WO2018124213A1 - Apparatus for manufacturing foamed resin tube and foamed resin tube - Google Patents
Apparatus for manufacturing foamed resin tube and foamed resin tube Download PDFInfo
- Publication number
- WO2018124213A1 WO2018124213A1 PCT/JP2017/047037 JP2017047037W WO2018124213A1 WO 2018124213 A1 WO2018124213 A1 WO 2018124213A1 JP 2017047037 W JP2017047037 W JP 2017047037W WO 2018124213 A1 WO2018124213 A1 WO 2018124213A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- die
- foamed resin
- resin tube
- flow path
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0012—Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/002—Combinations of extrusion moulding with other shaping operations combined with surface shaping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/13—Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/303—Extrusion nozzles or dies using dies or die parts movable in a closed circuit, e.g. mounted on movable endless support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/385—Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/49—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/147—Arrangements for the insulation of pipes or pipe systems the insulation being located inwardly of the outer surface of the pipe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/885—External treatment, e.g. by using air rings for cooling tubular films
Definitions
- the present invention relates to a foamed resin tube manufacturing apparatus and a foamed resin tube used for a heat insulating material for piping and the like.
- a foamed resin tube made of a resin foam obtained by foaming a resin such as cross-linked polyethylene has been widely used as a heat insulating material (insulating cover) for piping.
- insulating cover insulating cover
- this foamed resin tube when it is attached to the outer surface of the bent part of the piping, the generation of wrinkles is suppressed to improve the aesthetic appearance, the bendability is increased to reduce friction during installation, and as a non-slip Some have their surface embossed for functional purposes.
- FIG. 6 is a cross-sectional view showing a conventional method for manufacturing an embossed foamed resin tube
- FIG. 7 is a perspective view of a part of the conventional embossed foamed resin tube manufactured by the manufacturing method of FIG.
- a flat resin foam 81 formed by foaming a resin such as cross-linked polyethylene is prepared, and a film 82 made of a thermoplastic resin is overlaid on the surface.
- an embossing roll having irregularities formed on the surface is used to perform an embossing process, as shown in FIG.
- the uneven layer 83 in which the uneven shape of the embossing roll is transferred to the surface of the resin foam 81 is formed.
- the embossed resin foam 81 is cut into a strip shape having a width corresponding to the diameter of the foamed resin tube to be formed.
- the cut strip-shaped resin foam 81 is rounded into a cylindrical shape so that the uneven layer 83 is on the outside, and the end faces 84a and 84b of the resin foam 81 are heated and melted. Then, as shown in FIG. 6D, the end faces 84a and 84b are butted and joined. 6A and 7B, the foamed resin tube 80 in which the uneven layer 83 by embossing is formed on the surface of the tubular resin foam 81 is completed.
- a foamed resin tube is manufactured by using a flat resin foam as a material, rounding it into a cylindrical shape, and heat-sealing the end faces.
- the resin foam in the inner circumference side of the foamed resin tube is rounded into a cylindrical shape because the band-shaped resin foam before heat sealing has a certain width.
- the body will be compressed. For this reason, a stress difference is generated between the inner peripheral side and the outer peripheral side of the foamed resin tube, and the cross-sectional shape of the foamed resin tube becomes a distorted shape instead of a perfect circle due to the stress difference. If the cross-sectional shape of the foamed resin tube is distorted, it is not preferable in terms of aesthetics.
- the above-described conventional manufacturing method has a problem that the manufacturing apparatus becomes complicated and the manufacturing cost increases because the number of manufacturing steps is large.
- the flat resin foam is cut into a strip shape in accordance with the pipe diameter of the pipe, if the end material is generated, the yield is lowered and the manufacturing cost is increased.
- the foamed resin tube for heat insulation of water supply pipes and hot water supply pipes is required to have high heat insulation properties, it is necessary to increase the foaming ratio of the resin foam.
- the present invention provides an apparatus for producing a foamed resin tube, which can produce a high-magnification foamed resin tube having an uneven surface by embossing on the surface while suppressing distortion of the cross-sectional shape and with a small number of processes.
- the purpose is to do.
- Another object of the present invention is to provide a high-magnification foamed resin tube with less cross-sectional distortion.
- the present invention relates to the production of a foamed resin tube having a tube shape and a resin foam having a foaming ratio of 20 to 30 times, and a film covering the surface of the resin foam and having an embossed pattern formed on the surface. It relates to the device.
- the foamed resin tube manufacturing apparatus includes an annular first discharge port, a first flow path communicating with the first discharge port, and an annular second discharge port disposed so as to surround the first discharge port. And a die having a second flow path that communicates with the second discharge port and is disposed so as to surround the first flow path, and a thermoplastic first resin is melt-kneaded and a foaming agent is added to the melted first resin.
- a first resin supply unit that mixes and supplies the first resin supply part to the first flow path of the die, and melts and kneads the thermoplastic second resin, and the molten second resin is heated to a temperature higher than that of the first resin.
- a plurality of first molds having a recess corresponding to a part of the outer surface shape of the foamed resin tube and a plurality of recesses corresponding to the other part of the outer shape of the foamed resin tube.
- the first die of the die is formed by performing vacuum molding or pressure molding with air using the second mold.
- a molding device for forming an embossed pattern with molding the first resin discharged from the outlet to the tubular.
- the die includes a mandrel, a tubular first die that surrounds the outside of the mandrel with a predetermined gap, and a tubular second die that surrounds the outside of the first die with a predetermined gap.
- the first discharge port and the first flow path are configured by the gap between the mandrel and the first die
- the second discharge port and the second flow path are configured by the gap between the first die and the second die.
- the first discharge port and the second discharge port of the die are disposed in a molding space sandwiched between the recess of the first mold and the recess of the second mold.
- a heat insulating layer is provided in the first die to insulate between the first flow path and the second flow path.
- the present invention also provides a foamed resin having a tube shape and a foamed resin having an expansion ratio of 20 to 30 times, and a film covering the surface of the resin foam, and having an embossed pattern formed on the surface. It relates to tubes.
- the foamed resin tube according to the present invention is characterized in that the cross section perpendicular to the longitudinal direction is circular and the cross section has an integral tube shape with no welding marks.
- the manufacturing apparatus of the foaming resin tube which can manufacture the high-expansion foaming foamed resin tube by which the unevenness
- FIG. 1 is a perspective view of a part of a foamed resin tube manufactured by the foamed resin tube manufacturing apparatus according to the embodiment.
- FIG. 2 is a schematic view showing the foamed resin tube manufacturing apparatus according to the embodiment.
- FIG. 3 is a partially enlarged view of the molding apparatus and die shown in FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
- FIG. 5A is a diagram showing a detailed configuration of the die shown in FIG.
- FIG. 5B is a partially enlarged view of the die shown in FIG. 5A.
- FIG. 6 is a cross-sectional view showing a conventional method for producing an embossed foamed resin tube.
- FIG. 7 is a perspective view of a part of a conventional embossed foamed resin tube manufactured by the manufacturing method of FIG.
- FIG. 1 is a perspective view of a part of a foamed resin tube manufactured by the foamed resin tube manufacturing apparatus according to the embodiment.
- a foamed resin tube 10 shown in FIG. 1 is made of a foamed first resin, and has a tube-shaped resin foam 51 and a film 52 that is made of a second resin and covers the surface (outer peripheral surface) of the resin foam 51. Composed. The embossed pattern on the surface is formed on both the film 52 and the outer peripheral portion of the resin foam 51.
- the foamed resin tube 10 according to the present embodiment has a circular cross section orthogonal to the longitudinal direction, and an integral tube shape having no welding mark (portion corresponding to the joint portion 85 shown in FIG. 6) in the cross section. It is the characteristic to have. Therefore, the foamed resin tube 10 is a foamed resin tube with less distortion of the cross-sectional shape.
- the expansion ratio of the resin foam 51 that is, the ratio of the volume of the first resin after foaming to the volume of the first resin before foaming is 20 to 30 times, preferably 25 to 30 times.
- the expansion ratio of the resin foam 51 is 20 to 30 times, a high heat insulating effect is obtained, and therefore the foamed resin tube 10 is suitable as a heat insulating material for piping for water absorption and hot water supply.
- gas foaming using a gas as a foaming agent, as will be described later.
- FIG. 2 is a schematic view showing the foamed resin tube manufacturing apparatus according to the embodiment.
- the foamed resin tube manufacturing apparatus 1 supplies an extrusion molding die 2 for extruding the first resin and the second resin, a first resin extrusion unit 3 for supplying the first resin to the die 2, and supplying the second resin to the die 2.
- a second resin extruding portion 4 that molds the resin extruded from the die 2 into a tubular shape, and a molding device 5 that transfers the embossed shape to the surface.
- the die 2 is a tubular mold having a triple structure, and an annular first discharge port for extruding the first resin to be a resin foam and an annular extruding second resin to be a film for covering the surface of the foam.
- Connected to the die 2 are a first resin extruding part 3 for supplying a first resin and a second resin extruding part 4 for supplying a second resin. Details of the structure of the die 2 will be described later.
- the 1st resin extrusion part 3 is equipped with extruder 11a and 11b and the communication path 15 which makes these communicate.
- the extruder 11a includes a hopper (not shown) for charging the first resin pellets, a housing 13a having a screw therein and melting the resin therein, and a motor 14a for rotating the screw in the housing 13a. Is provided.
- the extruder 11a is provided with a heater (not shown) for heating the resin inside the housing 13a.
- An injection port 18 is provided in an intermediate portion in the longitudinal direction of the housing 13a, and gas is injected as a foaming agent into the housing through the injection port 18.
- the extruder 11 a mixes the foaming agent injected from the injection port 18 with the melted first resin, and supplies the first resin mixed with the foaming agent into the housing 13 b of the extruder 11 b through the communication path 15.
- the extruder 11b includes a housing 13b having a screw for kneading the molten resin therein, and a motor 14b for rotating the screw in the housing 13b.
- the extruder 11b is provided with a heater (not shown) for heating the resin inside the housing 13b.
- the temperature in the housing 13b is set lower than the temperature in the housing 13a of the extruder 11a, and the first resin is cooled to a predetermined temperature in the course of being kneaded in the housing 13b.
- the foaming agent bubbles (called cells) are uniformly dispersed between the molecules of the first resin.
- the extruder 11 b supplies the cooled first resin to the first flow path communicating with the first discharge port provided in the die 2.
- the first resin is not particularly limited as long as it is a foamable thermoplastic resin, but polyurethane, polystyrene, polyethylene (including cross-linked polyethylene), polypropylene, ethylene vinyl acetate copolymer, ethylene-propylene copolymer, Polyethylene terephthalate, polyvinyl chloride, nylon and the like can be used.
- foaming agent hydrocarbons such as butane and pentane, and inert gases such as carbon dioxide and nitrogen can be used.
- polyethylene (including cross-linked polyethylene) is preferable as the first resin, and in this case, butane, pentane and the like are preferable as the foaming agent.
- the second resin extrusion unit 4 is composed of an extruder 12.
- the extruder 12 includes a hopper (not shown) for charging the pellets of the second resin, a housing 16 having a screw therein, and a motor 17 for rotating the screw in the housing 16. Further, the extruder 12 is provided with a heater (not shown) for heating the resin inside the housing 16.
- the extruder 12 melts and kneads the second resin charged from the hopper in the housing 16 and supplies the melted second resin to the second flow path communicating with the second discharge port provided in the die 2.
- the temperature of the second resin that the second resin extrusion unit 4 supplies to the d die 2 is set higher than the temperature of the first resin that the first resin extrusion unit 3 supplies to the die 2.
- the second resin is not particularly limited as long as it is a thermoplastic resin.
- Polyurethane, polystyrene, polyethylene, crosslinked polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene-propylene copolymer, polyethylene terephthalate, polyvinyl chloride, nylon Etc. can be used.
- polyolefin resins such as polyethylene, cross-linked polyethylene, polypropylene, and ethylene-propylene copolymer can be suitably used.
- the molding apparatus 5 is an apparatus for continuously molding a resin tube (resin pipe) having irregularities on its surface by using a plurality of pairs of molds 20a and 20b divided into two. Since the molding device 5 is used for continuously molding a long corrugated pipe (corrugated tube), it may be called a corrugator. However, by changing the shape and size of the recesses of the molds 20a and 20b used in the molding apparatus 5, not only a tube having a corrugated shape on the surface but also a foamed resin tube having various diameters or various embossed patterns is molded. can do.
