JPH10151682A - Production of coated formed resin tube fitted with patterns - Google Patents

Production of coated formed resin tube fitted with patterns

Info

Publication number
JPH10151682A
JPH10151682A JP8311821A JP31182196A JPH10151682A JP H10151682 A JPH10151682 A JP H10151682A JP 8311821 A JP8311821 A JP 8311821A JP 31182196 A JP31182196 A JP 31182196A JP H10151682 A JPH10151682 A JP H10151682A
Authority
JP
Japan
Prior art keywords
foamed resin
tube
resin tube
foamed
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8311821A
Other languages
Japanese (ja)
Inventor
Yoshine Takeda
美稲 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8311821A priority Critical patent/JPH10151682A/en
Publication of JPH10151682A publication Critical patent/JPH10151682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent patterning shape inferiority by compounding a specific amt. of a silane compd., a tin catalyst, an optical sensitizer and a crosslinking aid with a polyolefinic resin which becomes a base material to mold a foamed resin tube, and irradiating the tube with ultraviolet rays at a stage up to extruding a non-foamed resin coating layer to cover the tube. SOLUTION: 0.1-5 pts.wt. of a silane compd. and a proper amt. of a polymerization initiator are added to 100 pts.wt. of a polyolefinic resin to form resin pellets. Next, 0.01-2 pts.wt. of a tin catalyst, 0.1-5 pts.wt. of an optical sensitizer and 0.1-5 pts.wt. of a crosslinking aid are added to 100 pts.wt. of the polyolefinic resin to be kneaded therewith and a volatile org. foaming agent is introduced into the molten kneaded mixture to extrude this mixture from the leading end of an extruder 1 to foam the same to continuously mold a foamed resin tube 2. Next, the foamed resin tube 2 is cooled and the surface thereof is irradiated with ultraviolet rays and a non-foamed surface coating film layer is continuously extruded by a coating mold 7 to be applied to the outer surface of the foamed resin tube 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、給湯装置、太陽熱
利用装置及び空気調和装置の配管等の保温材として利用
される絞模様付き被覆発泡樹脂チューブの製造方法に関
し、さらに詳しくは、揮発性有機発泡剤によるポリオレ
フィン系樹脂の連続的押出発泡方法であって、紫外線照
射架橋法及びシラン架橋法によって、発泡樹脂チューブ
を架橋させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a coated foamed resin tube with a squeezed pattern used as a heat insulating material for piping of a hot water supply device, a solar heat utilization device, an air conditioner, and the like. The present invention relates to a method for continuously extruding and foaming a polyolefin-based resin with a foaming agent, and relates to a method for crosslinking a foamed resin tube by an ultraviolet irradiation crosslinking method and a silane crosslinking method.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】一般に、
給湯装置、太陽熱利用装置及び空気調和装置等の配管を
保温し保護するために、発泡ポリエチレンのような発泡
樹脂からなるチューブ成形品が提供されているが、曲げ
加工時のしわが生ずるのを防止し或いはしわを吸収して
目立たないようにするため、また施工時の引っ張りや角
との擦れによってチューブが破れたり傷ついたりするの
を防止するため、更には外観上美感を与える目的とし
て、外周面に絞模様が付された絞模様付き発泡樹脂チュ
ーブが要求されている。また、保温し保護する配管内に
熱媒体が通されるので、この分野に用いられる発泡樹脂
チューブには耐熱性が要求される。
2. Description of the Related Art In general,
In order to heat and protect the piping of hot water supply equipment, solar heat utilization equipment, air conditioning equipment, etc., tube moldings made of foamed resin such as foamed polyethylene are provided, but they prevent wrinkling during bending. In order to absorb the wrinkles or wrinkles and make them inconspicuous, to prevent the tube from being broken or damaged by pulling or rubbing with the corners during construction, and to give an aesthetic appearance, the outer peripheral surface There is a demand for a foamed resin tube with a squeezed pattern having a squeezed pattern. In addition, since a heat medium is passed through a pipe for keeping and protecting the temperature, the foamed resin tube used in this field is required to have heat resistance.

【0003】そして、上記要求に応えるために、本出願
人は、先に、ポリオレフィン系原料樹脂と揮発性有機発
泡剤とを押出機内の高温、高圧下で混練混合し、この混
合物をチューブ状に押出して押出しとほぼ同時に発泡さ
せ、連続的に発泡樹脂チューブを成形するとともに、こ
の発泡樹脂チューブに無発泡樹脂被覆層を連続的に押出
被覆成形した後冷却し、ロール面に絞模様を付けるため
の凹凸を有する絞模様付けロールに押圧して、発泡樹脂
チューブの無発泡樹脂被覆層の外表面に連続的に絞模様
を形成する絞模様付き被覆発泡樹脂チューブの製造方法
を提案した(特開平3−207639号公報参照)。な
お、特開平3−207639号公報には明示されていな
いが、上記製造方法においては、絞模様を付ける前に発
泡樹脂チューブの外表面温度を無発泡樹脂の融点±20
℃程度に加熱して無発泡樹脂被覆層を軟化している。
[0003] In order to meet the above demand, the present applicant first kneads and mixes a polyolefin-based raw material resin and a volatile organic blowing agent at high temperature and high pressure in an extruder, and forms the mixture into a tube. Extrusion and foaming at almost the same time as extrusion, forming a foamed resin tube continuously, and continuously extruding and forming a non-foamed resin coating layer on this foamed resin tube, then cooling and applying a drawn pattern to the roll surface A method of manufacturing a coated foamed resin tube with a drawn pattern, in which a drawn pattern is continuously formed on the outer surface of the non-foamed resin coating layer of the foamed resin tube by pressing against a drawn patterning roll having irregularities, has been proposed (JP-A-Hei. JP-A-3-207639). Although not explicitly disclosed in JP-A-3-207639, in the above-mentioned manufacturing method, the outer surface temperature of the foamed resin tube is adjusted to the melting point of the non-foamed resin ± 20 before applying the drawing pattern.
Heat to about ° C to soften the non-foamed resin coating layer.

【0004】ところが、上記製造方法で製造された絞模
様付き発泡樹脂チューブでは、絞模様を付ける前の発泡
樹脂チューブの耐熱性が十分ではなく、その後の再加熱
時に発泡樹脂チューブの表皮部分がダメージを受け、熱
やせ等の形状不良が発生するおそれがあった。また、上
記製造方法で製造された最終製品である絞模様付き発泡
樹脂チューブの耐熱性も十分ではなく、給湯装置等の配
管に実際に使用した時の肉厚変化や長さ変化が大きくな
るという問題があった。
However, in the foamed resin tube with a squeezed pattern manufactured by the above-described manufacturing method, the heat resistance of the foamed resin tube before the squeezed pattern is formed is not sufficient, and the skin portion of the foamed resin tube is damaged at the time of subsequent reheating. As a result, shape defects such as heat thinning may occur. In addition, the heat resistance of the foamed resin tube with a squeezed pattern, which is the final product manufactured by the above manufacturing method, is not sufficient, and a change in wall thickness and a change in length when actually used for piping of a hot water supply device or the like become large. There was a problem.

【0005】ところで、発泡樹脂の耐熱性を改善するに
は、例えば特公昭61−34969号公報に記載されて
いるように、架橋を施すことが一般的である。
[0005] In order to improve the heat resistance of the foamed resin, it is general to carry out crosslinking, as described in, for example, Japanese Patent Publication No. 61-34969.

【0006】このような架橋方法としては、樹脂内にシ
ラン化合物を付加し、触媒を用いて縮合反応させるシラ
ン架橋法や、紫外線エネルギーを樹脂にアタックさせて
そこに架橋を生じさせる紫外線架橋法が一般的であり、
個々に独自の技術分野を形成している。その理由は、同
じ架橋するという一つの表現で概念化できるこれら現象
も、樹脂にアタックする対象物質、そのアタック物質の
発生系路、架橋が生成する反応系路等が個々の架橋方法
で相違しているために、互換性をもって期待する効果を
論じることができないからだとされている。
As such a crosslinking method, there are a silane crosslinking method in which a silane compound is added to a resin and a condensation reaction is carried out using a catalyst, and an ultraviolet crosslinking method in which ultraviolet energy is attacked on the resin to cause crosslinking therein. General,
Each has its own technical field. The reason is that these phenomena, which can be conceptualized by the same expression of cross-linking, also differ in the target substance attacking the resin, the generation path of the attack substance, the reaction path in which cross-linking is generated, etc. by individual cross-linking methods. It is said that it is not possible to discuss the expected effect with compatibility.

【0007】一方、これらの架橋方法をポリオレフィン
樹脂発泡体の改質に応用し、一連の連続した製造方法と
して完成させようとするときは、これら架橋方法の持つ
独自の欠点がわざわいとなって、目標品質を満たす経済
的かつ能率的な製造方法とすることは極めて難しい。
On the other hand, when these cross-linking methods are applied to the modification of a polyolefin resin foam to complete a series of continuous production methods, the unique disadvantages of these cross-linking methods become apparent. It is extremely difficult to make an economical and efficient manufacturing method that satisfies the target quality.

【0008】その理由は、シラン架橋法は、架橋が完成
するに至る時間が日時の単位と長く、例えば発泡樹脂チ
ューブ成形後、表層に無発泡樹脂被覆層を押出被覆成形
し、更に加熱(二次加熱)した後絞模様を付ける連続成
形プロセスでは、無発泡樹脂被覆層の成形時や二次加熱
時の熱エネルギーで発泡樹脂チューブの特に表皮部分が
ダメージを受け、熱やせ等の形状不良が発生しやすい問
題がある。
The reason is that in the silane crosslinking method, the time required to complete the crosslinking is as long as the date and time. For example, after forming a foamed resin tube, a non-foamed resin coating layer is extrusion-coated on the surface layer, and then heated (2 times). In the continuous molding process of forming a drawing pattern after heating (secondary heating), the thermal energy during molding of the non-foamed resin coating layer or secondary heating damages the foamed resin tube, especially the skin, and shape defects such as heat thinning occur. There are problems that are likely to occur.

