors for expression of E. coli proteins, pET28a and pET32a plasmids have kanamycin resistance, so the strains were cultured in the presence of kanamycin (50 µg / ml). The Bl21 (DE3) pLysS strain was used for purifying Lawsonia antigen protein. The strain was cultured in the presence of 0.1M IPTG (Isopropyl β-D-1-thiogalactopyranoside) when inducing overexpression during protein purification. pJHL65 and pJHL80 asd + plasmids were used as vectors to secrete and deliver antigen proteins cloned in a Bla signal sequence-based periplasmic secretion manner. All strains were incubated at 37 ° C. using LB medium and stored at −80 ° C. using LB liquid medium containing 20% glycerol. DAP is at a concentration of asd 50㎍ / ㎖ - was added to culture the strain JOL1800.
2.2. 항원 단백질을 발현하는 플라스미드 제작2.2. Construction of Plasmids Expressing Antigen Proteins
L. intracellularis의 후보 항원은 오토트랜스포터 합성에 관계된 OptA와 OptB, 편모 관련 단백질을 합성하는 FliC, 세포 침투에 관련되는 독소로 생각되는 Hly의 4개이다. 항원 단백질의 발현에 필요한 유전자는 모두 유전자 합성(Bioneer, Korea)을 이용하여 얻어졌다. 각 단백질을 합성하는 L. intracellularis의 유전자는 NCBI(National Centre for Biotechnology Information; http://www.ncbi.nlm.nih.gov/)의 GenBank를 통하여 조사하였다. 각각의 L. intracellularis 항원은 Peptide Property Calculator software(http://www.biosyn.com/peptidepropertycalculator/)를 이용하여 구조를 분석하고, 분석 결과 항원성이 높게 나타난 부분의 염기 서열을 선정하여 합성하였다. 해당 유전자들은 각각 양 끝에 지정된 제한효소자리를 첨가하여 pBHA 벡터에 클로닝 되었다. L. intracellularis 항원 유전자의 양 끝에 첨가된 제한효소 자리는 OptA가 SalI과 XhoI, OptB가 SalI과 PstI, FliC가 EcoRI과 SalI, Hly가 EcoRI과 HindIII이다. 지정된 제한 효소를 사용하여 목적 항원 DNA 절편을 얻어 각각 플라스미드 pET28a, pET32a에 클로닝하여 재조합 플라스미드 pET32a-OptA, pET28a-OptB, pET28a-FliC, pET28a-Hly를 제작하였다. OptA는 pET28a에 삽입되지 않아 유사한 계통의 플라스미드인 pET32a에 클로닝하였다. 얻어진 재조합 플라스미드를 E. coli BL21(DE3)pLysS에 열충격 방법으로 형질전환하여 IPTG의 존재 하에 항원 단백질을 과발현하는 단백질 정제용 균주를 제조하였다. 균주 안에 L. intracellularis 항원 유전자의 유무는 BL21(DE3)pLysS로부터 플라스미드를 분리하여 각 항원에 해당하는 제한 효소로 절단한 후 아가로스 젤에서 실시한 전기영동과 PCR로 확인되었다. 로소니아 삽입 항원 확인 PCR에 사용한 프라이머는 표 2에 나열되어 있다. 최종 확인된 균주를 JOL1593(BL21 containing pET32a and expressing OptA), JOL1586(BL21 containing pET28a and expressing OptB), JOL1682(BL21 containing pET28a and expressing FliC), JOL1742(BL21 containing pET28a and expressing Hly)로 지정하였다. 각 균주에서 OptA, OptB, FliC, Hly 단백질은 NTA(Ni-nitrilotriacetic acid) 아가로스(Qiagen, Valencia, CA)를 이용하여 정제하였다. 각 균주를 배양하고 정제하여 얻어진 L. intracellularis의 항원 단백질은 마우스에서 각 항원에 대한 특이항체를 검출하는 용도로 사용되었다.Candidate antigens of L. intracellularis are OptA and OptB, which are involved in autotransporter synthesis, FliC, which synthesizes flagella related proteins, and Hly, which is considered to be involved in cell infiltration. Genes required for the expression of antigenic proteins were all obtained using gene synthesis (Bioneer, Korea). The genes of L. intracellularis that synthesize each protein were examined through GenBank of the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). Each L. intracellularis antigen was analyzed by Peptide Property Calculator software (http://www.biosyn.com/peptidepropertycalculator/), and then synthesized by selecting the nucleotide sequence of the high antigenicity. The genes were cloned into the pBHA vector, with the restriction sites identified at each end. The restriction sites added at both ends of the L. intracellularis antigen gene are OptA for Sal I and Xho I, OptB for Sal I and Pst I, FliC for EcoR I and Sal I, and Hly for EcoR I and Hind III. Recombinant plasmids pET32a-OptA, pET28a-OptB, pET28a-FliC, and pET28a-Hly were prepared by cloning into the plasmids pET28a and pET32a, respectively, using the designated restriction enzymes. OptA was not inserted into pET28a and cloned into pET32a, a similar strain of plasmid. The resulting recombinant plasmid was transformed into E. coli BL21 (DE3) pLysS by a thermal shock method to prepare a strain for protein purification overexpressing the antigenic protein in the presence of IPTG. L. intracellularis inside strains The presence or absence of the antigen gene was confirmed by electrophoresis and PCR performed on agarose gel after plasmid was isolated from BL21 (DE3) pLysS, digested with restriction enzymes corresponding to each antigen. Primers used for Lawsonia insertion antigen identification PCR are listed in Table 2. The final identified strains were designated as JOL1593 (BL21 containing pET32a and expressing OptA), JOL1586 (BL21 containing pET28a and expressing OptB), JOL1682 (BL21 containing pET28a and expressing FliC), JOL1742 (BL21 containing pET28a and expressing Hly). OptA, OptB, FliC, and Hly proteins in each strain were purified using Ni-nitrilotriacetic acid (NTA) agarose (Qiagen, Valencia, CA). The antigenic protein of L. intracellularis obtained by culturing and purifying each strain was used to detect specific antibodies against each antigen in mice.
최종 목표인 L. intracellularisS. Typhimurium 동시 예방 백신 후보 균주를 제작하기 위하여 이종 항원을 세포사이공간에 발현하도록 만들어진 pJHL65, pJHL80 플라스미드에 항원 유전자를 클로닝하여 pJHL80-OptA, pJHL65-OptB, pJHL65-FliC, pJHL65-Hly를 얻었다.To prepare candidate vaccines for the simultaneous prevention of L. intracellularis and S. Typhimurium , the antigen genes were cloned into pJHL65 and pJHL80 plasmids that express heterologous antigens in the intercellular space, and then pJHL80-OptA, pJHL65-OptB, pJHL65-FliC. pJHL65-Hly was obtained.