- the resin tube is molded by the molding apparatus 5 by vacuum molding in which the pores provided in the mold are vacuum-sucked, and by air being blown into the center of the mold and pressurized. Although there is pressure molding, any method may be adopted. Details of the molding of the resin tube in the molding apparatus 5 will be described later.
- a cooling device 6 that cools the molded foamed resin tube 10, a take-up device 7 that takes up the foamed resin tube 10, and a winding device 8 that winds up the foamed resin tube 10 are sequentially provided downstream of the molding device 5. ing.
- FIG. 3 is a partially enlarged view of the molding apparatus and die shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
- the molding apparatus 5 includes a plurality of pairs of molds 20a and 20b divided into two.
- Each mold 20a is transported in the direction of the block arrow in FIG. 2 by the transport mechanism 22a and circulates along the transport path 21a.
- each mold 20b is transported in the direction of the block arrow in FIG. 2 by the transport mechanism 22b and circulates along the transport path 21b.
- Each of the molds 20a and 20b is formed with a substantially semi-cylindrical recess for molding a part of a predetermined length in the length direction of the foamed resin tube in the circumferential direction. Further, as shown in FIG.
- the surface of the recess formed in the mold 20a is provided with unevenness (an embossed pattern reversal pattern) to be transferred to the surface of the resin tube.
- the concave portion of the mold 20b is similarly provided with unevenness (an embossed pattern reversal pattern) to be transferred to the surface of the resin tube.
- the split surfaces 23a and 23b of the pair of molds 20a and 20b are in surface contact when they are on a straight conveyance path parallel to the central axis of the die 2. Further, on the linear conveyance path, a pair of molds 20a and 20b in which the split surfaces 23a and 23b are in contact with each other are connected along the linear conveyance path (in a direction parallel to the central axis of the die 2). Inside a plurality of pairs of dies 20a and 20b adjacent in the conveyance path direction, a molding space having a predetermined length having a substantially cylindrical shape corresponding to the outer surface shape of the foamed resin tube is formed.
- the die 2 has a pair of molds in which the first discharge port 33 and the second discharge port 34 provided at the tip of the die 2 are in contact with the divided surfaces 23a and 23b. It arrange
- FIG. 5A is a diagram showing a detailed configuration of the die shown in FIG. 4, and FIG. 5B is a partially enlarged view of the die shown in FIG. 5A.
- the die 2 includes a rod-shaped mandrel 30, a tubular die 31 that surrounds the outside of the mandrel 30 with a predetermined gap, and a tubular that surrounds the outside of the die 31 with a predetermined gap. And the dice 32.
- a first flow path 35 is formed between the outer peripheral surface of the mandrel 30 and the inner peripheral surface of the die 31 by the predetermined gap described above.
- the first flow path 35 is supplied with a first resin containing a foaming agent extruded from the first resin push-out section 3 through an inlet (not shown).
- An annular first discharge port 33 for discharging the first resin is formed at the most downstream portion of the first flow path 35, that is, at the tip portion of the die 2.
- the tip of the mandrel 30 has a cylindrical shape and protrudes from the tip of the die 31. The reason why the tip of the mandrel 30 protrudes from the tip of the die 31 is that the tip of the mandrel 30 is used as a nesting for forming a circular cross section of the hollow portion of the foamed resin tube.
- the second flow path 36 including the predetermined gap described above is formed between the outer peripheral surface of the die 31 and the inner peripheral surface of the die 32.
- a through hole 37 extending in a direction orthogonal to the central axis is formed in the die 32, and through the through hole 37, the second flow path 36 is connected to the second resin extrusion portion 4.
- the extruded second resin is supplied.
- An annular second discharge port 34 for discharging the second resin is formed at the most downstream portion of the second flow path 36, that is, at the tip portion of the die 2.
- the die 31 is composed of two coaxial inner divided bodies 38a and outer divided bodies 38b having a tubular shape.
- the inner divided body 38 a is a member that constitutes the inner peripheral surface of the die 31.
- the outer divided body 38b is a member constituting the outer peripheral surface of the die 31, and is arranged so as to surround the inner divided body 38a.
- a heat insulating layer 39 that insulates between the first flow path 35 and the second flow path is provided.
- the heat insulating layer 39 is provided so as to surround the first flow path 35.
- the heat insulating layer 39 is configured by enclosing air in a cylindrical sealed space provided between the inner peripheral surface of the inner divided body 38a and the outer peripheral surface of the outer divided body 38b. Yes. Since air has a low thermal conductivity and air cannot move in the sealed space formed between the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b, the air is enclosed in the sealed space. High heat insulation can be obtained by air.
- the heat insulating layer 39 is provided to prevent the first resin supplied to the first flow path 35 from being heated by the second resin (higher than the first resin) supplied to the second flow path. This will be described later.
- the thickness of the heat insulation layer 39 in the radial direction is 1 mm or more, it is possible to insulate the first resin that is required when forming the high-expansion foamed resin tube according to the present embodiment.
- a heat insulating material other than air may be sealed or a vacuum heat insulating layer may be provided in the space between the inner divided body 38a and the outer divided body 38b. .
- a recessed space is formed on the outer peripheral surface of the inner divided body 38a, thereby forming a sealed space between the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b.
- a sealed space may be formed by forming a recess on the inner peripheral surface of the outer divided body 38b, or a recess is formed on both the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b.
- the heat insulating layer 39 is preferably provided at least in a portion where the thickness of the die 31 is constant.
- the thickness of the die 31 here is the difference between the inner and outer diameters of the die 31 in the radial direction, and is the total thickness of each of the inner divided body 38a, the heat insulating layer 39, and the outer divided body 38b.
- an embossed pattern is formed on the surface with the molds 20 a and 20 b of the molding apparatus 5, and therefore, a predetermined length from the tip of the die 2. Must be inserted into the molding space formed by the molds 20a and 20b.
- the outer diameter of the die 2 is limited by the inner diameter of the molding space formed by the molds 20a and 20b, it is necessary to reduce the thickness of the die 31 constituting the die 2 to some extent.
- the heat of the second resin in the second flow path 36 is easily transferred to the first flow path 35 in the portion where the thickness of the die 31 is constant.
- the first resin Since the first discharge port 33 provided at the tip of the die 2 is annular, the first resin is discharged from the first discharge port 33 in a tubular shape.
- the first resin supplied to the first flow path 35 of the die 2 contains a foaming agent (gas). Therefore, when the first resin is discharged from the annular first discharge port 33 at the tip of the die 2, the foaming agent ( Gas) evaporates and the extruded first resin foams. That is, the first resin becomes a tubular foam by being discharged from the first discharge port 33.
- the second discharge port 34 of the die 2 provided at the tip of the die 2 is also annular and is provided so as to surround the first discharge port 33, the second resin is made of the foamed first resin. It is discharged in a tubular shape so as to cover the entire outer surface of the tubular foam.
- the insides of the molds 20a and 20b are vacuum-sucked through pores (not shown) provided in the recesses of the molds 20a and 20b, so that the tubular foam covered with the second resin
- the first resin foam is pressed against the inner surfaces of the recesses of the molds 20a and 20b, and the unevenness provided on the inner surfaces of the recesses of the molds 20a and 20b is transferred to the second resin and the foam of the first resin.
- an embossed pattern is formed.
- the molds 20a and 20b in which the foamed resin tube 10 is molded are downstream along the central axis of the die 2.
- the molds 20a and 20b that have been conveyed and circulated (in the direction away from the die 2) contact the divided surfaces 23a and 23b to form a new molding space. Therefore, an embossed pattern is formed on the outer surface by discharging the first resin and the second resin from the first discharge port 33 and the second discharge port 34 at a constant discharge speed while circulating and conveying the plurality of molds 20a and 20b.
- the foamed resin tube having a long length can be continuously molded.
- the foamed resin tube 10 can maintain the transferred embossed shape even in a heated environment as in the case of using it as a heat insulating material for a hot water supply pipe.
- the reason why the heat insulating layer 39 surrounding the first flow path 35 is provided inside the die 31 will be described.
- a high-magnification resin foam having a foaming ratio of 20 to 30 times is produced by gas foaming using, for example, polyethylene (crosslinked polyethylene) as the first resin, a foaming agent gas (for example, butane gas) is mixed and dispersed. Further, it is necessary to discharge from the first discharge port 33 while maintaining the temperature of the first resin at 100 to 120 ° C., more preferably 100 to 110 ° C.
- the temperature of the first resin in which the foaming agent is dispersed exceeds the above-described temperature range, the dispersed gas cell breaks off and escapes from the first resin, and is pushed out from the first discharge port 33. This is because one resin cannot be foamed at a foaming ratio of 20 to 30 times.
- the temperature of the second resin supplied to the second flow path 36 is set to 140 to higher than the temperature of the first resin. It is necessary to make it 160 degreeC.
- the first resin and the second resin having a temperature difference are supplied to the same die 2 as described above, the first resin is heated by the second resin in the straight pipe portion where the thickness of the die 31 is constant.
- the temperature of the first resin in which the foaming agent is dispersed exceeds the above-described temperature range.
- the first resin in the first flow path 35 is insulated from the second resin in the second flow path 36 by providing the heat insulating layer 39 inside the die 31. is doing. For this reason, it can suppress that the 1st resin in the 1st flow path 35 is heated by the 2nd resin supplied to the 2nd flow path 36, and the gas disperse
- the first resin containing the foaming agent (gas) is foamed while being extruded into a tubular shape at the same time inside the molds 20a and 20b.
- the surface of the first resin is covered with the second resin, and vacuum molding or air pressure molding is further performed. That is, in the foamed resin tube manufacturing apparatus 1 according to the present embodiment, the foaming of the first resin, the coating of the foam of the first resin with the second resin, and the molding into the tube shape having the embossed pattern on the surface are performed simultaneously. Do. Therefore, the number of manufacturing steps can be greatly reduced as compared with the conventional manufacturing method described in FIG.
- the innermost layer of the foamed resin tube 10 is a resin foam made of the first resin.
- the gas may not easily escape, and foamability may be reduced.
- the film is not provided inside the foam made of the first resin as in the present embodiment, the gas escapes well when the first resin is foamed, and the first resin can be stably foamed at a high magnification. it can.
- the foamed resin tube manufacturing apparatus 1 since the resin is directly molded into a tubular shape, a stress difference due to the difference in the circumferential length between the inner circumference and the outer circumference of the foamed resin tube 10 does not occur. Therefore, according to the foamed resin tube manufacturing apparatus 1 according to the present embodiment, it is possible to reduce the distortion of the cross-sectional shape and bring it closer to a perfect circle, and thus it is possible to manufacture the foamed resin tube 10 having an excellent aesthetic appearance.
- the foamed resin tube formed by the foamed resin tube manufacturing apparatus 1 according to the present embodiment is a product that is excellent in aesthetics in that there is no joint between end faces as shown in FIG.
- the foamed resin tube 10 as in the present invention is used as a heat insulating material for piping
- the foamed resin tube 10 may be cut open by making a slit in the longitudinal direction for attachment to the piping. Since the conventional foamed resin tube shown in FIG. 7 is formed by rounding a flat foam into a cylindrical shape, if the slit is made in the longitudinal direction, the opening of the slit portion may be increased.
- the foamed resin tube 10 manufactured by the foamed resin tube manufacturing apparatus 1 according to the present embodiment is directly formed in a tubular shape, it can maintain a tubular shape even when a slit is provided in the longitudinal direction. As a result, the workability at the time of attachment to the piping can be improved.
- the outer surface of the foam made of the first resin is covered with the second resin film, but the second resin film may be omitted.
- a foamed resin tube without a second resin film can be manufactured by using the die described in the above embodiment (see FIG. 4) and not supplying the second resin to the die.
- dye which does not have a 2nd supply port and a 2nd flow path, and 1st resin mentioned above You may comprise a manufacturing apparatus with an extrusion part and a shaping
- the first resin foaming and the molding into the tube shape having the embossed pattern on the surface are performed simultaneously, thereby making the manufacturing process as compared with the conventional manufacturing method described in FIG.