【0009】次に、紫外線架橋方法は、紫外線そのもの
が樹脂への透過性に乏しいため、短時間の紫外線照射で
は発泡体深部迄の架橋が進行しない欠点があり、発泡樹
脂チューブの表面は高い架橋度が得られるが内部の架橋
度は低く、発泡樹脂チューブ全体の耐熱性を得ることが
難しい。発泡樹脂チューブに着色した場合、更にその欠
点が大きくなることは言うまでもない。
Next, the ultraviolet crosslinking method has a drawback that the ultraviolet light itself has poor permeability to the resin, so that the crosslinking to the deep portion of the foam does not proceed by short-time ultraviolet irradiation, and the surface of the foamed resin tube has high crosslinking. Although the degree of cross-linking can be obtained, the degree of crosslinking inside is low, and it is difficult to obtain heat resistance of the entire foamed resin tube. It goes without saying that when the foamed resin tube is colored, the disadvantages are further increased.

【0010】本発明はこのような問題点を解決せんとす
るものであり、揮発性有機発泡剤のもつ高発泡性や均一
な連続発泡の持続性等の利点を生かし、成形した発泡樹
脂チューブに更に無発泡樹脂被覆層を成形し、絞模様を
も付与する経済的な連続成形プロセスを実現させるもの
である。具体的には、高速で押出成形した発泡樹脂チュ
ーブに紫外線を照射することで短時間に発泡樹脂表面を
架橋させ、その後の加工のための耐熱性を付与し、無発
泡樹脂被覆層の成形のさいや絞模様を付けるさいに形状
不良を起すことなく、一貫した連続プロセスで絞模様付
き被覆発泡樹脂チューブを製造すること、また製造した
絞模様付き被覆発泡樹脂チューブの施工後の耐熱性を確
保することを目的とするものである。
[0010] The present invention is intended to solve such problems, and takes advantage of the advantages of the volatile organic foaming agent, such as high foaming properties and the continuity of uniform continuous foaming, to a molded foamed resin tube. Further, the present invention realizes an economical continuous molding process in which a non-foamed resin coating layer is formed and a drawn pattern is also provided. Specifically, the foamed resin tube extruded at a high speed is irradiated with ultraviolet rays to crosslink the foamed resin surface in a short time, impart heat resistance for subsequent processing, and form a non-foamed resin coating layer. We can manufacture coated foamed resin tubes with squeezed pattern in a consistent and continuous process without causing shape defects when applying squeezed pattern, and ensure the heat resistance of the manufactured squeezed covered foamed resin tube after installation It is intended to do so.

【0011】[0011]

【課題を解決するための手段】本発明による絞模様付き
被覆発泡樹脂チューブの製造方法は、ポリオレフィン系
原料樹脂と揮発性有機発泡剤とを押出機内の高温、高圧
下で混練混合し、この混合物をチューブ状に押出して押
出しとほぼ同時に発泡させ、連続的に発泡樹脂チューブ
を成形するとともに、この発泡樹脂チューブに無発泡樹
脂被覆層を連続的に押出被覆成形した後冷却し、更に該
発泡樹脂チューブの外表面温度を無発泡樹脂の融点±2
0℃に再加熱して無発泡樹脂被覆層を軟化させ、ロール
面に絞模様を付けるための凹凸を有する絞模様付けロー
ルに押圧して、発泡樹脂チューブの無発泡樹脂被覆層の
外表面に連続的に絞模様を形成する絞模様付き被覆発泡
樹脂チューブの製造方法であって、上記ポリオレフィン
系原料樹脂として、基材となるポリオレフィン系樹脂1
00重量部に対し、シラン系化合物0.1〜5重量部
と、錫系触媒0.01〜2重量部と、光増感剤0.1〜
5重量部と、架橋助剤0.1〜5重量部とを配合したも
のを使用し、上記発泡樹脂チューブを成形した後、その
発泡樹脂チューブに無発泡樹脂被覆層を連続的に押出被
覆成形するまでの段階で紫外線を照射し、発泡樹脂チュ
ーブ表面を架橋させることを特徴とするものである。
According to the present invention, there is provided a method for producing a coated foamed resin tube having a squeezed pattern, comprising kneading and mixing a polyolefin-based raw material resin and a volatile organic foaming agent at a high temperature and a high pressure in an extruder. Is extruded into a tube and foamed almost at the same time as the extrusion, and a foamed resin tube is continuously formed, and a non-foamed resin coating layer is continuously formed by extrusion coating on the foamed resin tube, and then cooled. Adjust the outer surface temperature of the tube to the melting point of the non-foamed resin ± 2.
Re-heated to 0 ° C. to soften the non-foamed resin coating layer, and pressed against a squeezed pattern forming roll having irregularities for forming a squeezed pattern on the roll surface, and applied to the outer surface of the non-foamed resin coating layer of the foamed resin tube. A method for producing a coated foamed resin tube with a drawn pattern which continuously forms a drawn pattern, wherein the polyolefin-based resin as a base material is used as the polyolefin-based raw material resin.
0.1 to 5 parts by weight of a silane-based compound, 0.01 to 2 parts by weight of a tin-based catalyst,
Using a mixture of 5 parts by weight and 0.1 to 5 parts by weight of a crosslinking aid, the above foamed resin tube is molded, and then a non-foamed resin coating layer is continuously formed on the foamed resin tube by extrusion coating. In this process, the surface of the foamed resin tube is cross-linked by irradiating ultraviolet rays until the process is completed.

【0012】上記方法において、使用するポリオレフィ
ン系原料樹脂における基材となるポリオレフィン系樹脂
としては、ポリエチレン、ポリプロピレン、ポリブテン
−1、ポリ−4−メチルペンテン−1、エチレン・プロ
ピレン共重合体等があるが、中でも低密度ポリエチレ
ン、高密度ポリエチレン、直鎖状ポリエチレン、超低密
度ポリエチレン、超高分子量ポリエチレン等のポリエチ
レンが、架橋効率の高いものとなって好ましい。勿論、
これらの混合物であってもよい。
In the above method, the polyolefin-based resin serving as the base material of the polyolefin-based resin used includes polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, ethylene-propylene copolymer and the like. Of these, polyethylene such as low-density polyethylene, high-density polyethylene, linear polyethylene, ultra-low-density polyethylene, and ultra-high-molecular-weight polyethylene are preferred because of their high crosslinking efficiency. Of course,
These mixtures may be used.

【0013】シラン系化合物としては、一般式CH2
CHSi(OA)3 で表せるものが好ましい。式中、A
は炭素数1〜8、好ましくは1〜4の炭化水素基であ
り、例えばビニルトリメトキシシラン、ビニルトリエト
キシシラン、ビニルトリアセトキシシラン等が挙げられ
る。シラン系化合物は2種類以上併用して使用してもよ
く、配合量は最終段階での架橋度より適宜に決めれられ
るが、ポリオレフィン系樹脂100重量部に対して、
0.1〜5重量部とするべきである。0.1重量部未満
では架橋効果が得られず、また5重量部を越えると過剰
となり、架橋後の成形物の物性等に悪影響を与えて不都
合である。
As the silane compound, a compound represented by the general formula CH 2 =
What can be represented by CHSi (OA) 3 is preferable. Where A
Is a hydrocarbon group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, and examples thereof include vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane. The silane-based compound may be used in combination of two or more kinds, and the compounding amount is appropriately determined based on the degree of crosslinking at the final stage. However, based on 100 parts by weight of the polyolefin-based resin,
It should be 0.1-5 parts by weight. If the amount is less than 0.1 part by weight, no cross-linking effect can be obtained, and if it exceeds 5 parts by weight, the amount becomes excessive, which adversely affects the physical properties and the like of the molded article after cross-linking.

【0014】上記ポリオレフィン系樹脂に添加する錫系
触媒はシラン架橋を促進させるためのものであり、シラ
ン系化合物と併用される。この錫系触媒としては、例え
ばジブチル錫ジアセテート、ジブチル錫ジラウレート、
ジオクチル錫ジラウレート、オクタン酸錫、オレイン酸
錫等が挙げられる。錫系触媒の配合量は適宜に決めれば
よくポリオレフィン系樹脂100重量部に対し0.01
〜2重量部とするべきである。0.01重量部未満では
これの添加の効果が十分に得られず、2重量部を越える
と過剰となり架橋後の成形物の物性等に悪影響を与えて
不都合である。
The tin catalyst added to the polyolefin resin is for promoting silane crosslinking, and is used in combination with the silane compound. Examples of the tin catalyst include dibutyltin diacetate, dibutyltin dilaurate,
Dioctyltin dilaurate, tin octoate, tin oleate and the like. The amount of the tin-based catalyst may be appropriately determined, and may be 0.01 to 100 parts by weight of the polyolefin-based resin.
Should be ~ 2 parts by weight. If it is less than 0.01 part by weight, the effect of the addition cannot be sufficiently obtained, and if it exceeds 2 parts by weight, it becomes excessive and adversely affects the physical properties of the molded product after crosslinking, which is disadvantageous.

【0015】シラン系化合物及び錫系触媒の配合方法は
特定されるものではないが、ポリオレフィン系基材樹脂
にシラン系化合物、錫系触媒をグラフト変性するのが一
般的である。
The method of compounding the silane compound and the tin catalyst is not specified, but it is general to graft-modify the silane compound and the tin catalyst to the polyolefin base resin.

