WO2013035808A1 - Epoxy resin, epoxy resin composition, and cured product thereof - Google Patents
Epoxy resin, epoxy resin composition, and cured product thereof Download PDFInfo
- Publication number
- WO2013035808A1 WO2013035808A1 PCT/JP2012/072800 JP2012072800W WO2013035808A1 WO 2013035808 A1 WO2013035808 A1 WO 2013035808A1 JP 2012072800 W JP2012072800 W JP 2012072800W WO 2013035808 A1 WO2013035808 A1 WO 2013035808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- naphthol
- epoxy resin
- cresol
- weight
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
- C08G59/08—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
Definitions
- the present invention relates to an epoxy resin, an epoxy resin composition, and a cured product thereof that give a cured product excellent in heat resistance and water resistance.
- Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
- Epoxy resins generally increase in water absorption when the Tg is increased (Non-patent Document 1). This is due to an increase in crosslink density.
- high Tg is required for semiconductor peripheral materials that require low moisture absorption, there is an urgent need to develop a resin having these contradictory characteristics.
- the electrical reliability tends to decrease. That is, the dielectric constant and dielectric loss tangent deteriorate. In the development of electrical and electronic materials, it is necessary to reduce the dielectric constant and dielectric loss tangent while maintaining a high Tg in terms of improving electrical reliability.
- the present invention has been made as a result of studies to solve such problems, and provides an epoxy resin whose cured product has high heat resistance, water absorption and low dielectric constant.
- the present invention is (1) obtained by reacting naphthol and cresol with an aldehyde, wherein the ratio of ⁇ -naphthol in the naphthol when reacting naphthol and cresol with aldehyde is 1 to 10% by weight.
- the weight ratio of naphthol and cresol when naphthol and cresol are reacted with an aldehyde is 65:35 to 85:15
- the obtained naphthol The epoxy resin according to (1), wherein the softening point of the cresol novolac-type phenol resin is 100 ° C. to 150 ° C.
- the total amount of 74-76 ppm peak area and the total area of 68-71 ppm peak in 13 C-NMR is 60: 40-80: 20, and the softening point is 85 ° C.-100 ° C.
- the epoxy resin composition using the epoxy resin of the present invention gives a cured product that can simultaneously achieve heat resistance and water resistance, and is used for insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.) It is useful for various composite materials such as CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material and a laminated plate material for protecting a semiconductor element.
- the epoxy resin of the present invention is obtained by reacting naphthol and cresol with an aldehyde, and the ratio of ⁇ -naphthol in the naphthol when reacting naphthol and cresol with aldehyde is 1 to 10% by weight. It can be obtained by glycidylating a phenolic resin.
- a naphthol-cresol novolac type phenol resin obtained by reacting naphthol and cresol with an aldehyde, wherein the ratio of ⁇ -naphthol in the naphthol when reacting naphthol and cresol with an aldehyde is 1 to 10% by weight.
- NCN naphthol-cresol novolac type phenol resin
- n represents an average number of repetitions.
- R is a methyl group or a hydrogen atom
- Ar is 1-naphthol, -Indicates naphthol and cresol.
- NCN is usually obtained by reacting naphthol, cresol and formaldehyde (or an equivalent thereof) under acidic or basic conditions. Specifically, it can be obtained by adding naphthol, cresol, formaldehyde (or an equivalent thereof) and a catalyst simultaneously or sequentially and performing the reaction usually at 0 to 150 ° C., preferably 10 to 130 ° C.
- a catalyst simultaneously or sequentially and performing the reaction usually at 0 to 150 ° C., preferably 10 to 130 ° C.
- reaction does not advance at a stretch, and the naphthol which does not participate in reaction does not increase, and it is preferable.
- naphthol is relatively prioritized, whereby a compound having a small amount of residual naphthol can be obtained.
- the reaction time is usually 5 to 150 hours.
- the NCN obtained in this way can be used without purification depending on the use, but usually the reaction mixture is neutralized after completion of the reaction, and then unreacted raw materials and solvents are removed under heating and reduced pressure. Use it after purification. In this neutralization step, various bases, salts such as phosphates, buffers, and the like may be added, or washing with water is possible. However, using both together is more convenient and effective.
- the amount of residual naphthol is preferably reduced to 1% or less by thin film distillation, bubbling of an inert gas such as nitrogen.
- Solvents that can be used in the synthesis of NCN include, but are not limited to, methanol, ethanol, propanol, isopropanol, toluene, xylene, methyl isobutyl ketone, cyclopentanone, cyclohexanone, alone or in combination of two or more. You may use together.
- the amount used is usually in the range of 5 to 500 parts by weight, preferably 10 to 300 parts by weight, based on 100 parts by weight of the total amount of naphthol and cresol.
- acidic catalysts either acidic or basic catalysts can be used.
- acidic catalysts include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as oxalic acid, toluenesulfonic acid and acetic acid; heteropolyacids such as tungstic acid, activated clays, inorganic acids, stannic chloride , Zinc chloride, ferric chloride, and other acidic catalysts such as organic and inorganic acid salts that are usually used for producing novolak resins.
- basic catalysts that can be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, sodium methoxide.
- Alkali metal alkoxides such as sodium ethoxide, potassium methoxide, potassium ethoxide and potassium tert-butoxide, and alkaline earth metal alkoxides such as magnesium methoxide and magnesium ethoxide.
- An amine-based catalyst can also be used, and examples thereof include triethylamine, ethanolamine, pyridine, piperidine, morpholine and the like. In particular, when an amine-based catalyst is used, it can also be used as a solvent.
- catalysts are not limited to those mentioned above, and may be used alone or in combination of two or more.
- the amount of the catalyst used is usually in the range of 0.005 to 2.0 times mol, preferably 0.01 to 1.1 times mol, based on the total amount of naphthol and cresol.
- the catalyst is used as a solvent, it is preferable to add about 30 to 200% by weight based on the total amount of naphthol and cresol.
- the naphthol-cresol novolak type phenol resin obtained by reacting naphthol, cresol and formaldehyde is obtained by random polymerization, the naphthalene skeleton and the phenol skeleton are randomly arranged.
- ⁇ -naphthol and ⁇ -naphthol can be used together as naphthol, and orthocresol, metacresol, paracresol, or a mixture of any two or more can be used as cresol.
- the ratio of ⁇ -naphthol is 1 to 10% by weight.
- the weight ratio of naphthol and cresol used in the reaction is preferably 65:35 to 85:15, more preferably 62:38 to 80:20, and particularly preferably 62:38 to 76:24.
- a preferable ratio for obtaining the characteristics of high heat resistance and low water absorption is 71:29 to 85:15.
- the amount of naphthol is 62% by weight or more, the desired high heat resistance and low moisture absorption characteristics can be easily obtained, and if the amount of naphthol is 85% by weight or less, the reaction can be easily controlled and residual naphthol Is preferable. Residual naphthol is not preferable because of odor, toxicity, and heat resistance of the cured product.
- the ratio of ⁇ -naphthol and ⁇ -naphthol in naphthol when naphthol and cresol are reacted with aldehyde is 1 to 10% by weight of ⁇ -naphthol based on the total amount of naphthol.
- ⁇ -naphthol is less than 1% by weight, the heat resistance does not increase.
- ⁇ -naphthol exceeds 10% by weight, the reaction becomes difficult to control and the amount of residual naphthol increases.
- the NCN preferably has a softening point of 100 to 150 ° C.
- the feature of this skeleton is the size of its molecular weight. If there is a chain of molecules having a softening point of 100 ° C. or higher, the desired heat resistance can be easily obtained.
- a softening point of 150 ° C. or lower is preferable because handling becomes easy and it is easy to reduce residual naphthol. It should be noted that naphthol residue is not preferable for the safety of the user. In the present invention, it is important that it is at least 1% or less.
- the epoxy resin of the present invention is obtained by glycidylating the NCN.
- the NCN and epihalohydrin are preferably reacted.
- the epihalohydrin used in the reaction of NCN and epihalohydrin include epichlorohydrin, ⁇ -methylepichlorohydrin, ⁇ -methylepichlorohydrin, epibromohydrin, and the like.
- epichlorohydrin which is easily available industrially is preferable.
- the amount of epihalohydrin used is usually 3.0 to 10 moles, preferably 3.5 to 8 moles per mole of NCN hydroxyl group.
- an alkali metal hydroxide In the epoxidation reaction, it is preferable to use an alkali metal hydroxide.
- the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
- the alkali metal hydroxide may be used as a solid or an aqueous solution thereof.
- an aqueous solution of alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled under reduced pressure or normal pressure. Then, liquid separation is performed to remove water, and the epoxidation reaction can be carried out by continuously returning the epihalohydrin to the reaction system.
- the amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1 mol with respect to 1 mol of the hydroxyl group of NCN. 1.15 moles.
- a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst in order to accelerate the reaction.
- the amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, based on 1 mol of the hydroxyl group of NCN.
- an alcohol such as methanol, ethanol or isopropyl alcohol
- an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran or dioxane.
- the amount used is usually 2 to 50% by mass, preferably 4 to 20% by mass, based on the amount of epihalohydrin used.
- the aprotic polar solvent is used, the amount used is usually 5 to 100% by mass, preferably 10 to 80% by mass, based on the amount of epihalohydrin used.
- the reaction temperature is usually 30 to 90 ° C., preferably 35 to 80 ° C.
- the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours.
- the reaction product of these epoxidation reactions can be purified by removing epihalohydrin, a solvent, or the like under heating and reduced pressure after washing with water or without washing with water.
- the recovered reaction product is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is prepared.
- a ring closure reaction of the by-product can be performed to ensure the ring closure of the by-product halohydrin.
- the amount of the alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of NCN used for epoxidation.
- the reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
- the produced salt is removed by filtration, washing with water, and the like, and the solvent is distilled off under reduced pressure by heating to obtain the epoxy resin of the present invention.
- the epoxy resin thus obtained preferably satisfies the following conditions.
- the softening point is preferably from 80 to 100 ° C, more preferably from 85 to 100 ° C, particularly preferably from 85 to 97 ° C.
- the amount can be obtained by adding 0.5 to 1.1 mol, more preferably 0.60 to 1.1 mol, per equivalent of phenolic hydroxyl group. Formalin may be added all at once or dividedly.
- the epoxy equivalent is 200 to 300 g / eq.
- the epoxy equivalent is adjusted by the amount of epihalohydrin used in the reaction, the amount of raw material naphthol and cresol, and the molecular weight, and the epoxy resin of the present invention having a preferable epoxy equivalent has the same molecular weight as the method described in the adjustment of the softening point.
- the amount of epihalohydrin can be obtained by applying the above preferred amount.
- the total amount of peak areas of 74 to 76 ppm and the total amount of peak areas of 68 to 71 ppm are preferably 60:40 to 80:20.
- peaks at 74-76 ppm and 68-71 ppm correspond to the peaks at the methylene site where the oxirane structure of the glycidyl group bonded to the naphthol and cresol structures is bonded, respectively.
- the average molecular weight of the epoxy resin of the present invention preferably satisfies the following conditions.
- the number average molecular weight is preferably from 500 to 1,000, more preferably from 500 to 800.
- the weight average molecular weight is preferably 600 to 2000, more preferably 600 to 1700.
- it can be adjusted by the weight ratio of naphthol, cresol, formalin (or a synthetic equivalent thereof) used in the reaction, and if the amount of formalin relative to naphthol, cresol is small, The molecular weight can be increased, and the molecular weight can be increased as the amount of epihalohydrin decreases. If the molecular weight is too small, heat resistance will not be achieved, and if the molecular weight is too large, the viscosity will be too high and handling will be difficult, and the solubility in the solvent will be poor, which is not preferable.
- the molecular weight distribution is important. If the molecular weight distribution is too narrow, sufficient heat resistance cannot be improved and water absorption cannot be reduced. This means that the improvement in heat resistance due to the crosslinking density at the time of crosslinking at the stage of thermosetting affects the increase in water absorption rate because a hydroxyl group is released at the time of crosslinking. In the present invention, not only heat resistance but also a reduction in water absorption can be achieved at the same time by increasing the number of bonds at the methylene chain in the mother skeleton. As a specific molecular weight distribution, (weight average molecular weight Mw) / (number average molecular weight Mn) is preferably 1.4 or more.
- the maximum value is preferably 2.5.
- the molecular weight distribution can be adjusted by the weight ratio of naphthol, cresol, formalin (or its synthetic equivalent) and the amount of epihalohydrin used in the reaction. Specifically, the molecular weight distribution is easily narrowed as the naphthol ratio increases, and can be narrowed by adding formalin in divided portions. Further, the molecular weight distribution can be widened by reducing the amount of epihalohydrin, and conversely, the molecular weight distribution can be narrowed by increasing the amount.
- the molecular weight distribution can be broadened by performing a rearrangement reaction in which methylene bonds are once broken and re-bonded at 80 to 150 ° C.
- 0.005 to 0.1 equivalent of formalin (or a synthetic equivalent thereof) is preferably added per equivalent of phenolic hydroxyl group.
- the proportion of the epoxy resin of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more in the total epoxy resin.
- the other epoxy resins include novolak type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
- Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
- Specific examples of curing agents that can be used include amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, and isophoronediamine; amides such as polyamide resins synthesized from dimers of dicyandiamide and linolenic acid and ethylenediamine Compounds: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc.
- Acid anhydride compounds bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-te Tramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Ethane and phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxy Novolac resin
- a phenolic compound as a curing agent, and particularly from a flame retardancy, a novolak resin, particularly a phenol novolak resin or a cresol novolak resin, Phenol aralkyl resins are preferred.
- a curing agent having a softening point of 50 to 100 ° C. is preferably used. A lower softening point tends to improve fluidity and flame retardancy, but it is preferable to use a higher softening point in order to increase heat resistance.
- the amount of curing agent used is preferably 0.8 to 1.1 equivalents relative to 1 equivalent of epoxy group of the epoxy resin. If it is 0.8 equivalent or more, or 1.1 equivalent or less with respect to 1 equivalent of epoxy groups, hardening will become perfect and favorable hardened
- a preferable combination of an epoxy resin and a curing agent is an epoxy resin having a softening point of 45 to 70 ° C. (more preferably 50 to 65 ° C.) and a curing agent having a softening point of 50 to 100 ° C. (preferably 55 to 85 ° C.). It is. A resin composition having balanced properties in terms of fluidity, flame retardancy, and heat resistance is obtained.