- the number can be greatly reduced.
- directly molding the resin into a tubular shape it is possible to reduce the distortion of the cross-sectional shape and bring it closer to a perfect circle, so that it is possible to manufacture a foamed resin tube with excellent aesthetics.
- the foamed resin tube having the lattice-like embossed pattern formed on the outer peripheral surface is described as an example.
- various outer surface shapes can be obtained by changing the concave shape of the mold of the molding apparatus. Can be produced.
- a corrugated pipe made of a resin foam can be manufactured using a corrugated mold.
- a mandrel is provided with a through hole that penetrates the central axis, and air is sealed from the through hole to provide an extruded product.
- the concavo-convex shape of the mold may be transferred by pressing from the inside of the mold.
- the present invention can be used for manufacturing a foamed resin tube used for a heat insulating cover for piping.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Molding Of Porous Articles (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Abstract
Provided is an apparatus for manufacturing a foamed resin tube with which a high-foam-content foamed resin tube that has a surface embossed with protrusions and recesses can be manufactured at high yields with few steps with minimal distortion in the cross-sectional shape. A first resin containing a foaming agent is supplied to a first flow channel 35 of a die 2. A second resin having a higher temperature than the first resin is supplied to a second flow channel 36. A thermal insulation layer provided inside dies 31 suppresses heating of the first resin by the second resin, and keeps the temperature of the first resin in the temperature range required to yield a high foam content. A high-foam-content foamed resin tube having an embossed profile is manufactured by performing the following simultaneously within a mold: extrusion of the first resin, which includes the foaming agent; extrusion of the second resin; and molding of the resins.
Description
本発明は、配管の断熱材等に利用される発泡樹脂チューブの製造装置及び発泡樹脂チューブに関するものである。
The present invention relates to a foamed resin tube manufacturing apparatus and a foamed resin tube used for a heat insulating material for piping and the like.
従来、配管の断熱材(断熱カバー)として、架橋ポリエチレン等の樹脂を発泡させた樹脂発泡体からなる発泡樹脂チューブが広く用いられている。この発泡樹脂チューブの中には、配管の屈曲部の外面に取り付けた場合に皺の発生を抑制して美観を向上させたり、屈曲性を高めて取り付け時の摩擦を低減させたり、滑り止めとして機能させたりする目的で、表面にエンボス加工が施されたものがある。
Conventionally, a foamed resin tube made of a resin foam obtained by foaming a resin such as cross-linked polyethylene has been widely used as a heat insulating material (insulating cover) for piping. In this foamed resin tube, when it is attached to the outer surface of the bent part of the piping, the generation of wrinkles is suppressed to improve the aesthetic appearance, the bendability is increased to reduce friction during installation, and as a non-slip Some have their surface embossed for functional purposes.
図6は、従来のエンボス付発泡樹脂チューブの製造方法を示す断面図であり、図7は、図6の製造方法により製造される従来のエンボス付き発泡樹脂チューブの一部分の斜視図である。
FIG. 6 is a cross-sectional view showing a conventional method for manufacturing an embossed foamed resin tube, and FIG. 7 is a perspective view of a part of the conventional embossed foamed resin tube manufactured by the manufacturing method of FIG.
まず、図6(a)に示すように、架橋ポリエチレン等の樹脂を発泡させてなる平板状の樹脂発泡体81を用意し、この表面に熱可塑性樹脂からなるフィルム82を重ねる。次に、フィルム82及び樹脂発泡体81の表面を加熱して軟化させた状態で、表面に凹凸が形成されたエンボスロールを用いて型押し加工を行うことにより、図6(b)に示すように、樹脂発泡体81の表面にエンボスロールの凹凸形状が転写された凹凸層83を形成する。エンボス加工後の樹脂発泡体81は、形成しようとする発泡樹脂チューブの径に応じた幅を有する帯状に裁断される。次に、図6(c)に示すように、裁断した帯状の樹脂発泡体81を凹凸層83が外側となるように筒状に丸め、樹脂発泡体81の端面84a及び84bを加熱して溶融させた後、図6(d)に示すように、端面84a及び84bを突き合わせて接合する。以上の工程を得て、図6(e)及び図7に示すように、管状の樹脂発泡体81の表面にエンボス加工による凹凸層83が形成された発泡樹脂チューブ80が完成する。
First, as shown in FIG. 6A, a flat resin foam 81 formed by foaming a resin such as cross-linked polyethylene is prepared, and a film 82 made of a thermoplastic resin is overlaid on the surface. Next, in a state where the surfaces of the film 82 and the resin foam 81 are heated and softened, an embossing roll having irregularities formed on the surface is used to perform an embossing process, as shown in FIG. Then, the uneven layer 83 in which the uneven shape of the embossing roll is transferred to the surface of the resin foam 81 is formed. The embossed resin foam 81 is cut into a strip shape having a width corresponding to the diameter of the foamed resin tube to be formed. Next, as shown in FIG. 6 (c), the cut strip-shaped resin foam 81 is rounded into a cylindrical shape so that the uneven layer 83 is on the outside, and the end faces 84a and 84b of the resin foam 81 are heated and melted. Then, as shown in FIG. 6D, the end faces 84a and 84b are butted and joined. 6A and 7B, the foamed resin tube 80 in which the uneven layer 83 by embossing is formed on the surface of the tubular resin foam 81 is completed.
尚、図6に示す製造方法で製造した発泡樹脂チューブには、平板状の樹脂発泡体の端面同士を接合した接合部85が現れる(図6(e)及び図7の破線部)。
In addition, in the foamed resin tube manufactured by the manufacturing method shown in FIG. 6, a joint portion 85 in which the end faces of the flat resin foam are joined appears (broken line portions in FIG. 6E and FIG. 7).
上記の従来の製造方法では、材料として平板状の樹脂発泡体を用い、これを筒状に丸めて端面同士を熱融着させることにより発泡樹脂チューブを製造している。発泡樹脂チューブの内周及び外周には周長差があるが、熱融着前の帯状の樹脂発泡体は一定幅であるため、筒状に丸めると発泡樹脂チューブの内周側部分の樹脂発泡体が圧縮されることになる。このため、発泡樹脂チューブの内周側と外周側とで応力差が生じ、この応力差により発泡樹脂チューブの断面形状が真円ではなく歪んだ形状となる。発泡樹脂チューブの断面形状が歪んでいると、美観の面で好ましくない。
In the conventional manufacturing method described above, a foamed resin tube is manufactured by using a flat resin foam as a material, rounding it into a cylindrical shape, and heat-sealing the end faces. Although there is a difference in circumference between the inner and outer circumferences of the foamed resin tube, the resin foam in the inner circumference side of the foamed resin tube is rounded into a cylindrical shape because the band-shaped resin foam before heat sealing has a certain width. The body will be compressed. For this reason, a stress difference is generated between the inner peripheral side and the outer peripheral side of the foamed resin tube, and the cross-sectional shape of the foamed resin tube becomes a distorted shape instead of a perfect circle due to the stress difference. If the cross-sectional shape of the foamed resin tube is distorted, it is not preferable in terms of aesthetics.
また、上記の従来の製造方法では、製造工程数が多いため、製造装置が複雑となり製造コストが高くなるという問題がある。また、平板状の樹脂発泡体は、配管の管径に合わせて帯状に裁断するため、端材が生じると歩留まりを低下させ、製造コストの上昇に繋がる。
Further, the above-described conventional manufacturing method has a problem that the manufacturing apparatus becomes complicated and the manufacturing cost increases because the number of manufacturing steps is large. In addition, since the flat resin foam is cut into a strip shape in accordance with the pipe diameter of the pipe, if the end material is generated, the yield is lowered and the manufacturing cost is increased.
また、給水管や給湯管の断熱用途の発泡樹脂チューブには、高い断熱性が求められるため、樹脂発泡体の発泡倍率を高くすることが必要となる。
Also, since the foamed resin tube for heat insulation of water supply pipes and hot water supply pipes is required to have high heat insulation properties, it is necessary to increase the foaming ratio of the resin foam.
それ故に、本発明は、表面にエンボス加工による凹凸が設けられた高倍率発泡の発泡樹脂チューブを、断面形状の歪みを抑制しつつ、少ない工程で歩留まり良く製造できる発泡樹脂チューブの製造装置を提供することを目的とする。また、本発明は、断面形状の歪みが少ない高倍率発泡の発泡樹脂チューブを提供することを目的とする。
Therefore, the present invention provides an apparatus for producing a foamed resin tube, which can produce a high-magnification foamed resin tube having an uneven surface by embossing on the surface while suppressing distortion of the cross-sectional shape and with a small number of processes. The purpose is to do. Another object of the present invention is to provide a high-magnification foamed resin tube with less cross-sectional distortion.
本発明は、管形状を有し、発泡倍率が20~30倍である樹脂発泡体と、樹脂発泡体の表面を覆うフィルムとを有し、表面にエンボス模様が形成された発泡樹脂チューブの製造装置に関するものである。本発明に係る発泡樹脂チューブの製造装置は、環状の第1吐出口と、第1吐出口に連通する第1流路と、第1吐出口を取り囲むように配置される環状の第2吐出口と、第2吐出口に連通し、第1流路を取り囲むように配置される第2流路とを有するダイと、熱可塑性の第1樹脂を溶融混練し、溶融した第1樹脂に発泡剤を混合してダイの第1流路に供給する第1樹脂供給部と、熱可塑性の第2樹脂を溶融混練し、溶融した第2樹脂を第1樹脂より高い温度でダイの第2流路に供給する第2樹脂供給部と、発泡樹脂チューブの外面形状の一部と対応する凹部を有する複数の第1金型と発泡樹脂チューブの外面形状の他の一部と対応する凹部を有する複数の第2金型とを用いて、真空成型またはエアによる加圧成型を行うことにより、ダイの第1吐出口から吐出された第1樹脂を管状に成型すると共にエンボス模様を形成する成型装置とを備える。ダイは、マンドレルと、マンドレルの外側を所定の隙間を空けて取り囲む管状の第1ダイスと、第1ダイスの外側を所定の隙間を空けて取り囲む管状の第2ダイスとを含む。マンドレルと第1ダイスとの間の隙間により第1吐出口及び第1流路が構成され、第1ダイスと第2ダイスとの間の隙間により第2吐出口及び第2流路が構成される。ダイの第1吐出口及び第2吐出口は、第1金型の凹部と第2金型の凹部との間に挟まれた成型空間内に配置される。第1ダイスの内部には、第1流路と第2流路との間を断熱する断熱層が設けられる。
The present invention relates to the production of a foamed resin tube having a tube shape and a resin foam having a foaming ratio of 20 to 30 times, and a film covering the surface of the resin foam and having an embossed pattern formed on the surface. It relates to the device. The foamed resin tube manufacturing apparatus according to the present invention includes an annular first discharge port, a first flow path communicating with the first discharge port, and an annular second discharge port disposed so as to surround the first discharge port. And a die having a second flow path that communicates with the second discharge port and is disposed so as to surround the first flow path, and a thermoplastic first resin is melt-kneaded and a foaming agent is added to the melted first resin. A first resin supply unit that mixes and supplies the first resin supply part to the first flow path of the die, and melts and kneads the thermoplastic second resin, and the molten second resin is heated to a temperature higher than that of the first resin. A plurality of first molds having a recess corresponding to a part of the outer surface shape of the foamed resin tube and a plurality of recesses corresponding to the other part of the outer shape of the foamed resin tube. The first die of the die is formed by performing vacuum molding or pressure molding with air using the second mold. And a molding device for forming an embossed pattern with molding the first resin discharged from the outlet to the tubular. The die includes a mandrel, a tubular first die that surrounds the outside of the mandrel with a predetermined gap, and a tubular second die that surrounds the outside of the first die with a predetermined gap. The first discharge port and the first flow path are configured by the gap between the mandrel and the first die, and the second discharge port and the second flow path are configured by the gap between the first die and the second die. . The first discharge port and the second discharge port of the die are disposed in a molding space sandwiched between the recess of the first mold and the recess of the second mold. A heat insulating layer is provided in the first die to insulate between the first flow path and the second flow path.
