WO2018123806A1 - Alkenyl-group-containing resin, curable resin composition, and cured article thereof - Google Patents

Alkenyl-group-containing resin, curable resin composition, and cured article thereof Download PDF

Info

Publication number
WO2018123806A1
WO2018123806A1 PCT/JP2017/045930 JP2017045930W WO2018123806A1 WO 2018123806 A1 WO2018123806 A1 WO 2018123806A1 JP 2017045930 W JP2017045930 W JP 2017045930W WO 2018123806 A1 WO2018123806 A1 WO 2018123806A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
parts
allyl
propenyl
Prior art date
Application number
PCT/JP2017/045930
Other languages
French (fr)
Japanese (ja)
Inventor
窪木 健一
一貴 松浦
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2018559119A priority Critical patent/JP6963565B2/en
Publication of WO2018123806A1 publication Critical patent/WO2018123806A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/32Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/30Chemically modified polycondensates by unsaturated compounds, e.g. terpenes

Definitions

  • the present invention relates to an alkenyl group-containing resin, a curable resin composition, and a cured product thereof, a semiconductor element sealing material, a liquid crystal display element sealing material, an organic EL element sealing material, a printed wiring board, It is suitably used for lightweight and high-strength composite materials for electrical and electronic parts such as build-up laminates, carbon fiber reinforced plastics, and glass fiber reinforced plastics.
  • a semiconductor chip has been mainly mounted on a metal lead frame, but a semiconductor chip having a high processing capability such as a central processing unit (hereinafter referred to as “CPU”) is made of a polymer material. More and more are mounted on the laminates that are made. As the processing speed of elements such as CPUs increases and the clock frequency increases, signal propagation delay and transmission loss become a problem, and low dielectric constant and low dielectric loss tangent are required for wiring boards. Yes.
  • CPU central processing unit
  • Patent Document 1 discloses a resin composition of a maleimide resin and a propenyl group-containing phenol resin.
  • Patent Document 2 discloses a resin composition of a maleimide resin and an unsubstituted allyl ether-modified phenol resin or a phenol resin substituted with allyl groups.
  • Patent Document 1 uses a phenol resin substituted with a propenyl group, the hygroscopic property is poor, and accordingly, the electrical characteristics are insufficient.
  • Patent Document 2 uses a phenol resin substituted with allyl groups, so that the reactivity is poor and the hygroscopic property is poor, and the performance is still not sufficient, and further improvement is required. Therefore, the present invention provides an alkenyl group-containing resin, a curable resin composition, and a cured product thereof that exhibit excellent hygroscopicity (low water absorption) and heat resistance in the cured product.
  • a plurality of Z's each independently represents a hydrocarbon group having 6 to 15 carbon atoms.
  • a plurality of X's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, propenyl
  • each of the plurality of Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or Represents a propenyl group
  • n represents the number of repetitions
  • the average value is a real number of 1 to 20.
  • the cured product of the resin composition using the alkenyl group-containing resin of the present invention exhibits excellent low moisture absorption (low water absorption) and heat resistance (solder reflow resistance). Therefore, insulating materials for electrical and electronic parts (such as highly reliable semiconductor sealing materials) and laminates (printed wiring boards, BGA substrates, build-up substrates, etc.), liquid crystal sealing materials, EL sealing materials, adhesives (conductive) Adhesives, etc.), various composite materials including CFRP, and paints.
  • the alkenyl group-containing resin of the present invention is represented by the following formula (1).
  • a plurality of Z's each independently represents a hydrocarbon group having 6 to 15 carbon atoms.
  • a plurality of X's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, propenyl
  • each of the plurality of Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or Represents a propenyl group
  • n represents the number of repetitions
  • the average value is a real number of 1 to 20.
  • the alkenyl group-containing resin of the present invention all or part of the allyl group is converted into a more reactive propenyl group, and as a result, a reaction between the propenyl groups occurs in the curing process, so that the crosslinking density increases. Heat resistance (glass transition temperature) is improved.
  • a reactive olefin resin such as a maleimide group or an acrylate group
  • the propenyl group is more likely to proceed than the allyl group.
  • polar groups are not generated, so that the increase in water absorption (wetness) accompanying the improvement in heat resistance can be reduced.
  • each X independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group (—CH 2 —CH ⁇ CH 2 ), a propenyl group ( —CH ⁇ CH—CH 3 ) or a glycidyl group
  • the allyl ether group is very reactive. , The curing may be slow and productivity may be deteriorated. Moreover, since high temperature is required for hardening, an allyl ether group rearranges during hardening and a hydroxyl group is generated, which may adversely affect low hygroscopicity.
  • X and Y are preferably alkenyl groups.
  • the alkenyl groups in X and Y are each preferably 20% or more, more preferably 40% or more, and particularly preferably 60% or more.
  • alkenyl groups in plural X and Y are propenyl groups
  • a part of the plural X and Y may be alkyl groups having 1 to 6 carbon atoms.
  • alkoxy group having 1 to 6 carbon atoms include alkyl groups having a linear, branched or cyclic structure such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • a plurality of Z each independently represents a hydrocarbon group having 6 to 15 carbon atoms.
  • An aromatic hydrocarbon group is preferable, and a hydrocarbon group having 10 to 15 carbon atoms is particularly preferable.
  • Specific examples of Z in the formula (1) include the following structures, but are not limited thereto.
  • n is 1 to 20, preferably 1 to 10, particularly preferably 1 to 6.
  • the epoxy equivalent of the alkenyl group-containing resin of the present invention is 210 to 5000 g / eq. And more preferably 210 to 3000 g / eq. It is.
  • Epoxy equivalent is 5000 g / eq. The following indicates that the amount of epoxy groups per unit structure does not decrease, which means that the number of epoxy groups does not decrease. Therefore, it is preferable in terms of heat resistance.
  • the total amount of chlorine remaining in the alkenyl group-containing resin of the present invention is preferably 1500 ppm or less, more preferably 1000 ppm or less, and particularly preferably 500 ppm or less.
  • the manufacturing method of the alkenyl group containing resin of this invention uses a phenol resin of the following formula (2) as a raw material.
  • n represents the number of repetitions, and the average value is a real number of 1 to 20.
  • the alkenyl group-containing resin of the present invention can be produced by combining two or more of the following reaction steps. a) Allylation reaction of hydroxyl group in formula (2) (synthesis of allyl ether) b) Glycidylation reaction of hydroxyl group in formula (2) c) Rearrangement reaction of allyl ether body to propenyl ether body d) Claisen rearrangement reaction of allyl ether body (synthesis of allylated phenol resin) e) Rearrangement reaction of allyl group to propenyl group
  • a highly polar solvent such as methanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone is used. It is preferable to use it.
  • the amount of the polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the raw material phenol resin. These may be used alone or in combination, and a solvent having low polarity such as toluene or xylene may be used in combination.
  • the amount of allyl halide and base used is usually 0.1 to 2.0 mol, preferably 0.2 to 1.5 mol, based on 1 equivalent of the hydroxyl group of the phenol resin.
  • the rate can be adjusted. For example, more specifically, after the phenol resin is dissolved in the aforementioned isopropanol or dimethyl sulfoxide, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added, and the alkali metal hydroxide is added at 50 to 100 ° C. After dissolution, allyl chloride or allyl bromide is added at 30 to 50 ° C. over 2 to 5 hours, and then reacted at 30 to 70 ° C. for 1 to 10 hours.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the alkali metal hydroxide may be used in the form of an aqueous solution.
  • the alkali metal hydroxide is continuously added and water and epihalohydrins are continuously added under reduced pressure or normal pressure from within the reaction system.
  • the water may be removed and the epihalohydrins may be continuously returned to the reaction system.
  • the amount of epihalohydrin used is usually 0.5 to 20 mol, preferably 0.7 to 10 mol, per 1 equivalent of the hydroxyl group of the phenol resin.
  • the amount of the alkali metal hydroxide used is usually in the range of 0.5 to 1.5 mol, preferably 0.7 to 1.2 mol, per 1 equivalent of the hydroxyl group of the phenol resin.
  • an epoxy resin having a low hydrolyzable halogen concentration can be obtained by adding an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylformamide, 1,3-dimethyl-2-imidazolidinone.
  • an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylformamide, 1,3-dimethyl-2-imidazolidinone.
  • the total chlorine concentration is preferably 1500 ppm or less, more preferably 1000 ppm or less.
  • the amount of the aprotic polar solvent used is in the range of 5 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to the mass of the epihalohydrins.
  • the reaction can easily proceed by adding alcohols such as methanol and ethanol.
  • toluene, xylene, dioxane and the like can also be used.
  • these reactants are washed with water, or after removing excess epihalohydrin under heating and reduced pressure without washing with water, and then dissolved in a solvent such as toluene, xylene, methyl isobutyl ketone, and the like.
  • the reaction is carried out again by adding an aqueous solution of an alkali metal hydroxide.
  • the amount of the alkali metal hydroxide used is usually 0.01 to 0.2 mol, preferably 0.05 to 0.15 mol, relative to 1 equivalent of the hydroxyl group of the phenol resin.
  • the reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
  • the by-produced salt is removed by filtration, washing with water, etc., and an epoxy resin with less hydrolyzable halogen can be obtained by distilling off a solvent such as toluene, xylene, methyl isobutyl ketone under heating and reduced pressure.
  • Rearrangement reaction of allyl ether group to propenyl ether can be carried out by a known method and is generally carried out using a strong base in a polar solvent.
  • polar solvent examples include, but are not limited to, methanol, isopropanol, dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like.
  • Ketone solvents are not suitable because they use strong bases as catalysts.
  • the amount of the polar solvent used is usually 20 to 400 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of the raw material. These may be used alone or in combination. A solvent may be used in combination. Strong bases include, but are not limited to, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, tetramethylammonium hydroxide and the like. The amount of strong base used varies greatly depending on the type of solvent used, the type of base, etc., but is usually 0.1-3.0 mol, preferably 0.2-2. The range is 0 mol.
  • a compound having an allyl ether group is dissolved in dimethyl sulfoxide and the like, potassium-tert-butoxide is added, and the mixture is reacted at 30 to 80 ° C. for 2 to 10 hours. After completion of the reaction, neutralize, add toluene, methyl isobutyl ketone, etc., remove the neutralized salt by washing with water, etc., and further distill off the solvent such as toluene, methyl isobutyl ketone, etc. Obtainable.
  • the conversion rate to the propenyl ether group can also be adjusted by adjusting the type and amount of strong base, reaction temperature, and reaction time.
  • Claisen rearrangement reaction of allyl ether (synthesis of allylated phenol resin)
  • the Claisen rearrangement reaction may be carried out according to a conventional method. For example, a compound having an allyl ether group is heated to 150 to 230 ° C. in the presence or absence of a high-boiling solvent such as carbitol, paraffin oil, N, N′-dimethylaniline. For 0.5 to 100 hours. The solvent is used in an amount of 10 to 200 parts by mass based on 100 parts by mass of allyl ether. After completion of the reaction, the solvent used can be removed if necessary to obtain an allylated phenol resin.
  • a high-boiling solvent such as carbitol, paraffin oil, N, N′-dimethylaniline.
  • the reaction is preferably performed in a vacuum or in an inert gas atmosphere such as nitrogen or argon, and the product can be prevented from being colored.
  • an inert gas atmosphere such as nitrogen or argon
  • the antioxidant is preferably used in an amount of about 10 parts by mass with respect to 100 parts by mass of allyl ether.
  • Phenol antioxidants include methylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, tert-butylated bisphenol A, 2,2'-methylenebis (4-methyl- 6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-ethylidenebis (3-methyl-6-tert-butylphenol), 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 1, 1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) buta 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl
  • Rearrangement reaction of an allyl group to a propenyl group can be performed by a known method, and is generally carried out in a polar solvent using a strong base.
  • polar solvent examples include, but are not limited to, methanol, isopropanol, dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like.
  • Ketone solvents are not suitable because they use strong bases as catalysts.
  • the amount of the polar solvent used is usually 20 to 400 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of the raw material. These may be used alone or in combination. A solvent may be used in combination. Strong bases include, but are not limited to, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, tetramethylammonium hydroxide and the like. The amount of strong base used varies greatly depending on the type of solvent used, the type of base, etc., but is usually 0.1-3.0 mol, preferably 0.2-2. The range is 0 mol.
  • an allyl group-containing compound is dissolved in methanol, dimethyl sulfoxide or the like, and then sodium hydroxide and potassium hydroxide are added and reacted at 50 to 150 ° C. for 2 to 10 hours.
  • sodium hydroxide and potassium hydroxide are added and reacted at 50 to 150 ° C. for 2 to 10 hours.
  • neutralize add toluene, methyl isobutyl ketone, etc., remove the neutralized salt by washing with water, etc., and further distill off the solvent such as toluene, methyl isobutyl ketone, etc. under heating and reduced pressure to have a compound having a propenyl group Can be obtained.
  • the conversion rate to the propenyl ether group can also be adjusted by adjusting the amount of strong base, reaction temperature, and reaction time.
  • the alkenyl group-containing resin of the present invention can be produced by combining two or more of the above reaction steps a) to e).
  • the alkenyl group-containing resin having a glycidyl group of the present invention can also be used as a raw material for epoxy acrylate resins.
  • the curable resin composition of the present invention contains the alkenyl group-containing resin of the present invention, and can further contain a compound having a functional group that reacts by heating.
  • the content of the alkenyl group-containing resin in the curable resin composition of the present invention is preferably 20% or more, more preferably 30% or more, and particularly preferably 40% or more.
  • the curable resin composition of the present invention may contain a maleimide compound.
  • a conventionally well-known maleimide compound can be used as a maleimide compound which can be mix
  • Specific examples of the maleimide compound include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like, but are not limited thereto.
  • maleimide compounds described in Japanese Patent Application Laid-Open No. 2009-001783 (Patent Document 3) and Japanese Patent Application Laid-Open No. 01-294661 (Patent Document 4) have low hygroscopicity, flame retardancy, and dielectric properties. Since it is excellent in characteristics, it is particularly preferable as a maleimide compound.
  • a radical polymerization initiator for reacting alkenyl groups of the alkenyl group-containing resin of the present invention with each other or between an alkenyl group and a maleimide group.
  • the radical polymerization initiator include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyoctate, and t-butyl peroxy.
  • Organic peroxides such as benzoate and lauroyl peroxide, azobisisobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2,4-dimethylvaleronitrile), etc.
  • the well-known hardening accelerator of an azo type compound is mentioned, It does not specifically limit to these.
  • the amount is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention may contain an epoxy resin.
  • an epoxy resin that can be blended in the curable resin composition of the present invention any conventionally known epoxy resin can be used.
  • Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes.
  • glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate
  • the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
  • a phenol aralkyl resin obtained by condensation reaction of phenols and the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative, and an epoxy resin obtained by dehydrochlorination reaction with epichlorohydrin are low hygroscopic, Since it is excellent in a flame retardance and a dielectric characteristic, it is especially preferable as an epoxy resin.
  • an epoxy resin curing catalyst (curing accelerator) can be blended as necessary.
  • imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine
  • Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Examples thereof include phosphines such as tributylphosphine and trioctylphosphine.
  • the compounding amount of the curing catalyst is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with
  • the curable resin composition of the present invention contains various epoxy resin curing agents in its preferred embodiment.
  • the epoxy resin curing agent amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like can be used.
  • Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride.
  • the amount of the epoxy resin curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents per 1 equivalent of epoxy group (or glycidyl group). If it is 0.5 equivalent or more or 1.5 equivalent or less with respect to 1 equivalent of epoxy groups, hardening will become more reliable and more favorable hardened
  • the curable resin composition of the present invention may contain a cyanate ester resin.
  • a conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include, but are not limited to, cyanate ester compounds obtained by reacting a product with cyanogen halide. These may be used alone or in combination of two or more.
  • phenols examples include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
  • cyanate ester compound examples include dicyanate benzene, tricyanate benzene, dicyanate naphthalene, dicyanate biphenyl, 2,2′-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl).
  • Methane bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2'-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2'-bis (4-sia Natophenyl) ethane, 2,2′-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolac cyanate, phenol di Examples include those in which the hydroxyl group of the cyclopentadiene cocondensate is converted to a cyanate group. It is not limited to that.
  • cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
  • the curable resin composition of the present invention contains a cyanate resin, a naphthenic acid zinc, a cobalt naphthenate, a copper naphthenate, Catalysts such as lead naphthenate, zinc octylate, tin octylate, lead acetylacetonate, and dibutyltin maleate can also be included.
  • the catalyst is generally used in an amount of 0.0001 to 0.10 parts by mass, preferably 0.00015 to 0.0015 parts by mass, with respect to 100 parts by mass of the total mass of the thermosetting resin composition.
  • the curable resin composition of the present invention includes fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia as necessary.
  • Add powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, or inorganic fillers in which these are spherical or crushed. Can do.
  • the amount of the inorganic filler used is usually in the range of 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. is there.
  • additives can be blended as necessary.
  • additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, silane coupling agents, and the like.
  • Coloring agents such as surface treatment agents, release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used.
  • the compounding amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less with respect to 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention is obtained by uniformly mixing each of the above components at a predetermined ratio, and is usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further 150 to 200 ° C. And after curing for 2 to 15 hours, a sufficient curing reaction proceeds and the cured product of the present invention is obtained.
  • the components of the curable resin composition can be uniformly dispersed or dissolved in a solvent or the like, and the solvent can be removed and then cured.
  • the cured product of the present invention thus obtained has moisture resistance, heat resistance, and high adhesiveness. Therefore, the epoxy resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance and high adhesion. Specifically, it is useful as a material for all electrical and electronic components such as an insulating material, a laminated board (printed wiring board, BGA substrate, build-up substrate, etc.), a sealing material, and a resist. In addition to molding materials and composite materials, they can also be used in fields such as paint materials and adhesives. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
  • the semiconductor device has a cured product of the curable resin composition of the present invention such as one sealed with the curable resin composition of the present invention.
  • semiconductor devices for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small Outline Package), TSOP (Thin Small Outline Package), TQFP (Sink Quad Flat Package).
  • varnish-like composition An organic solvent can be added to the curable resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish).
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone
  • Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned.
  • the solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by mass, preferably 20 to 70% by mass.
  • the method for preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized.
  • the alkenyl group-containing resin and the maleimide resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • an alkenyl group-containing resin and a maleimide resin may be prepolymerized by adding an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound, and other additives as necessary.
  • a solvent for example, an extruder, a kneader, a roll or the like is used, and in the presence of a solvent, a reaction kettle with a stirrer is used.
  • a prepreg can be obtained by heating and melting the curable resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber. Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating. The above prepreg is cut into a desired shape, laminated with copper foil as necessary, and then the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. Thus, an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material can be obtained.
  • a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
  • a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
  • the above prepreg is cut into
  • epoxy equivalent Measured by a method according to JIS K-7236.
  • Melt viscosity Melt viscosity in the cone plate method.
  • Softening point Measured by a method according to JIS K-7234.
  • Propenyl group ratio in all alkenyl groups measured by NMR.
  • Total chlorine automatic sample combustion-ion chromatograph AQF-2100H type manufactured by Mitsubishi Chemical Corporation Ion content was measured after combustion decomposition with an argon gas flow rate of 200 ml / min and an oxygen gas flow rate of 400 ml / min.
  • Reference example 1 A phenolic resin represented by the following formula (3) (hereinafter referred to as “BPN”, a softening point of 74 ° C., a melt viscosity of 0.16, and a hydroxyl group equivalent of 210 g / eq) is attached to a flask equipped with a thermometer, a condenser, and a stirrer. 210 parts by mass, 380 parts by mass of dimethyl sulfoxide, 30 parts by mass of water and 45 parts by mass of flaky sodium hydroxide were added, heated, stirred and dissolved, and then 3 parts by mass of 102 parts of allyl chloride were maintained at a temperature of 40 ° C. Added continuously over time.
  • BPN phenolic resin represented by the following formula (3)
  • BPN-AE an allyl ether of BPN
  • the above reaction corresponds to the above-mentioned “a) hydroxylation reaction of hydroxyl group in the formula (2) (synthesis of allyl ether form)”.
  • X in the formula (1) is an allyl group
  • Y is a hydrogen atom.
  • n is an average value and represents a real number of 1 to 20.
  • Reference example 2 200 parts by mass of BPN-AE obtained in Reference Example 1 was charged into a reaction vessel, heated with stirring, and reacted at 200 ° C. for 5 hours, whereby allylated BPN (hereinafter referred to as “BAPN”) 199. A mass part was obtained.
  • BAPN allylated BPN
  • the above reaction corresponds to the aforementioned “d) Claisen rearrangement reaction of allyl ether (synthesis of allylated phenol resin)”.
  • X in the formula (1) is a hydrogen atom
  • Y is an allyl group.
  • Reference example 3 A flask equipped with a thermometer, a condenser, and a stirrer was charged with 227 parts by mass of BAPN obtained in Reference Example 2, 227 parts by mass of methanol, and 35 parts by mass of toluene, and heated and stirred to dissolve. Next, 90 parts by mass of marbled potassium hydroxide (purity 85%) was added, and the temperature was raised while distilling off methanol and toluene. When the temperature reached 100 ° C., the system was switched to the reflux line, and the reaction was carried out at the same temperature for 20 hours. went. After completion of the reaction, 50 parts by mass of methanol was added, and 143 parts by mass of concentrated hydrochloric acid was added for neutralization.
  • BPPN propenylated BPN
  • Example 1 240 parts by weight of BPN-AE obtained in Reference Example 1, 180 parts by weight of methanol, 60 parts by weight of isopropanol, 120 parts by weight of toluene, and 120 parts by weight of dimethyl sulfoxide were charged into a reaction vessel, heated, stirred and dissolved, and then marbled hydroxylated. 63 parts by mass of potassium was added and dissolved. The temperature was raised while distilling off methanol, isopropanol and toluene, and when the temperature reached 120 ° C., the system was switched to the reflux line and reacted at the same temperature for 20 hours.
  • BPN-PE propenylated BPN-AE
  • the above reaction corresponds to the above-mentioned “c) rearrangement reaction of allyl ether form to propenyl ether form”.
  • X in the formula (1) is a propenyl group
  • Y is a hydrogen atom.
  • Example 2 The reaction vessel was charged with 227 parts by mass of BPPN, 590 parts by mass of epichlorohydrin, and 148 parts by mass of dimethyl sulfoxide obtained in Reference Example 3, and after heating, stirring, and dissolving, flaky sodium hydroxide 38. 7 parts by mass were added continuously over 1.5 hours. After completion of the addition of sodium hydroxide, the reaction was carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Then, excess epichlorohydrin and dimethyl sulfoxide were distilled off under heating and reduced pressure, and 500 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue.
  • the obtained BPPN-GE had an epoxy equivalent of 319 g / eq, a softening point of 74 ° C., a melt viscosity of 0.33 Pa ⁇ s at 150 ° C., and the proportion of propenyl groups in all alkenyl groups was 97%.
  • the above reaction corresponds to the above-mentioned “b) glycidylation reaction of hydroxyl group in formula (2)”.
  • X in the formula (1) is a glycidyl group
  • Y is a propenyl group.
  • Example 3 227 parts by mass of BPPN, 364 parts by mass of dimethyl sulfoxide, and 136 parts by mass of toluene obtained in Reference Example 3 were charged in a reaction vessel, heated with stirring and dissolved. Next, 48 parts by mass of flaky sodium hydroxide was added, and 91 parts by mass of allyl chloride was continuously added over 3 hours while maintaining the temperature at 40 ° C. After the addition of allyl chloride, the reaction was carried out at 45 ° C. for 1 hour and at 60 ° C. for 1 hour. Subsequently, dimethyl sulfoxide was distilled off under heating and reduced pressure, and 250 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue.
  • BPPN-AE BPPN allyl ether form
  • X in the formula (1) is an allyl group
  • Y is a propenyl group.
  • BPPN-PE BPPN-AE converted to propenyl ether
  • the resulting BPPN-PE had a softening point of 84 ° C. and the proportion of propenyl groups in all alkenyl groups was 96%.
  • the above reaction corresponds to the above-mentioned “c) rearrangement reaction of allyl ether form to propenyl ether form”.
  • X and Y in the formula (1) are propenyl groups.
  • Example 4 A flask equipped with a thermometer, a condenser, and a stirrer was charged with 250 parts by mass of BAPN-AE-5050 obtained in Reference Example 4, 250 parts by mass of methanol, and 50 parts by mass of toluene. . Next, 90 parts by mass of marbled potassium hydroxide (purity 85%) was added, and the temperature was raised while distilling off methanol and toluene. When the temperature reached 100 ° C., the system was switched to the reflux line, and the reaction was carried out at the same temperature for 20 hours. went. After completion of the reaction, 50 parts by mass of methanol was added, and 143 parts by mass of concentrated hydrochloric acid was added for neutralization.
  • BPPN-PE-5050 propenylated BAPN-AE-5050
  • Example 5 250 parts by mass of BPPN-PE-5050 obtained in Example 4, 590 parts by mass of epichlorohydrin, and 148 parts by mass of dimethyl sulfoxide were charged into a reaction vessel, heated, stirred, dissolved, and kept in a flaky shape while maintaining the temperature at 45 ° C. 20 parts by mass of sodium hydroxide was continuously added over 1.5 hours. After completion of the addition of sodium hydroxide, the reaction was carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Then, excess epichlorohydrin and dimethyl sulfoxide were distilled off under heating and reduced pressure, and 500 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue.
  • BPPN-GPE propenyl group-containing epoxy resin
  • the epoxy equivalent of the obtained BPPN-GPE was 563 g / eq, the softening point was 58 ° C., the melt viscosity was 0.24 Pa ⁇ s at 150 ° C., and the proportion of propenyl groups in all alkenyl groups in the formula (1) was 98%. .
  • the above reaction corresponds to the above-mentioned “b) glycidylation reaction of hydroxyl group in formula (2)”.
  • a part of X in the formula (1) is a glycidyl group, the other is a propenyl group, a part of Y is a hydrogen atom, and the other is a propenyl group.
  • BMI 4,4′-bismaleimide diphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • DCPO Dicumyl peroxide (manufactured by Kayaku Akzo)
  • 2E4MZ 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the cured product of the epoxy resin composition using the alkenyl group-containing resin of the present invention is a comparative example 1 (wherein X is an allyl group and Y is a hydrogen atom in BPN allyl ether form formula (1)), comparison Example 2 (Allylated BPN Formula (1) Y is an allyl group and X is a hydrogen atom), Comparative Example 3 (Propenylated BPN Formula (1) Y is a propenyl group and X is a hydrogen atom) As compared with the cured product, it can be confirmed that excellent low moisture absorption (low water absorption) and high heat resistance (solder reflow resistance) are exhibited.
  • the alkenyl group-containing resin of the present invention includes an insulating material for electrical and electronic parts (high reliability semiconductor encapsulating material, etc.), a laminated board (printed wiring board, a substrate for BGA, a buildup board, etc.), an adhesive (conductive) This is useful for various composite materials such as adhesives, CFRP, and paints.