Figure PCTKR2017006150-appb-T000002
Figure PCTKR2017006150-appb-T000002
2.3. 백신 균주 제작2.3. Vaccine strain production
2.2에서 제작한 pJHL80-OptA, pJHL65-OptB, pJHL65-FliC, pJHL65-Hly를 각각 JOL1800에 전기 충격으로 형질전환하였다. JOL1800을 10% 글리세롤 함유 증류수로 두 번 세척한 뒤 큐벳에 넣고 정제된 플라스미드 0.1㎍과 섞은 뒤 Bio-Rad MicroPulser(Bio-Rad, USA)로 전기충격을 가한 후 회수하여 DAP을 넣지 않은 LB 액체배지 1㎖에 1시간 동안 37℃에서 배양하였다. 형질전환된 살모넬라균을 선별하기 위해 배양된 균액 100㎕를 다시 DAP을 첨가하지 않은 LB 아가에 도말하여 말린 다음 하룻밤 배양 후 형성된 콜로니를 선별하였다. 선별된 균주로부터 다시 플라스미드를 회수하여 각 항원에 해당하는 제한 효소로 절단한 후 아가로스 젤에서 실시한 전기 영동과 PCR로 확인하였다.PJHL80-OptA, pJHL65-OptB, pJHL65-FliC, and pJHL65-Hly prepared in 2.2 were transformed into JOL1800 by electric shock, respectively. The JOL1800 was washed twice with distilled water containing 10% glycerol, placed in a cuvette and mixed with 0.1 µg of purified plasmid, subjected to electric shock with Bio-Rad MicroPulser (Bio-Rad, USA), and recovered. LB liquid medium without DAP was recovered. 1 ml was incubated at 37 ° C. for 1 hour. To screen for transformed Salmonella bacteria, 100 μl of the culture solution was plated on LB agar without DAP and dried, and colonies formed after overnight culture were selected. Plasmids were recovered from the selected strains, digested with restriction enzymes corresponding to the respective antigens, and confirmed by electrophoresis and PCR on agarose gels.
2.4. 2.4. 웨스턴Weston 블롯Blot
제작된 백신 균주의 외막이나 주변세포질공간에 발현되는 L. intracellularis의 항원을 각각 웨스턴 블롯으로 확인하였다. JOL1809에서 OptA, JOL1810에서 OptB, JOL1811에서 FliC, JOL1812에서 Hly가 발현되었다. 재조합된 균주에서 발현된 항원 단백질은 TCA 침전 과정을 통하여 세포가 없는 상층액에서 얻어졌다. 재조합 플라스미드를 가지는 균주가 분비하는 항원 단백질을 준비하기 위해 37℃, LB 액체배지에 600nm에서 광학밀도(OD600)를 측정하였을 때 0.8이 나올 때까지 균을 배양하여 3,400×g에서 20분간 원심분리한 후 상층액을 분리하였다. 0.22㎛ 크기의 필터에 상층액을 통과시켜 얻어진 맑은 상층액에서 분비된 단백질을 찾기 위하여 20%(v/v) TCA(trichloroacetic acid) 용액을 첨가하여 4℃에서 하룻밤 반응시켰다. 반응한 상층액을 15,700×g에서 30분간 원심분리 후 가라앉은 펠렛을 아세톤을 이용하여 씻어주고 PBS로 재부유하였다. 얻은 용액을 SDS-PAGE 샘플 버퍼와 1:1로 혼합하여 사용하였다. 비교를 위해서 대조군으로 pJHL65 벡터를 가진 약독화된 살모넬라 균주를 같은 방법으로 처리하여 사용하였다. 각각의 단백질 샘플은 웨스턴 블롯 분석을 위하여 SDS-PAGE로 분리되고 0.2㎛ PVDF 멤브레인(Millipore, Billerica, MA, USA)으로 옮겨 blocking buffer(3% BSA, PBS, 0.1% Tween-20)로 4℃에서 하룻밤 반응시켰다. 다음날 항-his-tag 항체(IG Therapy Co., Ltd., Korea)를 1:5,000으로 희석하여 한 시간 반응시킨 후 1:5,000으로 희석한 HRP(horseradish peroxidase)-축합 염소 항-마우스 IgG를 한 시간 처리하였다. 결과는 WEST-ZOL Plus Western Blot Detection System(iNtRon, Korea)을 이용하여 염색하였고 multi-wave length illumination system KODAK Image Station 4000MM(Kodak, USA)을 이용하여 각 항원의 발현 여부를 확인하였다.The antigens of L. intracellularis expressed in the outer membrane and periplasmic space of the prepared vaccine strain were confirmed by Western blot. OptA in JOL1809, OptB in JOL1810, FliC in JOL1811 and Hly in JOL1812. Antigen proteins expressed in the recombinant strains were obtained in cell-free supernatants through TCA precipitation. To prepare the antigenic protein secreted by the recombinant plasmid, the cells were cultured at 37 ° C and LB liquid medium until the optical density (OD 600 ) was measured at 600 nm, and centrifuged at 3,400 × g for 20 minutes. The supernatant was then separated. 20% (v / v) trichloroacetic acid (TCA) solution was added and reacted overnight at 4 ° C. to find the protein secreted from the clear supernatant obtained by passing the supernatant through a 0.22 μm filter. The reacted supernatant was centrifuged at 15,700 × g for 30 minutes, and then the settled pellet was washed with acetone and resuspended in PBS. The resulting solution was used in a 1: 1 mixture with SDS-PAGE sample buffer. For comparison, an attenuated Salmonella strain with pJHL65 vector was used as a control in the same manner. Each protein sample was separated by SDS-PAGE for Western blot analysis and transferred to a 0.2 μm PVDF membrane (Millipore, Billerica, Mass., USA) at 4 ° C. with blocking buffer (3% BSA, PBS, 0.1% Tween-20). The reaction was overnight. The next day, the anti-his-tag antibody (IG Therapy Co., Ltd., Korea) was diluted to 1: 5,000 and reacted for 1 hour, followed by HRP (horseradish peroxidase) -condensed goat anti-mouse IgG diluted to 1: 5,000. Time was processed. The results were stained using a WEST-ZOL Plus Western Blot Detection System (iNtRon, Korea) and the expression of each antigen was confirmed using a multi-wave length illumination system KODAK Image Station 4000MM (Kodak, USA).
3. 3. L. intracellularis L. intracellularis 항원 종합 실험Antigen synthesis experiment
3.1. 균주 및 플라스미드3.1. Strains and Plasmids
본 실험에 사용된 균주와 플라스미드는 표 1의 L. intracellularis 항원을 발현하는 재조합 약독화 살모넬라 균주인 JOL1809, JOL1810, JOL1811, JOL1812를 사용하였다.The strains and plasmids used in this experiment were recombinant attenuated Salmonella strains JOL1809, JOL1810, JOL1811, and JOL1812, which express the L. intracellularis antigens in Table 1.
3.2. 실험동물3.2. Laboratory animals
L. intracellularis OptA, OptB, FliC, Hly 항원의 면역원성 확인을 위해 16마리의 마우스를 2그룹으로 나누어 실험에 사용하였다(n=8). 이하의 조건은 1.2와 같다. In order to confirm the immunogenicity of L. intracellularis OptA, OptB, FliC, and Hly antigens, 16 mice were divided into two groups and used in the experiment (n = 8). The following conditions are the same as 1.2.
3.3. 백신 준비3.3. Vaccine Preparation
L. intracellularis 항원 OptA, OptB, FliC, Hly를 각각 발현하는 O-항원 결손 약독화된 살모넬라 균주인 JOL1809, JOL1810, JOL1811, JOL1812를 LB 고체배지에서 키워 각각 콜로니 다섯 개를 LB 액체배지에 접종하여 37℃에서 하룻밤동안 배양하였다. 따로 배양된 균주를 각각 1:100의 비율로 희석되도록 LB 액체배지에 첨가하여 OD600 값이 0.6이 될 때까지 3~5시간 배양하였다. 배양액을 실온에서 190×g로 원심분리 후 침전물을 멸균된 PBS로 3회 세척하였다. 최종 침전물을 다시 멸균 PBS로 부유시킨 후 OD600 값을 확인하여 균수를 측정하였다. JOL1809, JOL1810, JOL1811, JOL1812 균주를 각각 5×107 CFU씩 혼합하여 총 2×108 CFU/100㎕의 균주를 최종 접종량으로 결정하였다. The O-antigen-deficient attenuated Salmonella strains expressing L. intracellularis antigens OptA, OptB, FliC, and Hly, respectively, were grown in LB solid medium and JOL1809, JOL1810, JOL1811, and JOL1812 were inoculated in LB liquid medium. Incubated overnight at ° C. Separately cultured strains were added to the LB liquid medium to be diluted at a ratio of 1: 100, respectively, and incubated for 3-5 hours until the OD 600 value was 0.6. The culture was centrifuged at 190 × g at room temperature and the precipitate was washed three times with sterile PBS. After the final precipitate was suspended in sterile PBS again, the bacterial count was measured by checking the OD 600 value. JOL1809, JOL1810, JOL1811, and JOL1812 strains were mixed by 5 × 10 7 CFU, respectively, and a total of 2 × 10 8 CFU / 100 μl strains were determined as the final inoculation amount.