また、本発明は、管形状を有し、発泡倍率が20~30倍である樹脂発泡体と、前記樹脂発泡体の表面を覆うフィルムとを有し、表面にエンボス模様が形成された発泡樹脂チューブに関するものである。本発明に係る発泡樹脂チューブにおいて、長手方向と直交する横断面が円形状で、かつ、当該横断面に溶着痕がない一体的な管形状を有することを特徴とする。
The present invention also provides a foamed resin having a tube shape and a foamed resin having an expansion ratio of 20 to 30 times, and a film covering the surface of the resin foam, and having an embossed pattern formed on the surface. It relates to tubes. The foamed resin tube according to the present invention is characterized in that the cross section perpendicular to the longitudinal direction is circular and the cross section has an integral tube shape with no welding marks.
本発明によれば、表面にエンボス加工による凹凸が設けられた高倍率発泡の発泡樹脂チューブを、断面形状の歪みを抑制しつつ、少ない工程で歩留まり良く製造できる発泡樹脂チューブの製造装置を提供できる。また、本発明によれば、断面形状の歪みが少ない高倍率発泡の発泡樹脂チューブを提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus of the foaming resin tube which can manufacture the high-expansion foaming foamed resin tube by which the unevenness | corrugation by embossing was provided in the surface can be manufactured with few processes, suppressing a distortion of cross-sectional shape can be provided. . Further, according to the present invention, it is possible to provide a high-magnification foamed resin tube with less cross-sectional distortion.
図1は、実施形態に係る発泡樹脂チューブ製造装置により製造される発泡樹脂チューブの一部分の斜視図である。
FIG. 1 is a perspective view of a part of a foamed resin tube manufactured by the foamed resin tube manufacturing apparatus according to the embodiment.
図1に示す発泡樹脂チューブ10は、発泡した第1樹脂からなり、管形状を有する樹脂発泡体51と、第2樹脂からなり、樹脂発泡体51の表面(外周面)を覆うフィルム52とから構成される。表面のエンボス模様は、フィルム52と樹脂発泡体51の外周部分の両方に形成されている。本実施形態に係る発泡樹脂チューブ10は、長手方向と直交する横断面が円形であり、当該横断面に溶着痕(図6に示した接合部85に相当する部分)がない一体的な管形状を有することが特徴である。したがって、発泡樹脂チューブ10は、断面形状の歪みが少ない発泡樹脂チューブである。ここで、樹脂発泡体51の発泡倍率、すなわち、発泡前の第1樹脂の体積に対する発泡後の第1樹脂の体積の倍率は、20~30倍であり、好ましくは25~30倍である。樹脂発泡体51の発泡倍率が20~30倍である場合、高い断熱効果が得られるため、発泡樹脂チューブ10は、吸水・給湯用の配管の断熱材として好適である。このような20~30倍もの高い発泡倍率の樹脂発泡体51を得るためには、後述するように、発泡剤として気体を使用するガス発泡を採用することが必要となる。
A foamed resin tube 10 shown in FIG. 1 is made of a foamed first resin, and has a tube-shaped resin foam 51 and a film 52 that is made of a second resin and covers the surface (outer peripheral surface) of the resin foam 51. Composed. The embossed pattern on the surface is formed on both the film 52 and the outer peripheral portion of the resin foam 51. The foamed resin tube 10 according to the present embodiment has a circular cross section orthogonal to the longitudinal direction, and an integral tube shape having no welding mark (portion corresponding to the joint portion 85 shown in FIG. 6) in the cross section. It is the characteristic to have. Therefore, the foamed resin tube 10 is a foamed resin tube with less distortion of the cross-sectional shape. Here, the expansion ratio of the resin foam 51, that is, the ratio of the volume of the first resin after foaming to the volume of the first resin before foaming is 20 to 30 times, preferably 25 to 30 times. When the expansion ratio of the resin foam 51 is 20 to 30 times, a high heat insulating effect is obtained, and therefore the foamed resin tube 10 is suitable as a heat insulating material for piping for water absorption and hot water supply. In order to obtain such a resin foam 51 having a high expansion ratio of 20 to 30 times, it is necessary to employ gas foaming using a gas as a foaming agent, as will be described later.
図2は、実施形態に係る発泡樹脂チューブ製造装置を示す概略図である。
FIG. 2 is a schematic view showing the foamed resin tube manufacturing apparatus according to the embodiment.
発泡樹脂チューブ製造装置1は、第1樹脂及び第2樹脂を押し出す押出成形用のダイ2と、ダイ2に第1樹脂を供給する第1樹脂押出部3と、ダイ2に第2樹脂を供給する第2樹脂押出部4と、ダイ2から押し出された樹脂を管状に成形すると共に、表面にエンボス形状を転写する成型装置5とを備える。
The foamed resin tube manufacturing apparatus 1 supplies an extrusion molding die 2 for extruding the first resin and the second resin, a first resin extrusion unit 3 for supplying the first resin to the die 2, and supplying the second resin to the die 2. A second resin extruding portion 4 that molds the resin extruded from the die 2 into a tubular shape, and a molding device 5 that transfers the embossed shape to the surface.
ダイ2は、3重構造の管状の金型であり、樹脂発泡体となる第1樹脂を押し出す環状の第1吐出口と、発泡体の表面を被覆するフィルムとなる第2樹脂を押し出す環状の第2吐出口とを有する。ダイ2には、第1樹脂を供給する第1樹脂押出部3と、第2樹脂を供給する第2樹脂押出部4とが接続されている。尚、ダイ2の構造の詳細は後述する。
The die 2 is a tubular mold having a triple structure, and an annular first discharge port for extruding the first resin to be a resin foam and an annular extruding second resin to be a film for covering the surface of the foam. A second discharge port. Connected to the die 2 are a first resin extruding part 3 for supplying a first resin and a second resin extruding part 4 for supplying a second resin. Details of the structure of the die 2 will be described later.
第1樹脂押出部3は、押出機11a及び11bと、これらを連通させる連通路15とを備える。
The 1st resin extrusion part 3 is equipped with extruder 11a and 11b and the communication path 15 which makes these communicate.
押出機11aは、第1樹脂のペレットを投入するためのホッパ(図示せず)と、内部にスクリューを備え、内部で樹脂を溶融させるハウジング13aと、ハウジング13a内のスクリューを回転させるモータ14aとを備える。また、押出機11aには、ハウジング13a内部の樹脂を加熱するヒーター(図示せず)が設けられている。ハウジング13aの長手方向の中間部分には、注入口18が設けられており、この注入口18を通じてハウジング内に発泡剤としてガスが注入される。押出機11aは、溶融した第1樹脂に注入口18から注入された発泡剤を混合し、発泡剤を混合した第1樹脂を、連通路15を通じて押出機11bのハウジング13b内に供給する。
The extruder 11a includes a hopper (not shown) for charging the first resin pellets, a housing 13a having a screw therein and melting the resin therein, and a motor 14a for rotating the screw in the housing 13a. Is provided. The extruder 11a is provided with a heater (not shown) for heating the resin inside the housing 13a. An injection port 18 is provided in an intermediate portion in the longitudinal direction of the housing 13a, and gas is injected as a foaming agent into the housing through the injection port 18. The extruder 11 a mixes the foaming agent injected from the injection port 18 with the melted first resin, and supplies the first resin mixed with the foaming agent into the housing 13 b of the extruder 11 b through the communication path 15.
押出機11bは、内部に溶融樹脂を混練するためのスクリューを備えるハウジング13bと、ハウジング13b内のスクリューを回転させるモータ14bとを備える。また、押出機11bには、ハウジング13b内部の樹脂を加熱するヒーター(図示せず)が設けられている。ハウジング13b内の温度は、押出機11aのハウジング13a内の温度より低く設定されており、第1樹脂は、ハウジング13b内で混練される過程で所定温度まで冷却される。この押出機11bによる冷却及び混練により、第1樹脂の分子間に発泡剤の気泡(セルと呼ばれる)が均一に分散した状態となる。押出機11bは、冷却した第1樹脂を、ダイ2に設けられた第1吐出口に連通する第1流路に供給する。
The extruder 11b includes a housing 13b having a screw for kneading the molten resin therein, and a motor 14b for rotating the screw in the housing 13b. The extruder 11b is provided with a heater (not shown) for heating the resin inside the housing 13b. The temperature in the housing 13b is set lower than the temperature in the housing 13a of the extruder 11a, and the first resin is cooled to a predetermined temperature in the course of being kneaded in the housing 13b. By the cooling and kneading by the extruder 11b, the foaming agent bubbles (called cells) are uniformly dispersed between the molecules of the first resin. The extruder 11 b supplies the cooled first resin to the first flow path communicating with the first discharge port provided in the die 2.
尚、第1樹脂としては、発泡可能な熱可塑性樹脂であれば特に限定されないが、ポリウレタン、ポリスチレン、ポリエチレン(架橋ポリエチレンを含む)、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレン-プロピレン共重合体、ポリエチレンテレフタレート、ポリ塩化ビニル、ナイロン等を使用できる。また、発泡剤としては、ブタンやペンタン等の炭化水素類、二酸化炭素や窒素等の不活性ガスを使用できる。配管の断熱材の用途では、第1樹脂としてはポリエチレン(架橋ポリエチレンを含む)が好ましく、この場合、発泡剤としてはブタンやペンタン等が好適である。
The first resin is not particularly limited as long as it is a foamable thermoplastic resin, but polyurethane, polystyrene, polyethylene (including cross-linked polyethylene), polypropylene, ethylene vinyl acetate copolymer, ethylene-propylene copolymer, Polyethylene terephthalate, polyvinyl chloride, nylon and the like can be used. As the foaming agent, hydrocarbons such as butane and pentane, and inert gases such as carbon dioxide and nitrogen can be used. In the use of a heat insulating material for piping, polyethylene (including cross-linked polyethylene) is preferable as the first resin, and in this case, butane, pentane and the like are preferable as the foaming agent.
第2樹脂押出部4は、押出機12からなる。押出機12は、第2樹脂のペレットを投入するためのホッパ(図示せず)と、内部にスクリューを備えるハウジング16と、ハウジング16内のスクリューを回転させるモータ17とを備える。また、押出機12には、ハウジング16内部の樹脂を加熱するヒーター(図示せず)が設けられている。押出機12は、ホッパから投入された第2樹脂をハウジング16内で溶融混練し、溶融した第2樹脂をダイ2に設けられた第2吐出口に連通する第2流路に供給する。第2樹脂押出部4がdダイ2に供給する第2樹脂の温度は、第1樹脂押出部3がダイ2に供給する第1樹脂の温度より高く設定される。
The second resin extrusion unit 4 is composed of an extruder 12. The extruder 12 includes a hopper (not shown) for charging the pellets of the second resin, a housing 16 having a screw therein, and a motor 17 for rotating the screw in the housing 16. Further, the extruder 12 is provided with a heater (not shown) for heating the resin inside the housing 16. The extruder 12 melts and kneads the second resin charged from the hopper in the housing 16 and supplies the melted second resin to the second flow path communicating with the second discharge port provided in the die 2. The temperature of the second resin that the second resin extrusion unit 4 supplies to the d die 2 is set higher than the temperature of the first resin that the first resin extrusion unit 3 supplies to the die 2.
第2樹脂としては、熱可塑性樹脂であれば特に限定されず、ポリウレタン、ポリスチレン、ポリエチレン、架橋ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレン-プロピレン共重合体、ポリエチレンテレフタレート、ポリ塩化ビニル、ナイロン等を使用できる。この中でも、ポリエチレン、架橋ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン樹脂を好適に使用できる。
The second resin is not particularly limited as long as it is a thermoplastic resin. Polyurethane, polystyrene, polyethylene, crosslinked polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene-propylene copolymer, polyethylene terephthalate, polyvinyl chloride, nylon Etc. can be used. Among these, polyolefin resins such as polyethylene, cross-linked polyethylene, polypropylene, and ethylene-propylene copolymer can be suitably used.