Abstract

The present invention provides: an alkenyl-group-containing resin, a cured article thereof having exceptional low moisture absorbency (low water absorbency) and heat resistance; a curable resin composition; and a cured article thereof. In this alkenyl-group-containing resin, which is represented by formula (1), 20% or more of the alkenyl groups in the plurality of X and Y moieties are propenyl groups. (In the formula, the plurality of Z moieties each independently represent a C6-15 hydrocarbon group. The plurality of X moieties each independently represent a hydrogen atom, a C1-6 alkyl group, an allyl group, a propenyl group, or a glycidyl group, excluding when all of the plurality of X moieties are hydrogen atoms or allyl groups. The plurality of Y moieties each independently represent a hydrogen atom, a C1-6 alkyl group, an allyl group, or a propenyl group. N represents the number of repetitions, and the average value thereof is a real number of 1 to 20)

Description

アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物Alkenyl group-containing resin, curable resin composition and cured product thereof
 本発明は、アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物に関するものであり、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品や、炭素繊維強化プラスティック、ガラス繊維強化プラスティックなどの軽量高強度構造材用複合材料に好適に使用される。 The present invention relates to an alkenyl group-containing resin, a curable resin composition, and a cured product thereof, a semiconductor element sealing material, a liquid crystal display element sealing material, an organic EL element sealing material, a printed wiring board, It is suitably used for lightweight and high-strength composite materials for electrical and electronic parts such as build-up laminates, carbon fiber reinforced plastics, and glass fiber reinforced plastics.
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。例えば従来、半導体チップは金属製のリードフレームに搭載することが主流であったが、中央処理装置(以下、「CPU」と表す。)などの高度な処理能力のある半導体チップは高分子材料で作られる積層板に搭載されることが多くなっている。CPU等の素子の処理速度の高速化が進みクロック周波数が高くなるにつれ、信号伝搬遅延や伝送損失が問題となり、配線板に対して低誘電率化、低誘電正接化が求められるようになっている。同時に素子の処理速度の高速化に伴い、チップの発熱が大きくなっているため、耐熱性を高める必要性も生じている。
 また、近年、スマートフォンなどのモバイル電子機器が普及してきており、精密電子機器が屋外環境や人体の極近傍で使用・携帯されるようになってきているため、外的環境(特に耐湿熱)に対する耐性が必要とされる。
 更に自動車分野においては電子化が進み、エンジンの近くに精密電子機器が配置されることもあるため、耐熱・耐湿性がより高いレベルで要求されるようになっており、また、電車やエアコンなどにはSiC半導体が使用され始めており、半導体素子の封止材に高耐熱性が必要となり、従来のエポキシ樹脂封止材では対応できなくなっている。
 また、近年、省エネの必要から飛行機、自動車、列車、船舶等の軽量化が進んでいる。従来は金属材料を用いていたものを、軽量で高強度な炭素繊維複合材料に置き換える検討が乗物分野で特に行われている。例を挙げれば、ボーイング787においては複合材料の比率を上げることで軽量化を行い、燃費効率を大幅に改善している。自動車分野では一部ではあるが複合材料製のシャフトを搭載しており、また高級車向けに車体を複合材料で作る動きもある。これらの要求に対して、主としてエポキシ樹脂及びこれを含有する樹脂組成物について多くの提案がなされてきたが、次第にエンジン周りにも複合材料の適用要求が始まってきているため、マレイミド樹脂などが検討され始めている(特許文献3、特許文献4)。特許文献1にはマレイミド樹脂とプロペニル基含有フェノール樹脂との樹脂組成物が開示されている。特許文献2にはマレイミド樹脂と無置換のアリルエーテル変性フェノール樹脂や全てアリル基で置換されたフェノール樹脂との樹脂組成物が開示されている。
In recent years, the required characteristics of a laminated board on which electric / electronic components are mounted have been widened and advanced with the expansion of the field of use. For example, conventionally, a semiconductor chip has been mainly mounted on a metal lead frame, but a semiconductor chip having a high processing capability such as a central processing unit (hereinafter referred to as “CPU”) is made of a polymer material. More and more are mounted on the laminates that are made. As the processing speed of elements such as CPUs increases and the clock frequency increases, signal propagation delay and transmission loss become a problem, and low dielectric constant and low dielectric loss tangent are required for wiring boards. Yes. At the same time, as the processing speed of the device is increased, the heat generated by the chip is increased, so that it is necessary to improve the heat resistance.
In recent years, mobile electronic devices such as smartphones have become widespread, and precision electronic devices are being used and carried in the outdoor environment and very close to the human body. Tolerance is required.
Furthermore, in the automotive field, electronic technology has progressed, and precision electronic equipment may be placed near the engine, which requires higher levels of heat and humidity resistance. Trains, air conditioners, etc. SiC semiconductors have begun to be used, and high heat resistance is required for the sealing material of the semiconductor element, which cannot be handled by the conventional epoxy resin sealing material.
In recent years, the weight reduction of airplanes, automobiles, trains, ships, etc. has progressed due to the need for energy saving. In the field of vehicles, studies have been made in particular in the field of vehicles in which a metal material is replaced with a lightweight and high-strength carbon fiber composite material. For example, in Boeing 787, the weight ratio is reduced by increasing the ratio of the composite material, and the fuel efficiency is greatly improved. In the automotive field, although it is a part, it is equipped with a shaft made of composite material, and there is also a movement to make the car body with composite material for luxury cars. In response to these demands, many proposals have been made mainly for epoxy resins and resin compositions containing them, but since the demand for application of composite materials has gradually started around engines, maleimide resins and the like have been studied. (Patent Documents 3 and 4). Patent Document 1 discloses a resin composition of a maleimide resin and a propenyl group-containing phenol resin. Patent Document 2 discloses a resin composition of a maleimide resin and an unsubstituted allyl ether-modified phenol resin or a phenol resin substituted with allyl groups.
日本国特開平04-359911号公報Japanese Laid-Open Patent Publication No. 04-359911 国際公開2016/002704号International Publication No. 2016/002704 日本国特開2009-001783号公報Japanese Unexamined Patent Publication No. 2009-001783 日本国特開平01-294662号報Japanese Laid-Open Patent Publication No. 01-294661
 しかしながら、特許文献1は全てプロペニル基で置換されたフェノール樹脂を用いているため吸湿性が悪く、それに伴い電気特性が不十分である。また特許文献2は全てアリル基で置換されたフェノール樹脂を用いているため反応性が悪く、また吸湿性が悪く、性能として未だ十分とはいえず、更なる改良が求められている。そこで、本発明は、その硬化物において優れた低吸湿性(低吸水性)、耐熱性を示すアルケニル基含有樹脂、硬化性樹脂組成物及びその硬化物を提供する。 However, since Patent Document 1 uses a phenol resin substituted with a propenyl group, the hygroscopic property is poor, and accordingly, the electrical characteristics are insufficient. In addition, Patent Document 2 uses a phenol resin substituted with allyl groups, so that the reactivity is poor and the hygroscopic property is poor, and the performance is still not sufficient, and further improvement is required. Therefore, the present invention provides an alkenyl group-containing resin, a curable resin composition, and a cured product thereof that exhibit excellent hygroscopicity (low water absorption) and heat resistance in the cured product.
 本発明者らは上記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。
 すなわち本発明は、
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention
[1]下記式(1)で表され、複数存在するXとYにおけるアルケニル基の20%以上がプロペニル基であるアルケニル基含有樹脂、 [1] An alkenyl group-containing resin represented by the following formula (1), wherein 20% or more of a plurality of alkenyl groups in X and Y are propenyl groups,
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、複数存在するZはそれぞれ独立して炭素数6~15の炭化水素基を表す。複数存在するXはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、プロペニル基又はグリシジル基を表す。但し、複数存在するXの全てが水素原子又はアリル基の場合を除く。複数存在するYはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基又はプロペニル基を表す。nは繰り返し数を表し、平均値は1~20の実数である。)
[2]前記式(1)において複数存在するXがアリル基、プロペニル基又はグリシジル基であり、全てのXがアリル基であることはない、前項[1]に記載のアルケニル基含有樹脂、
[3]前記式(1)において複数存在するXのうち20%以上がアルケニル基である前項[1]又は[2]に記載のアルケニル基含有樹脂。
[4]前記式(1)においてZが芳香族含有炭化水素基である前項[1]乃至[3]のいずれか一項に記載のアルケニル基含有樹脂、
[5]前記式(1)においてZが炭素数10~15の炭化水素基である前項[1]乃至[4]のいずれか一項に記載のアルケニル基含有樹脂、
[6]前項[1]乃至[5]のいずれか一項に記載のアルケニル基含有樹脂を含有する硬化性樹脂組成物、
[7]ラジカル重合開始剤を含有する前項[6]に記載の硬化性樹脂組成物、
[8]マレイミド化合物を含有する前項[6]又は[7]に記載の硬化性樹脂組成物、
[9]前項[6]乃至[8]のいずれか一項に記載の硬化性樹脂組成物を硬化した硬化物、
を、提供するものである。
(Wherein a plurality of Z's each independently represents a hydrocarbon group having 6 to 15 carbon atoms. A plurality of X's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, propenyl) Represents a group or a glycidyl group, except for the case where all of a plurality of X are hydrogen atoms or allyl groups, each of the plurality of Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or Represents a propenyl group, n represents the number of repetitions, and the average value is a real number of 1 to 20.)
[2] The alkenyl group-containing resin according to [1], wherein a plurality of Xs in the formula (1) are allyl groups, propenyl groups, or glycidyl groups, and all Xs are not allyl groups,
[3] The alkenyl group-containing resin according to [1] or [2], in which 20% or more of the plurality of Xs in the formula (1) are alkenyl groups.
[4] The alkenyl group-containing resin according to any one of [1] to [3], wherein Z in the formula (1) is an aromatic-containing hydrocarbon group,
[5] The alkenyl group-containing resin according to any one of [1] to [4], wherein Z is a hydrocarbon group having 10 to 15 carbon atoms in the formula (1),
[6] A curable resin composition containing the alkenyl group-containing resin according to any one of [1] to [5],
[7] The curable resin composition according to [6] above, which contains a radical polymerization initiator,
[8] The curable resin composition according to [6] or [7] above, which contains a maleimide compound,
[9] A cured product obtained by curing the curable resin composition according to any one of [6] to [8],
Is provided.
 本発明のアルケニル基含有樹脂を用いた樹脂組成物の硬化物は、優れた低吸湿性(低吸水性)、耐熱性(耐半田リフロー性)を示す。そのため、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、液晶封止材、EL封止材、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等の用途に用いることができる。 The cured product of the resin composition using the alkenyl group-containing resin of the present invention exhibits excellent low moisture absorption (low water absorption) and heat resistance (solder reflow resistance). Therefore, insulating materials for electrical and electronic parts (such as highly reliable semiconductor sealing materials) and laminates (printed wiring boards, BGA substrates, build-up substrates, etc.), liquid crystal sealing materials, EL sealing materials, adhesives (conductive) Adhesives, etc.), various composite materials including CFRP, and paints.
 以下、本発明につき詳細に説明する。
 本発明のアルケニル基含有樹脂は、下記式(1)で表される。
Hereinafter, the present invention will be described in detail.
The alkenyl group-containing resin of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、複数存在するZはそれぞれ独立して炭素数6~15の炭化水素基を表す。複数存在するXはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、プロペニル基又はグリシジル基を表す。但し、複数存在するXの全てが水素原子又はアリル基の場合を除く。複数存在するYはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基又はプロペニル基を表す。nは繰り返し数を表し、平均値は1~20の実数である。) (Wherein a plurality of Z's each independently represents a hydrocarbon group having 6 to 15 carbon atoms. A plurality of X's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, propenyl) Represents a group or a glycidyl group, except for the case where all of a plurality of X are hydrogen atoms or allyl groups, each of the plurality of Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or Represents a propenyl group, n represents the number of repetitions, and the average value is a real number of 1 to 20.)
 本発明のアルケニル基含有樹脂は、アリル基の一部または全てをより反応性の高いプロペニル基に変換しており、その結果、硬化過程において、プロペニル基同士の反応がおこるため、架橋密度が上がり耐熱性(ガラス転移温度)が向上する。一方、マレイミド基やアクリレート基などの反応性オレフィン樹脂と混合した場合も、アリル基よりもプロペニル基の方が、反応が進み易い。また、エポキシ基の反応と異なり極性基が発生しないため、耐熱性の向上に伴う吸水(湿)性の増加が少なくて済む。 In the alkenyl group-containing resin of the present invention, all or part of the allyl group is converted into a more reactive propenyl group, and as a result, a reaction between the propenyl groups occurs in the curing process, so that the crosslinking density increases. Heat resistance (glass transition temperature) is improved. On the other hand, when mixed with a reactive olefin resin such as a maleimide group or an acrylate group, the propenyl group is more likely to proceed than the allyl group. Further, unlike the reaction of epoxy groups, polar groups are not generated, so that the increase in water absorption (wetness) accompanying the improvement in heat resistance can be reduced.
 本発明のアルケニル基含有樹脂は、前記式(1)中、Xはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基(-CH-CH=CH)、プロペニル基(-CH=CH-CH)又はグリシジル基を表し、Yはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基(-CH-CH=CH)又はプロペニル基(-CH=CH-CH)を表し、耐熱性、吸湿性の観点から全アルケニル基(すなわちアリル基とプロペニル基の合計)中の20%以上がプロペニル基であり、より好ましくは40%以上であり、特に好ましくは50%以上である。また、アルケニル基の全てがプロペニル基であっても構わない。
 全アルケニル基中のプロペニル基の割合は核磁気共鳴(以下、「NMR」と表す。)により測定することができる。
In the alkenyl group-containing resin of the present invention, in the formula (1), each X independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group (—CH 2 —CH═CH 2 ), a propenyl group ( —CH═CH—CH 3 ) or a glycidyl group, and each Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group (—CH 2 —CH═CH 2 ) or a propenyl group (—CH = CH-CH 3 ), and from the viewpoint of heat resistance and hygroscopicity, 20% or more of all alkenyl groups (that is, the total of allyl groups and propenyl groups) are propenyl groups, more preferably 40% or more, Particularly preferably, it is 50% or more. Further, all of the alkenyl groups may be propenyl groups.
The proportion of propenyl groups in all alkenyl groups can be measured by nuclear magnetic resonance (hereinafter referred to as “NMR”).
 但し、式(1)中の複数存在するXの全てが水素原子又はアリル基の場合を除かれる。例えば、前記式(1)中複数存在するXの全てが水素原子であり、かつ複数存在する全てのYがプロペニル基である化合物の場合、硬化物中に水酸基がそのまま残るか、エポキシと反応させてアルコール性水酸基が生成されるため、吸湿性が高く、それに伴い電気特性の悪化の恐れもある。
 また、前記式(1)中複数存在するXの全てがアリル基であり、かつ複数存在する全てのYが水素原子であるアリルエーテル変性ビフェニルアラルキルノボラック樹脂の場合、アリルエーテル基は非常に反応性が悪いため、硬化が遅くなり、生産性が悪くなる恐れがある。また、硬化に高温が必要である為、硬化中にアリルエーテル基が転位して水酸基が生成し、低吸湿性に悪影響を及ぼす可能性がある。
 さらに、前記式(1)中複数存在するXの全てが水素原子であり、かつ複数存在する全てのYがアリル基である化合物の場合、アリル基は反応性が悪いため、硬化が遅くなり生産性が悪くなる恐れがある。また、硬化物中に水酸基がそのまま残るか、エポキシと反応させてアルコール性水酸基が生成されるため、吸湿性が高く、それに伴い電気特性の悪化の恐れもある。
 以上の理由より、X、Yはアルケニル基であることが好ましい。X、Yにおけるアルケニル基はそれぞれ20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが特に好ましい。