- the epoxy resin composition of the present invention may contain a curing accelerator.
- curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
- the curing accelerator is used as necessary in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
- the epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component.
- the phosphorus-containing compound may be a reactive type or an additive type.
- Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid ester compounds such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9- Phosphanes such as oxa-10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-
- Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylyl) is preferable. Renyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
- the amount of the phosphoric acid ester compound as described above is preferably phosphoric acid ester compound / epoxy resin ⁇ 0.1 (weight ratio) due to environmental problems and concerns about electrical characteristics. More preferably, it is 0.05 or less. It is particularly preferable not to add a phosphorus compound except that it is added as a curing accelerator.
- the epoxy resin composition of the present invention may contain an inorganic filler.
- Inorganic fillers include fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, beryllium oxide, iron oxide, titanium oxide, aluminum nitride, silicon nitride, and nitride Examples thereof include boron, mica, glass, quartz, and mica. Further, it is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide in order to impart a flame retardant effect. However, it is not limited to these. Two or more kinds may be mixed and used.
- the amount of the inorganic filler used is usually 60% to 95% by weight, preferably 70% to 95% by weight, more preferably 75% to 90% by weight. It is. If it is 60% by weight or more, the flame retardant effect is surely obtained, and if it is 95% by weight or less, the linear expansion of the sealing resin and the frame occurs when the semiconductor element to be sealed is mounted on a copper-based lead frame. The rate is surely matched, and it is difficult for defects due to thermal stress such as heat shock to occur.
- a release agent can be blended to improve the release from the mold during molding.
- Any conventionally known release agent can be used, for example, ester waxes such as carnauba wax and montan wax, fatty acids such as stearic acid and palmitic acid, and metal salts thereof, polyolefins such as polyethylene oxide and non-oxidized polyethylene And waxes. These may be used alone or in combination of two or more.
- the compounding amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If it is 0.5% by weight or more, release from the mold does not deteriorate, and if it is 3% by weight or less, adhesion to a lead frame or the like does not deteriorate.
- a coupling agent can be blended in order to enhance the adhesion between the inorganic filler and the resin component.
- Any conventionally known coupling agent can be used.
- examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more.
- the coupling agent may be added by treating the surface of the inorganic filler with the coupling agent in advance and then kneading with the resin, or mixing the coupling agent with the resin and then kneading the inorganic filler. .
- additives can be blended in the epoxy resin composition of the present invention as necessary.
- additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, silicone gel, and silicone oil.
- colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
- the epoxy resin composition of the present invention can be produced using any conventionally known technique capable of uniformly dispersing and mixing each component. For example, all the components are pulverized and pulverized, mixed with a Henschel mixer, etc., then melt kneaded with a heating roll, melt kneaded with a kneader, mixed with a special mixer, or an appropriate combination of these methods. Moreover, a semiconductor device can be manufactured by resin-sealing a semiconductor element mounted on a lead frame or the like by transfer molding or the like using the epoxy resin composition of the present invention.
- the semiconductor device has a cured product of the epoxy resin composition of the present invention such as the one sealed with the epoxy resin composition of the present invention.
- semiconductor devices for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small Outline Package), TSOP (Thin Small Outline Package), TQFP (Sink Quad Flat Package).
- Dynamic viscoelasticity measuring instrument TA-instruments, DMA-2980 Measurement temperature range: -30 to 280 ° C Temperature rate: 2 ° C./min Test piece size: 5 mm ⁇ 50 mm cut out (thickness is about 800 ⁇ m) Tg: Tan- ⁇ peak point in DMA measurement was defined as Tg.
- Example 1 A flask equipped with a stirrer, a reflux condenser, and a stirrer is charged with naphthol-cresol novolak resin while purging with nitrogen (when naphthol and cresol are reacted with aldehyde, naphthol content in naphthol and cresol is 70% by weight, total naphthol Resin obtained by reaction with 5% by weight of ⁇ -naphthol in the middle, 160 parts of softening point 110 ° C., 370 parts of epichlorohydrin (4 molar equivalents to phenol resin), 37 parts of dimethyl sulfoxide were added and dissolved under stirring. The temperature was raised to 40-45 ° C.
- Synthesis example 1 282 parts of ⁇ -naphthol was dissolved in 600 parts of methyl isobutyl ketone, and 53 parts of 30% by weight sodium hydroxide was added. 67 parts of paraformaldehyde was added to this solution and reacted at 20 ° C. for 3 hours. After completion of the reaction, 35% hydrochloric acid was added to neutralize (pH 6 to 7) to obtain a solution containing 1-methylol body of ⁇ -naphthol. After 108 parts of orthocresol was added to the resulting solution, 2 parts of 35% hydrochloric acid was added and reacted at 30 ° C. for 1 hour and at 70 ° C. for 6 hours.
- the resulting resin had a softening point of 90 ° C. and a hydroxyl group equivalent of 140 g / eq. Met.
- Synthesis example 2 An epoxy resin was synthesized in the same manner using 140 parts of the NCN resin obtained in Synthesis Example 1 instead of the naphthol-cresol novolak resin in Example 1.
- the obtained epoxy resin had an epoxy equivalent of 210 g / eq.
- the melt viscosity at a softening point of 68 ° C. and 150 ° C. was 0.12 Pa ⁇ s (EP2).
- the ratio of the total 74-76 ppm peak area to the total 68-71 ppm peak area was 81:19.
- Test examples 1-10 The epoxy resin obtained above and the various epoxy resins shown in Table 1 below are blended in equal equivalents of phenol novolac (softening point 83 ° C., hydroxyl group equivalent 106 g / eq) as a curing agent with respect to 1 molar equivalent of epoxy equivalent. Then, triphenylphosphine as a catalyst is blended at a ratio (parts by weight) of 1 part by weight with respect to 100 parts by weight of the epoxy resin, and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition for sealing. Obtained.
- This epoxy resin composition was pulverized with a mixer and further tableted with a tablet machine. The tableted epoxy resin composition was transfer-molded (175 ° C. ⁇ 60 seconds), and after demolding, cured under the conditions of 160 ° C. ⁇ 2 hours + 180 ° C. ⁇ 6 hours to obtain a test piece for evaluation. Details of the epoxy resin used for the evaluation are shown in Table 2 below.
- cured products using general epoxy resins basically have a correlation that the water absorption increases as Tg increases.
- cured material using the epoxy resin of this invention has high heat resistance, it has confirmed that water absorption was low and it remove
- the epoxy resin of the present invention can be used in an epoxy resin composition that gives a cured product capable of simultaneously achieving heat resistance and water resistance.
- the composition comprises an insulating material for electrical and electronic parts and a laminate (printed wiring board, It is useful for various composite materials such as build-up substrates) and CFRP, adhesives, paints and the like. In particular, it is extremely useful for a semiconductor sealing material and a laminated plate material for protecting a semiconductor element.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Provided are an epoxy resin that produces a cured product having high heat resistance and an excellent coefficient of water absorption and electrical properties, as well as an epoxy resin composition. The epoxy resin is obtained by glycidylization of a naphthol-cresol novolak-type phenol resin, which is characterized in being obtained by reacting a naphthol and a cresol with an aldehyde such that when the naphthol and cresol are reacted with the aldehyde, the percentage of α-naphthol in the naphthol is 1 to 10 wt%. Preferably the ratio of naphthol:cresol when the naphthol and cresol are reacted with the aldehyde is 65:35 to 85:15 and the softening point of the resulting naphthol-cresol novolak-type phenol resin is 100 to 150ºC.
Description
本発明は耐熱性と耐水性に優れた硬化物を与えるエポキシ樹脂、エポキシ樹脂組成物、およびその硬化物に関する。
The present invention relates to an epoxy resin, an epoxy resin composition, and a cured product thereof that give a cured product excellent in heat resistance and water resistance.
エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においてはその要求特性が年々高度になってきており、たとえば半導体の駆動温度の上昇による周辺材料の高Tg化等が要求されてきている。
However, in recent years, with the development in the electric / electronic field, moisture resistance, adhesion, dielectric properties, low viscosity for high filling of filler (inorganic or organic filler) as well as high purity of resin composition, There is a need for further improvements in various properties such as increased reactivity to shorten the molding cycle. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Particularly in the field of semiconductor encapsulation and substrates (substrate itself or its peripheral materials), the required characteristics are becoming higher year by year. For example, there is a demand for higher Tg of peripheral materials due to an increase in semiconductor driving temperature. Yes.
エポキシ樹脂は一般的に高Tg化すると、吸水率が上昇する(非特許文献1)。これは架橋密度が向上することによる影響である。しかしながら、低吸湿が求められる半導体周辺材料への高Tg化が要求される中、この相反する特性を有する樹脂の開発が急務であった。
また、同様に一般的に高Tg化すると、電気信頼性が下がる傾向にある。すなわち、誘電率、誘電正接が悪化する。電気電子材料用途への展開において高Tgを保ちながら誘電率、誘電正接を下げることは電気信頼性の向上の面で必要である。 Epoxy resins generally increase in water absorption when the Tg is increased (Non-patent Document 1). This is due to an increase in crosslink density. However, while high Tg is required for semiconductor peripheral materials that require low moisture absorption, there is an urgent need to develop a resin having these contradictory characteristics.
Similarly, generally, when the Tg is increased, the electrical reliability tends to decrease. That is, the dielectric constant and dielectric loss tangent deteriorate. In the development of electrical and electronic materials, it is necessary to reduce the dielectric constant and dielectric loss tangent while maintaining a high Tg in terms of improving electrical reliability.
また、同様に一般的に高Tg化すると、電気信頼性が下がる傾向にある。すなわち、誘電率、誘電正接が悪化する。電気電子材料用途への展開において高Tgを保ちながら誘電率、誘電正接を下げることは電気信頼性の向上の面で必要である。 Epoxy resins generally increase in water absorption when the Tg is increased (Non-patent Document 1). This is due to an increase in crosslink density. However, while high Tg is required for semiconductor peripheral materials that require low moisture absorption, there is an urgent need to develop a resin having these contradictory characteristics.
Similarly, generally, when the Tg is increased, the electrical reliability tends to decrease. That is, the dielectric constant and dielectric loss tangent deteriorate. In the development of electrical and electronic materials, it is necessary to reduce the dielectric constant and dielectric loss tangent while maintaining a high Tg in terms of improving electrical reliability.
本発明はこのような問題を解決すべく検討の結果なされたものであり、その硬化物が高耐熱性で、吸水性、誘電率が低いエポキシ樹脂を提供するものである。
The present invention has been made as a result of studies to solve such problems, and provides an epoxy resin whose cured product has high heat resistance, water absorption and low dielectric constant.
本発明者らは前記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。
すなわち本発明は
(1)ナフトールとクレゾールをアルデヒドで反応させることで得られ、ナフトールとクレゾールをアルデヒドで反応させる際の前記ナフトール中、αナフトールの比率が1~10重量%であることを特徴とするナフトール-クレゾールノボラック型フェノール樹脂をグリシジル化させることで得られるエポキシ樹脂、
(2)(1)に記載のナフトール-クレゾールノボラック型フェノール樹脂において、ナフトールとクレゾールをアルデヒドで反応させる際のナフトールとクレゾールの重量比率が65:35~85:15であり、かつ得られたナフトール-クレゾールノボラック型フェノール樹脂の軟化点が100℃~150℃であることを特徴とする(1)に記載のエポキシ樹脂、
(3)13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量が60:40~80:20であり、かつ軟化点が85℃~100℃であることを特徴とする(1)または(2)に記載のエポキシ樹脂、
(4)(重量平均分子量 Mw)/(数平均分子量 Mn)が1.4~2.5である(1)~(3)のいずれか一項に記載のエポキシ樹脂、
(5)(1)~(4)のいずれか一項に記載のエポキシ樹脂と硬化促進剤を含有するエポキシ樹脂組成物、
(6)(5)に記載のエポキシ樹脂組成物を硬化させて得られる硬化物、
を提供するものである。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention is (1) obtained by reacting naphthol and cresol with an aldehyde, wherein the ratio of α-naphthol in the naphthol when reacting naphthol and cresol with aldehyde is 1 to 10% by weight. Epoxy resin obtained by glycidylating naphthol-cresol novolac type phenolic resin
(2) In the naphthol-cresol novolak type phenol resin described in (1), the weight ratio of naphthol and cresol when naphthol and cresol are reacted with an aldehyde is 65:35 to 85:15, and the obtained naphthol The epoxy resin according to (1), wherein the softening point of the cresol novolac-type phenol resin is 100 ° C. to 150 ° C.,
(3) The total amount of 74-76 ppm peak area and the total area of 68-71 ppm peak in 13 C-NMR is 60: 40-80: 20, and the softening point is 85 ° C.-100 ° C. (1) or the epoxy resin according to (2),
(4) The epoxy resin according to any one of (1) to (3), wherein (weight average molecular weight Mw) / (number average molecular weight Mn) is 1.4 to 2.5,
(5) An epoxy resin composition containing the epoxy resin according to any one of (1) to (4) and a curing accelerator,
(6) A cured product obtained by curing the epoxy resin composition according to (5),
Is to provide.