3.4. 백신 접종3.4. vaccination
백신의 접종은 L. intracellularis의 OptA, OptB, FliC, Hly 네 개의 항원을 혼합하여 접종하였을 때의 면역 반응 유도를 확인하기 위하여 진행하였다. 마우스를 2개의 그룹으로 나누어 준비하고(n=8) 한 그룹에는 대조군으로 멸균된 PBS를 피하접종 하였고, 다른 그룹에는 JOL1809, JOL1810, JOL1811, JOL1812를 각각 5×107 CFU씩 혼합하여 총 2×108 CFU/100㎕의 균주를 피하접종 하였다.Vaccination was performed to confirm the induction of immune response when four inoculations of OptA, OptB, FliC, and Hly of L. intracellularis were inoculated. Mice were divided into two groups (n = 8), and one group was subcutaneously inoculated with sterile PBS, and the other group was mixed with 5 × 10 7 CFU of JOL1809, JOL1810, JOL1811, and JOL1812, respectively. 10 8 CFU / 100 μl strains were subcutaneously inoculated.
3.5. 가검물 채취3.5. Specimen collection
접종 전 그리고 접종 후 2주 간격으로 sIgA 측정을 위해 질 세척액과 장 세척액, 그리고 IgG 측정을 위하여 혈액을 채취하였다. 질 세척액의 경우 PBS를 이용하여 질 세척 후 용액을 -20℃에 보관하며 실험에 사용하였다. 장 세척액의 경우 필로카루핀-기반 세척(pilocarpine-based lavage) 방법에 기초하여 실시하였다. 세척액(Lavage base 4㎖, Poly ethylene glycol 6.5g, D.W. 40㎖)을 제작하여 한 마리당 500㎕씩 프루브로 급여한 다음 20분 후 필로카르핀 0.5%를 한 마리당 100㎕씩 복강에 주사한다. 플레이트에 모인 쥐의 분변에 각각 50mM EDTA를 500㎕씩 처리하여 3,400×g에 15분 원심분리한 후 상층액을 분리하여 -20℃에 보관하며 실험에 사용하였다. 혈청은 안와후정맥 채혈을 한 후 4,000×g에 5분 동안 원심분리하여 상층액인 혈청을 분리한 후 -20℃에 보관하며 실험에 사용하였다.Blood was collected for vaginal lavage, intestinal lavage, and IgG for sIgA measurements before and after inoculation. In the case of vaginal washing solution, the solution was stored at -20 ° C after vaginal washing using PBS and used for the experiment. Intestinal lavage was performed based on the pilocarpine-based lavage method. Prepare wash solution (Lavage base 4ml, polyethylene glycol 6.5g, D.W.40ml) and feed 500µl per animal, and inject 20% of pilocarpine 0.5% per animal intraperitoneally. Each rat feces collected on the plate was treated with 500 μl of 50mM EDTA, centrifuged at 3,400 × g for 15 minutes, and the supernatant was separated and stored at -20 ° C. and used for the experiment. Serum was collected by orbital venous blood collection and centrifuged at 4,000 × g for 5 minutes to separate serum, which was supernatant, and stored at -20 ° C.
3.6. ELISA 분석3.6. ELISA analysis
재조합 백신 균주에서 발현된 L. intracellularis OptA, OptB, FliC, Hly 항원에 대해 특이한 sIgA와 IgG를 측정하기 위해 ELISA를 시행하였다. 코팅 항원으로 JOL1586, JOL1593, JOL1682, JOL1742 균주에서 정제된 OptA, OptB, FliC, Hly 항원 단백질을 사용하였다. 정제된 항원 단백질을 500ng/웰의 농도로, 표준 단백질 웰(standard well)에는 염소-항 마우스 IgG 또는 염소 항-마우스 sIgA를 각각 200ng/웰의 농도로 분주한 후 4℃에서 하룻밤동안 코팅하였다. 코팅된 플레이트는 Tween 20이 0.05% 함유된 PBS(PBST)로 3번 세척한 후 블로킹 버퍼(3% skim milk in PBS)로 37℃에서 1시간동안 블로킹하였다. 혈청과 PBS를 1:100으로 희석하고, 질 세척액은 1:3, 장 세척액은 1:4 비율로 희석하여 100㎕씩 웰에 분주한 후, 37℃에서 1시간 동안 반응시켰다. 혈청의 경우 염소 항-마우스 IgG HRP, 그리고 질 세척액의 경우에는 염소 항-마우스 IgA HRP를 1:5,000의 비율로 희석하여 각 웰에 100㎕씩 분주한 후 37℃에서 1시간 동안 반응시켰다. OPD-기질 반응액을 웰 당 100㎕씩 분주하여 발색 후 3M H2SO4로 멈추고 492nm에서 OD값을 측정하였다. 각 항원 특이항체의 농도는 표준 단백질 농도에 기초하여 측정하였다.ELISA was performed to measure sIgA and IgG specific for L. intracellularis OptA, OptB, FliC, and Hly antigens expressed in recombinant vaccine strains. As the coating antigen, OptA, OptB, FliC, and Hly antigen proteins purified from JOL1586, JOL1593, JOL1682, and JOL1742 strains were used. Purified antigenic protein was administered at a concentration of 500 ng / well, and standard protein wells were coated with goat-anti mouse IgG or goat anti-mouse sIgA at a concentration of 200 ng / well, respectively, and then coated overnight at 4 ° C. The coated plate was washed three times with PBS (PBST) containing 0.05% of Tween 20 and then blocked with blocking buffer (3% skim milk in PBS) at 37 ° C. for 1 hour. Serum and PBS were diluted 1: 100, vaginal lavage was diluted 1: 3, intestinal lavage was diluted 1: 4, and 100 μl was dispensed into the wells, followed by reaction at 37 ° C. for 1 hour. In the case of serum, goat anti-mouse IgG HRP and vaginal lavage were diluted 1: 5,000 in goat anti-mouse IgA HRP, and 100 μl was dispensed into each well, followed by reaction at 37 ° C. for 1 hour. 100 μl of the OPD-substrate reaction solution was dispensed per well, and then stopped in 3M H 2 SO 4 after color development. The OD value was measured at 492 nm. The concentration of each antigen specific antibody was determined based on the standard protein concentration.