成型装置5は、2分割した金型20a及び20bを複数対用いて、表面に凹凸を有する樹脂チューブ(樹脂パイプ)を長尺状に連続成型する装置である。成型装置5は、長尺状のコルゲートパイプ(コルゲートチューブ)を連続成型するために用いられることから、コルゲータと呼ばれる場合もある。ただし、成型装置5に用いる金型20a及び20bの凹部の形状や大きさを変えることにより、表面にコルゲート形状を有するチューブに限らず、様々な直径または様々なエンボス模様を有する発泡樹脂チューブを成型することができる。尚、成型装置5による樹脂チューブの成型方法としては、金型に設けた細孔を真空吸引することによって成型する真空成型と、金型の中心に空気を吹き込んで加圧することによって成型するエア加圧成型とがあるが、いずれの方法を採用しても良い。尚、成型装置5における樹脂チューブの成型の詳細は後述する。
The molding apparatus 5 is an apparatus for continuously molding a resin tube (resin pipe) having irregularities on its surface by using a plurality of pairs of molds 20a and 20b divided into two. Since the molding device 5 is used for continuously molding a long corrugated pipe (corrugated tube), it may be called a corrugator. However, by changing the shape and size of the recesses of the molds 20a and 20b used in the molding apparatus 5, not only a tube having a corrugated shape on the surface but also a foamed resin tube having various diameters or various embossed patterns is molded. can do. The resin tube is molded by the molding apparatus 5 by vacuum molding in which the pores provided in the mold are vacuum-sucked, and by air being blown into the center of the mold and pressurized. Although there is pressure molding, any method may be adopted. Details of the molding of the resin tube in the molding apparatus 5 will be described later.
尚、成型装置5の下流には、成形された発泡樹脂チューブ10を冷却する冷却装置6や、発泡樹脂チューブ10を引き取る引取装置7、発泡樹脂チューブ10を巻き取る巻取装置8が順に設けられている。
A cooling device 6 that cools the molded foamed resin tube 10, a take-up device 7 that takes up the foamed resin tube 10, and a winding device 8 that winds up the foamed resin tube 10 are sequentially provided downstream of the molding device 5. ing.
図3は、図2に示した成型装置及びダイの部分拡大図であり、図4は、図3に示したIV-IVラインに沿う断面図である。
3 is a partially enlarged view of the molding apparatus and die shown in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG.
図2に示すように、成型装置5は、2分割した金型20a及び20bを複数対備える。金型20aの各々は、搬送機構22aにより図2のブロック矢印の方向に搬送され、搬送路21aに沿って循環している。同様に、金型20bの各々は、搬送機構22bにより図2のブロック矢印の方向に搬送され、搬送路21bに沿って循環している。金型20a及び20bの各々には、発泡樹脂チューブの長さ方向の所定長の一部のうち、周方向の半周分を成型するための略半円柱形状の凹部が形成されている。また、図4に網掛けで示すように、金型20aに形成された凹部の表面には、樹脂チューブの表面に転写する凹凸(エンボス模様の反転パターン)が設けられている。図示は省略しているが、金型20bの凹部にも同様に樹脂チューブの表面に転写する凹凸(エンボス模様の反転パターン)が設けられている。
2, the molding apparatus 5 includes a plurality of pairs of molds 20a and 20b divided into two. Each mold 20a is transported in the direction of the block arrow in FIG. 2 by the transport mechanism 22a and circulates along the transport path 21a. Similarly, each mold 20b is transported in the direction of the block arrow in FIG. 2 by the transport mechanism 22b and circulates along the transport path 21b. Each of the molds 20a and 20b is formed with a substantially semi-cylindrical recess for molding a part of a predetermined length in the length direction of the foamed resin tube in the circumferential direction. Further, as shown in FIG. 4 by shading, the surface of the recess formed in the mold 20a is provided with unevenness (an embossed pattern reversal pattern) to be transferred to the surface of the resin tube. Although not shown in the drawings, the concave portion of the mold 20b is similarly provided with unevenness (an embossed pattern reversal pattern) to be transferred to the surface of the resin tube.
図3及び4に示すように、一対の金型20a及び20bの分割面23a及び23bは、ダイ2の中心軸と平行な直線の搬送路上にあるときに面接触する。また、当該直線状の搬送路上において、分割面23a及び23b同士が接触した金型20a及び20bの対が直線状の搬送路に沿って(ダイ2の中心軸と平行な方向に)連結する。搬送路方向に隣接した複数対の金型20a及び20bの内部には、発泡樹脂チューブの外面形状に対応したほぼ円柱形状を有する所定長さの成型空間が形成される。
3 and 4, the split surfaces 23a and 23b of the pair of molds 20a and 20b are in surface contact when they are on a straight conveyance path parallel to the central axis of the die 2. Further, on the linear conveyance path, a pair of molds 20a and 20b in which the split surfaces 23a and 23b are in contact with each other are connected along the linear conveyance path (in a direction parallel to the central axis of the die 2). Inside a plurality of pairs of dies 20a and 20b adjacent in the conveyance path direction, a molding space having a predetermined length having a substantially cylindrical shape corresponding to the outer surface shape of the foamed resin tube is formed.
また、図3及び4に示すように、ダイ2は、ダイ2の先端部に設けられた第1吐出口33及び第2吐出口34が、分割面23a及び23b同士が接触した一対の金型20a及び20bの間に形成された成型空間内に位置するように配置されている。
3 and 4, the die 2 has a pair of molds in which the first discharge port 33 and the second discharge port 34 provided at the tip of the die 2 are in contact with the divided surfaces 23a and 23b. It arrange | positions so that it may be located in the molding space formed between 20a and 20b.
図5Aは、図4に示したダイの詳細な構成を示す図であり、図5Bは、図5Aに示したダイの部分拡大図である。
FIG. 5A is a diagram showing a detailed configuration of the die shown in FIG. 4, and FIG. 5B is a partially enlarged view of the die shown in FIG. 5A.
ダイ2は、図5A及び5Bに示すように、棒状のマンドレル30と、マンドレル30の外側を所定の隙間を空けて取り囲む管状のダイス31と、ダイス31の外側を所定の隙間を空けて取り囲む管状のダイス32とから構成される。
As shown in FIGS. 5A and 5B, the die 2 includes a rod-shaped mandrel 30, a tubular die 31 that surrounds the outside of the mandrel 30 with a predetermined gap, and a tubular that surrounds the outside of the die 31 with a predetermined gap. And the dice 32.
マンドレル30の外周面とダイス31の内周面との間には、上述した所定の隙間により第1流路35が形成されている。この第1流路35には、図示しない注入口を通じて、第1樹脂押出部3から押し出された、発泡剤を含有する第1樹脂が供給される。また、第1流路35の最下流部、すなわち、ダイ2の先端部分には、第1樹脂を吐出する環状の第1吐出口33が形成されている。尚、マンドレル30の先端部は、円柱形状であり、ダイス31の先端面から突出している。マンドレル30の先端部がダイス31の先端面より突出させているのは、マンドレル30の先端部を発泡樹脂チューブの中空部分の断面を円形に形成するための入れ子として用いるためである
A first flow path 35 is formed between the outer peripheral surface of the mandrel 30 and the inner peripheral surface of the die 31 by the predetermined gap described above. The first flow path 35 is supplied with a first resin containing a foaming agent extruded from the first resin push-out section 3 through an inlet (not shown). An annular first discharge port 33 for discharging the first resin is formed at the most downstream portion of the first flow path 35, that is, at the tip portion of the die 2. The tip of the mandrel 30 has a cylindrical shape and protrudes from the tip of the die 31. The reason why the tip of the mandrel 30 protrudes from the tip of the die 31 is that the tip of the mandrel 30 is used as a nesting for forming a circular cross section of the hollow portion of the foamed resin tube.
ダイス31の外周面とダイス32の内周面との間には、上述した所定の隙間からなる第2流路36が形成されている。図4に示すように、ダイス32には、中心軸と直交する方向に延びる貫通孔37が形成されており、この貫通孔37を通じて、第2流路36には、第2樹脂押出部4から押し出された第2樹脂が供給される。また、第2流路36の最下流部、すなわち、ダイ2の先端部分には、第2樹脂を吐出する環状の第2吐出口34が形成されている。
Between the outer peripheral surface of the die 31 and the inner peripheral surface of the die 32, the second flow path 36 including the predetermined gap described above is formed. As shown in FIG. 4, a through hole 37 extending in a direction orthogonal to the central axis is formed in the die 32, and through the through hole 37, the second flow path 36 is connected to the second resin extrusion portion 4. The extruded second resin is supplied. An annular second discharge port 34 for discharging the second resin is formed at the most downstream portion of the second flow path 36, that is, at the tip portion of the die 2.
更に、図5Bに示すように、ダイス31は、管形状を有する同軸の2つの内側分割体38a及び外側分割体38bから構成されている。内側分割体38aは、ダイス31の内周面を構成する部材である。一方、外側分割体38bは、ダイス31の外周面を構成する部材であり、内側分割体38aを取り囲むように配置されている。
Furthermore, as shown in FIG. 5B, the die 31 is composed of two coaxial inner divided bodies 38a and outer divided bodies 38b having a tubular shape. The inner divided body 38 a is a member that constitutes the inner peripheral surface of the die 31. On the other hand, the outer divided body 38b is a member constituting the outer peripheral surface of the die 31, and is arranged so as to surround the inner divided body 38a.
ダイス31の内部には、第1流路35と第2流路との間を断熱する断熱層39が設けられている。断熱層39は、第1流路35を取り囲むように設けられている。本実施形態において、断熱層39は、内側分割体38aの内周面と、外側分割体38bの外周面との間に設けられた筒状の密閉空間に、空気を封入することによって構成されている。空気は熱伝導率が小さく、かつ、内側分割体38aの外周面と外側分割体38bの内周面との間に構成された密閉空間内で空気は動けないため、この密閉空間内に封入された空気によって高い断熱性が得られる。この断熱層39は、第1流路35に供給された第1樹脂が、第2流路に供給された第2樹脂(第1樹脂より高温)によって加熱されることを抑制するために設けられているものであるが、この点については後述する。尚、径方向における断熱層39の厚みは、1mm以上であれば、本実施形態に係る高倍率発泡の発泡樹脂チューブの形成時に必要とされる第1樹脂の断熱が可能となる。また、必要な断熱性が得られるのであれば、内側分割体38a及び外側分割体38bの間の空間に、空気以外の断熱材を封止したり、真空の断熱層を設けたりしても良い。
In the inside of the die 31, a heat insulating layer 39 that insulates between the first flow path 35 and the second flow path is provided. The heat insulating layer 39 is provided so as to surround the first flow path 35. In the present embodiment, the heat insulating layer 39 is configured by enclosing air in a cylindrical sealed space provided between the inner peripheral surface of the inner divided body 38a and the outer peripheral surface of the outer divided body 38b. Yes. Since air has a low thermal conductivity and air cannot move in the sealed space formed between the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b, the air is enclosed in the sealed space. High heat insulation can be obtained by air. The heat insulating layer 39 is provided to prevent the first resin supplied to the first flow path 35 from being heated by the second resin (higher than the first resin) supplied to the second flow path. This will be described later. In addition, if the thickness of the heat insulation layer 39 in the radial direction is 1 mm or more, it is possible to insulate the first resin that is required when forming the high-expansion foamed resin tube according to the present embodiment. Further, if necessary heat insulating properties can be obtained, a heat insulating material other than air may be sealed or a vacuum heat insulating layer may be provided in the space between the inner divided body 38a and the outer divided body 38b. .
また、本実施形態では、内側分割体38aの外周面に凹部を形成することにより、内側分割体38aの外周面と外側分割体38b体の内周面との間に密閉空間を構成しているが、外側分割体38bの内周面に凹部を形成することにより密閉空間を構成しても良いし、内側分割体38aの外周面と外側分割体38b体の内周面の両方に凹部を形成することにより密閉空間を構成しても良い。
In the present embodiment, a recessed space is formed on the outer peripheral surface of the inner divided body 38a, thereby forming a sealed space between the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b. However, a sealed space may be formed by forming a recess on the inner peripheral surface of the outer divided body 38b, or a recess is formed on both the outer peripheral surface of the inner divided body 38a and the inner peripheral surface of the outer divided body 38b. By doing so, you may comprise a sealed space.