すなわち本発明は
(1)ナフトールとクレゾールをアルデヒドで反応させることで得られ、ナフトールとクレゾールをアルデヒドで反応させる際の前記ナフトール中、αナフトールの比率が1~10重量%であることを特徴とするナフトール-クレゾールノボラック型フェノール樹脂をグリシジル化させることで得られるエポキシ樹脂、
(2)(1)に記載のナフトール-クレゾールノボラック型フェノール樹脂において、ナフトールとクレゾールをアルデヒドで反応させる際のナフトールとクレゾールの重量比率が65:35~85:15であり、かつ得られたナフトール-クレゾールノボラック型フェノール樹脂の軟化点が100℃~150℃であることを特徴とする(1)に記載のエポキシ樹脂、
(3)13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量が60:40~80:20であり、かつ軟化点が85℃~100℃であることを特徴とする(1)または(2)に記載のエポキシ樹脂、
(4)(重量平均分子量 Mw)/(数平均分子量 Mn)が1.4~2.5である(1)~(3)のいずれか一項に記載のエポキシ樹脂、
(5)(1)~(4)のいずれか一項に記載のエポキシ樹脂と硬化促進剤を含有するエポキシ樹脂組成物、
(6)(5)に記載のエポキシ樹脂組成物を硬化させて得られる硬化物、
を提供するものである。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention is (1) obtained by reacting naphthol and cresol with an aldehyde, wherein the ratio of α-naphthol in the naphthol when reacting naphthol and cresol with aldehyde is 1 to 10% by weight. Epoxy resin obtained by glycidylating naphthol-cresol novolac type phenolic resin
(2) In the naphthol-cresol novolak type phenol resin described in (1), the weight ratio of naphthol and cresol when naphthol and cresol are reacted with an aldehyde is 65:35 to 85:15, and the obtained naphthol The epoxy resin according to (1), wherein the softening point of the cresol novolac-type phenol resin is 100 ° C. to 150 ° C.,
(3) The total amount of 74-76 ppm peak area and the total area of 68-71 ppm peak in 13 C-NMR is 60: 40-80: 20, and the softening point is 85 ° C.-100 ° C. (1) or the epoxy resin according to (2),
(4) The epoxy resin according to any one of (1) to (3), wherein (weight average molecular weight Mw) / (number average molecular weight Mn) is 1.4 to 2.5,
(5) An epoxy resin composition containing the epoxy resin according to any one of (1) to (4) and a curing accelerator,
(6) A cured product obtained by curing the epoxy resin composition according to (5),
Is to provide.
本発明のエポキシ樹脂を使用するエポキシ樹脂組成物は耐熱性と耐水性を同時に達成することのできる硬化物を与え、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料や積層板材料にきわめて有用である。
The epoxy resin composition using the epoxy resin of the present invention gives a cured product that can simultaneously achieve heat resistance and water resistance, and is used for insulating materials for electrical and electronic parts and laminated boards (printed wiring boards, build-up boards, etc.) It is useful for various composite materials such as CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material and a laminated plate material for protecting a semiconductor element.
本発明のエポキシ樹脂は、ナフトールとクレゾールをアルデヒドで反応させることで得られ、ナフトールとクレゾールをアルデヒドで反応させる際の前記ナフトール中、αナフトールの比率が1~10重量%であるナフトール-クレゾールノボラック型フェノール樹脂をグリシジル化させることで得られるものである。
The epoxy resin of the present invention is obtained by reacting naphthol and cresol with an aldehyde, and the ratio of α-naphthol in the naphthol when reacting naphthol and cresol with aldehyde is 1 to 10% by weight. It can be obtained by glycidylating a phenolic resin.
ナフトールとクレゾールをアルデヒドで反応させることで得られ、ナフトールとクレゾールをアルデヒドで反応させる際の前記ナフトール中、αナフトールの比率が1~10重量%であるナフトール-クレゾールノボラック型フェノール樹脂(NCN)としては、特に限定されないが、例えば、下記式(1)
A naphthol-cresol novolac type phenol resin (NCN) obtained by reacting naphthol and cresol with an aldehyde, wherein the ratio of α-naphthol in the naphthol when reacting naphthol and cresol with an aldehyde is 1 to 10% by weight. Is not particularly limited. For example, the following formula (1)
(式中、nは平均の繰り返し数を示す。また、複数存在するAr、Rはそれぞれ独立して存在し、Rはメチル基もしくは水素原子を、Arは上記に示すとおり、1-ナフトール、2-ナフトール、クレゾールを示す。)
で表される。 (In the formula, n represents an average number of repetitions. Further, a plurality of Ar and R are independently present, R is a methyl group or a hydrogen atom, and Ar is 1-naphthol, -Indicates naphthol and cresol.)
It is represented by
で表される。 (In the formula, n represents an average number of repetitions. Further, a plurality of Ar and R are independently present, R is a methyl group or a hydrogen atom, and Ar is 1-naphthol, -Indicates naphthol and cresol.)
It is represented by
NCNは、通常、ナフトールとクレゾールとホルムアルデヒド(もしくはその等価体)を酸性、あるいは塩基性条件下で反応させることで得られる。
具体的にはナフトールとクレゾールとホルムアルデヒド(もしくはその等価体)、触媒を同時、もしくは逐次的に添加し、通常0~150℃、好ましくは10~130℃で反応を行うことで得ることができる。ここで、低温で反応を行うことでナフトールを優先的に反応を進行させることも可能となる。
この際、0℃以上であれば反応の進行が遅くならず、多大な時間がかかることがなく、生産性に優れ好ましい。また150℃以下であれば、一気に反応が進行することがなく、反応に関与しないナフトールが多くなることがなく好ましい。前述の範囲内で反応させることでナフトールを比較的優先させ、これにより残留ナフトール量の少ない化合物とすることができる。
尚、通常反応時間は5~150時間である。 NCN is usually obtained by reacting naphthol, cresol and formaldehyde (or an equivalent thereof) under acidic or basic conditions.
Specifically, it can be obtained by adding naphthol, cresol, formaldehyde (or an equivalent thereof) and a catalyst simultaneously or sequentially and performing the reaction usually at 0 to 150 ° C., preferably 10 to 130 ° C. Here, it is possible to preferentially proceed the reaction with naphthol by performing the reaction at a low temperature.
At this time, if the temperature is 0 ° C. or higher, the progress of the reaction does not slow down, it does not take much time, and is excellent in productivity. Moreover, if it is 150 degrees C or less, reaction does not advance at a stretch, and the naphthol which does not participate in reaction does not increase, and it is preferable. By reacting within the aforementioned range, naphthol is relatively prioritized, whereby a compound having a small amount of residual naphthol can be obtained.
The reaction time is usually 5 to 150 hours.
具体的にはナフトールとクレゾールとホルムアルデヒド(もしくはその等価体)、触媒を同時、もしくは逐次的に添加し、通常0~150℃、好ましくは10~130℃で反応を行うことで得ることができる。ここで、低温で反応を行うことでナフトールを優先的に反応を進行させることも可能となる。
この際、0℃以上であれば反応の進行が遅くならず、多大な時間がかかることがなく、生産性に優れ好ましい。また150℃以下であれば、一気に反応が進行することがなく、反応に関与しないナフトールが多くなることがなく好ましい。前述の範囲内で反応させることでナフトールを比較的優先させ、これにより残留ナフトール量の少ない化合物とすることができる。
尚、通常反応時間は5~150時間である。 NCN is usually obtained by reacting naphthol, cresol and formaldehyde (or an equivalent thereof) under acidic or basic conditions.
Specifically, it can be obtained by adding naphthol, cresol, formaldehyde (or an equivalent thereof) and a catalyst simultaneously or sequentially and performing the reaction usually at 0 to 150 ° C., preferably 10 to 130 ° C. Here, it is possible to preferentially proceed the reaction with naphthol by performing the reaction at a low temperature.
At this time, if the temperature is 0 ° C. or higher, the progress of the reaction does not slow down, it does not take much time, and is excellent in productivity. Moreover, if it is 150 degrees C or less, reaction does not advance at a stretch, and the naphthol which does not participate in reaction does not increase, and it is preferable. By reacting within the aforementioned range, naphthol is relatively prioritized, whereby a compound having a small amount of residual naphthol can be obtained.
The reaction time is usually 5 to 150 hours.
このようにして得られたNCNは、用途によって、精製せずに用いることもできるが、通常、反応終了後に反応混合物を中和してから、加熱減圧下において未反応原料及び溶媒類を除去する事で精製して使用する。なお、この中和工程は、各種塩基類、リン酸塩等の塩やバッファー等を添加してもよいし、水洗などでも可能であるが、両者を併用するとより簡便で効果的である。また、反応により、ナフトールが十分消費されていない場合、薄膜蒸留、窒素等の不活性ガスのバブリング等により、残留ナフトール量を1%以下にすることが好ましい。
The NCN obtained in this way can be used without purification depending on the use, but usually the reaction mixture is neutralized after completion of the reaction, and then unreacted raw materials and solvents are removed under heating and reduced pressure. Use it after purification. In this neutralization step, various bases, salts such as phosphates, buffers, and the like may be added, or washing with water is possible. However, using both together is more convenient and effective. When the reaction does not sufficiently consume naphthol, the amount of residual naphthol is preferably reduced to 1% or less by thin film distillation, bubbling of an inert gas such as nitrogen.
NCNの合成において使用できる溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、トルエン、キシレン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどが挙げられるがこれらに限定されるものではなく、単独でも2種以上併用してもよい。溶媒を使用する場合、その使用量はナフトールとクレゾールの総量100重量部に対し、通常5~500重量部、好ましくは10~300重量部の範囲である。
Solvents that can be used in the synthesis of NCN include, but are not limited to, methanol, ethanol, propanol, isopropanol, toluene, xylene, methyl isobutyl ketone, cyclopentanone, cyclohexanone, alone or in combination of two or more. You may use together. When a solvent is used, the amount used is usually in the range of 5 to 500 parts by weight, preferably 10 to 300 parts by weight, based on 100 parts by weight of the total amount of naphthol and cresol.
触媒としては酸性、塩基性いずれの触媒でも使用できる。
用いうる酸性触媒の具体例としては塩酸、硫酸、リン酸等の鉱酸類;シュウ酸、トルエンスルホン酸、酢酸等の有機酸類;タングステン酸等のヘテロポリ酸、活性白土、無機酸、塩化第二錫、塩化亜鉛、塩化第二鉄等、その他酸性を示す有機、無機酸塩類、等のノボラック樹脂製造用に通常使用される酸性触媒などが挙げられる。
用いうる塩基性触媒の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウム-tert-ブトキシド等のアルカリ金属アルコキシド、マグネシウムメトキシド、マグネシウムエトキシド等のアルカリ土類金属アルコキシド等が挙げられる。
またアミン系の触媒を使用することもでき、トリエチルアミン、エタノールアミン、ピリジン、ピペリジン、モルホリン等が挙げられる。特にアミン系の触媒を使用する場合は溶媒として兼用することもできる。
これら触媒は、前述に挙げた物に限定されるものではなく、単独でも2種以上を併用してもよい。触媒の使用量は、ナフトールとクレゾールの総量に対し、通常0.005~2.0倍モル、好ましくは0.01~1.1倍モルの範囲である。なお、触媒を溶媒として使用する場合は、ナフトールとクレゾールの総量に対し、30~200重量%程度添加することが好ましい。 As the catalyst, either acidic or basic catalysts can be used.
Specific examples of acidic catalysts that can be used include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as oxalic acid, toluenesulfonic acid and acetic acid; heteropolyacids such as tungstic acid, activated clays, inorganic acids, stannic chloride , Zinc chloride, ferric chloride, and other acidic catalysts such as organic and inorganic acid salts that are usually used for producing novolak resins.
Specific examples of basic catalysts that can be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, sodium methoxide. Alkali metal alkoxides such as sodium ethoxide, potassium methoxide, potassium ethoxide and potassium tert-butoxide, and alkaline earth metal alkoxides such as magnesium methoxide and magnesium ethoxide.
An amine-based catalyst can also be used, and examples thereof include triethylamine, ethanolamine, pyridine, piperidine, morpholine and the like. In particular, when an amine-based catalyst is used, it can also be used as a solvent.
These catalysts are not limited to those mentioned above, and may be used alone or in combination of two or more. The amount of the catalyst used is usually in the range of 0.005 to 2.0 times mol, preferably 0.01 to 1.1 times mol, based on the total amount of naphthol and cresol. When the catalyst is used as a solvent, it is preferable to add about 30 to 200% by weight based on the total amount of naphthol and cresol.
用いうる酸性触媒の具体例としては塩酸、硫酸、リン酸等の鉱酸類;シュウ酸、トルエンスルホン酸、酢酸等の有機酸類;タングステン酸等のヘテロポリ酸、活性白土、無機酸、塩化第二錫、塩化亜鉛、塩化第二鉄等、その他酸性を示す有機、無機酸塩類、等のノボラック樹脂製造用に通常使用される酸性触媒などが挙げられる。
用いうる塩基性触媒の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウム-tert-ブトキシド等のアルカリ金属アルコキシド、マグネシウムメトキシド、マグネシウムエトキシド等のアルカリ土類金属アルコキシド等が挙げられる。
またアミン系の触媒を使用することもでき、トリエチルアミン、エタノールアミン、ピリジン、ピペリジン、モルホリン等が挙げられる。特にアミン系の触媒を使用する場合は溶媒として兼用することもできる。
これら触媒は、前述に挙げた物に限定されるものではなく、単独でも2種以上を併用してもよい。触媒の使用量は、ナフトールとクレゾールの総量に対し、通常0.005~2.0倍モル、好ましくは0.01~1.1倍モルの範囲である。なお、触媒を溶媒として使用する場合は、ナフトールとクレゾールの総量に対し、30~200重量%程度添加することが好ましい。 As the catalyst, either acidic or basic catalysts can be used.
Specific examples of acidic catalysts that can be used include mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as oxalic acid, toluenesulfonic acid and acetic acid; heteropolyacids such as tungstic acid, activated clays, inorganic acids, stannic chloride , Zinc chloride, ferric chloride, and other acidic catalysts such as organic and inorganic acid salts that are usually used for producing novolak resins.
Specific examples of basic catalysts that can be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, sodium methoxide. Alkali metal alkoxides such as sodium ethoxide, potassium methoxide, potassium ethoxide and potassium tert-butoxide, and alkaline earth metal alkoxides such as magnesium methoxide and magnesium ethoxide.
An amine-based catalyst can also be used, and examples thereof include triethylamine, ethanolamine, pyridine, piperidine, morpholine and the like. In particular, when an amine-based catalyst is used, it can also be used as a solvent.
These catalysts are not limited to those mentioned above, and may be used alone or in combination of two or more. The amount of the catalyst used is usually in the range of 0.005 to 2.0 times mol, preferably 0.01 to 1.1 times mol, based on the total amount of naphthol and cresol. When the catalyst is used as a solvent, it is preferable to add about 30 to 200% by weight based on the total amount of naphthol and cresol.