However, the case where all of a plurality of X in the formula (1) are hydrogen atoms or allyl groups is excluded. For example, in the case of a compound in which all of a plurality of Xs in the formula (1) are hydrogen atoms and all of the plurality of Ys are propenyl groups, the hydroxyl groups remain in the cured product or reacted with an epoxy. As a result, an alcoholic hydroxyl group is generated, so that the hygroscopic property is high, and the electrical characteristics may be deteriorated accordingly.
In the case of an allyl ether-modified biphenylaralkyl novolak resin in which all of a plurality of X in the formula (1) are allyl groups and all of the plurality of Ys are hydrogen atoms, the allyl ether group is very reactive. , The curing may be slow and productivity may be deteriorated. Moreover, since high temperature is required for hardening, an allyl ether group rearranges during hardening and a hydroxyl group is generated, which may adversely affect low hygroscopicity.
Furthermore, in the case of a compound in which all of a plurality of X in the formula (1) are hydrogen atoms and all of the plurality of Ys are allyl groups, the allyl group is poor in reactivity, so that the curing is slowed and produced. May be worse. Further, since the hydroxyl group remains in the cured product as it is or reacts with epoxy to produce an alcoholic hydroxyl group, the hygroscopic property is high, and the electrical characteristics may be deteriorated accordingly.
For the above reasons, X and Y are preferably alkenyl groups. The alkenyl groups in X and Y are each preferably 20% or more, more preferably 40% or more, and particularly preferably 60% or more.
 前記式(1)中、複数存在するXとYにおけるアルケニル基の20%以上がプロペニル基であれば、複数存在するXとYの一部が、炭素数1~6のアルキル基であってもよい。炭素数1~6のアルコキシ基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等の直鎖、分岐鎖または環状構造を有するアルキル基が挙げられる。 In the above formula (1), if 20% or more of the alkenyl groups in plural X and Y are propenyl groups, a part of the plural X and Y may be alkyl groups having 1 to 6 carbon atoms. Good. Examples of the alkoxy group having 1 to 6 carbon atoms include alkyl groups having a linear, branched or cyclic structure such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
 式(1)中、複数存在するZはそれぞれ独立して炭素数6~15の炭化水素基を表す。芳香族炭化水素基が好ましく、特に炭素数10~15の炭化水素基が好ましい。
 前記式(1)中のZは具体的に下記の構造が例示されるが、これらに限定されない。
In the formula (1), a plurality of Z each independently represents a hydrocarbon group having 6 to 15 carbon atoms. An aromatic hydrocarbon group is preferable, and a hydrocarbon group having 10 to 15 carbon atoms is particularly preferable.
Specific examples of Z in the formula (1) include the following structures, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、前式(1)中、nの平均値は1~20であり、1~10が好ましく、特に1~6が好ましい。 In the above formula (1), the average value of n is 1 to 20, preferably 1 to 10, particularly preferably 1 to 6.
 前記式(1)中、Xがグリシジル基を含む場合、本発明のアルケニル基含有樹脂のエポキシ当量は210~5000g/eq.が好ましく、より好ましくは、210~3000g/eq.である。エポキシ当量が5000g/eq.以下であると単位構造当たりのエポキシ基の量が少なくならないことを示し、エポキシ基の数が少なくならないことを意味する。したがって耐熱性の面で好ましい。 In the formula (1), when X contains a glycidyl group, the epoxy equivalent of the alkenyl group-containing resin of the present invention is 210 to 5000 g / eq. And more preferably 210 to 3000 g / eq. It is. Epoxy equivalent is 5000 g / eq. The following indicates that the amount of epoxy groups per unit structure does not decrease, which means that the number of epoxy groups does not decrease. Therefore, it is preferable in terms of heat resistance.
 本発明のアルケニル基含有樹脂に残存している全塩素量としては1500ppm以下が好ましく、より好ましくは1000ppm以下であり、特に500ppm以下であることが好ましい。 The total amount of chlorine remaining in the alkenyl group-containing resin of the present invention is preferably 1500 ppm or less, more preferably 1000 ppm or less, and particularly preferably 500 ppm or less.
 次に、本発明のアルケニル基含有樹脂の製造方法について説明する。
 まず、本発明のアルケニル基含有樹脂は下記式(2)のフェノール樹脂を原料として使用する。
Next, the manufacturing method of the alkenyl group containing resin of this invention is demonstrated.
First, the alkenyl group-containing resin of the present invention uses a phenol resin of the following formula (2) as a raw material.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、複数存在するZはそれぞれ独立して炭素数6~15の炭化水素基を表す。複数存在するYはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基又はプロペニル基を表す。nは繰り返し数を表し、平均値は1~20の実数である。) (Wherein a plurality of Z's each independently represent a hydrocarbon group having 6 to 15 carbon atoms. A plurality of Y's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group or a propenyl) And n represents the number of repetitions, and the average value is a real number of 1 to 20.)
 本発明のアルケニル基含有樹脂は、以下の反応工程を2種以上組み合わせることで製造することができる。
a)式(2)中の水酸基のアリル化反応(アリルエーテル体の合成)
b)式(2)中の水酸基のグリシジル化反応
c)アリルエーテル体のプロペニルエーテル体への転位反応
d)アリルエーテル体のクライゼン転位反応(アリル化フェノール樹脂の合成)
e)アリル基のプロペニル基への転位反応
The alkenyl group-containing resin of the present invention can be produced by combining two or more of the following reaction steps.
a) Allylation reaction of hydroxyl group in formula (2) (synthesis of allyl ether)
b) Glycidylation reaction of hydroxyl group in formula (2) c) Rearrangement reaction of allyl ether body to propenyl ether body d) Claisen rearrangement reaction of allyl ether body (synthesis of allylated phenol resin)
e) Rearrangement reaction of allyl group to propenyl group
 以下、それぞれの反応工程について詳述する。
a)水酸基のアリル化反応(アリルエーテル体の合成)
 前記式(2)で表されるフェノール樹脂の水酸基をアリル化(アリルエーテル化)する反応は公知の方法で行うことができ、一般的にアルカリ金属水酸化物等の塩基を用いて塩化アリルや臭化アリル、ヨウ化アリルなどのハロゲン化アリルを反応させてアリルエーテル化する。
 この際、メタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン等の極性の高い溶剤を使用することが好ましい。極性溶剤の使用量は、通常原料フェノール樹脂100質量部に対して50~400質量部、好ましくは70~300質量部である。またこれらは単独で用いても併用しても良く、またトルエン、キシレンなどの極性の低い溶剤を併用しても良い。
 ハロゲン化アリル及び塩基の使用量はフェノール樹脂の水酸基1当量に対し通常0.1~2.0モル、好ましくは0.2~1.5モルであり、使用量の調整により、アリル基の付加率を調整することができる。
 例えば、より詳細には、フェノール樹脂を前記のイソプロパノールやジメチルスルホキシドなどに溶解後、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を添加し、50~100℃でアルカリ金属水酸化物を溶解後、30~50℃で塩化アリルや臭化アリルを2~5時間で添加し、その後30~70℃で1~10時間反応させる。反応終了後、トルエン、メチルイソブチルケトンなどを加え、副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、メチルイソブチルケトン等の溶媒を留去することによりアリルエーテル体を得ることができる。
Hereinafter, each reaction process is explained in full detail.
a) Allylation reaction of hydroxyl group (synthesis of allyl ether)
The reaction of allylating (allyl etherifying) the hydroxyl group of the phenol resin represented by the formula (2) can be carried out by a known method. Generally, allyl chloride or base using a base such as an alkali metal hydroxide is used. Allyl halides such as allyl bromide and allyl iodide are reacted to form an allyl ether.
At this time, a highly polar solvent such as methanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone is used. It is preferable to use it. The amount of the polar solvent used is usually 50 to 400 parts by mass, preferably 70 to 300 parts by mass with respect to 100 parts by mass of the raw material phenol resin. These may be used alone or in combination, and a solvent having low polarity such as toluene or xylene may be used in combination.
The amount of allyl halide and base used is usually 0.1 to 2.0 mol, preferably 0.2 to 1.5 mol, based on 1 equivalent of the hydroxyl group of the phenol resin. The rate can be adjusted.
For example, more specifically, after the phenol resin is dissolved in the aforementioned isopropanol or dimethyl sulfoxide, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added, and the alkali metal hydroxide is added at 50 to 100 ° C. After dissolution, allyl chloride or allyl bromide is added at 30 to 50 ° C. over 2 to 5 hours, and then reacted at 30 to 70 ° C. for 1 to 10 hours. After completion of the reaction, toluene, methyl isobutyl ketone, etc. are added, and the by-produced salt is removed by filtration, washing with water, etc., and further, an allyl ether form is obtained by distilling off solvents such as toluene, methyl isobutyl ketone, etc. under heating and reduced pressure. Can do.
b)式(2)中の水酸基のグリシジル化(エポキシ樹脂の合成)
 式(2)中のフェノール樹脂の水酸基をグリシジル化する反応は公知の方法であり、一般的にアルカリ金属水酸化物等の塩基を用いてエピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリン、などのエピハロヒドリンを反応させてグリシジルエーテル化する。
 例えばフェノール樹脂とエピハロヒドリン類の混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括または徐々に添加しながら20~120℃で1~20時間反応させる。この際アルカリ金属水酸化物は水溶液を使用してもよく、その場合は該アルカリ金属水酸化物を連続的に添加すると共に反応系内から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ更に分液し水は除去しエピハロヒドリン類は反応系内に連続的に戻す方法でもよい。
 上記の方法においてエピハロヒドリン類の使用量はフェノール樹脂の水酸基1当量に対して通常0.5~20モル、好ましくは0.7~10モルである。アルカリ金属水酸化物の使用量はフェノール樹脂の水酸基1当量に対し通常0.5~1.5モル、好ましくは0.7~1.2モルの範囲である。
 また、上記反応においてジメチルスルホン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等の非プロトン性極性溶媒を添加することにより加水分解性ハロゲン濃度の低いエポキシ樹脂が得られる。例えば全塩素濃度で1500ppm以下が好ましく、より好ましくは1000ppm以下である。非プロトン性極性溶媒の使用量はエピハロヒドリン類の質量に対し5~200質量部、好ましくは10~100質量部の範囲である。また、前記の溶媒以外にもメタノール、エタノール等のアルコール類を添加することによっても反応が進み易くなる。またトルエン、キシレン、ジオキサン等も使用することができる。
 通常、これらの反応物は水洗後、または水洗無しに加熱減圧下で過剰のエピハロヒドリン類を除去した後、トルエン、キシレン、メチルイソブチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行う。この場合アルカリ金属水酸化物の使用量はフェノール樹脂の水酸基1当量に対して通常0.01~0.2モル、好ましくは0.05~0.15モルである。反応温度は通常50~120℃、反応時間は通常0.5~2時間である。
 反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、キシレン、メチルイソブチルケトン等の溶媒を留去することにより加水分解性ハロゲンの少ないエポキシ樹脂を得ることができる。
b) Glycidylation of hydroxyl group in formula (2) (synthesis of epoxy resin)
The reaction for glycidylating the hydroxyl group of the phenolic resin in the formula (2) is a known method, and is generally performed using a base such as an alkali metal hydroxide such as epichlorohydrin, epibromohydrin, epiiodohydrin, etc. Epihalohydrin is reacted to glycidyl ether.
For example, a mixture of a phenol resin and an epihalohydrin is reacted at 20 to 120 ° C. for 1 to 20 hours while adding an alkali metal hydroxide solid such as sodium hydroxide or potassium hydroxide all at once or gradually. At this time, the alkali metal hydroxide may be used in the form of an aqueous solution. In that case, the alkali metal hydroxide is continuously added and water and epihalohydrins are continuously added under reduced pressure or normal pressure from within the reaction system. The water may be removed and the epihalohydrins may be continuously returned to the reaction system.
In the above method, the amount of epihalohydrin used is usually 0.5 to 20 mol, preferably 0.7 to 10 mol, per 1 equivalent of the hydroxyl group of the phenol resin. The amount of the alkali metal hydroxide used is usually in the range of 0.5 to 1.5 mol, preferably 0.7 to 1.2 mol, per 1 equivalent of the hydroxyl group of the phenol resin.
In the above reaction, an epoxy resin having a low hydrolyzable halogen concentration can be obtained by adding an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide (DMSO), dimethylformamide, 1,3-dimethyl-2-imidazolidinone. can get. For example, the total chlorine concentration is preferably 1500 ppm or less, more preferably 1000 ppm or less. The amount of the aprotic polar solvent used is in the range of 5 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to the mass of the epihalohydrins. In addition to the above solvent, the reaction can easily proceed by adding alcohols such as methanol and ethanol. In addition, toluene, xylene, dioxane and the like can also be used.
Usually, these reactants are washed with water, or after removing excess epihalohydrin under heating and reduced pressure without washing with water, and then dissolved in a solvent such as toluene, xylene, methyl isobutyl ketone, and the like. The reaction is carried out again by adding an aqueous solution of an alkali metal hydroxide. In this case, the amount of the alkali metal hydroxide used is usually 0.01 to 0.2 mol, preferably 0.05 to 0.15 mol, relative to 1 equivalent of the hydroxyl group of the phenol resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
After completion of the reaction, the by-produced salt is removed by filtration, washing with water, etc., and an epoxy resin with less hydrolyzable halogen can be obtained by distilling off a solvent such as toluene, xylene, methyl isobutyl ketone under heating and reduced pressure.
c)アリルエーテル体のプロペニルエーテルへの転位反応
 アリルエーテル基のプロペニルエーテル基への転位反応は公知の方法で行うことができ、一般的に極性溶媒中で強塩基を用いて反応させる。用いられる極性溶媒は、メタノール、イソプロパノール、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン等が挙げられるが、これらに限定されない。ケトン系の溶剤は強塩基を触媒として用いるので適当ではない。極性溶剤の使用量は通常原料100質量部に対して20~400質量部、好ましくは50~300質量部であり、またこれらは単独で用いても併用しても良く、またトルエン、キシレンなどの溶剤を併用しても良い。強塩基としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-tert-ブトキシド、テトラメチルアンモニウムヒドロキシド等が挙げられるが、これらに限定されない。強塩基の使用量は使用する溶剤の種類、塩基の種類等によって大きく変わってくるが、通常アリルエーテル基1モルに対して、0.1~3.0モル、好ましくは0.2~2.0モルの範囲である。
 例えば、より詳細には、アリルエーテル基を有する化合物をジメチルスルホキシドなどに溶解後、カリウム-tert-ブトキシドを添加し、30~80℃で2~10時間反応させる。反応終了後、中和し、トルエン、メチルイソブチルケトンなどを加え、水洗などにより中和塩を除去し、さらに加熱減圧下、トルエン、メチルイソブチルケトン等の溶媒を留去することによりプロペニルエーテル体を得ることができる。強塩基の種類や量、反応温度、反応時間の調整により、プロペニルエーテル基への変換率を調節することもできる。
c) Rearrangement reaction of allyl ether group to propenyl ether The rearrangement reaction of the allyl ether group to the propenyl ether group can be carried out by a known method and is generally carried out using a strong base in a polar solvent. Examples of the polar solvent used include, but are not limited to, methanol, isopropanol, dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Ketone solvents are not suitable because they use strong bases as catalysts. The amount of the polar solvent used is usually 20 to 400 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of the raw material. These may be used alone or in combination. A solvent may be used in combination. Strong bases include, but are not limited to, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, tetramethylammonium hydroxide and the like. The amount of strong base used varies greatly depending on the type of solvent used, the type of base, etc., but is usually 0.1-3.0 mol, preferably 0.2-2. The range is 0 mol.
For example, in more detail, a compound having an allyl ether group is dissolved in dimethyl sulfoxide and the like, potassium-tert-butoxide is added, and the mixture is reacted at 30 to 80 ° C. for 2 to 10 hours. After completion of the reaction, neutralize, add toluene, methyl isobutyl ketone, etc., remove the neutralized salt by washing with water, etc., and further distill off the solvent such as toluene, methyl isobutyl ketone, etc. Obtainable. The conversion rate to the propenyl ether group can also be adjusted by adjusting the type and amount of strong base, reaction temperature, and reaction time.