【0016】光増感剤は紫外線架橋を開始させるもので
あり、このような光増感剤としては、アセトフェノン、
ベンゾフェノン、チオキサントン、ベンジル、ベンゾイ
ル、ミヒラーケトン等を挙げることができるが、中でも
ベンゾフェノンやチオキサントン等の水素引き抜き型光
増感剤が好適に用いられる。光増感剤の配合量はポリオ
レフィン系樹脂100重量部に対し、0.01〜5重量
部とすべきである。0.1重量部未満では架橋効果が得
られず、5重量部を越えると過剰となり、架橋後の成形
物の物性等に悪影響を与えて不都合である。
The photosensitizer initiates ultraviolet crosslinking, and examples of such a photosensitizer include acetophenone,
Examples thereof include benzophenone, thioxanthone, benzyl, benzoyl, and Michler's ketone. Among them, a hydrogen abstraction type photosensitizer such as benzophenone and thioxanthone is preferably used. The amount of the photosensitizer should be 0.01 to 5 parts by weight based on 100 parts by weight of the polyolefin resin. If the amount is less than 0.1 part by weight, the crosslinking effect cannot be obtained.

【0017】また、架橋助剤は紫外線架橋を促進させる
ものであり、このような架橋助剤としては、ジアリルフ
タレート、トリアリルシアヌレート、トリアリルイソシ
アヌレート、トリメチロールプロパントリメタクリレー
ト、メチルメタアクリレート等を好適に用いることがで
き、配合量としては、ポリオレフィン系樹脂100重量
部に対し、0.1〜5重量部とすべきである。0.1重
量部未満では架橋効果が得られず、5重量部を越えると
過剰となって、架橋後の成形物の物性等に悪影響を与え
て不都合となる。
The crosslinking aid promotes ultraviolet crosslinking. Examples of such a crosslinking aid include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, methyl methacrylate and the like. Can be suitably used, and the amount should be 0.1 to 5 parts by weight based on 100 parts by weight of the polyolefin resin. If the amount is less than 0.1 part by weight, the crosslinking effect cannot be obtained, and if it exceeds 5 parts by weight, the amount becomes excessive and adversely affects the physical properties of the molded article after crosslinking, which is disadvantageous.

【0018】光増感剤及び架橋助剤の配合方法も特に限
定されるものではない。
The method of compounding the photosensitizer and the crosslinking assistant is not particularly limited.

【0019】なお、上記ポリオレフィン系原料樹脂に
は、必要に応じて、添加剤、充填剤等を配合しておいて
もよい。
The above-mentioned polyolefin raw material resin may be blended with additives, fillers and the like, if necessary.

【0020】上記絞模様付き被覆発泡樹脂チューブの製
造方法において、紫外線照射直後の架橋した発泡樹脂チ
ューブの表面架橋度が、ゲル分率で発泡樹脂チューブ表
面部分で10〜50%であり、発泡樹脂チューブ全体の
架橋度が、最終架橋段階のゲル分率で30〜60%であ
ることが好ましい。尚、表面部分のゲル分率は、通常、
表面から1mm迄の部分の発泡樹脂チューブのゲル分率
測定値をいう。
In the above method for producing a coated foamed resin tube having a drawn pattern, the degree of surface cross-linking of the crosslinked foamed resin tube immediately after irradiation with ultraviolet rays is 10 to 50% in terms of gel fraction at the surface of the foamed resin tube. The degree of crosslinking of the entire tube is preferably 30 to 60% as a gel fraction in the final crosslinking step. The gel fraction of the surface portion is usually
It refers to the measured value of the gel fraction of the foamed resin tube up to 1 mm from the surface.

【0021】ここで、発泡樹脂チューブ全体の架橋度が
最終架橋段階のゲル分率で30〜60%となるのは、紫
外線照射後もシラン架橋が進行するからである。
The reason why the degree of cross-linking of the entire foamed resin tube is 30 to 60% in terms of the gel fraction in the final cross-linking step is that silane cross-linking proceeds even after irradiation with ultraviolet rays.

【0022】発泡樹脂チューブを成形し、紫外線を照射
した後の表面部分ゲル分率が10%満であると、発泡樹
脂チューブの表面耐熱性が得られないため、二次加工
時、すなわち無発泡樹脂被覆層の成形時や絞模様の付与
時の熱エネルギーによりダメージを受け、肉やせ等の形
状不良を起こしやすい。逆に50%を越えるゲル分率を
得るには照射時間もかかり不経済である。
If the foamed resin tube is molded and the surface partial gel fraction after irradiation with ultraviolet rays is more than 10%, the surface heat resistance of the foamed resin tube cannot be obtained. The resin coating layer is damaged by thermal energy at the time of molding or applying a squeezed pattern, and is likely to cause a shape defect such as a thin skin. Conversely, it takes irradiating time to obtain a gel fraction exceeding 50%, which is uneconomical.

【0023】また、最終架橋段階での発泡樹脂チューブ
全体のゲル分率が30%未満であると、施工後の使用上
の耐熱性が得られない。この種の保温材に要求される耐
熱性は100〜120℃程度である。逆に60%を越え
ると発泡樹脂チューブ自体の剛性が向上し、後加工等の
作業性が低下する。
If the gel fraction of the whole foamed resin tube in the final cross-linking step is less than 30%, heat resistance in use after construction cannot be obtained. The heat resistance required for this type of heat insulating material is about 100 to 120 ° C. Conversely, if it exceeds 60%, the rigidity of the foamed resin tube itself is improved, and workability such as post-processing is reduced.

【0024】ここでは、架橋度をゲル分率で評価してい
るが、この場合のゲル分率とは、測定する成形物の測定
したい部分をサンプルとし、120℃のキシレンに24
時間浸漬した後の不溶解分の、溶解前の成形物に対する
比率(重量%比)をいうものとする。
Here, the degree of cross-linking is evaluated by the gel fraction. In this case, the gel fraction refers to a portion of a molded article to be measured which is to be measured, and is applied to xylene at 120.degree.
It refers to the ratio (weight% ratio) of the insoluble content after immersion for a time to the molded product before dissolution.

【0025】本発明で用いる揮発性有機発泡剤として
は、プロパン、ブタン、プロピレン、ブテン、イソブテ
ン、ジクロロジフルオロメタン、1,2−ジクロロテト
ラフルオロエタン、ジクロルフルオロメタン、トリクロ
ロフルオロメタン、モノクロロジフルオロメタン、1,
1,2−トリクロロトリフルオロエタン、モノクロロペ
ンタフルオロエタン、オクタフルオロシクロブタン、モ
ノクロロジフルオロメタン、モノクロロブロモジフルオ
ロエタン等がありこれらの混合物も有用である。量の制
限は目標とする発泡体密度より適宜に決めればよい。
The volatile organic blowing agent used in the present invention includes propane, butane, propylene, butene, isobutene, dichlorodifluoromethane, 1,2-dichlorotetrafluoroethane, dichlorofluoromethane, trichlorofluoromethane, monochlorofluoromethane. , 1,
There are 1,2-trichlorotrifluoroethane, monochloropentafluoroethane, octafluorocyclobutane, monochlorodifluoromethane, monochlorobromodifluoroethane, and mixtures thereof are also useful. The limit of the amount may be appropriately determined based on the target foam density.

【0026】発泡樹脂チューブの成形方法は特に限定す
るものではなく、従来よりの公知の技術で成形するもの
である。
The method for forming the foamed resin tube is not particularly limited, and is formed by a conventionally known technique.

【0027】発泡樹脂チューブ成形後に、紫外線を照射
する方法としては、高圧水銀灯、メタルハライドランプ
等を好適に用い得る。照射に際してのランプの配置につ
いては、発泡樹脂チューブの表面全周に隈無くできるだ
け等距離で光が当たるように配置し、ランプと発泡樹脂
チューブの距離は50〜300mm程度が好ましい。そ
の理由は、上記距離が50mmより近いとランプの放射
熱によって発泡樹脂チューブ表面セル層が収縮する場合
があり、300mmを越えると照射効率が悪くなる場合
があるからである。紫外線の照射に際しての照度は特に
限定されないが、通常20〜70mw/cm2 の範囲と
するのが好ましい。照射時間についても特に限定はない
が、例えばラインスピード20m/minで成形する場
合3〜5秒とするのが好ましい。
As a method for irradiating ultraviolet rays after the foamed resin tube is formed, a high-pressure mercury lamp, a metal halide lamp, or the like can be suitably used. Regarding the arrangement of the lamp at the time of irradiation, it is preferable that the light is applied at the same distance as possible over the entire surface of the foamed resin tube, and the distance between the lamp and the foamed resin tube is preferably about 50 to 300 mm. The reason is that if the distance is shorter than 50 mm, the surface cell layer of the foamed resin tube may contract due to radiant heat of the lamp, and if it exceeds 300 mm, the irradiation efficiency may be deteriorated. The illuminance at the time of irradiating the ultraviolet rays is not particularly limited, but is usually preferably in the range of 20 to 70 mw / cm 2 . Although the irradiation time is not particularly limited, for example, when molding at a line speed of 20 m / min, it is preferably 3 to 5 seconds.

【0028】次に、発泡樹脂チューブに無発泡樹脂被覆
層を連続的に押出被覆成形し、その後冷却、再加熱、絞
模様付けを施す連続製造方法についても特に限定するも
のではなく、例えば、連続的に成形し紫外線を照射した
発泡樹脂チューブをエアー冷却した後クロスヘッド金型
に導入し、無発泡樹脂被覆層を連続的に押出被覆成形
し、冷却した被覆発泡樹脂チューブの外表面を温風装置
等で無発泡樹脂の融点±20℃に再加熱して無発泡樹脂
被覆層を軟化させ、例えば、被覆発泡樹脂チューブの外
径よりやや小さなクリアランスに設定した上下、左右2
対の絞模様付けロール間を通すことにより、ロール面に
形成された絞模様を付けるための凹凸を無発泡樹脂被覆
層に転写し冷却する方法等がある。
Next, the continuous production method of continuously extruding and forming a non-foamed resin coating layer on the foamed resin tube, followed by cooling, reheating and drawing is not particularly limited. After air-cooling the foamed resin tube irradiated with ultraviolet rays, it is introduced into a crosshead mold, and the non-foamed resin coating layer is continuously extruded and formed, and the outer surface of the cooled coated foamed resin tube is heated with hot air. The non-foamed resin coating layer is softened by reheating to the melting point of the non-foamed resin ± 20 ° C. using an apparatus or the like.
There is a method in which the concavities and convexities for applying a squeezing pattern formed on the roll surface are transferred to a non-foamed resin coating layer and cooled by passing between the pair of squeezed patterning rolls.