このように、ナフトールとクレゾールとホルムアルデヒドを反応させて得られるナフトール-クレゾールノボラック型フェノール樹脂は、ランダム重合により得られているため、ナフタレン骨格とフェノール骨格がランダムに配列している。
Thus, since the naphthol-cresol novolak type phenol resin obtained by reacting naphthol, cresol and formaldehyde is obtained by random polymerization, the naphthalene skeleton and the phenol skeleton are randomly arranged.
本発明においてはナフトールとしてはβ-ナフトールとα-ナフトールを併用し、クレゾールとしてはオルソクレゾール、メタクレゾール、パラクレゾール、もしくはいずれか2つ以上の混合体を用いることができる。
ここで、反応に用いるナフトール中、αナフトールの比率が1~10重量%である。
反応に使用するナフトールとクレゾールの重量比率は好ましくは65:35~85:15であり、より好ましくは62:38~80:20、特に好ましくは62:38~76:24である。一方、高耐熱と低吸水の特性を出すのに好ましい比率は、71:29~85:15である。ナフトール量が62重量%以上であれば、目的とする高耐熱と低吸湿の特性を出すのが容易になり好ましく、ナフトール量が85重量%以下であれば反応の制御が容易となり、残留するナフトールが少なくなり好ましい。ナフトールの残留は臭気、毒性、また硬化物の耐熱性の問題から好ましくない。 In the present invention, β-naphthol and α-naphthol can be used together as naphthol, and orthocresol, metacresol, paracresol, or a mixture of any two or more can be used as cresol.
Here, in the naphthol used in the reaction, the ratio of α-naphthol is 1 to 10% by weight.
The weight ratio of naphthol and cresol used in the reaction is preferably 65:35 to 85:15, more preferably 62:38 to 80:20, and particularly preferably 62:38 to 76:24. On the other hand, a preferable ratio for obtaining the characteristics of high heat resistance and low water absorption is 71:29 to 85:15. If the amount of naphthol is 62% by weight or more, the desired high heat resistance and low moisture absorption characteristics can be easily obtained, and if the amount of naphthol is 85% by weight or less, the reaction can be easily controlled and residual naphthol Is preferable. Residual naphthol is not preferable because of odor, toxicity, and heat resistance of the cured product.
ここで、反応に用いるナフトール中、αナフトールの比率が1~10重量%である。
反応に使用するナフトールとクレゾールの重量比率は好ましくは65:35~85:15であり、より好ましくは62:38~80:20、特に好ましくは62:38~76:24である。一方、高耐熱と低吸水の特性を出すのに好ましい比率は、71:29~85:15である。ナフトール量が62重量%以上であれば、目的とする高耐熱と低吸湿の特性を出すのが容易になり好ましく、ナフトール量が85重量%以下であれば反応の制御が容易となり、残留するナフトールが少なくなり好ましい。ナフトールの残留は臭気、毒性、また硬化物の耐熱性の問題から好ましくない。 In the present invention, β-naphthol and α-naphthol can be used together as naphthol, and orthocresol, metacresol, paracresol, or a mixture of any two or more can be used as cresol.
Here, in the naphthol used in the reaction, the ratio of α-naphthol is 1 to 10% by weight.
The weight ratio of naphthol and cresol used in the reaction is preferably 65:35 to 85:15, more preferably 62:38 to 80:20, and particularly preferably 62:38 to 76:24. On the other hand, a preferable ratio for obtaining the characteristics of high heat resistance and low water absorption is 71:29 to 85:15. If the amount of naphthol is 62% by weight or more, the desired high heat resistance and low moisture absorption characteristics can be easily obtained, and if the amount of naphthol is 85% by weight or less, the reaction can be easily controlled and residual naphthol Is preferable. Residual naphthol is not preferable because of odor, toxicity, and heat resistance of the cured product.
さらに本発明においては、ナフトールとクレゾールをアルデヒドで反応させる際のナフトール中、β-ナフトールとα-ナフトールの比率はナフトールの総量に対し、α-ナフトールの比率が1~10重量%使用する。α-ナフトールが1重量%未満の場合、耐熱性が上がらず、α-ナフトールが10重量%を超えると、反応の制御が難しくなり、残存のナフトール量が増加する。またいったんナフトールもしくはクレゾールのメチロール化を行った後に縮合させることで分子量制御し、残留ナフトールを減少させる手法もあるが、製造が煩雑であり、生産性が悪く好ましくないばかりか、分布が少ないために耐熱性が足りない。
なお、この際のNCNは軟化点が100~150℃であることが好ましい。本骨格の特徴はその分子量の大きさにあり、軟化点が100℃以上の分子のつながりがあると目的とする耐熱性を出すことが容易となる。また、軟化点150℃以下であると取り扱いが容易となり、残留するナフトールを減らすのが容易となるため、好ましい。なお、ナフトールの残留は使用者の安全上好ましくない。本発明においては少なくとも1%以下であることが重要である。 Further, in the present invention, the ratio of β-naphthol and α-naphthol in naphthol when naphthol and cresol are reacted with aldehyde is 1 to 10% by weight of α-naphthol based on the total amount of naphthol. When α-naphthol is less than 1% by weight, the heat resistance does not increase. When α-naphthol exceeds 10% by weight, the reaction becomes difficult to control and the amount of residual naphthol increases. There is also a technique to control the molecular weight by condensing after methylolation of naphthol or cresol, and reducing the residual naphthol, but the production is cumbersome, the productivity is bad and not preferable, because the distribution is small Insufficient heat resistance.
In this case, the NCN preferably has a softening point of 100 to 150 ° C. The feature of this skeleton is the size of its molecular weight. If there is a chain of molecules having a softening point of 100 ° C. or higher, the desired heat resistance can be easily obtained. In addition, a softening point of 150 ° C. or lower is preferable because handling becomes easy and it is easy to reduce residual naphthol. It should be noted that naphthol residue is not preferable for the safety of the user. In the present invention, it is important that it is at least 1% or less.
なお、この際のNCNは軟化点が100~150℃であることが好ましい。本骨格の特徴はその分子量の大きさにあり、軟化点が100℃以上の分子のつながりがあると目的とする耐熱性を出すことが容易となる。また、軟化点150℃以下であると取り扱いが容易となり、残留するナフトールを減らすのが容易となるため、好ましい。なお、ナフトールの残留は使用者の安全上好ましくない。本発明においては少なくとも1%以下であることが重要である。 Further, in the present invention, the ratio of β-naphthol and α-naphthol in naphthol when naphthol and cresol are reacted with aldehyde is 1 to 10% by weight of α-naphthol based on the total amount of naphthol. When α-naphthol is less than 1% by weight, the heat resistance does not increase. When α-naphthol exceeds 10% by weight, the reaction becomes difficult to control and the amount of residual naphthol increases. There is also a technique to control the molecular weight by condensing after methylolation of naphthol or cresol, and reducing the residual naphthol, but the production is cumbersome, the productivity is bad and not preferable, because the distribution is small Insufficient heat resistance.
In this case, the NCN preferably has a softening point of 100 to 150 ° C. The feature of this skeleton is the size of its molecular weight. If there is a chain of molecules having a softening point of 100 ° C. or higher, the desired heat resistance can be easily obtained. In addition, a softening point of 150 ° C. or lower is preferable because handling becomes easy and it is easy to reduce residual naphthol. It should be noted that naphthol residue is not preferable for the safety of the user. In the present invention, it is important that it is at least 1% or less.
上記NCNをグリシジル化することにより、本発明のエポキシ樹脂が得られる。
上記NCNをグリシジル化するためには、上記NCNとエピハロヒドリンとを反応させることが好ましい。
NCNとエピハロヒドリンとの反応において使用するエピハロヒドリンとしては、エピクロルヒドリン、α-メチルエピクロルヒドリン、γ-メチルエピクロルヒドリン、エピブロモヒドリン等が挙げられ、本発明においては、工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は、NCNの水酸基1モルに対し通常3.0~10モルであり、好ましくは3.5~8モルである。 The epoxy resin of the present invention is obtained by glycidylating the NCN.
In order to glycidylate the NCN, the NCN and epihalohydrin are preferably reacted.
Examples of the epihalohydrin used in the reaction of NCN and epihalohydrin include epichlorohydrin, α-methylepichlorohydrin, γ-methylepichlorohydrin, epibromohydrin, and the like. In the present invention, epichlorohydrin which is easily available industrially is preferable. The amount of epihalohydrin used is usually 3.0 to 10 moles, preferably 3.5 to 8 moles per mole of NCN hydroxyl group.
上記NCNをグリシジル化するためには、上記NCNとエピハロヒドリンとを反応させることが好ましい。
NCNとエピハロヒドリンとの反応において使用するエピハロヒドリンとしては、エピクロルヒドリン、α-メチルエピクロルヒドリン、γ-メチルエピクロルヒドリン、エピブロモヒドリン等が挙げられ、本発明においては、工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は、NCNの水酸基1モルに対し通常3.0~10モルであり、好ましくは3.5~8モルである。 The epoxy resin of the present invention is obtained by glycidylating the NCN.
In order to glycidylate the NCN, the NCN and epihalohydrin are preferably reacted.
Examples of the epihalohydrin used in the reaction of NCN and epihalohydrin include epichlorohydrin, α-methylepichlorohydrin, γ-methylepichlorohydrin, epibromohydrin, and the like. In the present invention, epichlorohydrin which is easily available industrially is preferable. The amount of epihalohydrin used is usually 3.0 to 10 moles, preferably 3.5 to 8 moles per mole of NCN hydroxyl group.
上記エポキシ化反応においては、アルカリ金属水酸化物を使用することが好ましい。該アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。なお、アルカリ金属水酸化物を、固形物として利用してもよいし、その水溶液として利用してもよい。例えば、アルカリ金属水酸化物を水溶液として使用する場合においては、アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に、減圧下又は常圧下で連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法によりエポキシ化反応を行うことができる。また固形を使用する場合、その取り扱いやすさ、溶解性等の問題からフレーク状の物を使用することが好ましい。アルカリ金属水酸化物の使用量は、NCNの水酸基1モルに対して通常0.90~1.5モルであり、好ましくは0.95~1.25モルであり、より好ましくは0.99~1.15モルである。
In the epoxidation reaction, it is preferable to use an alkali metal hydroxide. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. The alkali metal hydroxide may be used as a solid or an aqueous solution thereof. For example, when alkali metal hydroxide is used as an aqueous solution, an aqueous solution of alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled under reduced pressure or normal pressure. Then, liquid separation is performed to remove water, and the epoxidation reaction can be carried out by continuously returning the epihalohydrin to the reaction system. Moreover, when using solid, it is preferable to use a flaky thing from problems, such as the ease of handling and solubility. The amount of the alkali metal hydroxide used is usually 0.90 to 1.5 mol, preferably 0.95 to 1.25 mol, more preferably 0.99 to 1 mol with respect to 1 mol of the hydroxyl group of NCN. 1.15 moles.
上記エポキシ化反応においては、反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加することが好ましい。4級アンモニウム塩の使用量は、NCNの水酸基1モルに対し通常0.1~15gであり、好ましくは0.2~10gである。
In the epoxidation reaction, it is preferable to add a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst in order to accelerate the reaction. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, based on 1 mol of the hydroxyl group of NCN.
上記エポキシ化反応においては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。
上記アルコール類を使用する場合、その使用量は、エピハロヒドリンの使用量に対し通常2~50質量%であり、好ましくは4~20質量%である。一方、上記非プロトン性極性溶媒を用いる場合、その使用量は、エピハロヒドリンの使用量に対し通常5~100質量%であり、好ましくは10~80質量%である。 In the epoxidation reaction, it is preferable to carry out the reaction by adding an alcohol such as methanol, ethanol or isopropyl alcohol, an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran or dioxane.
When the above alcohols are used, the amount used is usually 2 to 50% by mass, preferably 4 to 20% by mass, based on the amount of epihalohydrin used. On the other hand, when the aprotic polar solvent is used, the amount used is usually 5 to 100% by mass, preferably 10 to 80% by mass, based on the amount of epihalohydrin used.
上記アルコール類を使用する場合、その使用量は、エピハロヒドリンの使用量に対し通常2~50質量%であり、好ましくは4~20質量%である。一方、上記非プロトン性極性溶媒を用いる場合、その使用量は、エピハロヒドリンの使用量に対し通常5~100質量%であり、好ましくは10~80質量%である。 In the epoxidation reaction, it is preferable to carry out the reaction by adding an alcohol such as methanol, ethanol or isopropyl alcohol, an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran or dioxane.
When the above alcohols are used, the amount used is usually 2 to 50% by mass, preferably 4 to 20% by mass, based on the amount of epihalohydrin used. On the other hand, when the aprotic polar solvent is used, the amount used is usually 5 to 100% by mass, preferably 10 to 80% by mass, based on the amount of epihalohydrin used.
上記エポキシ化反応において、反応温度は通常30~90℃であり、好ましくは35~80℃である。一方、反応時間は通常0.5~10時間であり、好ましくは1~8時間である。これらのエポキシ化反応の反応物は、水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去することにより精製され得る。また、更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収した反応物をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて、副生成物の閉環反応を行い、副生成物であるハロヒドリンの閉環を確実なものにすることもできる。
この場合、アルカリ金属水酸化物の使用量は、エポキシ化に使用したNCNの水酸基1モルに対して通常0.01~0.3モルであり、好ましくは0.05~0.2モルである。また、反応温度は通常50~120℃であり、反応時間は通常0.5~2時間である。 In the epoxidation reaction, the reaction temperature is usually 30 to 90 ° C., preferably 35 to 80 ° C. On the other hand, the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours. The reaction product of these epoxidation reactions can be purified by removing epihalohydrin, a solvent, or the like under heating and reduced pressure after washing with water or without washing with water. In addition, in order to make an epoxy resin with less hydrolyzable halogen, the recovered reaction product is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is prepared. In addition, a ring closure reaction of the by-product can be performed to ensure the ring closure of the by-product halohydrin.