断熱層39は、少なくとも、ダイス31の厚みが一定となる部分に設けることが好ましい。ここでのダイス31の厚みは、径方向におけるダイス31の内外径差であり、内側分割体38a、断熱層39及び外側分割体38bのそれぞれの厚みの合計である。本実施形態に係る発泡樹脂チューブ製造装置1では、図2及び3に示したように、成形装置5の金型20a及び20bで表面にエンボス模様を形成するため、ダイ2の先端から所定長さの部分を金型20a及び20bにより形成される成形空間内に挿入する必要がある。このため、ダイ2の外径は、金型20a及び20bにより形成され成形空間の内径に応じて制限されるため、ダイ2を構成するダイス31の厚みもある程度薄くする必要がある。ダイス31の厚みを薄くすると、ダイス31の厚みが一定となる部分においては、第2流路36内の第2樹脂の熱が第1流路35へと伝わりやすくなるが、少なくともダイス31の厚みが一定となる部分に断熱層39を設けることによって、十分な断熱性を確保することができる。
The heat insulating layer 39 is preferably provided at least in a portion where the thickness of the die 31 is constant. The thickness of the die 31 here is the difference between the inner and outer diameters of the die 31 in the radial direction, and is the total thickness of each of the inner divided body 38a, the heat insulating layer 39, and the outer divided body 38b. In the foamed resin tube manufacturing apparatus 1 according to the present embodiment, as shown in FIGS. 2 and 3, an embossed pattern is formed on the surface with the molds 20 a and 20 b of the molding apparatus 5, and therefore, a predetermined length from the tip of the die 2. Must be inserted into the molding space formed by the molds 20a and 20b. For this reason, since the outer diameter of the die 2 is limited by the inner diameter of the molding space formed by the molds 20a and 20b, it is necessary to reduce the thickness of the die 31 constituting the die 2 to some extent. When the thickness of the die 31 is reduced, the heat of the second resin in the second flow path 36 is easily transferred to the first flow path 35 in the portion where the thickness of the die 31 is constant. By providing the heat insulating layer 39 in a portion where the constant is constant, sufficient heat insulating properties can be ensured.
ダイ2の先端に設けられた第1吐出口33は環状であるため、第1樹脂は第1吐出口33から管状に吐出されることになる。ダイ2の第1流路35に供給された第1樹脂は、発泡剤(ガス)を含有しているため、ダイ2先端の環状の第1吐出口33から吐出されると、直ちに発泡剤(ガス)が揮発して押し出された第1樹脂が発泡する。つまり、第1樹脂は、第1吐出口33から吐出されることにより管状の発泡体となる。
Since the first discharge port 33 provided at the tip of the die 2 is annular, the first resin is discharged from the first discharge port 33 in a tubular shape. The first resin supplied to the first flow path 35 of the die 2 contains a foaming agent (gas). Therefore, when the first resin is discharged from the annular first discharge port 33 at the tip of the die 2, the foaming agent ( Gas) evaporates and the extruded first resin foams. That is, the first resin becomes a tubular foam by being discharged from the first discharge port 33.
また、ダイ2の先端に設けられたダイ2の第2吐出口34も環状であり、第1吐出口33を取り囲むように設けられているため、第2樹脂は、発泡した第1樹脂からなる管状の発泡体の外面全体を覆うように管状に吐出される。
Further, since the second discharge port 34 of the die 2 provided at the tip of the die 2 is also annular and is provided so as to surround the first discharge port 33, the second resin is made of the foamed first resin. It is discharged in a tubular shape so as to cover the entire outer surface of the tubular foam.
本実施形態では、金型20a及び20bの内部は、金型20a及び20bの凹部に設けた細孔(図示せず)を通じて真空吸引されているので、第2樹脂で被覆された管状の発泡体(第1樹脂の発泡体)は、金型20a及び20bの凹部内面に押し付けられ、第2樹脂と第1樹脂の発泡体とに金型20a及び20bの凹部内面に設けられた凹凸が転写されてエンボス模様が形成される。複数の金型20a及び20bは、搬送路21a及び21bに沿って循環するように搬送されるため、発泡樹脂チューブ10を成型した金型20a及び20bは、ダイ2の中心軸に沿って下流方向(ダイ2から遠ざかる方向)に搬送され、循環してきた金型20a及び20bが分割面23a及び23b同士を接触させて新たに成型空間を形成する。したがって、複数の金型20a及び20bを循環搬送しながら、第1吐出口33及び第2吐出口34から一定の吐出速度で第1樹脂及び第2樹脂を吐出することにより、外面にエンボス模様を有する発泡樹脂チューブを長尺で連続成型することができる。ポリエチレン等の結晶性樹脂で発泡樹脂チューブを成形した場合、一旦樹脂が結晶化した後にエンボス加工を施したとしても、加熱される環境下で発泡樹脂チューブを使用するとエンボス形状が損なわれてしまう。しかしながら、本実施形態に係る発泡樹脂チューブ製造装置1では、溶融樹脂の押出成形とほぼ同時にエンボス加工を施しているため、溶融状態の樹脂に対して凹凸を転写した状態で樹脂を冷却して結晶化させることになる。したがって、本実施形態に係る発泡樹脂チューブ10は、給湯管の断熱材として使用する場合のように、加熱される環境下においても、転写されたエンボス形状を維持することができる。
In the present embodiment, the insides of the molds 20a and 20b are vacuum-sucked through pores (not shown) provided in the recesses of the molds 20a and 20b, so that the tubular foam covered with the second resin The first resin foam is pressed against the inner surfaces of the recesses of the molds 20a and 20b, and the unevenness provided on the inner surfaces of the recesses of the molds 20a and 20b is transferred to the second resin and the foam of the first resin. As a result, an embossed pattern is formed. Since the plurality of molds 20a and 20b are conveyed so as to circulate along the conveyance paths 21a and 21b, the molds 20a and 20b in which the foamed resin tube 10 is molded are downstream along the central axis of the die 2. The molds 20a and 20b that have been conveyed and circulated (in the direction away from the die 2) contact the divided surfaces 23a and 23b to form a new molding space. Therefore, an embossed pattern is formed on the outer surface by discharging the first resin and the second resin from the first discharge port 33 and the second discharge port 34 at a constant discharge speed while circulating and conveying the plurality of molds 20a and 20b. The foamed resin tube having a long length can be continuously molded. When a foamed resin tube is molded with a crystalline resin such as polyethylene, even if embossing is performed after the resin has once crystallized, if the foamed resin tube is used in a heated environment, the embossed shape is impaired. However, in the foamed resin tube manufacturing apparatus 1 according to the present embodiment, since the embossing is performed almost simultaneously with the extrusion of the molten resin, the resin is cooled and crystallized in a state in which the unevenness is transferred to the molten resin. It will be made. Therefore, the foamed resin tube 10 according to the present embodiment can maintain the transferred embossed shape even in a heated environment as in the case of using it as a heat insulating material for a hot water supply pipe.
ここで、ダイス31の内部に第1流路35を取り囲む断熱層39を設けている理由の詳細を説明する。第1樹脂として、例えばポリエチレン(架橋ポリエチレン)を用いたガス発泡により発泡倍率が20~30倍の高倍率樹脂発泡体を製造する場合、発泡剤であるガス(例えば、ブタンガス)を混合し分散させた第1樹脂の温度を100~120℃、より好ましくは、100~110℃に維持したまま、第1吐出口33から吐出する必要がある。これは、発泡剤を分散させた第1樹脂の温度が上述した温度範囲を超えると、分散したガスのセルが破泡して第1樹脂から抜けてしまい、第1吐出口33から押し出した第1樹脂を20~30倍の発泡倍率で発泡させることができなくなるためである。一方、第2樹脂としてポリエチレン(架橋ポリエチレン)を用いて薄いフィルム状に押出成形するためには、第2流路36に供給された第2樹脂の温度を、第1樹脂の温度より高い140~160℃とする必要がある。このように温度差のある第1樹脂及び第2樹脂を同じダイ2に供給した場合、ダイ31の厚みが一定となる直管部分において、第1樹脂が第2樹脂によって加熱されてしまう。発泡剤を分散させた第1樹脂の温度が上述した温度範囲を超えることになる。
Here, the reason why the heat insulating layer 39 surrounding the first flow path 35 is provided inside the die 31 will be described. When a high-magnification resin foam having a foaming ratio of 20 to 30 times is produced by gas foaming using, for example, polyethylene (crosslinked polyethylene) as the first resin, a foaming agent gas (for example, butane gas) is mixed and dispersed. Further, it is necessary to discharge from the first discharge port 33 while maintaining the temperature of the first resin at 100 to 120 ° C., more preferably 100 to 110 ° C. This is because when the temperature of the first resin in which the foaming agent is dispersed exceeds the above-described temperature range, the dispersed gas cell breaks off and escapes from the first resin, and is pushed out from the first discharge port 33. This is because one resin cannot be foamed at a foaming ratio of 20 to 30 times. On the other hand, in order to extrude into a thin film using polyethylene (cross-linked polyethylene) as the second resin, the temperature of the second resin supplied to the second flow path 36 is set to 140 to higher than the temperature of the first resin. It is necessary to make it 160 degreeC. When the first resin and the second resin having a temperature difference are supplied to the same die 2 as described above, the first resin is heated by the second resin in the straight pipe portion where the thickness of the die 31 is constant. The temperature of the first resin in which the foaming agent is dispersed exceeds the above-described temperature range.
本実施形態に係る発泡樹脂チューブ製造装置1ではでは、ダイ31の内部に断熱層39を設けることにより、第1流路35内の第1樹脂を第2流路36内の第2樹脂から断熱している。このため、第2流路36に供給された第2樹脂によって、第1流路35内の第1樹脂が加熱されて、第1樹脂内に分散したガスが抜けてしまうことを抑制できる。したがって、本実施形態に係る発泡樹脂チューブ製造装置1によれば、第1樹脂の高倍率発泡を実現しつつ、第1樹脂からなる樹脂発泡体とその表面を覆う第2樹脂からなるフィルムとを同時に押し出しながら、更に表面にエンボス模様を形成することが可能となる。
In the foamed resin tube manufacturing apparatus 1 according to the present embodiment, the first resin in the first flow path 35 is insulated from the second resin in the second flow path 36 by providing the heat insulating layer 39 inside the die 31. is doing. For this reason, it can suppress that the 1st resin in the 1st flow path 35 is heated by the 2nd resin supplied to the 2nd flow path 36, and the gas disperse | distributed in the 1st resin escapes. Therefore, according to the foamed resin tube manufacturing apparatus 1 according to the present embodiment, the resin foam made of the first resin and the film made of the second resin covering the surface of the first resin are achieved while realizing high-magnification foaming of the first resin. It is possible to form an embossed pattern on the surface while extruding at the same time.
また、上述したように、本実施形態に係る発泡樹脂チューブ製造装置1では、金型20a及び20bの内部において、発泡剤(ガス)を含む第1樹脂を管状に押し出しながら発泡させると同時に、発泡した第1樹脂の表面を第2樹脂で被覆し、更に、真空成型またはエア加圧成型を行う。すなわち、本実施形態に係る発泡樹脂チューブ製造装置1では、第1樹脂の発泡と、第2樹脂による第1樹脂の発泡体の被覆と、表面にエンボス模様を有するチューブ形状への成型とを同時に行う。したがって、図6で説明した従来の製造方法と比べて製造工程数を大幅に低減することができる。
Further, as described above, in the foamed resin tube manufacturing apparatus 1 according to the present embodiment, the first resin containing the foaming agent (gas) is foamed while being extruded into a tubular shape at the same time inside the molds 20a and 20b. The surface of the first resin is covered with the second resin, and vacuum molding or air pressure molding is further performed. That is, in the foamed resin tube manufacturing apparatus 1 according to the present embodiment, the foaming of the first resin, the coating of the foam of the first resin with the second resin, and the molding into the tube shape having the embossed pattern on the surface are performed simultaneously. Do. Therefore, the number of manufacturing steps can be greatly reduced as compared with the conventional manufacturing method described in FIG.