3.7. T 세포 면역반응 측정3.7. T cell immune response
대조군과 면역화된 마우스를 각각 한 그룹씩 준비하고(n=5) 백신접종 열흘 후에 마우스를 희생시켜 무균적으로 비장을 채취한 후 분쇄하고 조직 내 세포를 꺼내 세포 스트레이너(cell strainer)로 남은 조직을 제거하였다. 470×g에서 3분간 원심분리를 하여 펠렛을 RPMI 1640으로 부유시킨 후 RBC 용출 버퍼를 사용하여 세포를 부유시켜 RBC를 제거하였다. 그리고 RPMI 1640으로 2번 세척하고 마지막 펠렛은 RPMI로 부유하였다. RPMI에 부유된 세포의 수를 측정하여 1×106 세포/웰이 되도록 96 웰 플레이트에 분주하였다. FACS(fluorescence activated cell sorting) 분석을 위해 형광염색을 실시하였는데 항-마우스 CD3e-PE, 항-마우스 CD4-perCP-vio700, 항-마우스 CD8a-FITC를 어두운 조건에서 4℃에 15분간 반응시켰다. 염색된 세포는 200㎕ FACS 버퍼로 세 번 세척 후 MACSQuant®분석기(miltenyi Biotec, Germany)를 이용하여 분석하였다.A group of control and immunized mice were prepared (n = 5), and 10 days after vaccination, the mice were sacrificed, the spleen was collected aseptically, crushed, the cells were taken out of the tissues, and the remaining tissues were removed with a cell strainer. Removed. The pellet was suspended by RPMI 1640 by centrifugation at 470 × g for 3 minutes, and then the cells were suspended using RBC elution buffer to remove RBC. Then washed twice with RPMI 1640 and the last pellet was suspended with RPMI. The number of cells suspended in RPMI was measured and aliquoted into 96 well plates to be 1 × 10 6 cells / well. Fluorescence was performed for FACS (fluorescence activated cell sorting) analysis. Anti-mouse CD3e-PE, anti-mouse CD4-perCP-vio700, and anti-mouse CD8a-FITC were reacted at 4 ° C. for 15 minutes in dark conditions. Stained cells were washed three times with 200 μl FACS buffer and analyzed using the MACSQuant ® analyzer (miltenyi Biotec, Germany).
3.8. 역전사 실시간 PCR을 통한 사이토카인의 mRNA 측정3.8. Cytokine mRNA Measurement by Reverse Transcription Real-Time PCR
상기 3.7.와 동일한 방법으로 96 웰 플레이트에 세포를 분주하였다. OptA, OptB, FliC, Hly를 200ng/㎕로 각 1×106 세포에 5% CO2 환경 조건으로 48시간 자극시켰다. 배양 후 전체 RNA는 GeneAll® Hybrid-RTM kit를 사용하여 추출하고 ReverTra Ace® qPCR RT Kit를 사용하여 cDNA로 합성하였다. 실시간 PCR에 사용된 마우스 인터페론-감마(IFN-γ)와 인터루킨(interleukin; IL)-4, IL-17의 프라이머는 표 3에 나열되어 있다. 실시간 PCR은 SYBR® Green Real-Time PCR Master Mix(QPK-201, TOYOBO, Japan)를 사용하여 측정하였다. Step One plus Real Time PCR system(Applied Biosystems)을 사용하여 측정하였다. 각 사이토카인의 경우, RT-PCR 산물의 양을 내부표준으로 사용하는 β-액틴 값으로 정규화하였다.Cells were divided into 96 well plates in the same manner as in 3.7. OptA, OptB, FliC, and Hly were stimulated at 200 ng / μl for 1 hour at 5% CO 2 environmental conditions in 1x10 6 cells for 48 hours. After incubation, total RNA was extracted using GeneAll ® Hybrid-RTM kit and synthesized into cDNA using ReverTra Ace ® qPCR RT Kit. Primers of mouse interferon-gamma (IFN-γ), interleukin (IL) -4, and IL-17 used for real-time PCR are listed in Table 3. Real-time PCR was measured by using SYBR ® Green Real-Time PCR Master Mix (QPK-201, TOYOBO, Japan). It was measured using a Step One plus Real Time PCR system (Applied Biosystems). For each cytokine, the amount of RT-PCR product was normalized to β-actin values using internal standards.
본 발명의 RT-PCR에서 사용한 프라이머Primer used in RT-PCR of the present invention
항원antigen 프라이머 방향Primer direction 서열(5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO:
IFN-γIFN-γ 정방향Forward direction TCA AGT GGC ATA GAT GTG GAA GAATCA AGT GGC ATA GAT GTG GAA GAA 1313
역방향Reverse TGG CTC TGC AGG ATT TTC ATGTGG CTC TGC AGG ATT TTC ATG 1414
IL-4IL-4 정방향Forward direction ACA GGA GAA GGG ACG CCA TACA GGA GAA GGG ACG CCA T 1515
역방향Reverse GAA GCC CTA CAG ACG AGC TCAGAA GCC CTA CAG ACG AGC TCA 1616
IL-17IL-17 정방향Forward direction ACC GCA ATG AAG ACC CTG ATACC GCA ATG AAG ACC CTG AT 1717
역방향Reverse TCC CTC CGC ATT GAC ACATCC CTC CGC ATT GAC ACA 1818
3.9. 통계분석3.9. Statistical analysis
통계분석은 STATA(Stata Statistical Software, Release 8.0, Stata Corporation, College Station, TX)를 사용하였다. ELISA의 항체역가 데이터, CD3+, CD4+, CD8+ T 세포, 사이토카인 폴드 변화(fold change; 2- ΔΔCT)를 P<0.05의 경우 유의한 것으로 간주하였다. 별도로 지정하지 않으면 표준편차(S.D)로 표현하였다.Statistical analysis was performed using STATA (Stata Statistical Software, Release 8.0, Stata Corporation, College Station, TX). Antibody titer data of the ELISA, CD3 +, CD4 +, CD8 + T cells, cytokine fold change (2 - ΔΔCT ) were considered significant for P <0.05. Unless otherwise specified, expressed as standard deviation (SD).
실시예 1. O-항원 결손 약독화 Example 1. Attenuation of O-antigen Depletion S.S. Typhimurium 균주 개발 Typhimurium strain development
1.1. 살모넬라 생백신 벡터의 제작1.1. Production of Salmonella Live Vaccine Vector
DIVA 가능한 S. Typhimurium 생백신 벡터인 JOL1800이 높은 면역원성과 침투성을 가진 약독화 S. Typhimurium 균주인 JOL912를 개량하여 제작되었다. JOL912는 세 가지 유전자(Δlon ΔcpxR Δasd)를 결실시킨 영양요구성 변이주(auxotrophic mutant strain)로 asd 유전자의 결실로 인해 복제시에 DAP을 필수로 요구한다. 따라서 asd+ 플라스미드를 항원 유전자를 발현하는 벡터로 사용하여 균형-치사 보완(balanced-lethal complementation)을 충족한다. 람마 레드 재조합을 이용하여 추가적으로 O-항원 리가제 유전자인 rfaL을 JOL912에서 결실시켜 새로운 살모넬라 백신 벡터인 Δlon ΔcpxR Δasd ΔrfaL JOL1800을 제작하였다(도 1). 람다 레드(lambda RED) 플라스미드인 pKD46을 JOL912에 전기 충격으로 형질전환시키고, pKD46이 형질전환된 균주에 PCR로 증폭한 cat 유전자 카세트를 도입하였다. 감마-레드로 불리는 박테리오파지 재조합 시스템은 감마(gama), 베타(beta), 엑소(exo) 유전자를 가지고 있다. Exo, Bet 유전자가 함께 작용하여 유전자 재조합을 촉진한다. Exo가 ds DNA의 양 끝에서 작용하여 3-오버행을 만들고 bet이 3 ss DNA에 결합하여 RecA에 의해 가닥 교환(strand exchange)을 일으킨다. 여기서 교환되는 cat 유전자 카세트는 플라스미드 pKD3를 주형으로 만들었다. pKD46과 직선형 DNA가 도입된 JOL912를 37℃에서 배양하면 재조합이 일어나 rfaL이 cat 유전자 카세트로 교체되었다. 동시에 pKD46은 세포 밖으로 빠져나간다. 목표 유전자의 제거는 rfaL 플랭킹 영역(flanking region)의 프라이머를 사용한 PCR로 확인되었다. 야생 rfaL가 cat 유전자 카세트(~1.1kb)로 바뀌게 되면 전체 1.9kb인 앰플리콘의 크기가 1.7kb로 짧아진다. rfaL 유전자의 제거가 확인된 균주에 플라스미드 pCP20을 형질전환하였다. pCP20는 항생제 저항성 유전자를 제거하기 위하여 도입되고, 항생제 저항성 유전자 카세트의 양 끝에 존재하는 FRT(FLP recognition target) 사이트에 직접 작용하는 FLP 리콤비나제를 발현하였다. 이후 30℃에서 배양하여 cat 유전자 카세트가 제거된 균주를 얻고, 다시 37℃나 40℃에서 배양하여 플라스미드 pCP20이 없는 최종 균주를 얻었다. 마지막에 얻어진 균주는 JOL912에서 유래한 항생제 저항성이 없는 lon, cpxR , asd , rfaL 유전자가 결실된 변이주 JOL1800으로 명명되었다. JOL1800은 rfaL 유전자의 제거로 O-항원이 없는 R형(rough) 살모넬라 균주이다. JOL1800에서 PAGE 분리 정제된 LPS 추출 후 실버 염색으로 균 표면의 O-항원이 존재하지 않는 것을 확인할 수 있다(도 2). 