In this case, the amount of the alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of NCN used for epoxidation. . The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
この場合、アルカリ金属水酸化物の使用量は、エポキシ化に使用したNCNの水酸基1モルに対して通常0.01~0.3モルであり、好ましくは0.05~0.2モルである。また、反応温度は通常50~120℃であり、反応時間は通常0.5~2時間である。 In the epoxidation reaction, the reaction temperature is usually 30 to 90 ° C., preferably 35 to 80 ° C. On the other hand, the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours. The reaction product of these epoxidation reactions can be purified by removing epihalohydrin, a solvent, or the like under heating and reduced pressure after washing with water or without washing with water. In addition, in order to make an epoxy resin with less hydrolyzable halogen, the recovered reaction product is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is prepared. In addition, a ring closure reaction of the by-product can be performed to ensure the ring closure of the by-product halohydrin.
In this case, the amount of the alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, relative to 1 mol of the hydroxyl group of NCN used for epoxidation. . The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.
上記エポキシ化反応においては、反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下、溶剤を留去することにより本発明のエポキシ樹脂を得ることができる。
In the epoxidation reaction, after the completion of the reaction, the produced salt is removed by filtration, washing with water, and the like, and the solvent is distilled off under reduced pressure by heating to obtain the epoxy resin of the present invention.
このようにして得られるエポキシ樹脂は以下のような条件を満たすことが好ましい。軟化点は80~100℃が好ましく、より好ましくは85~100℃、特に好ましくは85~97℃である。好ましい軟化点を得るには、反応に使用するナフトール、クレゾール、ホルマリン(もしくはその合成等価体)の重量比によって調整でき、ナフトール及びクレゾールは前記好ましい範囲を適用することで実現可能であり、ホルマリンの量はフェノール性水酸基1当量につき0.5~1.1モル、より好ましくは0.60~1.1モルを添加することで得ることができる。尚、ホルマリンは一括で添加しても、分割で添加しても構わない。
そして、エポキシ当量は200~300g/eq.が好ましく、より好ましくは210g/eq.~260g/eq.である。エポキシ当量は、反応に使用するエピハロヒドリンの量、原料のナフトール、クレゾールの量、分子量で調整され、好ましいエポキシ当量を有する本発明のエポキシ樹脂は、分子量は前記軟化点の調整に記載の手法と同じ手法を採用し、エピハロヒドリン量は前記の好ましい量を適用することで得ることができる。
また13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量が60:40~80:20であることが好ましい。74-76ppm、68~71ppmのピークというのはそれぞれナフトール、クレゾール構造に結合したグリシジル基のオキシラン構造が結合したメチレン部位のピークに相当する。 The epoxy resin thus obtained preferably satisfies the following conditions. The softening point is preferably from 80 to 100 ° C, more preferably from 85 to 100 ° C, particularly preferably from 85 to 97 ° C. In order to obtain a preferable softening point, it can be adjusted by the weight ratio of naphthol, cresol, formalin (or a synthetic equivalent thereof) used in the reaction, and naphthol and cresol can be realized by applying the above preferred range. The amount can be obtained by adding 0.5 to 1.1 mol, more preferably 0.60 to 1.1 mol, per equivalent of phenolic hydroxyl group. Formalin may be added all at once or dividedly.
The epoxy equivalent is 200 to 300 g / eq. Is more preferable, and 210 g / eq. ~ 260 g / eq. It is. The epoxy equivalent is adjusted by the amount of epihalohydrin used in the reaction, the amount of raw material naphthol and cresol, and the molecular weight, and the epoxy resin of the present invention having a preferable epoxy equivalent has the same molecular weight as the method described in the adjustment of the softening point. Employing a technique, the amount of epihalohydrin can be obtained by applying the above preferred amount.
Further, in 13 C-NMR, the total amount of peak areas of 74 to 76 ppm and the total amount of peak areas of 68 to 71 ppm are preferably 60:40 to 80:20. The peaks at 74-76 ppm and 68-71 ppm correspond to the peaks at the methylene site where the oxirane structure of the glycidyl group bonded to the naphthol and cresol structures is bonded, respectively.
そして、エポキシ当量は200~300g/eq.が好ましく、より好ましくは210g/eq.~260g/eq.である。エポキシ当量は、反応に使用するエピハロヒドリンの量、原料のナフトール、クレゾールの量、分子量で調整され、好ましいエポキシ当量を有する本発明のエポキシ樹脂は、分子量は前記軟化点の調整に記載の手法と同じ手法を採用し、エピハロヒドリン量は前記の好ましい量を適用することで得ることができる。
また13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量が60:40~80:20であることが好ましい。74-76ppm、68~71ppmのピークというのはそれぞれナフトール、クレゾール構造に結合したグリシジル基のオキシラン構造が結合したメチレン部位のピークに相当する。 The epoxy resin thus obtained preferably satisfies the following conditions. The softening point is preferably from 80 to 100 ° C, more preferably from 85 to 100 ° C, particularly preferably from 85 to 97 ° C. In order to obtain a preferable softening point, it can be adjusted by the weight ratio of naphthol, cresol, formalin (or a synthetic equivalent thereof) used in the reaction, and naphthol and cresol can be realized by applying the above preferred range. The amount can be obtained by adding 0.5 to 1.1 mol, more preferably 0.60 to 1.1 mol, per equivalent of phenolic hydroxyl group. Formalin may be added all at once or dividedly.
The epoxy equivalent is 200 to 300 g / eq. Is more preferable, and 210 g / eq. ~ 260 g / eq. It is. The epoxy equivalent is adjusted by the amount of epihalohydrin used in the reaction, the amount of raw material naphthol and cresol, and the molecular weight, and the epoxy resin of the present invention having a preferable epoxy equivalent has the same molecular weight as the method described in the adjustment of the softening point. Employing a technique, the amount of epihalohydrin can be obtained by applying the above preferred amount.
Further, in 13 C-NMR, the total amount of peak areas of 74 to 76 ppm and the total amount of peak areas of 68 to 71 ppm are preferably 60:40 to 80:20. The peaks at 74-76 ppm and 68-71 ppm correspond to the peaks at the methylene site where the oxirane structure of the glycidyl group bonded to the naphthol and cresol structures is bonded, respectively.
さらに、本発明のエポキシ樹脂の平均分子量は、下記の条件を満たすものが好適である。
数平均分子量は500~1000が好ましく、より好ましくは500~800である。また、重量平均分子量は600~2000が好ましく、より好ましくは600~1700である。好ましい平均分子量を有する本発明のエポキシ樹脂を得るためには、反応に使用するナフトール、クレゾール、ホルマリン(もしくはその合成等価体)の重量比によって調整でき、ナフトール、クレゾールに対するホルマリンの量が少なければ、分子量を大きくすることができ、またエピハロヒドリンが少ない程分子量を大きくすることができる。
分子量が小さすぎると耐熱性が出ず、分子量が大きすぎると粘度が高すぎるため取扱いが困難となり、また溶剤への溶解性も乏しくなるため好ましくない。 Furthermore, the average molecular weight of the epoxy resin of the present invention preferably satisfies the following conditions.
The number average molecular weight is preferably from 500 to 1,000, more preferably from 500 to 800. Further, the weight average molecular weight is preferably 600 to 2000, more preferably 600 to 1700. In order to obtain an epoxy resin of the present invention having a preferred average molecular weight, it can be adjusted by the weight ratio of naphthol, cresol, formalin (or a synthetic equivalent thereof) used in the reaction, and if the amount of formalin relative to naphthol, cresol is small, The molecular weight can be increased, and the molecular weight can be increased as the amount of epihalohydrin decreases.
If the molecular weight is too small, heat resistance will not be achieved, and if the molecular weight is too large, the viscosity will be too high and handling will be difficult, and the solubility in the solvent will be poor, which is not preferable.
数平均分子量は500~1000が好ましく、より好ましくは500~800である。また、重量平均分子量は600~2000が好ましく、より好ましくは600~1700である。好ましい平均分子量を有する本発明のエポキシ樹脂を得るためには、反応に使用するナフトール、クレゾール、ホルマリン(もしくはその合成等価体)の重量比によって調整でき、ナフトール、クレゾールに対するホルマリンの量が少なければ、分子量を大きくすることができ、またエピハロヒドリンが少ない程分子量を大きくすることができる。
分子量が小さすぎると耐熱性が出ず、分子量が大きすぎると粘度が高すぎるため取扱いが困難となり、また溶剤への溶解性も乏しくなるため好ましくない。 Furthermore, the average molecular weight of the epoxy resin of the present invention preferably satisfies the following conditions.
The number average molecular weight is preferably from 500 to 1,000, more preferably from 500 to 800. Further, the weight average molecular weight is preferably 600 to 2000, more preferably 600 to 1700. In order to obtain an epoxy resin of the present invention having a preferred average molecular weight, it can be adjusted by the weight ratio of naphthol, cresol, formalin (or a synthetic equivalent thereof) used in the reaction, and if the amount of formalin relative to naphthol, cresol is small, The molecular weight can be increased, and the molecular weight can be increased as the amount of epihalohydrin decreases.
If the molecular weight is too small, heat resistance will not be achieved, and if the molecular weight is too large, the viscosity will be too high and handling will be difficult, and the solubility in the solvent will be poor, which is not preferable.
また本発明においては分子量分布が重要となる。分子量分布が狭すぎる場合、十分な耐熱性の向上、吸水率の低下は望めない。このことは、熱硬化の段階で架橋させる際の架橋密度による耐熱性の向上は、架橋時に水酸基を出すことから吸水率の上昇に影響する。本発明においては、母骨格におけるメチレン鎖での結合を多くすることで耐熱性だけでなく吸水率の低下も同時に達成できている。
具体的な分子量分布としては(重量平均分子量 Mw)/(数平均分子量 Mn)が1.4以上であることが好ましい。またあまりに分子量分布が広すぎる場合、粘度が高くなりすぎるなど課題が生じるため、その最大値は2.5であることが好ましい。
分子量分布はナフトール、クレゾール、ホルマリン(もしくはその合成等価体)の重量比、および、反応に使用するエピハロヒドリンの量で調整することができる。具体的には、ナフトール比率が多いほど分子量分布を狭くしやすく、またホルマリンの添加を分割で添加することでより狭くすることができる。またエピハロヒドリンの量を少なくすることで分子量分布を広くすることができ、逆に多くすることで分子量分布を狭くできる。また、NCN製造時、80~150℃で、メチレン結合をいったん切断し、再度結合させる再配列反応を行うことでより分子量分布を広くすることもできる。また、再配列においてはフェノール性水酸基1当量につき0.005~0.1当量のホルマリン(もしくはその合成等価体)を添加することが好ましい。 In the present invention, the molecular weight distribution is important. If the molecular weight distribution is too narrow, sufficient heat resistance cannot be improved and water absorption cannot be reduced. This means that the improvement in heat resistance due to the crosslinking density at the time of crosslinking at the stage of thermosetting affects the increase in water absorption rate because a hydroxyl group is released at the time of crosslinking. In the present invention, not only heat resistance but also a reduction in water absorption can be achieved at the same time by increasing the number of bonds at the methylene chain in the mother skeleton.
As a specific molecular weight distribution, (weight average molecular weight Mw) / (number average molecular weight Mn) is preferably 1.4 or more. In addition, when the molecular weight distribution is too wide, problems such as an excessively high viscosity occur, so the maximum value is preferably 2.5.
The molecular weight distribution can be adjusted by the weight ratio of naphthol, cresol, formalin (or its synthetic equivalent) and the amount of epihalohydrin used in the reaction. Specifically, the molecular weight distribution is easily narrowed as the naphthol ratio increases, and can be narrowed by adding formalin in divided portions. Further, the molecular weight distribution can be widened by reducing the amount of epihalohydrin, and conversely, the molecular weight distribution can be narrowed by increasing the amount. Further, at the time of NCN production, the molecular weight distribution can be broadened by performing a rearrangement reaction in which methylene bonds are once broken and re-bonded at 80 to 150 ° C. In rearrangement, 0.005 to 0.1 equivalent of formalin (or a synthetic equivalent thereof) is preferably added per equivalent of phenolic hydroxyl group.
具体的な分子量分布としては(重量平均分子量 Mw)/(数平均分子量 Mn)が1.4以上であることが好ましい。またあまりに分子量分布が広すぎる場合、粘度が高くなりすぎるなど課題が生じるため、その最大値は2.5であることが好ましい。
分子量分布はナフトール、クレゾール、ホルマリン(もしくはその合成等価体)の重量比、および、反応に使用するエピハロヒドリンの量で調整することができる。具体的には、ナフトール比率が多いほど分子量分布を狭くしやすく、またホルマリンの添加を分割で添加することでより狭くすることができる。またエピハロヒドリンの量を少なくすることで分子量分布を広くすることができ、逆に多くすることで分子量分布を狭くできる。また、NCN製造時、80~150℃で、メチレン結合をいったん切断し、再度結合させる再配列反応を行うことでより分子量分布を広くすることもできる。また、再配列においてはフェノール性水酸基1当量につき0.005~0.1当量のホルマリン(もしくはその合成等価体)を添加することが好ましい。 In the present invention, the molecular weight distribution is important. If the molecular weight distribution is too narrow, sufficient heat resistance cannot be improved and water absorption cannot be reduced. This means that the improvement in heat resistance due to the crosslinking density at the time of crosslinking at the stage of thermosetting affects the increase in water absorption rate because a hydroxyl group is released at the time of crosslinking. In the present invention, not only heat resistance but also a reduction in water absorption can be achieved at the same time by increasing the number of bonds at the methylene chain in the mother skeleton.
As a specific molecular weight distribution, (weight average molecular weight Mw) / (number average molecular weight Mn) is preferably 1.4 or more. In addition, when the molecular weight distribution is too wide, problems such as an excessively high viscosity occur, so the maximum value is preferably 2.5.
The molecular weight distribution can be adjusted by the weight ratio of naphthol, cresol, formalin (or its synthetic equivalent) and the amount of epihalohydrin used in the reaction. Specifically, the molecular weight distribution is easily narrowed as the naphthol ratio increases, and can be narrowed by adding formalin in divided portions. Further, the molecular weight distribution can be widened by reducing the amount of epihalohydrin, and conversely, the molecular weight distribution can be narrowed by increasing the amount. Further, at the time of NCN production, the molecular weight distribution can be broadened by performing a rearrangement reaction in which methylene bonds are once broken and re-bonded at 80 to 150 ° C. In rearrangement, 0.005 to 0.1 equivalent of formalin (or a synthetic equivalent thereof) is preferably added per equivalent of phenolic hydroxyl group.