【0029】表層被覆に用いる無発泡樹脂としては、発
泡樹脂チューブと同様にポリオレフィン系樹脂が一般的
であり、特にラインスピードの速いこの種の成形では溶
融延伸性のよい直鎖状低密度ポリエチレンが好適であ
る。
As the non-foamed resin used for the surface coating, a polyolefin-based resin is generally used as in the case of the foamed resin tube. In particular, in this type of molding having a high line speed, linear low-density polyethylene having good melt drawability is used. It is suitable.

【0030】(作用)本発明の方法に従えば、揮発性有
機発泡剤のもつ高発泡性や均一な連続発泡の持続性等の
利点を生かし、成形した発泡樹脂チューブに更に無発泡
樹脂被覆層を形成し、絞模様をも付与する経済的な連続
成形プロセスを実現させることができる。具体的には、
本発明の配合樹脂を用い高速で押出成形した発泡樹脂チ
ューブに紫外線を照射することで短時間に発泡樹脂チュ
ーブの表面を架橋させて二次加工のための耐熱性を付与
し、無発泡樹脂被覆層の成形や絞模様付けを容易に行う
ことができ、一貫した連続プロセスで絞模様付き被覆発
泡樹脂チューブを製造することができる。また製造した
絞模様付き被覆発泡樹脂チューブの施工後の必要耐熱性
をシラン架橋により確保することができる。
(Function) According to the method of the present invention, the foamed resin tube formed is further coated with a non-foamed resin coating layer by taking advantage of the high foaming property of the volatile organic foaming agent and the continuity of uniform continuous foaming. And an economical continuous molding process that also provides a drawn pattern can be realized. In particular,
The foamed resin tube extruded at a high speed using the compounded resin of the present invention is irradiated with ultraviolet rays to crosslink the surface of the foamed resin tube in a short time to impart heat resistance for secondary processing, and to be coated with a non-foamed resin. The layer can be easily formed and drawn, and the coated foamed resin tube with drawn pattern can be manufactured in a consistent and continuous process. Further, the required heat resistance of the manufactured coated foamed resin tube with a squeezed pattern after construction can be secured by silane crosslinking.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】ここで、図1は本発明の絞模様付き被覆発
泡樹脂チューブの製造方法を実施する装置の概略構成
図、図2は上記装置における発泡樹脂チューブに無発泡
樹脂を連続的に押出被覆成形する被覆金型の縦断面図、
図3は本発明の方法の過程で得られる無発泡表面被覆フ
ィルム層を形成した発泡樹脂チューブの横断面図、図4
は絞模様付け用加工機の概略構成図、図5は無発泡表面
被覆フィルム層の断面図、図6は無発泡表面被覆フィル
ム層の平面図、図7は絞模様の変形例を示す無発泡表面
被覆フィルム層の平面図、図8は絞模様付けロールの変
形例を示す斜面図である。
Here, FIG. 1 is a schematic structural view of an apparatus for carrying out the method for manufacturing a coated foamed resin tube with a squeezed pattern according to the present invention, and FIG. Longitudinal sectional view of the coating mold to be molded,
FIG. 3 is a cross-sectional view of a foamed resin tube formed with a non-foamed surface coating film layer obtained in the course of the method of the present invention.
FIG. 5 is a schematic configuration diagram of a drawing pattern processing machine, FIG. 5 is a cross-sectional view of a non-foamed surface coating film layer, FIG. 6 is a plan view of the non-foamed surface coating film layer, and FIG. FIG. 8 is a plan view of the surface coating film layer, and FIG. 8 is a perspective view showing a modification of the squeezing patterning roll.

【0033】まず、ポリプロピレン系樹脂を押出機(1)
のバレル前半で溶融混練し、バレルほぼ中央よりポリプ
ロピレン系樹脂100重量部に対し、シラン系化合物を
0.1〜5重量部添加するとともに、重合開始剤を適量
添加して充分混練し、シラングラフト変性したポリプロ
ピレン系樹脂ペレットを作製する。ついで、ポリプロピ
レン系樹脂100重量部に対して0.01〜2重量部と
なるように、錫系触媒を上記ペレットと一緒に押出機
(1) に投入する。なお、錫系触媒には、予め気泡核剤及
び気泡安定剤を適量配合しておく。また、錫系触媒を押
出機(1) に投入すると同時に、ホッパー口より光増感剤
及び架橋助剤をそれぞれ上記ポリプロピレン系樹脂10
0重量部に対して0.1〜5重量部を添加し溶融混練し
た後、押出機(1) の途中に形成された注入口(1a)より、
揮発性有機発泡剤を適量圧入して混練冷却した後、押出
機(1) の先端に取り付けた所定の口金より押出すととも
に、押出しとほぼ同時に円筒状に発泡させ、連続的に発
泡樹脂チューブ(2) を成形する。
First, an extruder (1)
Melt kneading in the first half of the barrel, adding 0.1 to 5 parts by weight of a silane compound to 100 parts by weight of a polypropylene resin from almost the center of the barrel, adding an appropriate amount of a polymerization initiator, and kneading sufficiently to obtain a silane graft. A modified polypropylene resin pellet is produced. Then, the tin-based catalyst was added to the extruder together with the above-mentioned pellets in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the polypropylene-based resin.
Input to (1). In the tin-based catalyst, an appropriate amount of a cell nucleating agent and a cell stabilizer are mixed in advance. At the same time that the tin-based catalyst is charged into the extruder (1), a photosensitizer and a cross-linking assistant are respectively supplied from the hopper port to the polypropylene resin 10.
After adding 0.1 to 5 parts by weight to 0 parts by weight and melt-kneading, from the injection port (1a) formed in the middle of the extruder (1),
After an appropriate amount of the volatile organic foaming agent is injected and kneaded and cooled, it is extruded from a predetermined die attached to the tip of the extruder (1), and is foamed into a cylindrical shape almost simultaneously with the extrusion. 2) Form.

【0034】ついで、発泡樹脂チューブ(2) を冷却して
引き取りロール(3a)(3b)により紫外線照射機(4) に導入
し、ここで発泡樹脂チューブ(2) に対し紫外線を照射し
てその表面部に紫外線架橋を施す。
Then, the foamed resin tube (2) is cooled and introduced into an ultraviolet irradiator (4) by take-off rolls (3a) and (3b). UV crosslinking is applied to the surface.

【0035】ついで、発泡樹脂チューブ(2) を引き取り
ロール(5a)(5b)により無発泡樹脂の押出機(6) の先端に
接続された被覆金型(クロスヘッドダイ)(7) に導入
し、更にポリプロピレン系樹脂を押出機(6) に形成され
た注入口(6a)より被覆金型(7)に導入し、被覆金型(7)
によって無発泡表面被覆フィルム層(8) (無発泡樹脂被
覆層)を連続的に押出すとともに、表面被覆フィルム層
(8) を発泡樹脂チューブ(2) の外周面に被着し、表面被
覆フィルム層付き発泡樹脂チューブ(9) を得る(図2及
び図3参照)。その直後、表面被覆フィルム層付き発泡
樹脂チューブ(9)をエアー冷却(図示略)し、絞模様付
け加工機(10)に導入する。
Next, the foamed resin tube (2) is introduced by a take-up roll (5a) (5b) into a coating mold (crosshead die) (7) connected to the tip of a non-foamed resin extruder (6). Further, a polypropylene resin is introduced into the coating mold (7) from the injection port (6a) formed in the extruder (6), and the coating mold (7)
The non-foamed surface coating film layer (8) (non-foamed resin coating layer) is continuously extruded by
(8) is applied to the outer peripheral surface of the foamed resin tube (2) to obtain a foamed resin tube (9) with a surface coating film layer (see FIGS. 2 and 3). Immediately thereafter, the foamed resin tube (9) with the surface coating film layer is air-cooled (not shown) and introduced into the drawing machine (10).

【0036】加工機(10)において、表面被覆フィルム層
付き発泡樹脂チューブ(9) を加熱ドライヤー(11)が装着
された加熱機(12)内に通し、表面被覆フィルム層付き発
泡チューブ(9) をその表面温度が表面被覆フィルム層
(8) の融点±20℃になるように再加熱した後、このチ
ューブ(9) を垂直円柱形状を呈する一対の第一絞模様付
けロール(13a)(13b)間に通す。この第一絞模様付けロー
ル(13a)(13b)の周面、すなわちロール面には絞模様を付
けるための凹凸が形成され、両ロール(13a)(13b)は当該
周面が相互に対峙するように配置されている。こうし
て、第一絞模様付けロール(13a)(13b)を表面被覆フィル
ム層(8) に前後方向から押付け、表面被覆フィルム層付
き発泡樹脂チューブ(9) の外表面に第一絞ロール(13a)
(13b)の凹凸を転写する。
In the processing machine (10), the foamed resin tube (9) with the surface coating film layer is passed through a heating machine (12) equipped with a heating dryer (11), and the foamed tube (9) with the surface coating film layer is passed through. The surface temperature is the surface coating film layer
After reheating so that the melting point of (8) becomes ± 20 ° C., this tube (9) is passed between a pair of first drawn patterning rolls (13a) (13b) having a vertical cylindrical shape. The peripheral surface of the first drawing patterning rolls (13a) (13b), that is, irregularities for forming a drawing pattern are formed on the roll surface, and the two rolls (13a) and (13b) face each other. Are arranged as follows. Thus, the first squeezing rolls (13a) and (13b) are pressed against the surface coating film layer (8) from the front-rear direction, and the first squeezing roll (13a) is pressed against the outer surface of the foamed resin tube with the surface coating film layer (9).
The unevenness of (13b) is transferred.