대조군으로 사용된 S형(smooth) JOL912에서는 길게 발현된 O-항원을 볼 수 있다.DIVA availableS. Typhimurium Live vaccine vector JOL1800 attenuates with high immunogenicity and permeabilityS. Typhimurium It was produced by improving the strain JOL912. JOL912 has three genes (Δlon ΔcpxR ΔasdAuxotrophic mutant strainsasd Deletion of the gene necessitates DAP upon replication. Thus, asd + plasmids are used as vectors expressing antigen genes to satisfy balanced-lethal complementation. Using Ramma Red Recombination, an additional O-antigen ligase generfaLIs deleted from JOL912, a new Salmonella vaccine vectorΔlon ΔcpxR Δasd ΔrfaL JOL1800 was produced (FIG. 1). The lambda RED plasmid pKD46 was transformed into JOL912 by electric shock, and the cat gene cassette amplified by PCR was introduced into the strain transformed with pKD46. The bacteriophage recombination system, called gamma-red, contains gamma, beta, and exo genes. Exo and Bet genes work together to promote gene recombination. Exo acts at both ends of the ds DNA to create a 3-overhang, and bet binds to 3 ss DNA, causing strand exchange by RecA. The cat gene cassette exchanged here made the plasmid pKD3 a template. When incubated at 37 ° C., JOL912 with pKD46 and linear DNA was introduced to replace rfaL with the cat gene cassette. At the same time pKD46 exits the cell. Removal of the target gene was confirmed by PCR using primers from the rfaL flanking region. When wild rfaL is changed to cat gene cassette (~ 1.1kb), the size of the amplicon, which is 1.9kb in total, is shortened to 1.7kb. Plasmid pCP20 was transformed into a strain in which removal of the rfaL gene was confirmed. pCP20 was introduced to remove antibiotic resistance genes and expressed FLP recombinase that acts directly on the FLP recognition target (FRT) sites present at both ends of the antibiotic resistance gene cassette. After culturing at 30 ℃ to obtain a strain from which the cat gene cassette was removed, and further cultured at 37 ℃ or 40 ℃ to obtain a final strain without the plasmid pCP20. The last strain obtained was not resistant to antibiotics derived from JOL912.lon, cpxR , asd , rfaL The mutant strain JOL1800 was deleted. JOL1800rfaL It is a rough Salmonella strain without O-antigen due to the gene removal. After PAGE separation and purified LPS extraction in JOL1800 it can be confirmed that there is no O-antigen on the surface of the bacteria (Fig. 2). In the S-type JOL912 used as a control, long-expressed O-antigens can be seen.
1.2. 인 비트로 보체 민감성 분석1.2. In Vivo Complement Sensitivity Analysis
보체의존성세포상해작용에 O-항원의 길이가 미치는 영향을 알아보기 위하여 야생 S. Typhimurium JOL401, 약독화 균주 JOL912, JOL912 유래 O-항원 결실 균주인 JOL1800을 배양하여 보체 민감성 분석을 진행하였다. R형 JOL1800은 나머지 S형 균주에 비하여 토끼 보체에 더욱 민감한 반응을 나타냈다. JOL1800은 야생 JOL401과 JOL912에 비하여 확연한 균 수 감소를 보였다(도 3).To investigate the effect of O-antigen length on complement-dependent cellular injury, complement sensitivity analysis was performed by culturing wild S. Typhimurium JOL401, attenuated strain JOL912, and JOL1800, a strain derived from JOL912. R-type JOL1800 showed a more sensitive response to rabbit complement than the other S-type strains. JOL1800 showed a marked bacterial count reduction compared to wild JOL401 and JOL912 (FIG. 3).
1.3. 대식세포 탐식/침투 분석1.3. Macrophage Phagocytosis / Infiltration Analysis
마우스의 대식세포에 야생 S. Typhimurium JOL401, 약독화 S. Typhimurium JOL912, JOL912에서 유래한 O-항원-결실 S. Typhimurium JOL1800을 감염시켜 세 균주가 대식세포에 탐식되거나 침투하는 능력의 차이를 확인하였다. Macrophages of mice were infected with O-antigen-deleted S. Typhimurium JOL1800 from wild S. Typhimurium JOL401, attenuated S. Typhimurium JOL912, JOL912 to identify differences in the ability of the three strains to feed or penetrate macrophages. .
그 결과 JOL401, JOL912, JOL1800 모두 감염 4시간 후부터 세균의 대식세포 내 침투를 확인할 수 있었다. 살모넬라는 숙주의 대식세포 내에서 생존하여 전신으로 균이 확산되는 감염 경로를 가진다. lon, cpxR , asd 유전자를 제거하여 약독화한 JOL912 뿐 아니라 rfaL 유전자를 결손시켜 세균 표면 LPS의 O-항원을 추가적으로 제거한 JOL1800도 대식세포 내로 침투하고 생존할 수 있는 능력이 있음을 확인하였다(도 4).As a result, JOL401, JOL912, JOL1800 all confirmed the infiltration of bacteria into macrophages 4 hours after infection. Salmonella have an infection pathway that survives in the macrophages of the host and spreads the bacteria systemically. Not only JOL912 attenuated by removing the lon, cpxR and asd genes, but also JOL1800, which additionally removed the O-antigen of the bacterial surface LPS by deleting the rfaL gene, was found to have the ability to invade and survive macrophages (FIG. 4). ).
1.4. 살모넬라 균주 생존 분석1.4. Salmonella Strain Survival Analysis
여러 유전자를 결실시켜 제작한 돌연변이 균주는 매우 약독화되어 있어 때로는 실질 장기에 도달하지 못하거나 쉽게 사멸되어 때로 감염을 일으키지 못하는 경우가 있다. 약독화 균주를 백신으로 사용할 때에는 백신 균주가 숙주 내에서 너무 오랜 기간 생존하여 질병을 만성화 시키거나 너무 짧게 생존하여 면역 반응을 일으키는데 실패하지 않도록 적절한 약독화의 조절이 필요하다. JOL401, JOL912, JOL1800을 마우스에 감염시켜 3일 후, 7일 후, 14일 후, 21일 후에 비장을 채취하여 균의 유무를 검사하였다(표 4). 모든 균주가 접종 후 3, 7, 14일에 비장에서 검출되었다. JOL401, JOL912는 접종 21일 후까지 비장에서 생존하였다. JOL1800의 생존시간(recovery time 50)은 12일로 PROBIT analysis를 통하여 조사되었다. 여기서 JOL1800이 숙주의 면역계에 침투하여 충분히 면역 반응을 유도할 수 있음을 알 수 있다.Mutant strains produced by the deletion of several genes are very attenuated and sometimes do not reach the real organs or die easily, sometimes causing infection. When attenuated strains are used as vaccines, proper attenuation control is required so that the vaccine strains do not survive for too long in the host to cause disease or to survive too short to cause an immune response. The mice were infected with JOL401, JOL912, and JOL1800 three days later, seven days later, 14 days later, and 21 days later. The spleens were collected and tested for the presence of bacteria (Table 4). All strains were detected in the spleen 3, 7, 14 days after inoculation. JOL401, JOL912 survived in the spleen until 21 days after inoculation. The recovery time of JOL1800 was 12 days and was investigated by PROBIT analysis. It can be seen that JOL1800 can invade the host's immune system and sufficiently induce an immune response.