次に、本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物において、全エポキシ樹脂中、本発明のエポキシ樹脂の割合は50重量%以上が好ましく、より好ましくは70重量%以上、特に好ましくは80重量%以上である。
前記他のエポキシ樹脂としては代表的なものとしてノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。 Next, the epoxy resin composition of the present invention will be described.
In the epoxy resin composition of the present invention, the proportion of the epoxy resin of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more in the total epoxy resin.
Representative examples of the other epoxy resins include novolak type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
本発明のエポキシ樹脂組成物において、全エポキシ樹脂中、本発明のエポキシ樹脂の割合は50重量%以上が好ましく、より好ましくは70重量%以上、特に好ましくは80重量%以上である。
前記他のエポキシ樹脂としては代表的なものとしてノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。 Next, the epoxy resin composition of the present invention will be described.
In the epoxy resin composition of the present invention, the proportion of the epoxy resin of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more in the total epoxy resin.
Representative examples of the other epoxy resins include novolak type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)またはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) or phenols (phenol, alkyl-substituted phenol, aromatic substitution). Phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, croton Polycondensates with aldehydes, cinnamaldehyde, etc.]; phenols and various dieneizations Polymers of products (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.); the phenols and ketones (acetone, Polycondensates of methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc .; polycondensates of the phenols with aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.); the phenols and aromatic dichloromethyl Polycondensates (α, α'-dichloroxylene, bischloromethylbiphenyl, etc.); phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl) Glycidyl ether epoxy resin, alicyclic epoxy resin, glycidylamine epoxy resin obtained by glycidylation of polycondensates of the above bisphenols and various aldehydes or alcohols, etc., Examples thereof include glycidyl ester-based epoxy resins, but are not limited thereto as long as they are usually used epoxy resins. These may be used alone or in combination of two or more.
本発明のエポキシ樹脂組成物が含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン等のアミン系化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂等のアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンや、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、フルフラールとの重縮合物であるノボラック樹脂や、フェノールまたはクレゾールとフェニレンジメチロール体、ジメトキシメチル体もしくはハロゲン化メチル体との反応物または、フェノールまたはクレゾールとビスクロロメチルビフェニル、ビスメトキシメチルビフェニルもしくはビスヒドロキシメチルビフェニルとの反応物または、フェノールとベンゼンジイソプロパノール、ベンゼンジイソプロパノールジメチルエーテルもしくはベンゼンビス(クロロイソプロパン)との反応物であるフェノールアラルキル樹脂及びこれらの変性物や、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類や、テルペンとフェノール類の縮合物等のフェノール系化合物、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
本発明においては、耐熱性、耐薬品性、電気信頼性の面から、フェノール系化合物を硬化剤とすることが好ましく、特に難燃性から、ノボラック樹脂、中でもフェノールノボラック樹脂またはクレゾールノボラック樹脂や、フェノールアラルキル樹脂が好ましい。また本発明においては、その軟化点が50~100℃の硬化剤を用いることが好ましい。軟化点が低い方が流動性及び難燃性は向上する傾向があるが、耐熱性を上げるには軟化点が高いもの使用することが好ましい。 Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of curing agents that can be used include amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, and isophoronediamine; amides such as polyamide resins synthesized from dimers of dicyandiamide and linolenic acid and ethylenediamine Compounds: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc. Acid anhydride compounds; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-te Tramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Ethane and phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxy Novolac resin that is a polycondensate of acetophenone and furfural, phenol or cresol and phenylene dimethylol, dimethoxymethyl, or methyl halide Or a reaction product of phenol or cresol with bischloromethylbiphenyl, bismethoxymethylbiphenyl or bishydroxymethylbiphenyl, or phenol with benzenediisopropanol, benzenediisopropanoldimethylether or benzenebis (chloroisopropane) Phenol-based aralkyl resins and their modified products, halogenated bisphenols such as tetrabromobisphenol A, phenolic compounds such as terpene and phenol condensates, imidazoles, trifluoroborane-amine complexes, guanidine derivatives However, it is not limited to these. These may be used alone or in combination of two or more.
In the present invention, from the viewpoint of heat resistance, chemical resistance, and electrical reliability, it is preferable to use a phenolic compound as a curing agent, and particularly from a flame retardancy, a novolak resin, particularly a phenol novolak resin or a cresol novolak resin, Phenol aralkyl resins are preferred. In the present invention, a curing agent having a softening point of 50 to 100 ° C. is preferably used. A lower softening point tends to improve fluidity and flame retardancy, but it is preferable to use a higher softening point in order to increase heat resistance.
本発明においては、耐熱性、耐薬品性、電気信頼性の面から、フェノール系化合物を硬化剤とすることが好ましく、特に難燃性から、ノボラック樹脂、中でもフェノールノボラック樹脂またはクレゾールノボラック樹脂や、フェノールアラルキル樹脂が好ましい。また本発明においては、その軟化点が50~100℃の硬化剤を用いることが好ましい。軟化点が低い方が流動性及び難燃性は向上する傾向があるが、耐熱性を上げるには軟化点が高いもの使用することが好ましい。 Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds. Specific examples of curing agents that can be used include amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, and isophoronediamine; amides such as polyamide resins synthesized from dimers of dicyandiamide and linolenic acid and ethylenediamine Compounds: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc. Acid anhydride compounds; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-te Tramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Ethane and phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxy Novolac resin that is a polycondensate of acetophenone and furfural, phenol or cresol and phenylene dimethylol, dimethoxymethyl, or methyl halide Or a reaction product of phenol or cresol with bischloromethylbiphenyl, bismethoxymethylbiphenyl or bishydroxymethylbiphenyl, or phenol with benzenediisopropanol, benzenediisopropanoldimethylether or benzenebis (chloroisopropane) Phenol-based aralkyl resins and their modified products, halogenated bisphenols such as tetrabromobisphenol A, phenolic compounds such as terpene and phenol condensates, imidazoles, trifluoroborane-amine complexes, guanidine derivatives However, it is not limited to these. These may be used alone or in combination of two or more.
In the present invention, from the viewpoint of heat resistance, chemical resistance, and electrical reliability, it is preferable to use a phenolic compound as a curing agent, and particularly from a flame retardancy, a novolak resin, particularly a phenol novolak resin or a cresol novolak resin, Phenol aralkyl resins are preferred. In the present invention, a curing agent having a softening point of 50 to 100 ° C. is preferably used. A lower softening point tends to improve fluidity and flame retardancy, but it is preferable to use a higher softening point in order to increase heat resistance.
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.8~1.1当量が好ましい。エポキシ基1当量に対して、0.8当量以上、あるいは1.1当量以下であれば、いずれも硬化が完全となり良好な硬化物性が得られ、好ましい。また本発明においてエポキシ樹脂と硬化剤の好ましい組み合わせとしては軟化点45~70℃(より好ましくは50~65℃)のエポキシ樹脂と軟化点50~100℃(好ましくは55~85℃)の硬化剤である。流動性、難燃性、耐熱性の面でバランスの取れた特性を有する樹脂組成物となる。
In the epoxy resin composition of the present invention, the amount of curing agent used is preferably 0.8 to 1.1 equivalents relative to 1 equivalent of epoxy group of the epoxy resin. If it is 0.8 equivalent or more, or 1.1 equivalent or less with respect to 1 equivalent of epoxy groups, hardening will become perfect and favorable hardened | cured material property will be obtained, and it is preferable. In the present invention, a preferable combination of an epoxy resin and a curing agent is an epoxy resin having a softening point of 45 to 70 ° C. (more preferably 50 to 65 ° C.) and a curing agent having a softening point of 50 to 100 ° C. (preferably 55 to 85 ° C.). It is. A resin composition having balanced properties in terms of fluidity, flame retardancy, and heat resistance is obtained.
本発明のエポキシ樹脂組成物においては、硬化促進剤を含有させても差し支えない。使用できる硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は、エポキシ樹脂100重量部に対して0.1~5.0重量部が必要に応じ用いられる。
The epoxy resin composition of the present invention may contain a curing accelerator. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza- And tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate. The curing accelerator is used as necessary in an amount of 0.1 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル系化合物;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4'-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。
しかしながら、環境問題、および電気特性の懸念から前述のようなリン酸エステル系化合物の使用量はリン酸エステル系化合物/エポキシ樹脂≦0.1(重量比)が好ましい。さらに好ましくは0.05以下である。特に好ましくは硬化促進剤として添加する以外は、リン系化合物は添加しないことが良い。 The epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid ester compounds such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9- Phosphanes such as oxa-10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; activity of epoxy resin and said phosphanes Phosphorus obtained by reacting with hydrogen -Containing epoxy compounds, red phosphorus, and the like. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylyl) is preferable. Renyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
However, the amount of the phosphoric acid ester compound as described above is preferably phosphoric acid ester compound / epoxy resin ≦ 0.1 (weight ratio) due to environmental problems and concerns about electrical characteristics. More preferably, it is 0.05 or less. It is particularly preferable not to add a phosphorus compound except that it is added as a curing accelerator.
しかしながら、環境問題、および電気特性の懸念から前述のようなリン酸エステル系化合物の使用量はリン酸エステル系化合物/エポキシ樹脂≦0.1(重量比)が好ましい。さらに好ましくは0.05以下である。特に好ましくは硬化促進剤として添加する以外は、リン系化合物は添加しないことが良い。 The epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric acid ester compounds such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9- Phosphanes such as oxa-10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; activity of epoxy resin and said phosphanes Phosphorus obtained by reacting with hydrogen -Containing epoxy compounds, red phosphorus, and the like. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylyl) is preferable. Renyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
However, the amount of the phosphoric acid ester compound as described above is preferably phosphoric acid ester compound / epoxy resin ≦ 0.1 (weight ratio) due to environmental problems and concerns about electrical characteristics. More preferably, it is 0.05 or less. It is particularly preferable not to add a phosphorus compound except that it is added as a curing accelerator.
本発明のエポキシ樹脂組成物は無機充填剤を含有してもよい。無機充填剤としては溶融シリカ、結晶性シリカ、アルミナ、炭酸カルシウム、ケイ酸カルシウム、硫酸バリウム、タルク、クレー、酸化マグネシウム、酸化アルミニウム、酸化ベリリウム、酸化鉄、酸化チタン、窒化アルミニウム、窒化ケイ素、窒化ホウ素、マイカ、ガラス、石英、雲母などが挙げられる。さらに難燃効果を付与するため、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物を使用することも好ましい。ただし、これらに限定されない。また2種以上を混合して使用しても良い。これら無機充填剤のうち、溶融シリカや結晶性シリカなどのシリカ類はコストが安く、電気信頼性も良好なため好ましい。本発明のエポキシ樹脂組成物において、無機充填剤の使用量は内割りで通常60重量%~95重量%、好ましくは70重量%~95重量%、より好ましくは75重量%~90重量%の範囲である。60重量%以上であれば確実に難燃性の効果が得られ、95重量%以下であれば封止する半導体素子が銅系リードフレームに搭載されている場合に封止樹脂とフレームの線膨張率が確実に合い、ヒートショックなどの熱応力による不具合が発生し難い。
The epoxy resin composition of the present invention may contain an inorganic filler. Inorganic fillers include fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, beryllium oxide, iron oxide, titanium oxide, aluminum nitride, silicon nitride, and nitride Examples thereof include boron, mica, glass, quartz, and mica. Further, it is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide in order to impart a flame retardant effect. However, it is not limited to these. Two or more kinds may be mixed and used. Of these inorganic fillers, silicas such as fused silica and crystalline silica are preferred because of low cost and good electrical reliability. In the epoxy resin composition of the present invention, the amount of the inorganic filler used is usually 60% to 95% by weight, preferably 70% to 95% by weight, more preferably 75% to 90% by weight. It is. If it is 60% by weight or more, the flame retardant effect is surely obtained, and if it is 95% by weight or less, the linear expansion of the sealing resin and the frame occurs when the semiconductor element to be sealed is mounted on a copper-based lead frame. The rate is surely matched, and it is difficult for defects due to thermal stress such as heat shock to occur.
本発明のエポキシ樹脂組成物には成形時の金型との離型を良くするために離型剤を配合することができる。離型剤としては従来公知のものいずれも使用できるが、例えばカルナバワックス、モンタンワックスなどのエステル系ワックス、ステアリン酸、パルチミン酸などの脂肪酸およびこれらの金属塩、酸化ポリエチレン、非酸化ポリエチレンなどのポリオレフィン系ワックスなどが挙げられる。これらは単独で使用しても2種以上併用しても良い。これら離型剤の配合量は全有機成分に対して0.5~3重量%が好ましい。0.5重量%以上であれば金型からの離型が悪くなることがなく、3重量%以下であればリードフレームなどとの接着が悪くなることがない。
In the epoxy resin composition of the present invention, a release agent can be blended to improve the release from the mold during molding. Any conventionally known release agent can be used, for example, ester waxes such as carnauba wax and montan wax, fatty acids such as stearic acid and palmitic acid, and metal salts thereof, polyolefins such as polyethylene oxide and non-oxidized polyethylene And waxes. These may be used alone or in combination of two or more. The compounding amount of these release agents is preferably 0.5 to 3% by weight based on the total organic components. If it is 0.5% by weight or more, release from the mold does not deteriorate, and if it is 3% by weight or less, adhesion to a lead frame or the like does not deteriorate.
本発明のエポキシ樹脂組成物には無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混練しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混練しても良い。
In the epoxy resin composition of the present invention, a coupling agent can be blended in order to enhance the adhesion between the inorganic filler and the resin component. Any conventionally known coupling agent can be used. For example, vinyl alkoxy silane, epoxy alkoxy silane, styryl alkoxy silane, methacryloxy alkoxy silane, acryloxy alkoxy silane, amino alkoxy silane, mercapto alkoxy silane, isocyanate alkoxy Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more. The coupling agent may be added by treating the surface of the inorganic filler with the coupling agent in advance and then kneading with the resin, or mixing the coupling agent with the resin and then kneading the inorganic filler. .