d)アリルエーテル体のクライゼン転位反応(アリル化フェノール樹脂の合成)
 クライゼン転移反応は常法に従って行えばよく、例えばアリルエーテル基を有する化合物をカルビトール、パラフィンオイル、N,N’-ジメチルアニリン等の高沸点溶媒の存在下または無溶剤下において、150~230℃で0.5~100時間加熱する。溶媒は、アリルエーテル100質量部に対して、10~200質量部必要に応じて使用する。反応終了後、必要により使用した溶媒を除去し、アリル化フェノール樹脂を得ることができる。
 クライゼン転位反応においては、真空中あるいは窒素、アルゴン等の不活性ガス雰囲気中で反応を行うことが好ましく、生成物の着色も防ぐことが出来る。しかしながら、完全な真空や不活性ガス雰囲気を保つことは難しく、微量の酸素の系中への混入は避けられない。このため、酸化防止剤を添加してクライゼン転位を行うことが好ましい。酸化防止剤はアリルエーテル100質量部に対して10質量部程度使用するのが好ましい。フェノール系酸化防止剤としてはメチルヒドロキノン、2,5-ジ-tert-ブチルハイドロキノン、2,5-ジ-tert-アミルハイドロキノン、tert-ブチル化ビスフェノールA、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-エチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、1,1-ビス(4-ヒドロキシフェニル)-シクロヘキサン等が挙げられるがこれらに限定されるものではない。また、これらは単独でも2種以上併用しても良いが、1分子あたりフェノール性水酸基を2個以上有する化合物を用いることが好ましい。反応温度、反応時間の調整により、プロペニル基への変換率を調節することもできる。
d) Claisen rearrangement reaction of allyl ether (synthesis of allylated phenol resin)
The Claisen rearrangement reaction may be carried out according to a conventional method. For example, a compound having an allyl ether group is heated to 150 to 230 ° C. in the presence or absence of a high-boiling solvent such as carbitol, paraffin oil, N, N′-dimethylaniline. For 0.5 to 100 hours. The solvent is used in an amount of 10 to 200 parts by mass based on 100 parts by mass of allyl ether. After completion of the reaction, the solvent used can be removed if necessary to obtain an allylated phenol resin.
In the Claisen rearrangement reaction, the reaction is preferably performed in a vacuum or in an inert gas atmosphere such as nitrogen or argon, and the product can be prevented from being colored. However, it is difficult to maintain a complete vacuum or inert gas atmosphere, and it is inevitable that a trace amount of oxygen is mixed into the system. For this reason, it is preferable to carry out Claisen rearrangement by adding an antioxidant. The antioxidant is preferably used in an amount of about 10 parts by mass with respect to 100 parts by mass of allyl ether. Phenol antioxidants include methylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, tert-butylated bisphenol A, 2,2'-methylenebis (4-methyl- 6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-ethylidenebis (3-methyl-6-tert-butylphenol), 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 1, 1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) buta 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 1,1-bis (4-hydroxyphenyl) -cyclohexane, etc. However, it is not limited to these. These may be used alone or in combination of two or more, but it is preferable to use a compound having two or more phenolic hydroxyl groups per molecule. The conversion rate to the propenyl group can also be adjusted by adjusting the reaction temperature and reaction time.
e)アリル基のプロペニル基への転位反応
 アリル基のプロペニル基への転位反応は公知の方法で行うことができ、一般的に極性溶媒中で強塩基を用いて反応させる。用いられる極性溶媒は、メタノール、イソプロパノール、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン等が挙げられるがこれらに限定されない。ケトン系の溶剤は強塩基を触媒として用いるので適当ではない。極性溶剤の使用量は通常原料100質量部に対して20~400質量部、好ましくは50~300質量部であり、またこれらは単独で用いても併用しても良く、またトルエン、キシレンなどの溶剤を併用しても良い。強塩基としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-tert-ブトキシド、テトラメチルアンモニウムヒドロキシド等が挙げられるが、これらに限定されない。強塩基の使用量は使用する溶剤の種類、塩基の種類等によって大きく変わってくるが、通常アリルエーテル基1モルに対して、0.1~3.0モル、好ましくは0.2~2.0モルの範囲である。
 例えば、より詳細には、アリル基を有する化合物をメタノール、ジメチルスルホキシドなどに溶解後、水酸化ナトリウム、水酸化カリウムを添加し、50~150℃で2~10時間反応させる。反応終了後、中和し、トルエン、メチルイソブチルケトンなどを加え、水洗などにより中和塩を除去し、さらに加熱減圧下トルエン、メチルイソブチルケトン等の溶媒を留去することによりプロペニル基を有する化合物を得ることができる。強塩基の量、反応温度、反応時間の調整により、プロペニルエーテル基への変換率を調節することもできる。
e) Rearrangement reaction of an allyl group to a propenyl group The rearrangement reaction of an allyl group to a propenyl group can be performed by a known method, and is generally carried out in a polar solvent using a strong base. Examples of the polar solvent used include, but are not limited to, methanol, isopropanol, dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Ketone solvents are not suitable because they use strong bases as catalysts. The amount of the polar solvent used is usually 20 to 400 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of the raw material. These may be used alone or in combination. A solvent may be used in combination. Strong bases include, but are not limited to, sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, tetramethylammonium hydroxide and the like. The amount of strong base used varies greatly depending on the type of solvent used, the type of base, etc., but is usually 0.1-3.0 mol, preferably 0.2-2. The range is 0 mol.
For example, more specifically, an allyl group-containing compound is dissolved in methanol, dimethyl sulfoxide or the like, and then sodium hydroxide and potassium hydroxide are added and reacted at 50 to 150 ° C. for 2 to 10 hours. After completion of the reaction, neutralize, add toluene, methyl isobutyl ketone, etc., remove the neutralized salt by washing with water, etc., and further distill off the solvent such as toluene, methyl isobutyl ketone, etc. under heating and reduced pressure to have a compound having a propenyl group Can be obtained. The conversion rate to the propenyl ether group can also be adjusted by adjusting the amount of strong base, reaction temperature, and reaction time.
 以上のa)~e)の反応工程を2種以上組み合わせることにより、本発明のアルケニル基含有樹脂を製造することができる。 The alkenyl group-containing resin of the present invention can be produced by combining two or more of the above reaction steps a) to e).
 また、本発明のグリシジル基を有するアルケニル基含有樹脂はエポキシアクリレート樹脂の原料としても使用することができる。 The alkenyl group-containing resin having a glycidyl group of the present invention can also be used as a raw material for epoxy acrylate resins.
 本発明の硬化性樹脂組成物は、本発明のアルケニル基含有樹脂を含有し、更に、加熱により反応する官能基を有する化合物を含有することができる。
 なお、本発明の硬化性樹脂組成物におけるアルケニル基含有樹脂の含有量は20%以上であることが好ましく、30%以上であることがさらに好ましく、40%以上であることが特に好ましい。
The curable resin composition of the present invention contains the alkenyl group-containing resin of the present invention, and can further contain a compound having a functional group that reacts by heating.
The content of the alkenyl group-containing resin in the curable resin composition of the present invention is preferably 20% or more, more preferably 30% or more, and particularly preferably 40% or more.
 本発明の硬化性樹脂組成物においてはマレイミド化合物を含有させても良い。
 本発明の硬化性樹脂組成物に配合し得るマレイミド化合物としては、従来公知のマレイミド化合物を使用することができる。マレイミド化合物の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド化合物の配合量は、質量比で好ましくは5倍以下、より好ましくは2倍以下の範囲である。
 また、日本国特開2009-001783号公報(特許文献3)や、日本国特開平01-294662号公報(特許文献4)に記載されているマレイミド化合物は、低吸湿性、難燃性、誘電特性に優れているためマレイミド化合物として特に好ましい。
The curable resin composition of the present invention may contain a maleimide compound.
A conventionally well-known maleimide compound can be used as a maleimide compound which can be mix | blended with the curable resin composition of this invention. Specific examples of the maleimide compound include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like, but are not limited thereto. These may be used alone or in combination of two or more. The blending amount of the maleimide compound is preferably 5 times or less, more preferably 2 times or less in terms of mass ratio.
In addition, maleimide compounds described in Japanese Patent Application Laid-Open No. 2009-001783 (Patent Document 3) and Japanese Patent Application Laid-Open No. 01-294661 (Patent Document 4) have low hygroscopicity, flame retardancy, and dielectric properties. Since it is excellent in characteristics, it is particularly preferable as a maleimide compound.
 本発明の硬化性樹脂組成物において、本発明のアルケニル基含有樹脂のアルケニル基同士や、アルケニル基とマレイミド基を反応させるためにラジカル重合開始剤を使用することが好ましい。用い得るラジカル重合開始剤の具体例としては、メチルエチルケトンパーオキサイド、過酸化ベンゾイル、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物の公知の硬化促進剤が挙げられるが、これらに特に限定されるものではない。硬化性樹脂組成物の質量100質量部に対して0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。 In the curable resin composition of the present invention, it is preferable to use a radical polymerization initiator for reacting alkenyl groups of the alkenyl group-containing resin of the present invention with each other or between an alkenyl group and a maleimide group. Specific examples of the radical polymerization initiator that can be used include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyoctate, and t-butyl peroxy. Organic peroxides such as benzoate and lauroyl peroxide, azobisisobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2,4-dimethylvaleronitrile), etc. Although the well-known hardening accelerator of an azo type compound is mentioned, It does not specifically limit to these. The amount is preferably 0.01 to 5 parts by mass, particularly preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the curable resin composition.
 本発明の硬化性樹脂組成物においてはエポキシ樹脂を含有させても良い。本発明の硬化性樹脂組成物に配合し得るエポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができる。エポキシ樹脂の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物及びアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、フェノール類と前記のビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているためエポキシ樹脂として特に好ましい。
The curable resin composition of the present invention may contain an epoxy resin. As an epoxy resin that can be blended in the curable resin composition of the present invention, any conventionally known epoxy resin can be used. Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, polycondensates of bisphenols and various aldehydes. And glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic epoxies such as 4-vinyl-1-cyclohexene diepoxide and 3,4-epoxycyclohexylmethyl-3,4′-epoxycyclohexanecarboxylate Examples of the resin include, but are not limited to, glycidylamine epoxy resins and glycidyl ester epoxy resins such as tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol. These may be used alone or in combination of two or more.
Further, a phenol aralkyl resin obtained by condensation reaction of phenols and the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative, and an epoxy resin obtained by dehydrochlorination reaction with epichlorohydrin are low hygroscopic, Since it is excellent in a flame retardance and a dielectric characteristic, it is especially preferable as an epoxy resin.
 本発明の硬化性樹脂組成物にエポキシ樹脂を含む場合、必要に応じてエポキシ樹脂硬化用の触媒(硬化促進剤)を配合することができる。例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類などが挙げられる。硬化用の触媒の配合量は、硬化性樹脂組成物の合計100質量部に対して好ましくは10質量部以下、より好ましくは5質量部以下の範囲である。 When the curable resin composition of the present invention contains an epoxy resin, an epoxy resin curing catalyst (curing accelerator) can be blended as necessary. For example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine, Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Examples thereof include phosphines such as tributylphosphine and trioctylphosphine. The compounding amount of the curing catalyst is preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass in total of the curable resin composition.
 本発明の硬化性樹脂組成物は、本発明のアルケニル基含有樹脂にグリシジル基が含まれる場合や、前述のエポキシ樹脂を含有する場合、その好ましい実施態様において様々なエポキシ樹脂硬化剤を含有する。
 エポキシ樹脂硬化剤としてはアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物などが使用できる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類及びこれらの変性物、イミダゾール、BF-アミン錯体、グアニジン誘導体などが挙げられる。エポキシ樹脂硬化剤の使用量は、エポキシ基(またはグリシジル基)1当量に対して0.5~1.5当量が好ましく、0.6~1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量以上、あるいは1.5当量以下であれば、いずれも硬化がより確実なものとなりより良好な硬化物性が得られる。
When the alkenyl group-containing resin of the present invention contains a glycidyl group or contains the above-mentioned epoxy resin, the curable resin composition of the present invention contains various epoxy resin curing agents in its preferred embodiment.
As the epoxy resin curing agent, amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like can be used. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols, phenols (phenol, alkyl substituted) Polymerization of phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) with various aldehydes, phenols and various diene compounds , Polycondensates of phenols with aromatic dimethylol, biphenols and modified products thereof, imidazole, BF 3 - amine complex, guanidine derivatives. The amount of the epoxy resin curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents per 1 equivalent of epoxy group (or glycidyl group). If it is 0.5 equivalent or more or 1.5 equivalent or less with respect to 1 equivalent of epoxy groups, hardening will become more reliable and more favorable hardened | cured material property will be obtained.
 本発明の硬化性樹脂組成物においてはシアネートエステル樹脂を含有させても良い。本発明の硬化性樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 シアネートエステル化合物の具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアナートビフェニル、2、2’-ビス(4-シアナートフェニル)プロパン、ビス(4-シアナートフェニル)メタン、ビス(3,5-ジメチル-4-シアナートフェニル)メタン、2,2’-ビス(3,5-ジメチル-4-シアナートフェニル)プロパン、2,2’-ビス(4-シアナートフェニル)エタン、2,2’-ビス(4-シアナートフェニル)ヘキサフロロプロパン、ビス(4-シアナートフェニル)スルホン、ビス(4-シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるが、これらに限定されるものではない。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
The curable resin composition of the present invention may contain a cyanate ester resin. A conventionally well-known cyanate ester compound can be used as a cyanate ester compound which can be mix | blended with the curable resin composition of this invention. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include, but are not limited to, cyanate ester compounds obtained by reacting a product with cyanogen halide. These may be used alone or in combination of two or more.
Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
Specific examples of the cyanate ester compound include dicyanate benzene, tricyanate benzene, dicyanate naphthalene, dicyanate biphenyl, 2,2′-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl). ) Methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2'-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2'-bis (4-sia Natophenyl) ethane, 2,2′-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolac cyanate, phenol di Examples include those in which the hydroxyl group of the cyclopentadiene cocondensate is converted to a cyanate group. It is not limited to that.