【0037】ついで、表面被覆フィルム層付き発泡樹脂
チューブ(9) を複数の加熱ドライヤー(17a)(17b)により
加熱した後、このチューブ(9) を、第一絞模様付けロー
ル(13a)(13b)より下流側に配置した一対の第二絞模様付
けロール(14a)(14b)の間に通す。第二絞模様付けロール
(14a)(14b)は水平円柱形状を呈し、その周面、すなわち
ロール面には絞模様を付けるための凹凸が形成され、両
ロール(14a)(14b)は当該周面が相互に対峙するように配
置されている。こうして、第二絞模様付けロール(14a)
(14b)を表面被覆フィルム層(8) に上下方向から押付
け、表面被覆フィルム層(8) に第二絞模様ロール(14a)
(14b)の凹凸を転写する。
Next, after heating the foamed resin tube (9) with the surface coating film layer by a plurality of heating dryers (17a) (17b), the tube (9) is heated by the first drawing rolls (13a) (13b). ) Is passed between a pair of second squeezing patterning rolls (14a) and (14b) arranged downstream from the). Second drawing patterning roll
(14a) (14b) has a horizontal cylindrical shape, and its peripheral surface, that is, a roll surface is formed with irregularities for applying a drawing pattern, and the two rolls (14a) (14b) have their peripheral surfaces facing each other. Are arranged as follows. Thus, the second drawing patterning roll (14a)
(14b) is pressed against the surface coating film layer (8) from above and below, and the second drawing pattern roll (14a) is pressed against the surface coating film layer (8).
The unevenness of (14b) is transferred.

【0038】第一及び第二の絞模様付けロール(13a)(13
b)(14a)(14b)は蓄熱するため各々のロール(13a)(13b)(1
4a)(14b)の軸線上に設けた冷却管(15a)(15b)(16a)(16b)
に冷水を通し随時冷却しておく。
The first and second drawing patterning rolls (13a) (13
b) (14a) (14b) store heat in each roll (13a) (13b) (1
4a) Cooling pipes provided on the axis of (14b) (15a) (15b) (16a) (16b)
And cool it at any time through cold water.

【0039】その後、表面被覆フイルム付き発泡樹脂チ
ューブ(9) を冷却機(18)に導入し、エアー冷却により表
面被覆フィルム層(8) が固化するまで冷却を施し、絞模
様付き被覆発泡樹脂チューブ(19)を得、引き取りロール
(20a)(20b)で引き取る。このようにして、絞模様付き被
覆発泡樹脂チューブ(19)が連続的に製造される。製造さ
れた絞模様付き被覆発泡樹脂チューブ(19)の絞模様(24
a) は図5及び図6に示すように、四角錘状の多数の突
起が集合したものである。
Thereafter, the foamed resin tube with the surface-coated film (9) is introduced into a cooler (18), and cooled by air cooling until the surface-coated film layer (8) is solidified. (19) and take over roll
(20a) and (20b). In this way, the coated foamed resin tube with a drawn pattern (19) is continuously manufactured. The squeezing pattern (24
5A and 5A, a large number of square pyramid-shaped projections are gathered as shown in FIGS.

【0040】また、第一及び第二の絞模様付けロール(1
3a)(13b)(14a)(14b)のロール面に形成された凹凸の形状
を変更することにより、製造された絞模様付き被覆発泡
樹脂チューブ(19)の絞模様(24b) を、図7に示すよう
に、三角錘状の多数の突起が集合したものにすることも
できる。
The first and second squeezing patterning rolls (1
By changing the shape of the irregularities formed on the roll surfaces of 3a), (13b), (14a) and (14b), the drawn pattern (24b) of the manufactured coated foamed resin tube with drawn pattern (19) can be obtained as shown in FIG. As shown in (1), a large number of triangular pyramid-shaped protrusions may be formed.

【0041】図8は、第一絞付けロールの変形例を示
す。
FIG. 8 shows a modification of the first squeezing roll.

【0042】図8において、第一絞付けロール(22a)(22
b)のロール面は、全周にわたって断面円弧状に凹まされ
ており、この部分に絞模様を付けるための凹凸が形成さ
れている。また、第一絞付けロール(22a)(22b)にも冷却
管(23a)(23b)が接続されている。なお、第二絞付けロー
ルについてもこのような構成にすることが可能である。
In FIG. 8, first squeezing rolls (22a) (22
The roll surface of b) is depressed in an arc shape in cross section over the entire circumference, and irregularities for forming a drawn pattern are formed in this portion. The cooling pipes (23a) (23b) are also connected to the first squeezing rolls (22a) (22b). The second squeezing roll can also have such a configuration.

【0043】以下、本発明の具体的実施例について比較
例とともに説明する。
Hereinafter, specific examples of the present invention will be described together with comparative examples.

【0044】[0044]

【実施例1】まず、メルトインデックス2.1、密度
0.92、融点119℃の低密度ポリエチレン樹脂を押
出機(1) のバレル前半で溶融混練し、バレルほぼ中央よ
り低密度ポリエチレン樹脂100重量部に対し、シラン
系化合物であるビニルトリメトキシシラン1.5重量部
と、重合開始剤であるジクミルペルオキシド0.05重
量部を添加して充分混練し、シラングラフト変性したポ
リエチレンペレットを作製した。次に、上記低密度ポリ
エチレン樹脂100重量部に対し錫系触媒であるジブチ
ル錫ジラウレート0.05重量部と、気泡核剤であるタ
ルク0.3重量部と、気泡安定剤であるステアリン酸ア
ミド3重量部とを配合し、この配合物を上記ポリエチレ
ンペレッと一緒に口径90mmの押出機(1) に投入する
と同時に、ホッパー口より上記低密度ポリエチレン樹脂
100重量部に対し光増感剤であるベンゾフェノン0.
5重量部と、架橋助剤であるトリアリルシアヌレート
0.5重量部とを添加し溶融混練した後、押出機(1) の
注入口(1a)から、揮発性有機発泡剤であるジクロロジフ
ルオロメタンを発泡倍率28倍相当量圧入し、更に混練
冷却した後、押出機(1) の口金より押出すのとほぼ同時
に円筒状に発泡させ、内径9mmで外径24.5mmの
押出し発泡ポリエチレンチューブ(以下、発泡チューブ
という)(2) を得た。
Example 1 First, a low-density polyethylene resin having a melt index of 2.1, a density of 0.92, and a melting point of 119 ° C. was melt-kneaded in the first half of the barrel of the extruder (1), and 100 weight parts of the low-density polyethylene resin was placed almost from the center of the barrel. Parts by weight, 1.5 parts by weight of vinyltrimethoxysilane, which is a silane compound, and 0.05 parts by weight of dicumyl peroxide, which is a polymerization initiator, were added and kneaded sufficiently to prepare silane-grafted modified polyethylene pellets. . Next, based on 100 parts by weight of the low-density polyethylene resin, 0.05 parts by weight of dibutyltin dilaurate as a tin-based catalyst, 0.3 parts by weight of talc as a cell nucleating agent, and stearamide 3 as a cell stabilizer. Parts of the low-density polyethylene resin and 100 parts by weight of the low-density polyethylene resin through a hopper port. 0.
5 parts by weight and 0.5 parts by weight of triallyl cyanurate as a cross-linking aid were added and melt-kneaded, and then dichlorodifluoro, a volatile organic blowing agent, was injected through an injection port (1a) of an extruder (1). Methane was press-injected in an amount equivalent to 28 times the expansion ratio, and after kneading and cooling, it was foamed into a cylindrical shape almost simultaneously with being extruded from the die of the extruder (1). (Hereinafter referred to as a foam tube) (2) was obtained.

【0045】その後、発泡チューブ(2) の表面温度が常
温+10℃以下になるようエアー冷却し、紫外線照射機
(4) において、発泡チューブ(2) の全周に対し、100
mmの距離で高圧水銀灯により4秒間紫外線を照射し表
面架橋を施した。
Thereafter, the foamed tube (2) is air-cooled so that the surface temperature becomes equal to or lower than room temperature + 10 ° C.
In (4), the entire circumference of the foam tube (2) is 100
The surface was cross-linked by irradiating ultraviolet rays for 4 seconds with a high pressure mercury lamp at a distance of mm.

【0046】次に、発泡チューブ(2) を口径70mmの
押出機(6) の先端に接続された被覆金型(7) に導入する
とともに、顔料を配合したメルトインデックス2、密度
0.925、融点120℃の直鎖状低密度ポリエチレン
を押出機(6) の注入口(6a)から被覆金型(7) に導入し、
直鎖状低密度ポリエチレンを被覆金型(7) によって10
0μm厚みの表面被覆フィルム層(8) として押出すとと
もに、表面被覆フィルム層(8) を発泡チューブ(2) の外
周面に被着し、表面被覆フィルム層付き発泡チューブ
(9) を得た。
Next, the foamed tube (2) was introduced into a coating mold (7) connected to the tip of an extruder (6) having a diameter of 70 mm, and a melt index 2 containing a pigment, a density of 0.925, Linear low-density polyethylene having a melting point of 120 ° C. was introduced into the coating mold (7) from the injection port (6a) of the extruder (6),
Linear low-density polyethylene is coated with a mold (7) for 10
Extruded as a surface-coated film layer (8) having a thickness of 0 μm, and the surface-coated film layer (8) was applied to the outer peripheral surface of the foamed tube (2).
(9) was obtained.