更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにカーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤などが挙げられる。
Furthermore, a known additive can be blended in the epoxy resin composition of the present invention as necessary. Specific examples of additives that can be used include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, silicone gel, and silicone oil. And colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
本発明のエポキシ樹脂組成物は、各成分を均一に分散混合できる従来公知のいかなる手法を用いても製造することができる。例えば各成分を全て粉砕して粉砕化しヘンシェルミキサーなどで混合後、加熱ロールによる溶融混練、ニーダーによる溶融混練、特殊混合機による混合、あるいはこれら各方法の適切な組み合わせを用いることで調製される。また、本発明のエポキシ樹脂組成物を用いて、リードフレームなどに搭載された半導体素子を、トランスファー成形などにより樹脂封止することで半導体装置を製造することができる。
The epoxy resin composition of the present invention can be produced using any conventionally known technique capable of uniformly dispersing and mixing each component. For example, all the components are pulverized and pulverized, mixed with a Henschel mixer, etc., then melt kneaded with a heating roll, melt kneaded with a kneader, mixed with a special mixer, or an appropriate combination of these methods. Moreover, a semiconductor device can be manufactured by resin-sealing a semiconductor element mounted on a lead frame or the like by transfer molding or the like using the epoxy resin composition of the present invention.
半導体装置は前記の本発明のエポキシ樹脂組成物で封止されたもの等の本発明のエポキシ樹脂組成物の硬化物を有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。
The semiconductor device has a cured product of the epoxy resin composition of the present invention such as the one sealed with the epoxy resin composition of the present invention. As semiconductor devices, for example, DIP (Dual Inline Package), QFP (Quad Flat Package), BGA (Ball Grid Array), CSP (Chip Size Package), SOP (Small Outline Package), TSOP (Thin Small Outline Package), TQFP (Sink Quad Flat Package).
以下、実施例、比較例により本発明を具体的に説明する。
ここで、各物性値の測定条件は下記の通りである。
・13C-NMR
測定装置:VARian NMR system 400MHz
溶剤:重クロロホルム
・エポキシ当量
JIS K-7236に記載された方法で測定し、単位はg/eq.である。
・軟化点
JIS K-7234に準拠した方法で測定し、単位は℃である。
・弾性率(DMA)
動的粘弾性測定器:TA-instruments、DMA-2980
測定温度範囲:-30~280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)
Tg:DMA測定に於けるTan-δのピーク点をTgとした。
・吸水率
直径5cm×厚み4mmの円盤状の試験片を100℃の水中で72時間煮沸した後の重量増加率(%) Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Here, the measurement conditions of each physical property value are as follows.
・13 C-NMR
Measuring apparatus: VARian NMR system 400 MHz
Solvent: deuterated chloroform / epoxy equivalent Measured by the method described in JIS K-7236, the unit is g / eq. It is.
-Softening point Measured by a method according to JIS K-7234, the unit is ° C.
-Elastic modulus (DMA)
Dynamic viscoelasticity measuring instrument: TA-instruments, DMA-2980
Measurement temperature range: -30 to 280 ° C
Temperature rate: 2 ° C./min Test piece size: 5 mm × 50 mm cut out (thickness is about 800 μm)
Tg: Tan-δ peak point in DMA measurement was defined as Tg.
-Water absorption rate Weight increase rate (%) after boiling a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100 ° C for 72 hours
ここで、各物性値の測定条件は下記の通りである。
・13C-NMR
測定装置:VARian NMR system 400MHz
溶剤:重クロロホルム
・エポキシ当量
JIS K-7236に記載された方法で測定し、単位はg/eq.である。
・軟化点
JIS K-7234に準拠した方法で測定し、単位は℃である。
・弾性率(DMA)
動的粘弾性測定器:TA-instruments、DMA-2980
測定温度範囲:-30~280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)
Tg:DMA測定に於けるTan-δのピーク点をTgとした。
・吸水率
直径5cm×厚み4mmの円盤状の試験片を100℃の水中で72時間煮沸した後の重量増加率(%) Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Here, the measurement conditions of each physical property value are as follows.
・13 C-NMR
Measuring apparatus: VARian NMR system 400 MHz
Solvent: deuterated chloroform / epoxy equivalent Measured by the method described in JIS K-7236, the unit is g / eq. It is.
-Softening point Measured by a method according to JIS K-7234, the unit is ° C.
-Elastic modulus (DMA)
Dynamic viscoelasticity measuring instrument: TA-instruments, DMA-2980
Measurement temperature range: -30 to 280 ° C
Temperature rate: 2 ° C./min Test piece size: 5 mm × 50 mm cut out (thickness is about 800 μm)
Tg: Tan-δ peak point in DMA measurement was defined as Tg.
-Water absorption rate Weight increase rate (%) after boiling a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100 ° C for 72 hours
実施例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらナフトール-クレゾールノボラック樹脂(ナフトールとクレゾールをアルデヒドで反応させる際に、ナフトール及びクレゾール中ナフトール含有量70重量%、全ナフトール中α-ナフトール5重量%で反応させて得られた樹脂、軟化点110℃)160部、エピクロロヒドリン370部(4モル当量 対 フェノール樹脂)、ジメチルスルホキシド37部を加え、撹拌下で溶解し、40~45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム41部を90分かけて分割添加した後、更に40℃で2時間、70℃で1時間反応を行った。反応終了後、水500部で水洗を行い、油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン500部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液10部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明のエポキシ樹脂(EP1)196部を得た。
得られたエポキシ樹脂のエポキシ当量は233g/eq.軟化点93℃、150℃における溶融粘度(ICI溶融粘度 コーン#1)は1.3Pa・sであった。また、13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量の比率は、64:36であった。 Example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer is charged with naphthol-cresol novolak resin while purging with nitrogen (when naphthol and cresol are reacted with aldehyde, naphthol content in naphthol and cresol is 70% by weight, total naphthol Resin obtained by reaction with 5% by weight of α-naphthol in the middle, 160 parts of softening point 110 ° C., 370 parts of epichlorohydrin (4 molar equivalents to phenol resin), 37 parts of dimethyl sulfoxide were added and dissolved under stirring. The temperature was raised to 40-45 ° C. Next, 41 parts of flaky sodium hydroxide was added in portions over 90 minutes, followed by further reaction at 40 ° C. for 2 hours and at 70 ° C. for 1 hour. After completion of the reaction, washing with 500 parts of water was performed, and excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. To the residue, 500 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 10 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off below to obtain 196 parts of the epoxy resin (EP1) of the present invention.
The epoxy equivalent of the obtained epoxy resin was 233 g / eq. The melt viscosity (ICI melt viscosity cone # 1) at a softening point of 93 ° C. and 150 ° C. was 1.3 Pa · s. In 13 C-NMR, the ratio of the total 74-76 ppm peak area to the total 68-71 ppm peak area was 64:36.
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらナフトール-クレゾールノボラック樹脂(ナフトールとクレゾールをアルデヒドで反応させる際に、ナフトール及びクレゾール中ナフトール含有量70重量%、全ナフトール中α-ナフトール5重量%で反応させて得られた樹脂、軟化点110℃)160部、エピクロロヒドリン370部(4モル当量 対 フェノール樹脂)、ジメチルスルホキシド37部を加え、撹拌下で溶解し、40~45℃にまで昇温した。次いでフレーク状の水酸化ナトリウム41部を90分かけて分割添加した後、更に40℃で2時間、70℃で1時間反応を行った。反応終了後、水500部で水洗を行い、油層からロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン500部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液10部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明のエポキシ樹脂(EP1)196部を得た。
得られたエポキシ樹脂のエポキシ当量は233g/eq.軟化点93℃、150℃における溶融粘度(ICI溶融粘度 コーン#1)は1.3Pa・sであった。また、13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量の比率は、64:36であった。 Example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer is charged with naphthol-cresol novolak resin while purging with nitrogen (when naphthol and cresol are reacted with aldehyde, naphthol content in naphthol and cresol is 70% by weight, total naphthol Resin obtained by reaction with 5% by weight of α-naphthol in the middle, 160 parts of softening point 110 ° C., 370 parts of epichlorohydrin (4 molar equivalents to phenol resin), 37 parts of dimethyl sulfoxide were added and dissolved under stirring. The temperature was raised to 40-45 ° C. Next, 41 parts of flaky sodium hydroxide was added in portions over 90 minutes, followed by further reaction at 40 ° C. for 2 hours and at 70 ° C. for 1 hour. After completion of the reaction, washing with 500 parts of water was performed, and excess solvents such as epichlorohydrin were distilled off from the oil layer under reduced pressure using a rotary evaporator. To the residue, 500 parts of methyl isobutyl ketone was added and dissolved, and the temperature was raised to 70 ° C. Under stirring, 10 parts of a 30% by weight aqueous sodium hydroxide solution was added and the reaction was performed for 1 hour, followed by washing with water until the washing water of the oil layer became neutral. From the resulting solution, the pressure was reduced using a rotary evaporator. Methyl isobutyl ketone and the like were distilled off below to obtain 196 parts of the epoxy resin (EP1) of the present invention.
The epoxy equivalent of the obtained epoxy resin was 233 g / eq. The melt viscosity (ICI melt viscosity cone # 1) at a softening point of 93 ° C. and 150 ° C. was 1.3 Pa · s. In 13 C-NMR, the ratio of the total 74-76 ppm peak area to the total 68-71 ppm peak area was 64:36.
合成例1
βナフトール282部を600部のメチルイソブチルケトンに溶解し、30重量%水酸化ナトリウム53部を加えた。この溶液にパラホルムアルデヒドを67部添加し、20℃で3時間反応を行った。反応終了後、35%塩酸を加え中性(pH6~7)にすることで、β-ナフトールの1-メチロール体含有溶液を得た。
得られた溶液に対し、オルソクレゾール108部を加えた後、35%塩酸2部を加え、30℃で1時間、70℃で6時間反応を行った。その後、反応液が中性になるまで水洗を行い、有機層から溶媒等を留去し、比較用のNCN樹脂を420部得た。得られた樹脂の軟化点は90℃、水酸基当量は140g/eq.であった。 Synthesis example 1
282 parts of β-naphthol was dissolved in 600 parts of methyl isobutyl ketone, and 53 parts of 30% by weight sodium hydroxide was added. 67 parts of paraformaldehyde was added to this solution and reacted at 20 ° C. for 3 hours. After completion of the reaction, 35% hydrochloric acid was added to neutralize (pH 6 to 7) to obtain a solution containing 1-methylol body of β-naphthol.
After 108 parts of orthocresol was added to the resulting solution, 2 parts of 35% hydrochloric acid was added and reacted at 30 ° C. for 1 hour and at 70 ° C. for 6 hours. Then, it washed with water until the reaction liquid became neutral, the solvent etc. were distilled off from the organic layer, and 420 parts of comparative NCN resins were obtained. The resulting resin had a softening point of 90 ° C. and a hydroxyl group equivalent of 140 g / eq. Met.
βナフトール282部を600部のメチルイソブチルケトンに溶解し、30重量%水酸化ナトリウム53部を加えた。この溶液にパラホルムアルデヒドを67部添加し、20℃で3時間反応を行った。反応終了後、35%塩酸を加え中性(pH6~7)にすることで、β-ナフトールの1-メチロール体含有溶液を得た。
得られた溶液に対し、オルソクレゾール108部を加えた後、35%塩酸2部を加え、30℃で1時間、70℃で6時間反応を行った。その後、反応液が中性になるまで水洗を行い、有機層から溶媒等を留去し、比較用のNCN樹脂を420部得た。得られた樹脂の軟化点は90℃、水酸基当量は140g/eq.であった。 Synthesis example 1
282 parts of β-naphthol was dissolved in 600 parts of methyl isobutyl ketone, and 53 parts of 30% by weight sodium hydroxide was added. 67 parts of paraformaldehyde was added to this solution and reacted at 20 ° C. for 3 hours. After completion of the reaction, 35% hydrochloric acid was added to neutralize (pH 6 to 7) to obtain a solution containing 1-methylol body of β-naphthol.
After 108 parts of orthocresol was added to the resulting solution, 2 parts of 35% hydrochloric acid was added and reacted at 30 ° C. for 1 hour and at 70 ° C. for 6 hours. Then, it washed with water until the reaction liquid became neutral, the solvent etc. were distilled off from the organic layer, and 420 parts of comparative NCN resins were obtained. The resulting resin had a softening point of 90 ° C. and a hydroxyl group equivalent of 140 g / eq. Met.
合成例2
実施例1においてナフトール-クレゾールノボラック樹脂の代わりに、合成例1で得られたNCN樹脂140部を用い、同様にしてエポキシ樹脂を合成した。
得られたエポキシ樹脂はエポキシ当量210g/eq.軟化点68℃、150℃における溶融粘度は0.12Pa・sであった(EP2)。また、13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量の比率は、81:19であった。 Synthesis example 2
An epoxy resin was synthesized in the same manner using 140 parts of the NCN resin obtained in Synthesis Example 1 instead of the naphthol-cresol novolak resin in Example 1.
The obtained epoxy resin had an epoxy equivalent of 210 g / eq. The melt viscosity at a softening point of 68 ° C. and 150 ° C. was 0.12 Pa · s (EP2). In 13 C-NMR, the ratio of the total 74-76 ppm peak area to the total 68-71 ppm peak area was 81:19.
実施例1においてナフトール-クレゾールノボラック樹脂の代わりに、合成例1で得られたNCN樹脂140部を用い、同様にしてエポキシ樹脂を合成した。
得られたエポキシ樹脂はエポキシ当量210g/eq.軟化点68℃、150℃における溶融粘度は0.12Pa・sであった(EP2)。また、13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量の比率は、81:19であった。 Synthesis example 2
An epoxy resin was synthesized in the same manner using 140 parts of the NCN resin obtained in Synthesis Example 1 instead of the naphthol-cresol novolak resin in Example 1.
The obtained epoxy resin had an epoxy equivalent of 210 g / eq. The melt viscosity at a softening point of 68 ° C. and 150 ° C. was 0.12 Pa · s (EP2). In 13 C-NMR, the ratio of the total 74-76 ppm peak area to the total 68-71 ppm peak area was 81:19.