In addition, cyanate ester compounds described in Japanese Patent Application Laid-Open No. 2005-264154 are particularly preferable as cyanate ester compounds because they are excellent in low moisture absorption, flame retardancy, and dielectric properties.
 本発明の硬化性樹脂組成物には、シアネート樹脂を含む場合、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。触媒は、熱硬化性樹脂組成物の合計質量100質量部に対して通常0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用する。 When the curable resin composition of the present invention contains a cyanate resin, a naphthenic acid zinc, a cobalt naphthenate, a copper naphthenate, Catalysts such as lead naphthenate, zinc octylate, tin octylate, lead acetylacetonate, and dibutyltin maleate can also be included. The catalyst is generally used in an amount of 0.0001 to 0.10 parts by mass, preferably 0.00015 to 0.0015 parts by mass, with respect to 100 parts by mass of the total mass of the thermosetting resin composition.
 さらに、本発明の硬化性樹脂組成物には、必要に応じて溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材を添加することができる。また、特に半導体封止用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は硬化性樹脂組成物中、通常80~92質量%、好ましくは83~90質量%の範囲である。 Further, the curable resin composition of the present invention includes fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia as necessary. Add powders such as aluminum nitride, graphite, forsterite, steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, or inorganic fillers in which these are spherical or crushed. Can do. In particular, when obtaining a curable resin composition for semiconductor encapsulation, the amount of the inorganic filler used is usually in the range of 80 to 92% by mass, preferably 83 to 90% by mass in the curable resin composition. is there.
 本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。 In the curable resin composition of the present invention, known additives can be blended as necessary. Specific examples of additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, silane coupling agents, and the like. Coloring agents such as surface treatment agents, release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used. The compounding amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less with respect to 100 parts by mass of the curable resin composition.
 本発明の硬化性樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、通常130~180℃で30~500秒の範囲で予備硬化し、更に、150~200℃で2~15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。又、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。 The curable resin composition of the present invention is obtained by uniformly mixing each of the above components at a predetermined ratio, and is usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further 150 to 200 ° C. And after curing for 2 to 15 hours, a sufficient curing reaction proceeds and the cured product of the present invention is obtained. Alternatively, the components of the curable resin composition can be uniformly dispersed or dissolved in a solvent or the like, and the solvent can be removed and then cured.
 こうして得られる本発明の硬化物は、耐湿性、耐熱性、高接着性を有する。従って、本発明のエポキシ樹脂組成物は、耐湿性、耐熱性、高接着性の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤等の分野にも用いることが出来る。特に半導体封止においては、耐ハンダリフロー性が有益なものとなる。 The cured product of the present invention thus obtained has moisture resistance, heat resistance, and high adhesiveness. Therefore, the epoxy resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance and high adhesion. Specifically, it is useful as a material for all electrical and electronic components such as an insulating material, a laminated board (printed wiring board, BGA substrate, build-up substrate, etc.), a sealing material, and a resist. In addition to molding materials and composite materials, they can also be used in fields such as paint materials and adhesives. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
 半導体装置は前記の本発明の硬化性樹脂組成物で封止されたもの等の本発明の硬化性樹脂組成物の硬化物を有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 The semiconductor device has a cured product of the curable resin composition of the present invention such as one sealed with the curable resin composition of the present invention. As semiconductor devices, for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small Outline Package), TSOP (Thin Small Outline Package), TQFP (Sink Quad Flat Package).
 本発明の硬化性樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80質量%、好ましくは20~70質量%となる範囲で使用する。 An organic solvent can be added to the curable resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). Examples of the solvent used include amide solvents such as γ-butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned. The solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by mass, preferably 20 to 70% by mass.
 本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えばアルケニル基含有樹脂とマレイミド樹脂を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、アルケニル基含有樹脂とマレイミド樹脂と、必要によりエポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では、例えば、押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method for preparing the curable resin composition of the present invention is not particularly limited, but each component may be mixed evenly or prepolymerized. For example, the alkenyl group-containing resin and the maleimide resin are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, an alkenyl group-containing resin and a maleimide resin may be prepolymerized by adding an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound, and other additives as necessary. For mixing or prepolymerization of each component, in the absence of a solvent, for example, an extruder, a kneader, a roll or the like is used, and in the presence of a solvent, a reaction kettle with a stirrer is used.
 本発明の硬化性樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
 また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
A prepreg can be obtained by heating and melting the curable resin composition of the present invention to lower the viscosity and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.
The above prepreg is cut into a desired shape, laminated with copper foil as necessary, and then the curable resin composition is heated and cured while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. Thus, an electric / electronic laminate (printed wiring board) and a carbon fiber reinforcing material can be obtained.
 以下、本発明を実施例により詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量、溶融粘度、軟化点、全塩素濃度は以下の条件で測定した。
 エポキシ当量:JIS K-7236に準じた方法で測定。
 溶融粘度:コーンプレート法における溶融粘度。
 軟化点:JIS K-7234に準じた方法で測定。
 全アルケニル基中のプロペニル基の割合:NMRにより測定。
 全塩素:自動試料燃焼-イオンクロマトグラフ装置 AQF-2100H型 三菱化学(株)製 アルゴンガス流量を200ml/min、酸素ガス流量を400ml/minとして燃焼分解後、イオン分を測定。
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to these examples. In the examples, epoxy equivalent, melt viscosity, softening point, and total chlorine concentration were measured under the following conditions.
Epoxy equivalent: Measured by a method according to JIS K-7236.
Melt viscosity: Melt viscosity in the cone plate method.
Softening point: Measured by a method according to JIS K-7234.
Propenyl group ratio in all alkenyl groups: measured by NMR.
Total chlorine: automatic sample combustion-ion chromatograph AQF-2100H type manufactured by Mitsubishi Chemical Corporation Ion content was measured after combustion decomposition with an argon gas flow rate of 200 ml / min and an oxygen gas flow rate of 400 ml / min.
参考例1
 温度計、冷却管、撹拌機を取り付けたフラスコに、下記式(3)で表されるフェノール樹脂(以下「BPN」と表す。軟化点74℃、溶融粘度0.16、水酸基当量210g/eq)210質量部、ジメチルスルホキシド380質量部、水30質量部、フレーク状の水酸化ナトリウム45質量部を仕込み、加熱、撹拌、溶解後、温度を40℃に保持しながら、塩化アリル102質量部を3時間かけて連続的に添加した。塩化アリルを添加終了後、45℃で1時間、60℃で1時間反応を行った。ついで加熱減圧下においてジメチルスルホキシドを留去し、残留物に250質量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液に水を加えて静置・分液によって副生塩を除去した後、廃液が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりBPNのアリルエーテル体(以下、「BPN-AE」と表す。)243質量部を得た。上記の反応は、前述の「a)式(2)中の水酸基のアリル化反応(アリルエーテル体の合成)」に相当する。また、得られたBPN-AEは、式(1)中のXがアリル基であり、Yが水素原子である。
Reference example 1
A phenolic resin represented by the following formula (3) (hereinafter referred to as “BPN”, a softening point of 74 ° C., a melt viscosity of 0.16, and a hydroxyl group equivalent of 210 g / eq) is attached to a flask equipped with a thermometer, a condenser, and a stirrer. 210 parts by mass, 380 parts by mass of dimethyl sulfoxide, 30 parts by mass of water and 45 parts by mass of flaky sodium hydroxide were added, heated, stirred and dissolved, and then 3 parts by mass of 102 parts of allyl chloride were maintained at a temperature of 40 ° C. Added continuously over time. After the addition of allyl chloride, the reaction was carried out at 45 ° C. for 1 hour and at 60 ° C. for 1 hour. Subsequently, dimethyl sulfoxide was distilled off under heating and reduced pressure, and 250 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue. After adding water to this methyl isobutyl ketone solution and removing by-product salts by standing and liquid separation, washing with water was repeated until the waste liquid became neutral. Subsequently, methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to obtain 243 parts by mass of an allyl ether of BPN (hereinafter referred to as “BPN-AE”). The above reaction corresponds to the above-mentioned “a) hydroxylation reaction of hydroxyl group in the formula (2) (synthesis of allyl ether form)”. In the obtained BPN-AE, X in the formula (1) is an allyl group, and Y is a hydrogen atom.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、nは平均値であり1~20の実数を表す。) (In the formula, n is an average value and represents a real number of 1 to 20.)
参考例2
 参考例1で得られたBPN-AE200質量部を反応容器に仕込み、撹拌しながら加熱し、200℃で5時間反応させることにより、アリル化されたBPN(以下、「BAPN」と表す。)199質量部を得た。上記の反応は、前述の「d)アリルエーテル体のクライゼン転位反応(アリル化フェノール樹脂の合成)」に相当する。また、得られたBAPNは、式(1)中のXが水素原子であり、Yがアリル基である。
Reference example 2
200 parts by mass of BPN-AE obtained in Reference Example 1 was charged into a reaction vessel, heated with stirring, and reacted at 200 ° C. for 5 hours, whereby allylated BPN (hereinafter referred to as “BAPN”) 199. A mass part was obtained. The above reaction corresponds to the aforementioned “d) Claisen rearrangement reaction of allyl ether (synthesis of allylated phenol resin)”. In the obtained BAPN, X in the formula (1) is a hydrogen atom, and Y is an allyl group.
参考例3
 温度計、冷却管、撹拌機を取り付けたフラスコに、参考例2で得られたBAPN227質量部、メタノール227質量部、トルエン35質量部を仕込み、撹拌しながら加熱し、溶解した。次いで、マーブル状水酸化カリウム(純度85%)90質量部を加え、メタノールおよびトルエンを留去しながら昇温し、100℃に到達した段階で還流ラインに切り替えて、同温度で20時間反応を行った。反応終了後、メタノール50質量部を加え、濃塩酸143質量部を添加して中和を行った。トルエン200質量部を加え、静置後、分液した下層の水層を除去し、その後水層が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりプロペニル化したBPN(以下、「BPPN」と表す。)228質量部を得た。上記の反応は、前述の「e)アリル基のプロペニル基への転位反応」に相当する。また、得られたBPPNは、式(1)中のXが水素原子であり、Yがプロペニル基である。
Reference example 3
A flask equipped with a thermometer, a condenser, and a stirrer was charged with 227 parts by mass of BAPN obtained in Reference Example 2, 227 parts by mass of methanol, and 35 parts by mass of toluene, and heated and stirred to dissolve. Next, 90 parts by mass of marbled potassium hydroxide (purity 85%) was added, and the temperature was raised while distilling off methanol and toluene. When the temperature reached 100 ° C., the system was switched to the reflux line, and the reaction was carried out at the same temperature for 20 hours. went. After completion of the reaction, 50 parts by mass of methanol was added, and 143 parts by mass of concentrated hydrochloric acid was added for neutralization. 200 parts by mass of toluene was added, and after standing, the separated lower aqueous layer was removed, and then washing with water was repeated until the aqueous layer became neutral. Subsequently, 228 parts by mass of propenylated BPN (hereinafter referred to as “BPPN”) was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The above reaction corresponds to the above-mentioned “e) rearrangement reaction of allyl group to propenyl group”. In the obtained BPPN, X in the formula (1) is a hydrogen atom, and Y is a propenyl group.
参考例4
 参考例1で得られたBPN-AE200質量部を反応容器に仕込み、撹拌しながら加熱し、200℃で2時間反応させることにより、部分的にアリル化されたBPN-AE(以下、「BAPN-AE-5050」と表す。)199質量部を得た。得られたBAPN-AE-5050の125℃における溶融粘度は0.20Pa・sであった。上記の反応は、前述の「d)アリルエーテル体のクライゼン転位反応(アリル化フェノール樹脂の合成)」に相当する。また、得られたBAPN-AE-5050は、式(1)中のXとYは、いずれも、一部が水素原子であり、その他がアリル基である。
Reference example 4
200 parts by mass of BPN-AE obtained in Reference Example 1 was charged into a reaction vessel, heated with stirring, and reacted at 200 ° C. for 2 hours, whereby partially allylated BPN-AE (hereinafter referred to as “BAPN-”). AE-5050 ") 199 parts by weight were obtained. The obtained BAPN-AE-5050 had a melt viscosity at 125 ° C. of 0.20 Pa · s. The above reaction corresponds to the aforementioned “d) Claisen rearrangement reaction of allyl ether (synthesis of allylated phenol resin)”. In the obtained BAPN-AE-5050, X and Y in the formula (1) are both partially hydrogen atoms and the other are allyl groups.
実施例1
 参考例1で得られたBPN-AE240質量部、メタノール180質量部、イソプロパノール60質量部、トルエン120質量部、ジメチルスルホキシド120質量部を反応容器に仕込み、加熱、撹拌、溶解後、マーブル状水酸化カリウム63質量部添加して溶解した。メタノール、イソプロパノールおよびトルエンを留去しながら昇温し、120℃に到達した段階で還流ラインに切り替えて、同温度で20時間反応を行った。反応了後、メタノール120質量部とトルエン240質量部、水120質量部を加え、静置後、分液した下層の水層を除去し、その後水層が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてトルエンを留去することによりプロペニル化したBPN-AE(以下、「BPN-PE」と表す。)228質量部を得た。得られたBPN-PEの125℃における溶融粘度は0.08Pa・sであり、全アルケニル基中のプロペニル基の割合は98%であった。上記の反応は、前述の「c)アリルエーテル体のプロペニルエーテル体への転位反応」に相当する。また、得られたBPN-PEは、式(1)中のXがプロペニル基であり、Yが水素原子である。
Example 1
240 parts by weight of BPN-AE obtained in Reference Example 1, 180 parts by weight of methanol, 60 parts by weight of isopropanol, 120 parts by weight of toluene, and 120 parts by weight of dimethyl sulfoxide were charged into a reaction vessel, heated, stirred and dissolved, and then marbled hydroxylated. 63 parts by mass of potassium was added and dissolved. The temperature was raised while distilling off methanol, isopropanol and toluene, and when the temperature reached 120 ° C., the system was switched to the reflux line and reacted at the same temperature for 20 hours. After completion of the reaction, 120 parts by mass of methanol, 240 parts by mass of toluene, and 120 parts by mass of water were added. After standing, the separated lower aqueous layer was removed, and then washing with water was repeated until the aqueous layer became neutral. Then, 228 parts by mass of propenylated BPN-AE (hereinafter referred to as “BPN-PE”) was obtained by distilling off toluene from the oil layer under heating and reduced pressure. The obtained BPN-PE had a melt viscosity at 125 ° C. of 0.08 Pa · s, and the proportion of propenyl groups in all alkenyl groups was 98%. The above reaction corresponds to the above-mentioned “c) rearrangement reaction of allyl ether form to propenyl ether form”. In the obtained BPN-PE, X in the formula (1) is a propenyl group, and Y is a hydrogen atom.