また、本実施形態においては、第1樹脂からなる樹脂発泡体の内側にフィルムが設けられていない。言い換えれば、発泡樹脂チューブ10の最内層が、第1樹脂からなる樹脂発泡体である。樹脂発泡体の内側及び外側の両方にフィルムを設けた場合、第1吐出口33から第1樹脂を押し出して発泡させる際に、ガスが逃げにくくなることによって、発泡性が低下する場合がある。本実施形態のように、第1樹脂からなる発泡体の内側にフィルムを設けない場合は、第1樹脂の発泡時にガスの抜け出しが良く、第1樹脂を安定して高倍率に発泡させることができる。
Further, in the present embodiment, no film is provided inside the resin foam made of the first resin. In other words, the innermost layer of the foamed resin tube 10 is a resin foam made of the first resin. When a film is provided on both the inside and the outside of the resin foam, when the first resin is extruded from the first discharge port 33 and foamed, the gas may not easily escape, and foamability may be reduced. When the film is not provided inside the foam made of the first resin as in the present embodiment, the gas escapes well when the first resin is foamed, and the first resin can be stably foamed at a high magnification. it can.
また、本実施形態に係る発泡樹脂チューブ製造装置1では、樹脂を直接管状に成型するため、発泡樹脂チューブ10の内周及び外周の周長差に起因する応力差が生じない。したがって、本実施形態に係る発泡樹脂チューブ製造装置1によれば、断面形状の歪みを低減して真円に近付けることができるため、美観に優れた発泡樹脂チューブ10を製造できる。また、本実施形態に係る発泡樹脂チューブ製造装置1で形成した発泡樹脂チューブは、図7に示したような端面同士の接合部がない点でも美観に優れた製品となる。
Moreover, in the foamed resin tube manufacturing apparatus 1 according to the present embodiment, since the resin is directly molded into a tubular shape, a stress difference due to the difference in the circumferential length between the inner circumference and the outer circumference of the foamed resin tube 10 does not occur. Therefore, according to the foamed resin tube manufacturing apparatus 1 according to the present embodiment, it is possible to reduce the distortion of the cross-sectional shape and bring it closer to a perfect circle, and thus it is possible to manufacture the foamed resin tube 10 having an excellent aesthetic appearance. In addition, the foamed resin tube formed by the foamed resin tube manufacturing apparatus 1 according to the present embodiment is a product that is excellent in aesthetics in that there is no joint between end faces as shown in FIG.
更に、本発明のような発泡樹脂チューブ10は、配管の断熱材として用いられるが、配管への取り付けのために、長手方向にスリットを入れて発泡樹脂チューブ10が切り開かれる場合がある。図7に示した従来の発泡樹脂チューブは、平板状の発泡体を筒状に丸めて形成されるため、長手方向にスリットを入れるとスリット部分の開きが大きくなる可能性がある。これに対して、本実施形態に係る発泡樹脂チューブ製造装置1で製造した発泡樹脂チューブ10は、直接管状に形成されるため、長手方向にスリットを入れた場合でも管状を維持することができ、この結果、配管への取り付け時における施工性を向上させることができる。
Furthermore, although the foamed resin tube 10 as in the present invention is used as a heat insulating material for piping, the foamed resin tube 10 may be cut open by making a slit in the longitudinal direction for attachment to the piping. Since the conventional foamed resin tube shown in FIG. 7 is formed by rounding a flat foam into a cylindrical shape, if the slit is made in the longitudinal direction, the opening of the slit portion may be increased. On the other hand, since the foamed resin tube 10 manufactured by the foamed resin tube manufacturing apparatus 1 according to the present embodiment is directly formed in a tubular shape, it can maintain a tubular shape even when a slit is provided in the longitudinal direction. As a result, the workability at the time of attachment to the piping can be improved.
(その他の変形例)
尚、上記の実施形態では、第1樹脂からなる発泡体の外面を第2樹脂のフィルムで被覆しているが、第2樹脂のフィルムはなくても良い。この場合、上記の実施形態で説明したダイ(図4参照)を用い、ダイへの第2樹脂の供給を行わないことによって第2樹脂のフィルムのない発泡樹脂チューブを製造することができる。また、第2樹脂フィルムのない発泡樹脂チューブを製造する場合には、第1供給口及び第1流路を有し、第2供給口及び第2流路のないダイと、上述した第1樹脂押出部及び成型装置とで製造装置を構成してもよい。第2樹脂フィルムを設けない場合においても、第1樹脂の発泡と、表面にエンボス模様を有するチューブ形状への成型とを同時に行うことにより、図6で説明した従来の製造方法と比べて製造工程数を大幅に低減することができる。また、樹脂を直接管状に成型することにより、断面形状の歪みを低減して真円に近付けることができるため、美観に優れた発泡樹脂チューブを製造できる。 (Other variations)
In the above embodiment, the outer surface of the foam made of the first resin is covered with the second resin film, but the second resin film may be omitted. In this case, a foamed resin tube without a second resin film can be manufactured by using the die described in the above embodiment (see FIG. 4) and not supplying the second resin to the die. Moreover, when manufacturing the foamed resin tube without a 2nd resin film, it has the 1st supply port and the 1st flow path, the die | dye which does not have a 2nd supply port and a 2nd flow path, and 1st resin mentioned above You may comprise a manufacturing apparatus with an extrusion part and a shaping | molding apparatus. Even in the case where the second resin film is not provided, the first resin foaming and the molding into the tube shape having the embossed pattern on the surface are performed simultaneously, thereby making the manufacturing process as compared with the conventional manufacturing method described in FIG. The number can be greatly reduced. In addition, by directly molding the resin into a tubular shape, it is possible to reduce the distortion of the cross-sectional shape and bring it closer to a perfect circle, so that it is possible to manufacture a foamed resin tube with excellent aesthetics.
尚、上記の実施形態では、第1樹脂からなる発泡体の外面を第2樹脂のフィルムで被覆しているが、第2樹脂のフィルムはなくても良い。この場合、上記の実施形態で説明したダイ(図4参照)を用い、ダイへの第2樹脂の供給を行わないことによって第2樹脂のフィルムのない発泡樹脂チューブを製造することができる。また、第2樹脂フィルムのない発泡樹脂チューブを製造する場合には、第1供給口及び第1流路を有し、第2供給口及び第2流路のないダイと、上述した第1樹脂押出部及び成型装置とで製造装置を構成してもよい。第2樹脂フィルムを設けない場合においても、第1樹脂の発泡と、表面にエンボス模様を有するチューブ形状への成型とを同時に行うことにより、図6で説明した従来の製造方法と比べて製造工程数を大幅に低減することができる。また、樹脂を直接管状に成型することにより、断面形状の歪みを低減して真円に近付けることができるため、美観に優れた発泡樹脂チューブを製造できる。 (Other variations)
In the above embodiment, the outer surface of the foam made of the first resin is covered with the second resin film, but the second resin film may be omitted. In this case, a foamed resin tube without a second resin film can be manufactured by using the die described in the above embodiment (see FIG. 4) and not supplying the second resin to the die. Moreover, when manufacturing the foamed resin tube without a 2nd resin film, it has the 1st supply port and the 1st flow path, the die | dye which does not have a 2nd supply port and a 2nd flow path, and 1st resin mentioned above You may comprise a manufacturing apparatus with an extrusion part and a shaping | molding apparatus. Even in the case where the second resin film is not provided, the first resin foaming and the molding into the tube shape having the embossed pattern on the surface are performed simultaneously, thereby making the manufacturing process as compared with the conventional manufacturing method described in FIG. The number can be greatly reduced. In addition, by directly molding the resin into a tubular shape, it is possible to reduce the distortion of the cross-sectional shape and bring it closer to a perfect circle, so that it is possible to manufacture a foamed resin tube with excellent aesthetics.
また、上記の実施形態では、外周面に格子状のエンボス模様を形成した発泡樹脂チューブを例として説明したが、上述した通り、成型装置の金型の凹部形状を変更することにより様々な外面形状を有する発泡樹脂チューブを製造できる。例えば、コルゲート金型を用いて樹脂発泡体からなるコルゲートパイプを製造することも可能である。
In the above embodiment, the foamed resin tube having the lattice-like embossed pattern formed on the outer peripheral surface is described as an example. However, as described above, various outer surface shapes can be obtained by changing the concave shape of the mold of the molding apparatus. Can be produced. For example, a corrugated pipe made of a resin foam can be manufactured using a corrugated mold.
また、上記の実施形態では、真空成形により金型の凹凸形状を転写する例を説明したが、マンドレルにその中心軸を貫通する貫通孔を設け、この貫通孔からエアを封入して押出成形品の内部から加圧して成形することにより、金型の凹凸形状を転写しても良い。
In the above embodiment, an example in which the concave and convex shape of the mold is transferred by vacuum forming has been described. However, a mandrel is provided with a through hole that penetrates the central axis, and air is sealed from the through hole to provide an extruded product. The concavo-convex shape of the mold may be transferred by pressing from the inside of the mold.
本発明は、配管の断熱カバー等に使用される発泡樹脂チューブの製造に利用できる。
The present invention can be used for manufacturing a foamed resin tube used for a heat insulating cover for piping.
1 発泡樹脂チューブ製造装置
2 ダイ
3 第1樹脂押出部
4 第2樹脂押出部
5 成型装置
10 発泡樹脂チューブ
11a、11b 押出機
12 押出機
20 金型
31 ダイス
32 ダイス
33 第1吐出口
34 第2吐出口
35 第1流路
36 第2流路
38a 内側分割体
38b 外側分割体
39 断熱層
51 樹脂発泡体
52 フィルム DESCRIPTION OFSYMBOLS 1 Foamed resin tube manufacturing apparatus 2 Die 3 1st resin extrusion part 4 2nd resin extrusion part 5 Molding apparatus 10 Foamed resin tube 11a, 11b Extruder 12 Extruder 20 Mold 31 Die 32 Die 33 1st discharge port 34 2nd Discharge port 35 First flow path 36 Second flow path 38a Inner divided body 38b Outer divided body 39 Heat insulation layer 51 Resin foam 52 Film
2 ダイ
3 第1樹脂押出部
4 第2樹脂押出部
5 成型装置
10 発泡樹脂チューブ
11a、11b 押出機
12 押出機
20 金型
31 ダイス
32 ダイス
33 第1吐出口
34 第2吐出口
35 第1流路
36 第2流路
38a 内側分割体
38b 外側分割体
39 断熱層
51 樹脂発泡体
52 フィルム DESCRIPTION OF
Claims (6)
- 管形状を有し、発泡倍率が20~30倍である樹脂発泡体と、前記樹脂発泡体の表面を覆うフィルムとを有し、表面にエンボス模様が形成された発泡樹脂チューブの製造装置であって、
環状の第1吐出口と、前記第1吐出口に連通する第1流路と、前記第1吐出口を取り囲むように配置される環状の第2吐出口と、前記第2吐出口に連通し、前記第1流路を取り囲むように配置される第2流路とを有するダイと、
熱可塑性の第1樹脂を溶融混練し、溶融した前記第1樹脂に発泡剤を混合して前記ダイの前記第1流路に供給する第1樹脂供給部と、
熱可塑性の第2樹脂を溶融混練し、溶融した前記第2樹脂を前記第1樹脂より高い温度で前記ダイの前記第2流路に供給する第2樹脂供給部と、
前記発泡樹脂チューブの外面形状の一部と対応する凹部を有する複数の第1金型と前記発泡樹脂チューブの外面形状の他の一部と対応する凹部を有する複数の第2金型とを用いて、真空成型またはエアによる加圧成型を行うことにより、前記ダイの前記第1吐出口から吐出された前記第1樹脂を管状に成型すると共に前記エンボス模様を形成する成型装置とを備え、
前記ダイは、
マンドレルと、
前記マンドレルの外側を所定の隙間を空けて取り囲む管状の第1ダイスと、
前記第1ダイスの外側を所定の隙間を空けて取り囲む管状の第2ダイスとを含み、
前記マンドレルと前記第1ダイスとの間の隙間により前記第1吐出口及び前記第1流路が構成され、
前記第1ダイスと前記第2ダイスとの間の隙間により前記第2吐出口及び前記第2流路が構成され、
前記ダイの前記第1吐出口及び前記第2吐出口は、前記第1金型の凹部と前記第2金型の凹部との間に挟まれた成型空間内に配置され、
前記第1ダイスの内部には、前記第1流路と前記第2流路との間を断熱する断熱層が設けられる、発泡樹脂チューブの製造装置。 An apparatus for producing a foamed resin tube having a tubular shape and having a foaming ratio of 20 to 30 times, a film covering the surface of the resin foam, and having an embossed pattern formed on the surface. And
An annular first discharge port, a first flow path communicating with the first discharge port, an annular second discharge port disposed so as to surround the first discharge port, and a communication with the second discharge port A die having a second flow path disposed so as to surround the first flow path;
A first resin supply unit that melts and kneads a thermoplastic first resin, mixes a foaming agent with the melted first resin, and supplies the first resin to the first flow path of the die;
A second resin supply unit that melt-kneads a thermoplastic second resin and supplies the molten second resin to the second flow path of the die at a temperature higher than that of the first resin;
A plurality of first molds having a recess corresponding to a part of the outer surface shape of the foamed resin tube and a plurality of second molds having a recess corresponding to the other part of the outer surface shape of the foamed resin tube are used. A molding apparatus for forming the first resin discharged from the first discharge port of the die into a tubular shape and forming the embossed pattern by performing vacuum molding or pressure molding with air,
The die is
With mandrels,
A tubular first die that surrounds the outside of the mandrel with a predetermined gap;
A tubular second die surrounding the outside of the first die with a predetermined gap,
The first discharge port and the first flow path are configured by a gap between the mandrel and the first die,
The second discharge port and the second flow path are configured by a gap between the first die and the second die,
The first discharge port and the second discharge port of the die are arranged in a molding space sandwiched between a recess of the first mold and a recess of the second mold,
An apparatus for manufacturing a foamed resin tube, wherein a heat insulating layer is provided in the first die for heat insulation between the first flow path and the second flow path. - 前記断熱層が、前記第1流路を取り囲むように設けられる、請求項1に記載の発泡樹脂チューブの製造装置。 The apparatus for producing a foamed resin tube according to claim 1, wherein the heat insulating layer is provided so as to surround the first flow path.