試験例1~10
前記で得られたエポキシ樹脂、および下記表1に示す各種のエポキシ樹脂を、エポキシ当量1モル当量に対し、硬化剤としてフェノールノボラック(軟化点83℃、水酸基当量106g/eq)を等当量で配合し、触媒としてトリフェニルホスフィンをエポキシ樹脂100重量部に対し、1重量部となる割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、封止用エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
なお、評価に使用したエポキシ樹脂の詳細は、以下、表2に示す。 Test examples 1-10
The epoxy resin obtained above and the various epoxy resins shown in Table 1 below are blended in equal equivalents of phenol novolac (softening point 83 ° C., hydroxyl group equivalent 106 g / eq) as a curing agent with respect to 1 molar equivalent of epoxy equivalent. Then, triphenylphosphine as a catalyst is blended at a ratio (parts by weight) of 1 part by weight with respect to 100 parts by weight of the epoxy resin, and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition for sealing. Obtained. This epoxy resin composition was pulverized with a mixer and further tableted with a tablet machine. The tableted epoxy resin composition was transfer-molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation.
Details of the epoxy resin used for the evaluation are shown in Table 2 below.
前記で得られたエポキシ樹脂、および下記表1に示す各種のエポキシ樹脂を、エポキシ当量1モル当量に対し、硬化剤としてフェノールノボラック(軟化点83℃、水酸基当量106g/eq)を等当量で配合し、触媒としてトリフェニルホスフィンをエポキシ樹脂100重量部に対し、1重量部となる割合(重量部)で配合し、ミキシングロールを用いて均一に混合・混練し、封止用エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をミキサーにて粉砕し、更にタブレットマシーンにてタブレット化した。このタブレット化されたエポキシ樹脂組成物をトランスファー成型(175℃×60秒)し、更に脱型後160℃×2時間+180℃×6時間の条件で硬化、評価用試験片を得た。
なお、評価に使用したエポキシ樹脂の詳細は、以下、表2に示す。 Test examples 1-10
The epoxy resin obtained above and the various epoxy resins shown in Table 1 below are blended in equal equivalents of phenol novolac (softening point 83 ° C., hydroxyl group equivalent 106 g / eq) as a curing agent with respect to 1 molar equivalent of epoxy equivalent. Then, triphenylphosphine as a catalyst is blended at a ratio (parts by weight) of 1 part by weight with respect to 100 parts by weight of the epoxy resin, and uniformly mixed and kneaded using a mixing roll to obtain an epoxy resin composition for sealing. Obtained. This epoxy resin composition was pulverized with a mixer and further tableted with a tablet machine. The tableted epoxy resin composition was transfer-molded (175 ° C. × 60 seconds), and after demolding, cured under the conditions of 160 ° C. × 2 hours + 180 ° C. × 6 hours to obtain a test piece for evaluation.
Details of the epoxy resin used for the evaluation are shown in Table 2 below.
図1をみると明確だが、一般的なエポキシ樹脂を用いた硬化物(試験例2~9)は基本的にはTgが上がれば吸水率が上がるという相関を有する。これに対し、本発明のエポキシ樹脂を用いた硬化物は高い耐熱性を有しているにもかかわらず、吸水率が低く、上記の関係性から大きく外れることが確認できた。
As is clear from FIG. 1, cured products using general epoxy resins (Test Examples 2 to 9) basically have a correlation that the water absorption increases as Tg increases. On the other hand, although the hardened | cured material using the epoxy resin of this invention has high heat resistance, it has confirmed that water absorption was low and it remove | deviated from said relationship significantly.
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2011年9月8日付で出願された日本特許出願(特願2011-195585)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2011-195585) filed on Sep. 8, 2011, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
なお、本出願は、2011年9月8日付で出願された日本特許出願(特願2011-195585)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2011-195585) filed on Sep. 8, 2011, which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
本発明のエポキシ樹脂は、耐熱性と耐水性を同時に達成することのできる硬化物を与えるエポキシ樹脂組成物に使用でき、該組成物は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料や積層板材料にきわめて有用である。
The epoxy resin of the present invention can be used in an epoxy resin composition that gives a cured product capable of simultaneously achieving heat resistance and water resistance. The composition comprises an insulating material for electrical and electronic parts and a laminate (printed wiring board, It is useful for various composite materials such as build-up substrates) and CFRP, adhesives, paints and the like. In particular, it is extremely useful for a semiconductor sealing material and a laminated plate material for protecting a semiconductor element.
Claims (6)
- ナフトールとクレゾールをアルデヒドで反応させることで得られ、ナフトールとクレゾールをアルデヒドで反応させる際の前記ナフトール中、αナフトールの比率が1~10重量%であるナフトール-クレゾールノボラック型フェノール樹脂をグリシジル化させることで得られることを特徴とするエポキシ樹脂。 It is obtained by reacting naphthol and cresol with an aldehyde, and naphthol-cresol novolak type phenol resin in which the ratio of α-naphthol is 1 to 10% by weight in the naphthol when reacting naphthol and cresol with aldehyde is glycidylated. An epoxy resin characterized by that.
- 前記ナフトール-クレゾールノボラック型フェノール樹脂において、ナフトールとクレゾールをアルデヒドで反応させる際のナフトールとクレゾールの重量比率が65:35~85:15であり、かつ得られたナフトール-クレゾールノボラック型フェノール樹脂の軟化点が100℃~150℃であることを特徴とする請求項1に記載のエポキシ樹脂。 In the naphthol-cresol novolac type phenol resin, the weight ratio of naphthol to cresol when reacting naphthol and cresol with an aldehyde is 65:35 to 85:15, and the obtained naphthol-cresol novolak type phenol resin is softened The epoxy resin according to claim 1, wherein the point is 100 ° C to 150 ° C.
- 13C-NMRにおいて74-76ppmのピークの面積の総量と68~71ppmのピークの面積の総量が60:40~80:20であり、かつ軟化点が85℃~100℃であることを特徴とする請求項1または2に記載のエポキシ樹脂。 The total amount of peak areas of 74-76 ppm and the total area of peaks of 68-71 ppm in 13 C-NMR is 60: 40-80: 20, and the softening point is 85 ° C.-100 ° C. The epoxy resin according to claim 1 or 2.
- (重量平均分子量 Mw)/(数平均分子量 Mn)が1.4~2.5である請求項1~3のいずれか一項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 3, wherein (weight average molecular weight Mw) / (number average molecular weight Mn) is 1.4 to 2.5.
- 請求項1~4のいずれか一項に記載のエポキシ樹脂と硬化促進剤を含有するエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to any one of claims 1 to 4 and a curing accelerator.
- 請求項5に記載のエポキシ樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280043958.8A CN103906782B (en) | 2011-09-08 | 2012-09-06 | Epoxy resin, composition epoxy resin and solidfied material thereof |
KR1020147006152A KR101882720B1 (en) | 2011-09-08 | 2012-09-06 | Epoxy resin, epoxy resin composition, and cured product thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011195585A JP5832016B2 (en) | 2011-09-08 | 2011-09-08 | Epoxy resin, epoxy resin composition, and cured product thereof |
JP2011-195585 | 2011-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013035808A1 true WO2013035808A1 (en) | 2013-03-14 |
Family
ID=47832248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072800 WO2013035808A1 (en) | 2011-09-08 | 2012-09-06 | Epoxy resin, epoxy resin composition, and cured product thereof |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5832016B2 (en) |
KR (1) | KR101882720B1 (en) |
CN (1) | CN103906782B (en) |
TW (1) | TWI522385B (en) |
WO (1) | WO2013035808A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113122172A (en) * | 2020-12-26 | 2021-07-16 | 深圳市荣昌科技有限公司 | Underfill adhesive suitable for packaging 5G equipment chip and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015172105A (en) * | 2014-03-11 | 2015-10-01 | 日本化薬株式会社 | Epoxy resin mixture, curable resin composition, cured product thereof, and semiconductor device |
JP6924292B2 (en) * | 2020-01-22 | 2021-08-25 | 日本化薬株式会社 | Epoxy resin mixture, epoxy resin composition and cured product thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359020A (en) * | 1989-07-27 | 1991-03-14 | Nippon Kayaku Co Ltd | Epoxy resin composition |
JPH0489818A (en) * | 1990-08-01 | 1992-03-24 | Hitachi Chem Co Ltd | Epoxy resin molding material for sealaing electronic part |
JPH04155939A (en) * | 1990-10-19 | 1992-05-28 | Nitto Denko Corp | Semiconductor device |
JPH0593035A (en) * | 1991-07-29 | 1993-04-16 | Dai Ichi Kogyo Seiyaku Co Ltd | Epoxy resin composition |
JPH05218239A (en) * | 1991-12-13 | 1993-08-27 | Sumitomo Bakelite Co Ltd | Epoxy resin composition |
JPH06128361A (en) * | 1992-10-20 | 1994-05-10 | Nippon Steel Chem Co Ltd | Epoxy resin curative and its production |
JPH07224142A (en) * | 1994-02-08 | 1995-08-22 | Dai Ichi Kogyo Seiyaku Co Ltd | Epoxy resin and epoxy resin composition |
JP2011046864A (en) * | 2009-08-28 | 2011-03-10 | Dic Corp | Curable resin composition, cured product thereof, and printed-circuit board |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2991850B2 (en) * | 1992-01-30 | 1999-12-20 | 住友ベークライト株式会社 | Epoxy resin composition |
JPH0680599A (en) * | 1992-08-31 | 1994-03-22 | Dai Ichi Kogyo Seiyaku Co Ltd | Production of polyhydroxynaphthalene |
JPH07216052A (en) * | 1994-01-25 | 1995-08-15 | Dai Ichi Kogyo Seiyaku Co Ltd | Epoxy resin and epoxy resin composition |
US6043333A (en) * | 1996-08-23 | 2000-03-28 | Nippon Kayaku Kabushiki Kaisha | Modified epoxy resin, epoxy resin composition and cured product thereof |
JP3982659B2 (en) * | 1997-07-18 | 2007-09-26 | 日本化薬株式会社 | Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof |
JP5166232B2 (en) * | 2008-12-26 | 2013-03-21 | 新日鉄住金化学株式会社 | Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof |
-
2011
- 2011-09-08 JP JP2011195585A patent/JP5832016B2/en active Active
-
2012
- 2012-09-06 WO PCT/JP2012/072800 patent/WO2013035808A1/en active Application Filing
- 2012-09-06 KR KR1020147006152A patent/KR101882720B1/en active IP Right Grant
- 2012-09-06 CN CN201280043958.8A patent/CN103906782B/en active Active
- 2012-09-07 TW TW101132705A patent/TWI522385B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359020A (en) * | 1989-07-27 | 1991-03-14 | Nippon Kayaku Co Ltd | Epoxy resin composition |
JPH0489818A (en) * | 1990-08-01 | 1992-03-24 | Hitachi Chem Co Ltd | Epoxy resin molding material for sealaing electronic part |
JPH04155939A (en) * | 1990-10-19 | 1992-05-28 | Nitto Denko Corp | Semiconductor device |
JPH0593035A (en) * | 1991-07-29 | 1993-04-16 | Dai Ichi Kogyo Seiyaku Co Ltd | Epoxy resin composition |
JPH05218239A (en) * | 1991-12-13 | 1993-08-27 | Sumitomo Bakelite Co Ltd | Epoxy resin composition |
JPH06128361A (en) * | 1992-10-20 | 1994-05-10 | Nippon Steel Chem Co Ltd | Epoxy resin curative and its production |
JPH07224142A (en) * | 1994-02-08 | 1995-08-22 | Dai Ichi Kogyo Seiyaku Co Ltd | Epoxy resin and epoxy resin composition |
JP2011046864A (en) * | 2009-08-28 | 2011-03-10 | Dic Corp | Curable resin composition, cured product thereof, and printed-circuit board |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113122172A (en) * | 2020-12-26 | 2021-07-16 | 深圳市荣昌科技有限公司 | Underfill adhesive suitable for packaging 5G equipment chip and preparation method thereof |
CN113122172B (en) * | 2020-12-26 | 2022-09-16 | 深圳市荣昌科技有限公司 | Underfill adhesive suitable for packaging 5G equipment chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103906782A (en) | 2014-07-02 |
TW201313769A (en) | 2013-04-01 |
KR20140071357A (en) | 2014-06-11 |
KR101882720B1 (en) | 2018-07-27 |
JP2013056987A (en) | 2013-03-28 |
TWI522385B (en) | 2016-02-21 |
CN103906782B (en) | 2016-08-17 |
JP5832016B2 (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5682928B2 (en) | Phenolic resin, epoxy resin and cured product thereof | |
TWI425019B (en) | Liquid epoxy resin, epoxy resin composition and hardened product | |
TWI438216B (en) | Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof | |
JP5127164B2 (en) | Modified epoxy resin, epoxy resin composition, and cured product thereof | |
WO2015137294A1 (en) | Phenolic resin, phenolic resin mixture, epoxy resin, epoxy resin composition, and cured products thereof | |
JP5142180B2 (en) | Epoxy resin composition and cured product thereof | |
JP6513372B2 (en) | Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP5832016B2 (en) | Epoxy resin, epoxy resin composition, and cured product thereof | |
WO2018123806A1 (en) | Alkenyl-group-containing resin, curable resin composition, and cured article thereof | |
JP7185383B2 (en) | Curable resin composition and its cured product | |
JP5734603B2 (en) | Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product | |
WO2008047613A1 (en) | Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition | |
JP2003301031A (en) | Phenolic resin, epoxy resin and method for preparation thereof, and resin composition | |
JP5127160B2 (en) | Epoxy resin, curable resin composition, and cured product thereof | |
TW202305027A (en) | Epoxy resin, curable resin composition, and cured products thereof | |
JP2000103941A (en) | Epoxy resin composition and semiconductor sealing material | |
JP7240989B2 (en) | Curable resin composition and its cured product | |
JP3894628B2 (en) | Modified epoxy resin, epoxy resin composition and cured product thereof | |
JP2008081546A (en) | Epoxy resin, epoxy resin composition and cured product thereof | |
JP2010053293A (en) | Epoxy resin composition | |
JP5299976B2 (en) | Modified epoxy resin and epoxy resin composition | |
WO2022107678A1 (en) | Epoxy resin, curable resin composition, and cured object therefrom | |
WO2015087973A1 (en) | Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof | |
JP4942384B2 (en) | Epoxy resin, curable resin composition, and cured product thereof | |
JP4086630B2 (en) | Polyhydric phenol compound, epoxy resin composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12829404 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147006152 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12829404 Country of ref document: EP Kind code of ref document: A1 |