実施例2
 参考例3で得られたBPPN227質量部、エピクロルヒドリン590質量部、ジメチルスルホキシド148質量部を反応容器に仕込み、加熱、撹拌、溶解後、温度を45℃に保持しながら、フレーク状水酸化ナトリウム38.7質量部を1.5時間かけて連続的に添加した。水酸化ナトリウム添加完了後、45℃で2時間、70℃で1時間反応を行った。ついで加熱減圧下において過剰のエピクロルヒドリンとジメチルスルホキシドを留去し、残留物に500質量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液から水洗によって副生塩を除去した後、30%水酸化ナトリウム水溶液12質量部を添加し、70℃で1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりプロペニル基含有エポキシ樹脂(以下、「BPPN-GE」と表す。)253質量部を得た。得られたBPPN-GEのエポキシ当量は319g/eq、軟化点74℃、150℃における溶融粘度0.33Pa・s、全アルケニル基中のプロペニル基の割合は97%であった。上記の反応は、前述の「b)式(2)中の水酸基のグリシジル化反応」に相当する。また、得られたBPPN-GEは、式(1)中のXがグリシジル基であり、Yがプロペニル基である。
Example 2
The reaction vessel was charged with 227 parts by mass of BPPN, 590 parts by mass of epichlorohydrin, and 148 parts by mass of dimethyl sulfoxide obtained in Reference Example 3, and after heating, stirring, and dissolving, flaky sodium hydroxide 38. 7 parts by mass were added continuously over 1.5 hours. After completion of the addition of sodium hydroxide, the reaction was carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Then, excess epichlorohydrin and dimethyl sulfoxide were distilled off under heating and reduced pressure, and 500 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue. After removing by-product salts from this methyl isobutyl ketone solution by washing with water, 12 parts by mass of 30% aqueous sodium hydroxide solution is added and reacted at 70 ° C. for 1 hour, and then the washing of the reaction solution is washed with water. Repeat until. Subsequently, methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to obtain 253 parts by mass of a propenyl group-containing epoxy resin (hereinafter referred to as “BPPN-GE”). The obtained BPPN-GE had an epoxy equivalent of 319 g / eq, a softening point of 74 ° C., a melt viscosity of 0.33 Pa · s at 150 ° C., and the proportion of propenyl groups in all alkenyl groups was 97%. The above reaction corresponds to the above-mentioned “b) glycidylation reaction of hydroxyl group in formula (2)”. In the obtained BPPN-GE, X in the formula (1) is a glycidyl group, and Y is a propenyl group.
実施例3
 参考例3で得られたBPPN227質量部、ジメチルスルホキシド364質量部、トルエン136質量部を反応容器に仕込み、撹拌しながら加熱し、溶解した。次いで、フレーク状水酸化ナトリウム48質量部を加え、温度を40℃に保持しながら、塩化アリル91質量部を3時間かけて連続的に添加した。塩化アリル添加終了後、45℃で1時間、60℃で1時間反応を行った。ついで加熱減圧下においてジメチルスルホキシドを留去し、残留物に250質量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液に水を加えて静置・分液によって副生塩を除去した後、廃液が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりBPPNのアリルエーテル体(以下、「BPPN-AE」と表す。)240質量部を得た。全アルケニル基中のプロペニル基の割合は47%であった。上記の反応は、前述の「a)式(2)中の水酸基のアリル化反応(アリルエーテル体の合成)」に相当する。また、得られたBPPN-AEは、式(1)中のXがアリル基であり、Yがプロペニル基である。
 上記で得られたBPPN-AE227質量部、ジメチルスルホキシド364質量部、トルエン136質量部を反応容器に仕込み、撹拌しながら加熱し、溶解した。次いで、マーブル状水酸化カリウム15質量部を加え、トルエンを留去しながら昇温し、125℃に到達した段階で還流ラインに切り替えて、同温度で20時間反応を行った。反応終了後、トルエン240質量部、水100質量部を加え、静置後、分液した下層の水層を除去し、その後水層が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてトルエンを留去することによりプロペニルエーテル化したBPPN-AE(以下、「BPPN-PE」と表す。)220質量部を得た。得られたBPPN-PEの軟化点は84℃であり、全アルケニル基中のプロペニル基の割合は96%であった。上記の反応は、前述の「c)アリルエーテル体のプロペニルエーテル体への転位反応」に相当する。また、得られたBPPN-PEは、式(1)中のX及びYがプロペニル基である。
Example 3
227 parts by mass of BPPN, 364 parts by mass of dimethyl sulfoxide, and 136 parts by mass of toluene obtained in Reference Example 3 were charged in a reaction vessel, heated with stirring and dissolved. Next, 48 parts by mass of flaky sodium hydroxide was added, and 91 parts by mass of allyl chloride was continuously added over 3 hours while maintaining the temperature at 40 ° C. After the addition of allyl chloride, the reaction was carried out at 45 ° C. for 1 hour and at 60 ° C. for 1 hour. Subsequently, dimethyl sulfoxide was distilled off under heating and reduced pressure, and 250 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue. After adding water to this methyl isobutyl ketone solution and removing by-product salts by standing and liquid separation, washing with water was repeated until the waste liquid became neutral. Subsequently, methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to obtain 240 parts by mass of BPPN allyl ether form (hereinafter referred to as “BPPN-AE”). The ratio of propenyl group in all alkenyl groups was 47%. The above reaction corresponds to the above-mentioned “a) hydroxylation reaction of hydroxyl group in the formula (2) (synthesis of allyl ether form)”. In the obtained BPPN-AE, X in the formula (1) is an allyl group, and Y is a propenyl group.
227 parts by mass of BPPN-AE obtained above, 364 parts by mass of dimethyl sulfoxide, and 136 parts by mass of toluene were charged into a reaction vessel, heated with stirring and dissolved. Next, 15 parts by mass of marble potassium hydroxide was added, the temperature was raised while distilling off toluene, and when the temperature reached 125 ° C., the system was switched to the reflux line and reacted at the same temperature for 20 hours. After completion of the reaction, 240 parts by mass of toluene and 100 parts by mass of water were added, and after standing, the separated lower aqueous layer was removed, and then washing with water was repeated until the aqueous layer became neutral. Subsequently, toluene was distilled off from the oil layer under heating and reduced pressure to obtain 220 parts by mass of BPPN-AE converted to propenyl ether (hereinafter referred to as “BPPN-PE”). The resulting BPPN-PE had a softening point of 84 ° C. and the proportion of propenyl groups in all alkenyl groups was 96%. The above reaction corresponds to the above-mentioned “c) rearrangement reaction of allyl ether form to propenyl ether form”. In the obtained BPPN-PE, X and Y in the formula (1) are propenyl groups.
実施例4
 温度計、冷却管、撹拌機を取り付けたフラスコに、参考例4で得られたBAPN-AE-5050 250質量部、メタノール250質量部、トルエン50質量部を仕込み、撹拌しながら加熱し、溶解した。次いで、マーブル状水酸化カリウム(純度85%)90質量部を加え、メタノールおよびトルエンを留去しながら昇温し、100℃に到達した段階で還流ラインに切り替えて、同温度で20時間反応を行った。反応終了後、メタノール50質量部を加え、濃塩酸143質量部を添加して中和を行った。トルエン200質量部を加え、静置後、分液した下層の水層を除去し、その後水層が中性になるまで水洗を繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりプロペニル化したBAPN-AE-5050(以下、「BPPN-PE-5050」と表す。)242質量部を得た。得られたBPPN-PE-5050の軟化点は52℃、全アルケニル基中のプロペニル基の割合は98%であった。上記の反応は、前述の「e)アリル基のプロペニル基への転位反応」に相当する。また、得られたBPPN-PE-5050は、式(1)中のXとYは、いずれも、一部が水素原子であり、その他がプロペニル基である。
Example 4
A flask equipped with a thermometer, a condenser, and a stirrer was charged with 250 parts by mass of BAPN-AE-5050 obtained in Reference Example 4, 250 parts by mass of methanol, and 50 parts by mass of toluene. . Next, 90 parts by mass of marbled potassium hydroxide (purity 85%) was added, and the temperature was raised while distilling off methanol and toluene. When the temperature reached 100 ° C., the system was switched to the reflux line, and the reaction was carried out at the same temperature for 20 hours. went. After completion of the reaction, 50 parts by mass of methanol was added, and 143 parts by mass of concentrated hydrochloric acid was added for neutralization. 200 parts by mass of toluene was added, and after standing, the separated lower aqueous layer was removed, and then washing with water was repeated until the aqueous layer became neutral. Then, 242 parts by mass of propenylated BAPN-AE-5050 (hereinafter referred to as “BPPN-PE-5050”) was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The resulting BPPN-PE-5050 had a softening point of 52 ° C. and the proportion of propenyl groups in all alkenyl groups was 98%. The above reaction corresponds to the above-mentioned “e) rearrangement reaction of allyl group to propenyl group”. In the obtained BPPN-PE-5050, X and Y in the formula (1) are both partly hydrogen atoms and the others are propenyl groups.
実施例5
 実施例4で得られたBPPN-PE-5050 250質量部、エピクロルヒドリン590質量部、ジメチルスルホキシド148質量部を反応容器に仕込み、加熱、撹拌、溶解後、温度を45℃に保持しながら、フレーク状水酸化ナトリウム20質量部を1.5時間かけて連続的に添加した。水酸化ナトリウム添加完了後、45℃で2時間、70℃で1時間反応を行った。ついで加熱減圧下において過剰のエピクロルヒドリンとジメチルスルホキシドを留去し、残留物に500質量部のメチルイソブチルケトンを添加し残留物を溶解させた。このメチルイソブチルケトン溶液から水洗によって副生塩を除去した後、30%水酸化ナトリウム水溶液6質量部を添加し、70℃で1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することによりプロペニル基含有エポキシ樹脂(以下、「BPPN-GPE」と表す。)233質量部を得た。得られたBPPN-GPEのエポキシ当量は563g/eq、軟化点58℃、150℃における溶融粘度0.24Pa・s、式(1)における全アルケニル基中のプロペニル基の割合は98%であった。
 上記の反応は、前述の「b)式(2)中の水酸基のグリシジル化反応」に相当する。また、得られたBPPN-GPEは、式(1)中のXの一部がグリシジル基であり、その他がプロペニル基であり、Yの一部が水素原子であり、その他がプロペニル基である。
Example 5
250 parts by mass of BPPN-PE-5050 obtained in Example 4, 590 parts by mass of epichlorohydrin, and 148 parts by mass of dimethyl sulfoxide were charged into a reaction vessel, heated, stirred, dissolved, and kept in a flaky shape while maintaining the temperature at 45 ° C. 20 parts by mass of sodium hydroxide was continuously added over 1.5 hours. After completion of the addition of sodium hydroxide, the reaction was carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Then, excess epichlorohydrin and dimethyl sulfoxide were distilled off under heating and reduced pressure, and 500 parts by mass of methyl isobutyl ketone was added to the residue to dissolve the residue. After removing by-product salts from this methyl isobutyl ketone solution by washing with water, 6 parts by mass of 30% aqueous sodium hydroxide solution is added and reacted at 70 ° C. for 1 hour, and then the washing of the reaction solution is washed with water. Repeat until. Subsequently, 233 parts by mass of a propenyl group-containing epoxy resin (hereinafter referred to as “BPPN-GPE”) was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The epoxy equivalent of the obtained BPPN-GPE was 563 g / eq, the softening point was 58 ° C., the melt viscosity was 0.24 Pa · s at 150 ° C., and the proportion of propenyl groups in all alkenyl groups in the formula (1) was 98%. .
The above reaction corresponds to the above-mentioned “b) glycidylation reaction of hydroxyl group in formula (2)”. In the obtained BPPN-GPE, a part of X in the formula (1) is a glycidyl group, the other is a propenyl group, a part of Y is a hydrogen atom, and the other is a propenyl group.
実施例6~9、比較例1~3
 参考例および実施例で得られたアルケニル基含有樹脂、マレイミド化合物、硬化促進剤を表1の割合(質量部)で配合し、加熱・溶融混合後、ジクミルパーオキサイドを添加して組成物を調製し、粉砕、タブレット化後、トランスファー成形で樹脂成形体を調製し、200℃で2時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表1に示す。
Examples 6-9, Comparative Examples 1-3
The alkenyl group-containing resin, maleimide compound, and curing accelerator obtained in Reference Examples and Examples are blended in the proportions (parts by mass) shown in Table 1, and after heating and melt mixing, dicumyl peroxide is added to prepare the composition. After preparing, crushing, and tableting, a resin molded body was prepared by transfer molding and cured at 200 ° C. for 2 hours. The results of measuring the physical properties of the cured product thus obtained for the following items are shown in Table 1.
・耐熱性評価
 ガラス転移温度:動的粘弾性試験機により測定し、tanδが最大値のときの温度。
・熱分解性評価
 Td5(5%熱質量減少温度):得られた硬化物を粉砕し粉状にしたものの100メッシュパス、200メッシュオンのサンプルを用い、TG-DTAにより熱分解温度を測定。サンプル量10mg、昇温速度10℃/min、空気量200ml/hrで測定し、質量が5%減少した温度。
・吸湿性評価
 吸湿率:85℃/85%および121℃/100%での24時間後の質量増加率。試験片は直径50mm×厚み4mmの円盤。
-Heat resistance evaluation Glass transition temperature: Temperature measured by a dynamic viscoelasticity tester and tan δ is a maximum value.
Evaluation of thermal decomposability Td5 (5% thermal mass loss temperature): The obtained cured product was pulverized and powdered, and a 100 mesh pass, 200 mesh on sample was used to measure the thermal decomposition temperature by TG-DTA. The temperature at which the mass was reduced by 5% as measured with a sample amount of 10 mg, a heating rate of 10 ° C./min, and an air amount of 200 ml / hr.
-Hygroscopic evaluation Hygroscopicity: Mass increase rate after 24 hours at 85 ° C / 85% and 121 ° C / 100%. The test piece is a disk having a diameter of 50 mm and a thickness of 4 mm.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
注)
BMI:4,4’-ビスマレイミドジフェニルメタン(東京化成工業社製)
DCPO:ジクミルパーオキサイド(化薬アクゾ社製)
2E4MZ:2-エチル-4-メチルイミダゾール(東京化成工業社製)
note)
BMI: 4,4′-bismaleimide diphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.)
DCPO: Dicumyl peroxide (manufactured by Kayaku Akzo)
2E4MZ: 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
 表1から、本発明のアルケニル基含有樹脂を用いたエポキシ樹脂組成物の硬化物は、比較例1(BPNのアリルエーテル体 式(1)中Xがアリル基で、Yが水素原子)、比較例2(アリル化されたBPN 式中(1)Yがアリル基で、Xが水素原子)、比較例3(プロペニル化したBPN 式(1)中Yがプロペニル基で、Xが水素原子)の硬化物に比べて、優れた低吸湿性(低吸水性)、高い耐熱性(耐半田リフロー性)を示すことが確認できる。
 したがって、本件発明のアルケニル基含有樹脂は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等の用途に有用である。
From Table 1, the cured product of the epoxy resin composition using the alkenyl group-containing resin of the present invention is a comparative example 1 (wherein X is an allyl group and Y is a hydrogen atom in BPN allyl ether form formula (1)), comparison Example 2 (Allylated BPN Formula (1) Y is an allyl group and X is a hydrogen atom), Comparative Example 3 (Propenylated BPN Formula (1) Y is a propenyl group and X is a hydrogen atom) As compared with the cured product, it can be confirmed that excellent low moisture absorption (low water absorption) and high heat resistance (solder reflow resistance) are exhibited.
Therefore, the alkenyl group-containing resin of the present invention includes an insulating material for electrical and electronic parts (high reliability semiconductor encapsulating material, etc.), a laminated board (printed wiring board, a substrate for BGA, a buildup board, etc.), an adhesive (conductive) This is useful for various composite materials such as adhesives, CFRP, and paints.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2016年12月26日付で出願された日本国特許出願(特願2016-250404)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2016-250404) filed on Dec. 26, 2016, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (9)