【0047】ついで、表面被覆フィルム層付き発泡チュ
ーブ(9) をエアー冷却し、絞模様付け加工機(10)におい
て、表面被覆フィルム層付き発泡チューブ(9) を、その
表面温度が120℃±10℃になるように加熱して表面
被覆フィルム層(8) を軟化させた後、このチューブ(9)
を一対の第一絞模様付けロール(13a)(13b)間に通すこと
により、ロール(13a)(13b)を前後方向から被覆表面フィ
ルム層(8) に圧縮度合(圧縮後の外径/圧縮前の外径)
0.70の条件で押付けた。
Then, the foamed tube (9) with the surface-coated film layer is air-cooled, and the foamed tube (9) with the surface-coated film layer is cooled in the drawing machine (10) to a temperature of 120 ° C. ± 10 ° C. ° C to soften the surface coating film layer (8) by heating to
Is passed between the pair of first squeezing rolls (13a) and (13b) so that the rolls (13a) and (13b) are compressed from the front-rear direction to the coated surface film layer (8) (outside diameter after compression / compression). Front outer diameter)
Pressing was performed under the condition of 0.70.

【0048】ついで、表面被覆フィルム層付き発泡チュ
ーブ(9) を加熱した後、このチューブ(9) を第一絞模様
付けロール(13a)(13b)より100mm下流側に配置した
一対の第二絞模様付けロール(14a)(14b)の間に通すこと
により、ロール(14a)(14b)を上下方向から表面被覆フィ
ルム層(8) に圧縮度合(圧縮後の外径/圧縮前の外径)
0.70の条件で押付けた。なお、第一及び第二の絞模
様付けロール(13a)(13b)(14a)(14b)は随時冷却しておい
た。
Then, after heating the foamed tube (9) with the surface coating film layer, the tube (9) is placed on a pair of second drawn tubes 100 mm downstream from the first drawn patterning rolls (13a) (13b). By passing between the patterning rolls (14a) and (14b), the degree of compression of the rolls (14a) and (14b) from above and below to the surface coating film layer (8) (outside diameter after compression / outside diameter before compression).
Pressing was performed under the condition of 0.70. The first and second squeezing rolls (13a) (13b) (14a) (14b) were cooled as needed.

【0049】その後、表面被覆フイルム付き発泡チュー
ブ(9) を表面被覆フィルム層(8) が固化するまで冷却
し、絞模様付き被覆発泡樹脂チューブ(19)を得た。
Thereafter, the foamed tube (9) with the surface-coated film was cooled until the surface-coated film layer (8) was solidified to obtain a coated foamed resin tube (19) with a drawn pattern.

【0050】表面被覆フィルム層(8) の成形時及び絞模
様付けの為の加熱時においても発泡チューブ(2) は肉や
せ等の不具合はなく、寸法も当初の狙いの範囲(外径2
4.5±0.5mm)にあり、美麗な絞模様付き被覆発
泡樹脂チューブ成形品が得られた。
The foamed tube (2) does not have any problems such as thinning during the molding of the surface coating film layer (8) and the heating for forming the drawing pattern, and the dimensions are in the initial target range (outer diameter of 2 mm).
4.5 ± 0.5 mm), and a beautifully formed coated foamed resin tube molded product with a drawn pattern was obtained.

【0051】上記に示す製造方法において、紫外線照射
器(4) で紫外線照射を行った後の発泡チューブ(2) の表
層部を約1mm厚みに、皮むき状態で切削サンプリング
し、そのゲル分率を測定した結果、18%であった。
In the above-described production method, the surface layer of the foamed tube (2) after being irradiated with the ultraviolet ray by the ultraviolet ray irradiator (4) was cut and sampled in a peeled state to a thickness of about 1 mm, and the gel fraction thereof was obtained. Was 18%.

【0052】また、製造された絞模様付き被覆発泡樹脂
チューブを成形後2週間常温で放置し、この被覆発泡樹
脂チューブを断面輪切り状にサンプリングして被覆発泡
樹脂チューブ全体としてのゲル分率を測定した結果、3
7%であった。
Further, the coated foamed resin tube with the drawn pattern was left at room temperature for 2 weeks after molding, and the coated foamed resin tube was sampled into a cross-sectional shape to measure the gel fraction of the entire coated foamed resin tube. As a result, 3
7%.

【0053】更に、耐熱試験として、成形2週間後の絞
模様付き被覆発泡樹脂チューブから長さ500mmのサ
ンプルを作製し、このサンプル内に、外径8mm、長さ
1000mmの銅管を挿入し、常温下で銅管内に120
℃のオイルを168時間連続して通した後、銅管を取り
除いたサンプルを常温下で24時間放置し、放冷後の肉
厚変化を測定した。そして、肉厚変化を{(試験前の初
期肉厚−加熱放冷後の肉厚)/初期肉厚}という式で求
めた結果、6.5%であった。
Further, as a heat resistance test, a sample having a length of 500 mm was prepared from a coated foamed resin tube having a drawn pattern two weeks after molding, and a copper tube having an outer diameter of 8 mm and a length of 1000 mm was inserted into the sample. 120 at room temperature in copper tube
After passing oil at ℃ for 168 hours continuously, the sample from which the copper tube was removed was allowed to stand at room temperature for 24 hours, and the wall thickness change after cooling was measured. The change in wall thickness was determined by the formula {(initial wall thickness before test-wall thickness after heating and cooling) / initial wall thickness}, and as a result, it was 6.5%.

【0054】更に、上記と同様にして長さ変化を測定し
た。そして、長さ変化を{(試験前の初期長さ−加熱放
冷後の長さ)/初期長さ}という式で求めた結果、0.
5%であった。
Further, the change in length was measured in the same manner as described above. Then, the change in length was determined by the formula {(initial length before test−length after heating and cooling) / initial length}.
5%.

【0055】この結果から、製造された絞模様付き被覆
発泡樹脂チューブの寸法変化率が小さく当初目標の耐熱
性を有するものであることが判明した。
From these results, it was found that the dimensional change rate of the manufactured drawn foam coated resin foam tube was small and had the initially intended heat resistance.

【0056】[0056]

【実施例2】実施例1と同じ低密度ポリエチレン樹脂1
00重量部に対し、シラン系化合物としてビニルトリメ
トキシシラン3.0重量部、錫系触媒としてジブチル錫
ジラウレート0.1重量部、光増感剤としてベンゾフェ
ノン1.0重量部、架橋助剤としてトリアリルシアヌレ
ート1.0重量部を用いた他は、実施例1と同様の方法
で絞模様付き被覆発泡樹脂チューブを製造した。
Example 2 Same low density polyethylene resin 1 as in Example 1
With respect to 00 parts by weight, 3.0 parts by weight of vinyltrimethoxysilane as a silane compound, 0.1 parts by weight of dibutyltin dilaurate as a tin-based catalyst, 1.0 parts by weight of benzophenone as a photosensitizer, and A coated foamed resin tube with a squeezed pattern was produced in the same manner as in Example 1 except that 1.0 part by weight of allyl cyanurate was used.

【0057】表面被覆フイルム成形時及び絞模様付けの
為の加熱時においても発泡チューブ(2) は肉やせ等の不
具合はなく、寸法も当初の狙いの範囲(外径24.5±
0.5mm)にあり、美麗な絞模様付き被覆発泡樹脂チ
ューブ成形品が得られた。
The foamed tube (2) does not have any problems such as thinness even when the surface-coated film is formed and when it is heated for forming a drawn pattern, and the dimensions are within the initial target range (outer diameter 24.5 ±).
0.5 mm), and a beautifully formed coated foamed resin tube molded product with a drawn pattern was obtained.

【0058】また、上記実施例1と同様にして、紫外線
照射を行った後の発泡チューブ(2)の表層部のゲル分率
を測定した結果、21%であった。
Further, the gel fraction of the surface layer of the foamed tube (2) after irradiation with ultraviolet rays was measured in the same manner as in Example 1 above, and it was found to be 21%.

【0059】また、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブ全体のゲル分率を
測定した結果、39%であった。
The gel fraction of the entire coated foamed resin tube with a drawn pattern was measured in the same manner as in Example 1 to find that it was 39%.

【0060】更に、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブの肉厚変化及び長
さ変化をそれぞれ測定した。その結果、肉厚変化は7.
0%長さ変化は0.6%であった。
Further, in the same manner as in Example 1 described above, the change in thickness and the change in length of the manufactured coated foamed resin tube with a drawn pattern were measured. As a result, the change in wall thickness is 7.
The 0% length change was 0.6%.

【0061】この結果から、製造された絞模様付き被覆
発泡樹脂チューブの寸法変化率が小さく当初目標の耐熱
性を有するものであることが判明した。
From these results, it was found that the dimensional change rate of the coated drawn resin foam tube with the drawn pattern was small and had the initially intended heat resistance.

【0062】[0062]

【実施例3】実施例1と同じ低密度ポリエチレン樹脂1
00重量部に対し、シラン系化合物としてビニルトリメ
トキシシラン1.5重量部、錫系触媒としてジブチル錫
ジアセテート0.1重量部、光増感剤としてチオキサン
トン1.0重量部、架橋助剤としてメチルメタアクリレ
ート2.0重量部を用いた他は、実施例1と同様の方法
で絞模様付き被覆発泡樹脂チューブを製造した。
Example 3 Same low density polyethylene resin 1 as in Example 1
Based on 00 parts by weight, 1.5 parts by weight of vinyltrimethoxysilane as a silane-based compound, 0.1 parts by weight of dibutyltin diacetate as a tin-based catalyst, 1.0 part by weight of thioxanthone as a photosensitizer, and as a crosslinking aid Except for using 2.0 parts by weight of methyl methacrylate, a coated foamed resin tube with a drawn pattern was produced in the same manner as in Example 1.

【0063】表面被覆フイルム成形時及び絞模様付けの
為の加熱時においても発泡チューブ(2) は肉やせ等の不
具合はなく、寸法も当初の狙いの範囲(外径24.5±
0.5mm)にあり、美麗な絞模様付き被覆発泡樹脂チ
ューブ成形品が得られた。
The foamed tube (2) does not have any problems such as thinness even when the surface-coated film is formed and when it is heated for forming a drawn pattern, and the dimensions are within the initial target range (outer diameter 24.5 ±
0.5 mm), and a beautifully formed coated foamed resin tube molded product with a drawn pattern was obtained.