Figure PCTKR2017006150-appb-T000003
Figure PCTKR2017006150-appb-T000003
1.5. 혈청 IgG에 기초한 DIVA1.5. DIVA based on serum IgG
개발한 JOL1800 균주의 DIVA 가능성을 알아보기 위하여 S. Typhimurium에서 추출한 LPS를 접종한 마우스의 혈청으로 ELISA를 실시하였다. OD492에서 측정한 JOL401, JOL912, JOL1800 접종 후의 결과값을 비교하였다. 측정한 결과값에 유의한 차이가 있는 경우 DIVA에 사용할 수 있다. O-항원이 존재하는 S형 균주인 JOL401, JOL912는 LPS 특이항체를 나타낸 반면 O-항원을 제거한 R형 균주인 JOL1800에서는 LPS 특이항체가 검출되지 않았다(도 5). JOL1800의 약독화로 인한 빠른 생체 내 제거반응으로 LPS 특이항체를 유도하지 못한 경우를 고려하여 첫 접종 3주 후에 부스팅(boosting)을 실시하였다. 그러나 그 이후에도 LPS 특이항체 반응은 나타나지 않았고, JOL1800을 백신으로 사용할 경우 DIVA가 가능할 것으로 판단된다. 접종 후 4주 이후에 각 개체의 혈청으로 ELISA를 실시하여 OD492에서 측정한 흡광도의 수치 차이로 O-항원을 가진 S. Typhimurium에 노출된 자연 감염 개체와 O-항원이 결손된 백신 균주에만 노출된 개체를 구분 가능하다.ELISA was performed on the sera of mice inoculated with LPS extracted from S. Typhimurium to investigate the possibility of DIVA of the developed JOL1800 strain. The results after inoculation with JOL401, JOL912, and JOL1800 measured at OD 492 were compared. If there is a significant difference in the measured result, it can be used for DIVA. S-type strains with O-antigens, JOL401 and JOL912, showed LPS-specific antibodies, whereas L-type strains without O-antigen were detected in JOL1800 (Fig. 5). Boosting was performed three weeks after the first inoculation, considering that LPS-specific antibodies could not be induced due to rapid in vivo clearance due to attenuation of JOL1800. However, there was no LPS specific antibody response after that and DIVA could be possible if JOL1800 was used as a vaccine. After 4 weeks of inoculation, ELISA was performed on the serum of each individual to expose only to naturally infected individuals exposed to S. Typhimurium with O-antigen and to vaccine strains lacking O-antigen due to the difference in absorbance values measured at OD 492 . Identified objects.
실시예 2. Example 2. L. intracellularisL. intracellularis 항원을 발현하는 백신 균주의 개발 Development of vaccine strains expressing antigen
2.1. 백신 제작 및 개발2.1. Vaccine Production and Development
합성한 L. intracellularis 항원인 OptA, OptB, FliC, Hly를 항원 발현용 플라스미드 pJHL65, pJHL80에 클로닝 하여 제작한 플라스미드 pJHL80-OptA, pJHL65-OptB, pJHL65-FliC, pJHL65-Hly를 O-항원이 없어 해당 항원으로 DIVA 가능한 약독화 S. Typhimurium 균주인 JOL1800에 전기충격으로 형질전환하여 백신 균주를 완성하였다. pJHL65, pJHL80은 클로닝된 항원을 박테리아의 세포사이공간이나 표면에 발현한다. 이후 형질전환된 플라스미드를 재추출하여 해당되는 제한 효소로 잘라 아가로스 젤을 이용한 전기영동과 PCR을 실시하여 항원 유전자를 가지는 것으로 최종 확인된 균주를 각각 JOL1809(OptA 발현 JOL1800), JOL1810(OptB 발현 JOL1800), JOL1811(FliC 발현 JOL1800), JOL1812(Hly 발현 JOL1800)로 지정하였다.The plasmids pJHL80-OptA, pJHL65-OptB, pJHL65-FliC, pJHL65-Hly, which were prepared by cloning the synthesized L. intracellularis antigens OptA, OptB, FliC, and Hly into the antigen expression plasmids pJHL65 and pJHL80, do not have O-antigens. The vaccine strain was completed by electroshock to DIOL-capable attenuated S. Typhimurium strain JOL1800. pJHL65 and pJHL80 express the cloned antigen in the intercellular space or surface of the bacteria. Subsequently, the transformed plasmid was re-extracted, cut with the corresponding restriction enzymes, subjected to electrophoresis and PCR using agarose gel, and finally identified strains having the antigen gene were JOL1809 (OptA expression JOL1800) and JOL1810 (OptB expression JOL1800, respectively). ), JOL1811 (FliC expressing JOL1800), JOL1812 (Hly expressing JOL1800).
2.2. 개발된 균주에서 항원의 발현 유무2.2. Expression of antigen in the developed strain
JOL1809, JOL1810, JOL1811, JOL1812에서 각 항원의 발현 유무를 확인하기 위해 웨스턴 블롯을 실시하였다. 항원 발현 위치를 비교하기 위한 대조군은 JOL1800을 사용하였다. L. intracellularis 항원 OptA의 발현 크기는 17KDa이고, OptB의 발현 크기는 41.5kDa, FliC의 발현 크기는 38.6kDa, Hly의 발현 크기는 30kDa 임을 확인하였다(도 6).Western blots were performed to confirm the expression of each antigen in JOL1809, JOL1810, JOL1811, and JOL1812. JOL1800 was used as a control for comparing antigen expression sites. The expression size of L. intracellularis antigen OptA was 17KDa, the expression size of OptB was 41.5kDa, the expression size of FliC was 38.6kDa, and the expression size of Hly was 30kDa (Fig. 6).
실시예 3. Example 3. L. intracellularis L. intracellularis 항원종합실험Antigen synthesis experiment
3.1. 전신과 점막에서의 면역 반응3.1. Immune response in the whole body and mucous membranes
L. intracellularis 항원 OptA, OptB, FliC, Hly를 발현하는 JOL1800 유래 S. Typhimurium 균주를 섞어서 접종하였을 때 각각의 항원에 대한 체액성 면역반응 차이를 평가하기 위해 흰쥐에서 IgG 및 sIgA의 항체 역가를 ELISA 측정하였다. 혈청 IgG, 질점막 sIgA, 장점막 IgA 모두 접종 후 항체가가 올라가기 시작하고 4주 정도까지 상승하여 최고 농도에 이르고 이후 감소하기 시작하는 항체역가 변화를 보였다(도 7 및 도 8). L. intracellularis Antibody titers of IgG and sIgA were measured by ELISA in rats to assess the difference in humoral immune responses against the respective antigens when inoculated with JOL1800-derived S. Typhimurium strains expressing antigens OptA, OptB, FliC, and Hly. Serum IgG, vaginal mucosal sIgA, and mucosal IgA all showed antibody titer changes starting to rise and then up to about 4 weeks, reaching peak concentrations, and then decreasing (Figs. 7 and 8).