  1.  下記式(1)で表され、複数存在するXとYにおけるアルケニル基の20%以上がプロペニル基であるアルケニル基含有樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するZはそれぞれ独立して炭素数6~15の炭化水素基を表す。複数存在するXはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、プロペニル基又はグリシジル基を表す。但し、複数存在するXの全てが水素原子又はアリル基の場合を除く。複数存在するYはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基又はプロペニル基を表す。nは繰り返し数を表し、平均値は1~20の実数である。)
    An alkenyl group-containing resin represented by the following formula (1), wherein 20% or more of a plurality of alkenyl groups in X and Y are propenyl groups.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein a plurality of Z's each independently represents a hydrocarbon group having 6 to 15 carbon atoms. A plurality of X's each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, propenyl) Represents a group or a glycidyl group, except for the case where all of a plurality of X are hydrogen atoms or allyl groups, each of the plurality of Y independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or Represents a propenyl group, n represents the number of repetitions, and the average value is a real number of 1 to 20.)
  2.  前記式(1)において複数存在するXがアリル基、プロペニル基又はグリシジル基を表し、全てのXがアリル基であることはない請求項1に記載のアルケニル基含有樹脂。 The alkenyl group-containing resin according to claim 1, wherein a plurality of Xs in the formula (1) represent an allyl group, a propenyl group, or a glycidyl group, and all Xs are not allyl groups.
  3.  前記式(1)において複数存在するXのうち20%以上がアルケニル基である請求項1又は2に記載のアルケニル基含有樹脂。 The alkenyl group-containing resin according to claim 1 or 2, wherein 20% or more of the plurality of Xs in the formula (1) are alkenyl groups.
  4.  前記式(1)においてZが芳香族含有炭化水素基である請求項1乃至3のいずれか一項に記載のアルケニル基含有樹脂。 The alkenyl group-containing resin according to any one of claims 1 to 3, wherein Z in the formula (1) is an aromatic-containing hydrocarbon group.
  5.  前記式(1)においてZが炭素数10~15の炭化水素基である請求項1乃至4のいずれか一項に記載のアルケニル基含有樹脂。 The alkenyl group-containing resin according to any one of claims 1 to 4, wherein Z in the formula (1) is a hydrocarbon group having 10 to 15 carbon atoms.
  6.  請求項1乃至5のいずれか一項に記載のアルケニル基含有樹脂を含有する硬化性樹脂組成物。 A curable resin composition containing the alkenyl group-containing resin according to any one of claims 1 to 5.
  7.  ラジカル重合開始剤を含有する請求項6に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6 containing a radical polymerization initiator.
  8.  マレイミド化合物を含有する請求項6又は7に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6 or 7, comprising a maleimide compound.
  9.  請求項6乃至8のいずれか一項に記載の硬化性樹脂組成物を硬化した硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 6 to 8.
PCT/JP2017/045930 2016-12-26 2017-12-21 Alkenyl-group-containing resin, curable resin composition, and cured article thereof WO2018123806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559119A JP6963565B2 (en) 2016-12-26 2017-12-21 Alkenyl group-containing resin, curable resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250404 2016-12-26
JP2016-250404 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123806A1 true WO2018123806A1 (en) 2018-07-05