【0064】また、上記実施例1と同様にして、紫外線
照射を行った後の発泡チューブ(2)の表層部のゲル分率
を測定した結果、18%であった。
The gel fraction of the surface layer of the foamed tube (2) after irradiation with ultraviolet rays was measured in the same manner as in Example 1 to find that it was 18%.

【0065】また、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブ全体のゲル分率を
測定した結果、43%であった。
Further, the gel fraction of the whole coated foamed resin tube with a squeezed pattern measured in the same manner as in Example 1 was 43%.

【0066】更に、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブの肉厚変化及び長
さ変化をそれぞれ測定した。その結果、肉厚変化は6.
0%長さ変化は0.5%であった。
Further, in the same manner as in Example 1 described above, the change in thickness and the change in length of the manufactured coated foamed resin tube with a drawn pattern were measured. As a result, the change in wall thickness is 6.
The 0% length change was 0.5%.

【0067】この結果から、製造された絞模様付き被覆
発泡樹脂チューブの寸法変化率が小さく当初目標の耐熱
性を有するものであることが判明した。
From these results, it was found that the dimensional change rate of the produced coated foamed resin tube with a drawn pattern was small and had the initially intended heat resistance.

【0068】[0068]

【実施例4】実施例1と同じ低密度ポリエチレン樹脂1
00重量部に対し、シラン系化合物としてビニルトリエ
メトキシシラン3.0重量部、錫系触媒としてジブチル
錫ジラウレート0.1重量部、光増感剤としてチオキサ
ントン1.0重量部、架橋助剤としてトリアリルシアヌ
レート1.0重量部を用いた他は、実施例1と同様の方
法で絞模様付き被覆発泡樹脂チューブを製造した。
Example 4 Low-density polyethylene resin 1 as in Example 1
With respect to 00 parts by weight, 3.0 parts by weight of vinyltriemethoxysilane as a silane-based compound, 0.1 parts by weight of dibutyltin dilaurate as a tin-based catalyst, 1.0 parts by weight of thioxanthone as a photosensitizer, and 1.0 parts by weight as a crosslinking aid. A coated foamed resin tube with a squeezed pattern was produced in the same manner as in Example 1 except that 1.0 part by weight of allyl cyanurate was used.

【0069】表面被覆フイルム成形時及び絞模様付けの
為の加熱時においても発泡チューブ(2) は肉やせ等の不
具合はなく、寸法も当初の狙いの範囲(外径24.5±
0.5mm)にあり、美麗な絞模様付き被覆発泡樹脂チ
ューブ成形品が得られた。
The foamed tube (2) does not have any problems such as thinness even when the surface-coated film is formed and when it is heated for forming a drawn pattern, and the dimensions are within the initial target range (outer diameter 24.5 ±
0.5 mm), and a beautifully formed coated foamed resin tube molded product with a drawn pattern was obtained.

【0070】また、上記実施例1と同様にして、紫外線
照射を行った後の発泡チューブ(2)の表層部のゲル分率
を測定した結果、15%であった。
The gel fraction of the surface layer of the foamed tube (2) after irradiation with ultraviolet rays was measured in the same manner as in Example 1 above, and it was 15%.

【0071】また、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブ全体のゲル分率を
測定した結果、34%であった。
The gel fraction of the entire coated foamed resin tube with a squeezed pattern measured in the same manner as in Example 1 was 34%.

【0072】更に、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブの肉厚変化及び長
さ変化をそれぞれ測定した。その結果、肉厚変化は6.
0%長さ変化は0.5%であった。
Further, in the same manner as in Example 1 described above, the change in thickness and the change in length of the manufactured coated foamed resin tube with a drawn pattern were measured. As a result, the change in wall thickness is 6.
The 0% length change was 0.5%.

【0073】この結果から、製造された絞模様付き被覆
発泡樹脂チューブの寸法変化率が小さく当初目標の耐熱
性を有するものであることが判明した。
From this result, it was found that the dimensional change rate of the coated drawn resin foam tube with the drawn pattern was small and had the initially intended heat resistance.

【0074】[0074]

【比較例1】シラン系化合物及び錫系触媒を使用せず、
実施例1と同じ低密度ポリエチレン樹脂100重量部に
対し、光増感剤としてペンゾフェノン1.0重量部、架
橋助剤としてトリアリルシアヌレート1.0重量部を用
いた他は実施例1と同様の方法で絞模様付き被覆発泡樹
脂チューブを製造した。
Comparative Example 1 No silane compound and no tin catalyst were used,
Same as Example 1 except that benzophenone 1.0 part by weight as a photosensitizer and 1.0 part by weight of triallyl cyanurate as a crosslinking aid were used with respect to 100 parts by weight of the same low-density polyethylene resin as in Example 1. A coated foamed resin tube with a squeezed pattern was produced by the method described above.

【0075】表面被覆フイルム成形時及び絞模様付けの
為の加熱時においても発泡チューブ(2) は肉やせ等の不
具合はなく、寸法も当初の狙いの範囲(外径24.5±
0.5mm)にあり、美麗な絞模様付き被覆発泡樹脂チ
ューブ成形品が得られた。
The foamed tube (2) does not have any problems such as thinness even when the surface-coated film is formed and when it is heated for forming a drawn pattern, and the dimensions are within the initial target range (outer diameter 24.5 ±
0.5 mm), and a beautifully formed coated foamed resin tube molded product with a drawn pattern was obtained.

【0076】また、上記実施例1と同様にして、紫外線
照射を行った後の発泡チューブ(2)の表層部のゲル分率
を測定した結果、20%であった。
Further, the gel fraction of the surface layer of the foamed tube (2) after irradiation with ultraviolet rays was measured in the same manner as in Example 1 above. As a result, it was 20%.

【0077】また、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブ全体のゲル分率を
測定した結果、24%であった。
The gel fraction of the whole coated foamed resin tube with a drawn pattern was measured in the same manner as in Example 1 to find that it was 24%.

【0078】更に、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブの肉厚変化及び長
さ変化をそれぞれ測定した。その結果、肉厚変化は18
%、長さ変化は3.3%であった。
Further, in the same manner as in Example 1 described above, the change in thickness and the change in length of the manufactured coated foamed resin tube with a drawn pattern were measured. As a result, the wall thickness change is 18
%, And the change in length was 3.3%.

【0079】この結果から、製造された絞模様付き被覆
発泡樹脂チューブの寸法変化率が大きく、形状も悪く耐
熱性に問題があるものであった。
From the results, the dimensional change rate of the coated foamed resin tube with the drawn pattern was large, the shape was poor, and there was a problem in heat resistance.

【0080】[0080]

【比較例2】光増感剤及び架橋助剤を使用せず、実施例
1と同じ低密度ポリエチレン樹脂100重量部に対し、
シラン系化合物としてビニルトリメトキシシラン1.5
重量部、錫系触媒としてジブチル錫ジラウレート0.0
5重量部とした他は、実施例1と同様の方法で絞模様付
き被覆発泡樹脂チューブを製造した。
Comparative Example 2 The same low-density polyethylene resin (100 parts by weight) as in Example 1 was used without using a photosensitizer and a crosslinking assistant.
Vinyltrimethoxysilane 1.5 as a silane compound
Parts by weight, dibutyltin dilaurate 0.0 as a tin-based catalyst
A coated foam resin tube with a drawn pattern was manufactured in the same manner as in Example 1 except that the amount was 5 parts by weight.

【0081】絞模様付けの為の加熱時に於いて発泡チュ
ーブ(2) は肉やせ(径小)の状態となり、形状も安定せ
ず、外観的にも問題なものとなった。ちなみに寸法を測
定したが、外径23mmであった。
At the time of heating for forming the drawing pattern, the foam tube (2) became thin (small diameter), the shape was not stable, and the appearance was problematic. Incidentally, the dimensions were measured, and the outer diameter was 23 mm.

【0082】また、上記実施例1と同様にして、紫外線
照射を行った後の発泡チューブ(2)の表層部のゲル分率
を測定した結果、0.5%であった。
The gel fraction of the surface layer of the foamed tube (2) after irradiation with ultraviolet rays was measured in the same manner as in Example 1 above, and it was 0.5%.

【0083】また、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブ全体のゲル分率を
測定した結果、30%であった。
Further, the gel fraction of the whole coated foamed resin tube with a squeezed pattern was measured in the same manner as in Example 1 above. As a result, it was 30%.

【0084】更に、上記実施例1と同様にして、製造さ
れた絞模様付き被覆発泡樹脂チューブの肉厚変化及び長
さ変化をそれぞれ測定した。その結果、肉厚変化は7.
5%、長さ変化は0.8%であった。
Further, in the same manner as in Example 1 described above, the change in thickness and the change in length of the manufactured coated foamed resin tube with a drawn pattern were measured. As a result, the change in wall thickness is 7.
5% and the change in length was 0.8%.

【0085】上記実施例1〜4及び比較例1〜2におけ
る低密度ポリエチレン樹脂100重量部に対するシラン
系化合物、錫系触媒、光増感剤及び架橋助剤の配合率、
ならびに各測定結果を表1にまとめて示す。
The mixing ratio of the silane compound, tin catalyst, photosensitizer and crosslinking aid to 100 parts by weight of the low-density polyethylene resin in Examples 1-4 and Comparative Examples 1-2,
Table 1 shows the results of each measurement.

【0086】[0086]

【表1】 [Table 1]

【0087】[0087]

【発明の効果】本発明の製造方法によれば、無発泡樹脂
を被覆成形する前に紫外線を照射することにより、容易
にかつ高度にポリオレフィン系樹脂発泡チューブの表面
層を紫外線架橋して二次加工時の耐熱性を付与すること
ができ、合わせてシラン架橋によりポリオレフィン系樹
脂発泡チューブ全体の耐熱性を有する、絞模様付き被覆
樹脂発泡チューブを生産性よく製造することができる。
According to the production method of the present invention, the surface layer of the polyolefin-based resin foam tube is easily and highly cross-linked by irradiating ultraviolet rays before the non-foam resin is coated and molded to form a secondary layer. Heat resistance at the time of processing can be imparted, and in addition, a coated resin foam tube with a drawn pattern having the heat resistance of the entire polyolefin resin foam tube by silane crosslinking can be produced with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の絞模様付き被覆発泡樹脂チューブの製
造方法を実施する装置の概略構成図である。
FIG. 1 is a schematic structural view of an apparatus for carrying out a method for producing a coated foamed resin tube with a drawn pattern according to the present invention.