3.2. T 세포 면역반응3.2. T cell immune response
재조합 약독화 S. Typhimurium 생백신 JOL1809, JOL1810, JOL1811, JOL1812를 혼합한 접종 후의 세포성 면역반응을 평가하기 위하여 모든 면역화된 마우스 그룹과 비면역화된 대조군 마우스로부터 분리된 비장 세포에서 FACS를 이용해 T 림프구 소집단을 분석하였다. 전체 T 세포는 CD3+로 나타내었고, CD4+와 CD8+는 각각 보조 T 세포와 세포독성 T 세포이다. 접종 9일 후에 CD3+의 전체적인 증가와 함께 CD3+CD4+와 CD3+CD8+ 또한 크게 상승하였다(도 9). CD3+ T 세포는 50% 이상의 증가율을 보였고, CD4+는 45% 이상, CD8+는 대조군 대비 55% 이상 증가하였다.T lymphocyte subpopulation using FACS in splenocytes isolated from all immunized and non-immunized control mice to assess cellular immune responses following inoculation with recombinant attenuated S. Typhimurium live vaccines JOL1809, JOL1810, JOL1811, JOL1812 Was analyzed. Total T cells are expressed as CD3 + , and CD4 + and CD8 + are helper T cells and cytotoxic T cells, respectively. 9 days after the inoculation also CD3 + CD4 + and CD3 + CD8 + with the overall increase in the CD3 + It rose significantly (FIG. 9). CD3 + T cells showed an increase of 50% or more, CD4 + increased by 45% or more, and CD8 + increased by 55% or more compared to the control group.
3.3. 역전사 실시간 PCR을 통한 사이토카인의 mRNA 측정3.3. Cytokine mRNA Measurement by Reverse Transcription Real-Time PCR
세포면역반응을 조절하는 사이토카인의 발현 수준을 평가하기 위해 IFN-γ, IL-4, IL-17의 mRNA 발현 정량을 측정하고자 RT-PCR을 실시하였다. 하나의 로소니아 항원을 발현하는 각 균주를 혼합하여 피하접종한 마우스의 비장 세포를 각 항원으로 자극하여 사이토카인을 측정한 결과, OptA에서는 IL-4가 유의적으로 증가한 것을 확인하였다(도 10). OptB를 제외한 나머지 항원에서는 IL-4, IFN-γ가 모두 확연히 상승하였다. IL-17은 분화된 Th17 세포가 분비하는 사이토카인으로 모든 항원이 분비를 자극함을 알 수 있다. 이는 CD4+ T 세포가 Th1, Th2 세포로 분화한 것으로 여겨지며 Th17 세포의 분화도 일어남을 추정할 수 있다.RT-PCR was performed to measure the mRNA expression level of IFN-γ, IL-4, and IL-17 to evaluate the expression level of cytokines that regulate cellular immune responses. As a result of measuring cytokines by stimulating splenocytes of mice subcutaneously inoculated by mixing each strain expressing one Lawsonia antigen with each antigen, it was confirmed that IL-4 was significantly increased in OptA (FIG. 10). . Except for OptB, IL-4 and IFN-γ were significantly increased in all antigens. IL-17 is a cytokine secreted by differentiated Th17 cells, indicating that all antigens stimulate secretion. It is believed that CD4 + T cells have differentiated into Th1 and Th2 cells, and it is estimated that the differentiation of Th17 cells occurs.

Claims (9)

  1. 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원으로 이루어진 군에서 선택된 어느 하나의 항원을 포함하는 약독화된 살모넬라 변이주. Lawsonia Intracellular Solaris Attenuated Salmonella mutant strain comprising any one antigen selected from the group consisting of intracellularis ) OptA, OptB, FliC and Hly antigens.
  2. 제1항에 있어서, 상기 OptA, OptB, FliC 및 Hly 항원은 각각 서열번호 1, 서열번호 2, 서열번호 3 및 서열번호 4의 아미노산 서열로 이루어진 것을 특징으로 하는 약독화된 살모넬라 변이주.The attenuated Salmonella strain of claim 1, wherein the OptA, OptB, FliC, and Hly antigens consist of the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, and SEQ ID NO: 4, respectively.
  3. 제1항에 있어서, 상기 약독화된 살모넬라 변이주는 lon, cpxR , rfaL asd 유전자가 결실된 것을 특징으로 하는 약독화된 살모넬라 변이주.The method of claim 1, wherein the attenuated Salmonella mutant strain lon, cpxR , rfaL And an attenuated Salmonella mutant strain, characterized by the deletion of the asd gene.
  4. 제1항에 있어서, 상기 약독화된 살모넬라 변이주는 Bla(β-lactamse) 신호 서열, 이에 연결된 OptA, OptB, FliC 및 Hly 항원을 코딩하는 유전자로 이루어진 군에서 선택된 어느 하나의 유전자; 및 asd 유전자;를 포함하는 재조합 벡터로 형질전환된 것을 특징으로 하는 약독화된 살모넬라 변이주.According to claim 1, wherein said attenuated Salmonella strain is any one selected from the group consisting of genes encoding Bla (β-lactamse) signal sequence, OptA, OptB, FliC and Hly antigen linked thereto; And asd gene; attenuated Salmonella mutant strain, characterized in that transformed with a recombinant vector comprising a.
  5. (a) 로소니아 인트라셀룰라리스(Lawsonia intracellularis) 유래 OptA, OptB, FliC 및 Hly 항원을 코딩하는 유전자로 이루어진 군에서 선택된 어느 하나의 유전자를 증폭시키는 단계;(a) Lawsonia Intracellulose amplifying any one gene selected from the group consisting of genes encoding OptA, OptB, FliC and Hly antigens derived from intracellularis );
    (b) 상기 (a) 단계의 증폭된 유전자를 asd 유전자를 가진 재조합 벡터에 클로닝하는 단계;(b) cloning the amplified gene of step (a) into a recombinant vector having an asd gene;
    (c) 상기 (b) 단계의 클로닝된 플라스미드를 약독화된 살모넬라 균주에 형질전환시키는 단계; 및(c) transforming the cloned plasmid of step (b) into an attenuated Salmonella strain; And
    (d) 상기 (c) 단계의 형질전환된 살모넬라 변이주를 선별하는 단계를 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 약독화된 살모넬라 변이주의 제조방법.(d) a method for producing attenuated Salmonella mutant strain for simultaneously preventing or treating swine proliferative ileitis and Salmonellosis comprising the step of selecting the transformed Salmonella mutant strain of step (c).
  6. 제1항의 약독화된 살모넬라 변이주 중 둘 이상을 포함하는 약독화된 살모넬라 변이주 혼합물.An attenuated Salmonella mutant mixture comprising at least two of the attenuated Salmonella mutants of claim 1.
  7. 제1항의 약독화된 살모넬라 변이주 또는 제6항의 약독화된 살모넬라 변이주 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물.Claim 1 attenuated Salmonella mutant strain or attenuated Salmonella mutant strain of claim 6 comprising a vaccine composition for the simultaneous prevention or treatment of pig proliferative ileitis and Salmonellosis.
  8. 제7항에 있어서, 상기 백신 조성물은 경구 또는 피하 투여하는 것을 특징으로 하는 돼지 증식성 회장염 및 살모넬라증 동시 예방 또는 치료용 백신 조성물.According to claim 7, wherein the vaccine composition is a vaccine composition for the simultaneous prevention or treatment of pig proliferative ileitis and Salmonellosis, characterized in that oral or subcutaneous administration.
  9. 제1항의 약독화된 살모넬라 변이주 또는 제6항의 약독화된 살모넬라 변이주 혼합물을 유효성분으로 포함하는 돼지 증식성 회장염 및 살모넬라증 동시 예방용 사료 첨가제.Claim 1 attenuated Salmonella mutant strain or attenuated Salmonella mutant strain of claim 6 comprising a feed ingredient for the simultaneous prevention of pig proliferative ileitis and Salmonellosis.