Family

ID=62710487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045930 WO2018123806A1 (en) 2016-12-26 2017-12-21 Alkenyl-group-containing resin, curable resin composition, and cured article thereof

Country Status (3)

Country Link
JP (1) JP6963565B2 (en)
TW (1) TWI739976B (en)
WO (1) WO2018123806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203883A (en) * 2017-06-05 2018-12-27 住友ベークライト株式会社 Sealing resin composition and structure
JP2020033493A (en) * 2018-08-31 2020-03-05 三菱瓦斯化学株式会社 Mixture of cyanate compound and curable composition
JP2021059651A (en) * 2019-10-04 2021-04-15 昭和電工株式会社 Curable resin composition, cured product of the same, and structure including the cured product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207354A (en) * 1986-03-07 1987-09-11 Sumitomo Chem Co Ltd Thermosetting resin composition
JPH04359911A (en) * 1991-06-07 1992-12-14 Shin Etsu Chem Co Ltd Thermosetting resin composition
JPH0570450A (en) * 1991-01-25 1993-03-23 Shin Etsu Chem Co Ltd Naphthalene derivative having allyl or propenyl group
JPH11140007A (en) * 1997-11-12 1999-05-25 Gun Ei Chem Ind Co Ltd Propenyl group-containing bisphenol derivative
JP2004269753A (en) * 2003-03-10 2004-09-30 Sumitomo Bakelite Co Ltd Latent phenol resin, method for producing the same and method for producing phenol resin by using the same
JP2012017423A (en) * 2010-07-08 2012-01-26 Nitto Denko Corp Method for producing cured product of thermosetting resin composition and cured product obtained by the same
JP2014169428A (en) * 2013-02-05 2014-09-18 Nippon Kayaku Co Ltd Allyl ether resin and method for producing the same
WO2016002704A1 (en) * 2014-07-01 2016-01-07 明和化成株式会社 Allyl ether-modified biphenyl aralkyl novolac resin, allyl-modified biphenyl aralkyl novolac resin, method for producing same and composition using same
JP2016206676A (en) * 2015-04-24 2016-12-08 Jsr株式会社 Method for forming resist underlay film and pattern forming method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207354A (en) * 1986-03-07 1987-09-11 Sumitomo Chem Co Ltd Thermosetting resin composition
JPH0570450A (en) * 1991-01-25 1993-03-23 Shin Etsu Chem Co Ltd Naphthalene derivative having allyl or propenyl group
JPH04359911A (en) * 1991-06-07 1992-12-14 Shin Etsu Chem Co Ltd Thermosetting resin composition
JPH11140007A (en) * 1997-11-12 1999-05-25 Gun Ei Chem Ind Co Ltd Propenyl group-containing bisphenol derivative
JP2004269753A (en) * 2003-03-10 2004-09-30 Sumitomo Bakelite Co Ltd Latent phenol resin, method for producing the same and method for producing phenol resin by using the same
JP2012017423A (en) * 2010-07-08 2012-01-26 Nitto Denko Corp Method for producing cured product of thermosetting resin composition and cured product obtained by the same
JP2014169428A (en) * 2013-02-05 2014-09-18 Nippon Kayaku Co Ltd Allyl ether resin and method for producing the same
WO2016002704A1 (en) * 2014-07-01 2016-01-07 明和化成株式会社 Allyl ether-modified biphenyl aralkyl novolac resin, allyl-modified biphenyl aralkyl novolac resin, method for producing same and composition using same
JP2016206676A (en) * 2015-04-24 2016-12-08 Jsr株式会社 Method for forming resist underlay film and pattern forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203883A (en) * 2017-06-05 2018-12-27 住友ベークライト株式会社 Sealing resin composition and structure
JP7127251B2 (en) 2017-06-05 2022-08-30 住友ベークライト株式会社 Sealing resin composition and structure
JP2020033493A (en) * 2018-08-31 2020-03-05 三菱瓦斯化学株式会社 Mixture of cyanate compound and curable composition
JP7148859B2 (en) 2018-08-31 2022-10-06 三菱瓦斯化学株式会社 Mixture of cyanate ester compound and curable composition
JP2021059651A (en) * 2019-10-04 2021-04-15 昭和電工株式会社 Curable resin composition, cured product of the same, and structure including the cured product

Also Published As

Publication number Publication date
JP6963565B2 (en) 2021-11-10
JPWO2018123806A1 (en) 2019-10-31
TWI739976B (en) 2021-09-21
TW201833163A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
KR20210056996A (en) Maleimide resin, curable resin composition and cured product thereof
KR20160140586A (en) Aromatic amine resin, maleimide resin, and curable resin composition and cured product thereof
JP2008208201A (en) Epoxy resin composition, cured material of the same and fiber-reinforced composite material
JPWO2020054526A1 (en) Maleimide resin, curable resin composition and cured product thereof
JP6963565B2 (en) Alkenyl group-containing resin, curable resin composition and cured product thereof
WO2019198606A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
WO2021182360A1 (en) Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof
JP7185383B2 (en) Curable resin composition and its cured product
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
WO2019198607A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
JP2003301031A (en) Phenolic resin, epoxy resin and method for preparation thereof, and resin composition
JP2001064339A (en) Phenolic resin, epoxy resin, thermosetting resin composition, and production of resin
JP6979746B2 (en) Methacrylic group-containing resin, curable resin composition and its cured product
WO2013035808A1 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP7268256B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP7256160B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP7230285B1 (en) Epoxy resin, curable resin composition, and cured product thereof
TWI833906B (en) Hardening resin composition
JP2022147099A (en) Epoxy resin, curable resin composition, and cured product thereof
JP2022025527A (en) Maleimide resin, curable resin composition and cured product of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885710

Country of ref document: EP

Kind code of ref document: A1