【図2】図1の装置における被覆金型の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of a coating mold in the apparatus of FIG.

【図3】本発明の方法の過程で得られる表面被覆フィル
ム層を形成した発泡樹脂チューブの横断面図である。
FIG. 3 is a cross-sectional view of a foamed resin tube having a surface coating film layer obtained in the course of the method of the present invention.

【図4】図1の装置における絞模様付け用加工機の概略
構成図である。
FIG. 4 is a schematic configuration diagram of a drawing pattern processing machine in the apparatus of FIG. 1;

【図5】製造された絞模様付き被覆発泡樹脂チューブの
無発泡表面被覆フィルム層の断面図である。
FIG. 5 is a cross-sectional view of a non-foamed surface coating film layer of the coated foamed resin tube with a drawn pattern.

【図6】同じく無発泡表面被覆フィルム層の平面図であ
る。
FIG. 6 is a plan view of the non-foamed surface covering film layer.

【図7】形成された絞模様の変形例を示す無発泡表面被
覆フィルム層の平面図である。
FIG. 7 is a plan view of a non-foamed surface covering film layer showing a modified example of a formed squeezed pattern.

【図8】第一絞模様付けロールの変形例を示す斜面図で
ある。
FIG. 8 is a perspective view showing a modification of the first drawing patterning roll.

【符号の説明】[Explanation of symbols]

(1) :押出機 (2) :発泡樹脂チューブ (4) :紫外線照射機 (8) :無発泡表面被覆フィルム層(無発泡樹脂被覆層) (9) :表面被覆フィルム層付き発泡チューブ (13a)(13b)(22a)(22b):第一の絞模様付けロール (14a)(14b):第二の絞模様付けロール (19):絞模様付き被覆発泡樹脂チューブ (24a)(24b):絞模様 (1): Extruder (2): Foamed resin tube (4): UV irradiation machine (8): Non-foamed surface coating film layer (non-foamed resin coating layer) (9): Foamed tube with surface coating film layer (13a ) (13b) (22a) (22b): First squeezed patterning roll (14a) (14b): Second squeezed patterning roll (19): Coated foamed resin tube with squeezed pattern (24a) (24b): Squeezing pattern

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 3/28 CES C08J 7/00 CES 7/00 CES 304 304 9/14 CES 9/14 CES B29C 67/22 // B29K 23:00 105:04 105:24 B29L 9:00 23:00 C08L 23:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C08J 3/28 CES C08J 7/00 CES 7/00 CES 304 304 9/14 CES 9/14 CES B29C 67/22 // B29K 23 : 00 105: 04 105: 24 B29L 9:00 23:00 C08L 23:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系原料樹脂と揮発性有機
発泡剤とを押出機内の高温、高圧下で混練混合し、この
混合物をチューブ状に押出して押出しとほぼ同時に発泡
させ、連続的に発泡樹脂チューブを成形するとともに、
この発泡樹脂チューブに無発泡樹脂被覆層を連続的に押
出被覆成形した後冷却し、更に該発泡樹脂チューブの外
表面温度を無発泡樹脂の融点±20℃に再加熱して無発
泡樹脂被覆層を軟化させ、ロール面に絞模様を付けるた
めの凹凸を有する絞模様付けロールに押圧して、発泡樹
脂チューブの無発泡樹脂被覆層の外表面に連続的に絞模
様を形成する絞模様付き被覆発泡樹脂チューブの製造方
法であって、 上記ポリオレフィン系原料樹脂として、基材となるポリ
オレフィン系樹脂100重量部に対し、シラン系化合物
0.1〜5重量部と、錫系触媒0.01〜2重量部と、
光増感剤0.1〜5重量部と、架橋助剤0.1〜5重量
部とを配合したものを使用し、上記発泡樹脂チューブを
成形した後、その発泡樹脂チューブに無発泡樹脂被覆層
を連続的に押出被覆成形するまでの段階で紫外線を照射
し、発泡樹脂チューブ表面を架橋させることを特徴とす
る絞模様付き被覆発泡樹脂チューブの製造方法。
1. A polyolefin-based raw material resin and a volatile organic blowing agent are kneaded and mixed at a high temperature and a high pressure in an extruder, and the mixture is extruded into a tube and foamed almost simultaneously with the extrusion. While molding
The foamed resin tube is continuously extruded and molded with a non-foamed resin coating layer, cooled, and then reheated to an outer surface temperature of the non-foamed resin of ± 20 ° C. to form a non-foamed resin coating layer. Is pressed against a squeezed pattern forming roll having irregularities for forming a squeezed pattern on the roll surface to form a squeezed pattern continuously on the outer surface of the non-foamed resin coating layer of the foamed resin tube. A method for producing a foamed resin tube, wherein as the polyolefin-based raw material resin, 0.1 to 5 parts by weight of a silane-based compound and 0.01 to 2 parts of a tin-based catalyst, based on 100 parts by weight of a polyolefin-based resin as a base material. Parts by weight,
Using a mixture of 0.1 to 5 parts by weight of a photosensitizer and 0.1 to 5 parts by weight of a crosslinking aid, molding the above foamed resin tube, and then coating the foamed resin tube with a non-foamed resin A method for producing a coated foamed resin tube having a drawn pattern, comprising irradiating ultraviolet rays to crosslink the surface of the foamed resin tube until the layer is continuously subjected to extrusion coating.
【請求項2】 紫外線照射直後の架橋した発泡樹脂チュ
ーブの表面架橋度が、ゲル分率で発泡樹脂チューブ表面
部分で10〜50%であり、発泡樹脂チューブ全体の架
橋度が、最終架橋段階のゲル分率で30〜60%である
ことを特徴とする請求項1記載の絞模様付き被覆発泡樹
脂チューブの製造方法。
2. The degree of surface cross-linking of the cross-linked foamed resin tube immediately after irradiation with ultraviolet rays is 10 to 50% in terms of gel fraction at the surface of the foamed resin tube, and the degree of cross-linking of the entire foamed resin tube is determined in the final cross-linking step. The method according to claim 1, wherein the gel fraction is 30 to 60%.
JP8311821A 1996-11-22 1996-11-22 Production of coated formed resin tube fitted with patterns Pending JPH10151682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8311821A JPH10151682A (en) 1996-11-22 1996-11-22 Production of coated formed resin tube fitted with patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311821A JPH10151682A (en) 1996-11-22 1996-11-22 Production of coated formed resin tube fitted with patterns

Publications (1)

Publication Number Publication Date
JPH10151682A true JPH10151682A (en) 1998-06-09

Family

ID=18021816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311821A Pending JPH10151682A (en) 1996-11-22 1996-11-22 Production of coated formed resin tube fitted with patterns

Country Status (1)

Country Link
JP (1) JPH10151682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117842A (en) * 2004-10-22 2006-05-11 Asahi Kasei Life & Living Corp Polyolefinic resin foamed particle and in-mold molding using it
WO2018123090A1 (en) * 2016-12-27 2018-07-05 株式会社プラ技研 Foamed resin tube manufacturing device and manufacturing method, and foamed resin tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117842A (en) * 2004-10-22 2006-05-11 Asahi Kasei Life & Living Corp Polyolefinic resin foamed particle and in-mold molding using it
WO2018123090A1 (en) * 2016-12-27 2018-07-05 株式会社プラ技研 Foamed resin tube manufacturing device and manufacturing method, and foamed resin tube
JP6411700B1 (en) * 2016-12-27 2018-10-24 株式会社プラ技研 Foamed resin tube manufacturing apparatus and foamed resin tube
JPWO2018123090A1 (en) * 2016-12-27 2018-12-27 株式会社プラ技研 Foamed resin tube manufacturing apparatus and method, foamed resin tube

Similar Documents

Publication Publication Date Title
JP7428716B2 (en) Novel foaming method for producing foam materials
US4366107A (en) Making shrink-fit objects
JP2002036347A (en) Method for manufacturing polyolefin foil and method for utilizing polyolefin foil
CN101367953A (en) Process for preparing water-soluble polyvinyl alcohol film
JP4083807B2 (en) Automotive bumper core
US4424293A (en) Crosslinkable polypropylene composition
KR100908008B1 (en) Method for producing foamed sheets
JPH10151682A (en) Production of coated formed resin tube fitted with patterns
GB2061967A (en) Process for the manufacture of shrink articles
JP2505543B2 (en) Method for producing foam containing crystalline propylene resin
JP2001205654A (en) Method for manufacturing foamed sheet and foamed object formed of thermoplastic polyester resin
JP3792371B2 (en) Method for producing polyolefin resin foam
EP0256754B1 (en) Process for producing styrene resin foam
JPH0347849A (en) Partially crosslinked thermoplastic elastomer foam and production thereof
JP3588545B2 (en) Method for producing polyolefin resin foam
JP3346027B2 (en) Polyethylene-based electron beam cross-linked foam
JPH0362832A (en) Foamed polyolefin resin and its production
JPH05214143A (en) Polypropylene-based resin crosslinked foam
JPH07299832A (en) Production of polyolefinic resin foamed sheet
JPH04220440A (en) Styrene resin foam excellent in strength and moldability in secondary foaming
JP3311106B2 (en) Method for producing crosslinked polypropylene resin foam sheet
CA2000226A1 (en) Method of producing a foamed polymer
JPH047340A (en) Crosslinked polyethylene resin foam
JPS63309431A (en) Manufacture of crosslinked polypropylene foam
JP2708496B2 (en) Method for producing cross-linked olefin resin foam