- 前記断熱層が、少なくとも、径方向における前記第1ダイスの厚みが一定の部分に設けられる、請求項2に記載の発泡樹脂チューブの製造装置。 The apparatus for producing a foamed resin tube according to claim 2, wherein the heat insulating layer is provided at least in a portion where the thickness of the first die in the radial direction is constant.
- 前記第1ダイスは、
前記第1ダイスの内周面を構成する筒状の内側分割体と、
前記第1ダイスの外周面を構成する筒状の外側分割体とからなり、
前記内側分割体の外周面と前記外側分割体の内周面との間に、筒状の密閉空間が構成されており、空気が封入された当該密閉空間により前記断熱層が構成されている、請求項1~3のいずれかに記載の発泡樹脂チューブの製造装置。 The first die is
A cylindrical inner divided body constituting the inner peripheral surface of the first die;
A cylindrical outer divided body constituting the outer peripheral surface of the first die,
A cylindrical sealed space is configured between the outer peripheral surface of the inner divided body and the inner peripheral surface of the outer divided body, and the heat insulating layer is configured by the sealed space filled with air. The apparatus for producing a foamed resin tube according to any one of claims 1 to 3. - 前記内側分割体の外周面及び前記外側分割体の内周面の少なくとも一方に設けた凹部により、前記密閉空間が構成される、請求項4に記載の発泡樹脂チューブの製造方法。 The method for producing a foamed resin tube according to claim 4, wherein the sealed space is constituted by a recess provided on at least one of an outer peripheral surface of the inner divided body and an inner peripheral surface of the outer divided body.
- 管形状を有し、発泡倍率が20~30倍である樹脂発泡体と、前記樹脂発泡体の表面を覆うフィルムとを有し、表面にエンボス模様が形成された発泡樹脂チューブにおいて、
長手方向と直交する横断面が円形状で、かつ、当該横断面に溶着痕がない一体的な管形状を有することを特徴とする、発泡樹脂チューブ。 In a foamed resin tube having a tubular shape and having a foaming ratio of 20 to 30 times, a film covering the surface of the resin foam, and having an embossed pattern formed on the surface,
A foamed resin tube characterized by having a circular cross section perpendicular to the longitudinal direction and an integral tube shape with no weld mark on the cross section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018525796A JP6411700B1 (en) | 2016-12-27 | 2017-12-27 | Foamed resin tube manufacturing apparatus and foamed resin tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016253520 | 2016-12-27 | ||
JP2016-253520 | 2016-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124213A1 true WO2018124213A1 (en) | 2018-07-05 |
Family
ID=62707445
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011472 WO2018123090A1 (en) | 2016-12-27 | 2017-03-22 | Foamed resin tube manufacturing device and manufacturing method, and foamed resin tube |
PCT/JP2017/047037 WO2018124213A1 (en) | 2016-12-27 | 2017-12-27 | Apparatus for manufacturing foamed resin tube and foamed resin tube |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011472 WO2018123090A1 (en) | 2016-12-27 | 2017-03-22 | Foamed resin tube manufacturing device and manufacturing method, and foamed resin tube |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2018123090A1 (en) |
WO (2) | WO2018123090A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113183433A (en) * | 2021-05-22 | 2021-07-30 | 佛山市顺德朋胜家电制造有限公司 | Foaming pipe production facility |
JP7561053B2 (en) | 2021-02-12 | 2024-10-03 | 株式会社日本製鋼所 | Corrugated hose manufacturing system |
WO2024212374A1 (en) * | 2023-04-12 | 2024-10-17 | 江苏上上电缆集团有限公司 | Multi-layer co-extrusion machine head and production line and production method for wet stator motor winding wire |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102212746B1 (en) * | 2020-04-09 | 2021-02-05 | 주식회사 케이와이우레탄 | Apparatus for manufacturing tubular polyurethane foam insulator and tubular polyurethane foam insulator using thereof |
KR102374822B1 (en) * | 2020-12-01 | 2022-03-18 | 주식회사 케이와이우레탄 | manufacturing device for reinforced polyurethane foam insulation and manufacturing method for reinforced polyurethane foam insulation using it and reinforced polyurethane foam insulation manufactured by the manufacturing method |
CN115401847A (en) * | 2022-09-02 | 2022-11-29 | 江苏贝尔机械有限公司 | Foaming forming equipment for heat-insulating layer of flexible heat-insulating pipeline |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0939113A (en) * | 1995-08-01 | 1997-02-10 | Sekisui Chem Co Ltd | Manufacture of tube with texture |
JPH09109279A (en) * | 1995-10-20 | 1997-04-28 | Sekisui Chem Co Ltd | Manufacture of foamed resin tube with crest pattern |
JPH09117967A (en) * | 1995-10-24 | 1997-05-06 | Sekisui Chem Co Ltd | Production of squeezed hollow foam |
JPH09267405A (en) * | 1996-04-02 | 1997-10-14 | Sekisui Chem Co Ltd | Production of surface embossed foam tube |
JPH1058539A (en) * | 1996-08-22 | 1998-03-03 | Sekisui Chem Co Ltd | Method for manufacturing hollow foam with crest |
JP2002331570A (en) * | 2001-05-11 | 2002-11-19 | Pura Giken:Kk | Resin heater in extrusion equipment |
JP2008012821A (en) * | 2006-07-06 | 2008-01-24 | Pura Giken:Kk | Extrusion molding apparatus for plastic multilayer pipe |
JP2016106043A (en) * | 2013-04-01 | 2016-06-16 | テルモ株式会社 | Method for producing tube, and production device therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61112892A (en) * | 1984-11-06 | 1986-05-30 | 永吉 昭夫 | Heat-insulating pipe and manufacture thereof |
CA2223520C (en) * | 1991-11-22 | 2001-02-06 | Manfred A. A. Lupke | Method and apparatus of forming profiled pipe |
JPH10151682A (en) * | 1996-11-22 | 1998-06-09 | Sekisui Chem Co Ltd | Production of coated formed resin tube fitted with patterns |
JP4516680B2 (en) * | 2000-09-28 | 2010-08-04 | 株式会社パイオラックス | Corrugated tube |
JP4201638B2 (en) * | 2003-04-28 | 2008-12-24 | 株式会社三洋化成 | Corrugated pipe manufacturing method and corrugated pipe manufactured by the manufacturing method |
-
2017
- 2017-03-22 WO PCT/JP2017/011472 patent/WO2018123090A1/en active Application Filing
- 2017-03-22 JP JP2017543841A patent/JPWO2018123090A1/en active Pending
- 2017-12-27 JP JP2018525796A patent/JP6411700B1/en active Active
- 2017-12-27 WO PCT/JP2017/047037 patent/WO2018124213A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0939113A (en) * | 1995-08-01 | 1997-02-10 | Sekisui Chem Co Ltd | Manufacture of tube with texture |
JPH09109279A (en) * | 1995-10-20 | 1997-04-28 | Sekisui Chem Co Ltd | Manufacture of foamed resin tube with crest pattern |
JPH09117967A (en) * | 1995-10-24 | 1997-05-06 | Sekisui Chem Co Ltd | Production of squeezed hollow foam |
JPH09267405A (en) * | 1996-04-02 | 1997-10-14 | Sekisui Chem Co Ltd | Production of surface embossed foam tube |
JPH1058539A (en) * | 1996-08-22 | 1998-03-03 | Sekisui Chem Co Ltd | Method for manufacturing hollow foam with crest |
JP2002331570A (en) * | 2001-05-11 | 2002-11-19 | Pura Giken:Kk | Resin heater in extrusion equipment |
JP2008012821A (en) * | 2006-07-06 | 2008-01-24 | Pura Giken:Kk | Extrusion molding apparatus for plastic multilayer pipe |
JP2016106043A (en) * | 2013-04-01 | 2016-06-16 | テルモ株式会社 | Method for producing tube, and production device therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7561053B2 (en) | 2021-02-12 | 2024-10-03 | 株式会社日本製鋼所 | Corrugated hose manufacturing system |
CN113183433A (en) * | 2021-05-22 | 2021-07-30 | 佛山市顺德朋胜家电制造有限公司 | Foaming pipe production facility |
WO2024212374A1 (en) * | 2023-04-12 | 2024-10-17 | 江苏上上电缆集团有限公司 | Multi-layer co-extrusion machine head and production line and production method for wet stator motor winding wire |
Also Published As
Publication number | Publication date |
---|---|
WO2018123090A1 (en) | 2018-07-05 |
JPWO2018124213A1 (en) | 2018-12-27 |
JP6411700B1 (en) | 2018-10-24 |
JPWO2018123090A1 (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6411700B1 (en) | Foamed resin tube manufacturing apparatus and foamed resin tube | |
US3835209A (en) | Process of extruding a foamed extrudate and controlling the thickness thereof | |
US20080099584A1 (en) | Drip Irrigation pipe | |
KR101364419B1 (en) | Jacket for a thermally insulated conduit | |
JPH1095051A (en) | Manufacture of thermally insulated conduit | |
UA127793C2 (en) | Method and device for producing a heat-insulated conduit pipe | |
AU2004208646A1 (en) | Drip irrigation pipe | |
US9266259B2 (en) | Method of forming hollow blow-molded foam and such hollow blow-molded foam | |
US20150352759A1 (en) | Method for producing a foam product, and device therefor | |
JP2010201662A (en) | Method for molding air-conditioning duct for vehicle | |
KR20150125992A (en) | Thermally insulated corrugated conduit | |
JP4956028B2 (en) | Compound pipe | |
JP4346579B2 (en) | Manufacturing method of composite pipe | |
US4261939A (en) | Method and an arrangement for the manufacture of a material web of foamed thermoplastics | |
JP2017080962A (en) | Method for manufacturing double structure | |
JP4081335B2 (en) | Coated pipe manufacturing method and coated pipe manufacturing apparatus | |
CN101147020B (en) | Composite pipe | |
JPH11277626A (en) | Method and apparatus for manufacture of heat-shrinkable tube | |
EP2607051B1 (en) | Use of a blow moulded foam duct | |
KR980008374A (en) | Method of manufacturing insulated conduits | |
JP2007333062A (en) | Composite tube | |
JP2007276314A (en) | Composite tube and its manufacturing method | |
JP5720724B2 (en) | Molding method for air conditioning duct for resin vehicle | |
KR100914913B1 (en) | Method and apparatus for manufacturing pipe for cooling/heating and/or air conditioner | |
JP7299494B2 (en) | Foam molded article and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018525796 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887230 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17887230 Country of ref document: EP Kind code of ref document: A1 |