PCT/KR2017/006150 2016-01-04 2017-06-13 Vaccine composition containing attenuated salmonella mutant as active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and salmonella WO2018124407A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160000236 2016-01-04
KR10-2017-0000018 2017-01-02
KR1020170000018A KR101893827B1 (en) 2016-01-04 2017-01-02 Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneouly comprising attenuated Salmonella mutant as effective component

Publications (1)

Publication Number Publication Date
WO2018124407A1 true WO2018124407A1 (en) 2018-07-05

Family

ID=59353058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006150 WO2018124407A1 (en) 2016-01-04 2017-06-13 Vaccine composition containing attenuated salmonella mutant as active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and salmonella

Country Status (2)

Country Link
KR (1) KR101893827B1 (en)
WO (1) WO2018124407A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893827B1 (en) * 2016-01-04 2018-08-31 전북대학교 산학협력단 Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneouly comprising attenuated Salmonella mutant as effective component
KR102186838B1 (en) * 2019-05-15 2020-12-07 전북대학교 산학협력단 Cancer vaccine composition comprising attenuated Salmonella mutant expressing SLURP-1 as effective component
KR102249189B1 (en) * 2020-01-09 2021-05-07 전북대학교 산학협력단 Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneouly comprising attenuated Salmonella mutant expressing immunogen having improved antigenicity as effective component
KR102620740B1 (en) * 2023-06-16 2024-01-05 (주)바이오드 Vaccine composition for preventing or treating Riemerella infection comprising attenuated Riemerella anatipestifer mutant with deleted pathogenic gene as effective component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105099A (en) * 2008-09-22 2008-12-03 브리제 유니버시타이트 브루셀 Live attenuated salmonella vaccine
KR20110022428A (en) * 2009-08-27 2011-03-07 주식회사 중앙백신연구소 Attenuated salmonella mutants transformed with adhesin gene of pathogenic escherichia coli in pigs and vaccine composition comprising thereof for protection and treatment against pathogenic escherichia coli and salmonella in pigs
KR20110023502A (en) * 2009-08-31 2011-03-08 전북대학교산학협력단 Vaccine composition for protection and treatment against pathogenic escherichia coli and salmonella in cattle by administration of attenuated salmonella expressing adhesin gene of pathogenic escherichia coli and vaccination method thereof
KR20140130944A (en) * 2013-05-02 2014-11-12 전북대학교산학협력단 Live vaccine composition comprising attenuated Salmonella mutants for preventing progressive atrophic rhinitis and pneumonic pastuellosis
KR20170081569A (en) * 2016-01-04 2017-07-12 전북대학교산학협력단 Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneouly comprising attenuated Salmonella mutant as effective component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1651260T5 (en) * 2003-07-25 2018-11-30 Boehringer Ingelheim Vetmedica, Inc. Lawsonia intracellularis of european origin and vaccines, diagnostic agents and methods of use thereof
WO2005026200A2 (en) * 2003-09-12 2005-03-24 Akzo Nobel N.V. Lawsonia intracellularis subunit vaccine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105099A (en) * 2008-09-22 2008-12-03 브리제 유니버시타이트 브루셀 Live attenuated salmonella vaccine
KR20110022428A (en) * 2009-08-27 2011-03-07 주식회사 중앙백신연구소 Attenuated salmonella mutants transformed with adhesin gene of pathogenic escherichia coli in pigs and vaccine composition comprising thereof for protection and treatment against pathogenic escherichia coli and salmonella in pigs
KR20110023502A (en) * 2009-08-31 2011-03-08 전북대학교산학협력단 Vaccine composition for protection and treatment against pathogenic escherichia coli and salmonella in cattle by administration of attenuated salmonella expressing adhesin gene of pathogenic escherichia coli and vaccination method thereof
KR20140130944A (en) * 2013-05-02 2014-11-12 전북대학교산학협력단 Live vaccine composition comprising attenuated Salmonella mutants for preventing progressive atrophic rhinitis and pneumonic pastuellosis
KR20170081569A (en) * 2016-01-04 2017-07-12 전북대학교산학협력단 Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneouly comprising attenuated Salmonella mutant as effective component

Also Published As

Publication number Publication date
KR101893827B1 (en) 2018-08-31
KR20170081569A (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2018124407A1 (en) Vaccine composition containing attenuated salmonella mutant as active ingredient for simultaneously preventing or treating porcine proliferative enteropathy and salmonella
WO2011025310A9 (en) Attenuated salmonella variant strain resulting from the genetic transformation of adhesin from pathogenic pig escherichia coli and a vaccine composition comprising the same for preventing and treating pathogenic colibacillosis and salmonellosis in pigs
US7901907B2 (en) Process for production of Helicobacter pylori bacterioferritin
Zevering et al. Naturally acquired human immune responses againstHelicobacter pylori and implications for vaccine development
WO2018124393A1 (en) Vaccine composition for preventing or treating brucellosis containing non-pathogenic salmonella strain in which o-antigen of lps is deleted expressing major common antigens of brucella
Okamura et al. Comparative evaluation of a bivalent killed Salmonella vaccine to prevent egg contamination with Salmonella enterica serovars Enteritidis, Typhimurium, and Gallinarum biovar Pullorum, using 4 different challenge models
EP1267899A2 (en) Salmonella vaccine materials and methods
AU2001256957A1 (en) Salmonella vaccine materials and methods
US20210145954A1 (en) Method of reducing egg contamination
Desin et al. Evaluation of Salmonella enterica serovar Enteritidis pathogenicity island-1 proteins as vaccine candidates against S. Enteritidis challenge in chickens
PL185013B1 (en) Multimeric recombined ureazeic vaccine
WO2017073851A1 (en) Attenuated strain and inactivated vaccine composition of porcine epidemic diarrhea virus, and vaccine composition for oral administration using same
WO2011025344A2 (en) Attenuated salmonella mutants wherein adhesin of bovine pathogenic escherichia coli is transformed, and vaccine composition for preventing and treating bovine colibacillosis and salmonellosis comprising same
KR100439462B1 (en) Pharmaceutical composition useful in the prevention or treatment of peptic ulcers
Hu et al. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae
Wang et al. Oral vaccination with attenuated Salmonella encoding the Trichinella spiralis 43-kDa protein elicits protective immunity in BALB/c mice
WO2013015586A9 (en) Vaccine composition for preventing and treating colibacillosis and salmonellosis in poultry, containing a salmonella strain expressing virulence factors of pathogenic escherichia coli of poultry
WO2013165190A1 (en) Vaccine for preventing viral hemorrhagic sepsis of flatfishes
WO2019235705A1 (en) Vaccine composition comprising recombinant protein of staphylococcus aureus attenuated enterotoxin and cytotoxin
Milon et al. Oral vaccination of weaned rabbits against enteropathogenic Escherichia coli-like E. coli O103 infection: use of heterologous strains harboring lipopolysaccharide or adhesin of pathogenic strains
WO2021141384A1 (en) Vaccine composition for preventing or treating porcine proliferative enteritis and salmonellosis simultaneously, containing attenuated salmonella mutant expressing antigens having enhanced antigenicity as active ingredient
KR20120129777A (en) Vaccine composition comprising attenuated and immunopotentiated mutant of Salmonella Enteritidis for preventing salmonellosis
WO2012172042A1 (en) Vaccines for chlamydia
WO2017150755A1 (en) Inactivated trivalent salmonella vaccine composition reduced in endotoxin level for prevention of fowl typhoid and salmonellosis
WO2010035954A2 (en) Vaccine composition for prevention or treatment of pneumococcal infections comprising vncr/s operon-disabled streptococcus pneumonia mutant strain or pep27 peptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886117

Country of ref document: EP

Kind code of ref document: A1