WO2021182360A1 - Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof - Google Patents

Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof Download PDF

Info

Publication number
WO2021182360A1
WO2021182360A1 PCT/JP2021/008836 JP2021008836W WO2021182360A1 WO 2021182360 A1 WO2021182360 A1 WO 2021182360A1 JP 2021008836 W JP2021008836 W JP 2021008836W WO 2021182360 A1 WO2021182360 A1 WO 2021182360A1
Authority
WO
WIPO (PCT)
Prior art keywords
maleimide
resin
area
phenylene
parts
Prior art date
Application number
PCT/JP2021/008836
Other languages
French (fr)
Japanese (ja)
Inventor
窪木 健一
政隆 中西
一貴 松浦
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020227027700A priority Critical patent/KR20220152203A/en
Priority to JP2021537765A priority patent/JP7005821B1/en
Priority to CN202180016765.2A priority patent/CN115210293A/en
Publication of WO2021182360A1 publication Critical patent/WO2021182360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/04Polyxylenes

Definitions

  • the present invention relates to a maleimide resin and a method for producing the same, a maleimide solution, and a curable resin composition and a cured product thereof.
  • INDUSTRIAL APPLICABILITY The present invention is suitably used for electrical / electronic parts such as semiconductor encapsulants, printed wiring boards, and build-up laminated boards, and lightweight and high-strength materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
  • a wiring board using BT resin which is a resin in which a bisphenol A type cyanate ester compound and a bismaleimide compound are used in combination as in Patent Document 1, is excellent in heat resistance, chemical resistance, electrical characteristics, etc., and is a high-performance wiring. Although it has been widely used as a board, it needs to be improved under the circumstances where higher performance is required as described above.
  • epoxy resins such as bisphenol A type diglycidyl ether and tetraglycidyl diaminodiphenylmethane and diaminodiphenylmethane and diaminodiphenylsulfone as curing agents have been used.
  • epoxy resins such as bisphenol A type diglycidyl ether and tetraglycidyl diaminodiphenylmethane and diaminodiphenylmethane and diaminodiphenylsulfone
  • the maleimide compounds or bismaleimide resins available on the market have significantly improved heat resistance as compared with the epoxy resins and the like that have been conventionally used, and there is a strong need to use them for the above-mentioned applications.
  • the dielectric properties, especially the dielectric properties in the high frequency region are not sufficient to meet the needs for high-speed communication.
  • the electrical characteristics are significantly deteriorated by absorbing the moisture in the air, and the applicable range is limited.
  • the present invention contributes to the development of high-speed communication technology typified by 5G by providing a maleimide resin having excellent solvent solubility and excellent electrical characteristics even in a high frequency region.
  • a maleimide resin represented by the following formula (1) The content of N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide in the maleimide resin is 98 area% or less in GPC area percentage.
  • the content of the maleimide compound represented by the following formula (2) is 30 area% or more in HPLC area percentage. Maleimide resin that is less than 60 area%.
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 5.
  • N N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide
  • the area ratio (O / P) of ortho-orientation and para-orientation by HPLC area percentage is 100% or more and 200.
  • the content of the maleimide compound represented by the following formula (3) is less than 50 area% in HPLC area percentage.
  • One or more maleimide solutions [5] A curable resin composition containing the maleimide resin according to any one of the preceding items [1] to [3] or the maleimide solution according to the preceding item [4], and further containing a curing accelerator. Composition. [6] A cured product obtained by curing the maleimide resin according to any one of the preceding items [1] to [3] or the curable resin composition according to the preceding item [5].
  • the maleimide resin of the present invention is not only excellent in solvent solubility, but its cured product is also excellent in electrical properties even in a high frequency region, and is useful for various applications such as electronic materials and structural materials.
  • the maleimide resin of this embodiment is represented by the following formula (1).
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 5)
  • the value of n can be calculated from the number average molecular weight obtained by the measurement of gel permeation chromatography (GPC, detector: RI) of the maleimide resin, or the area ratio of each of the separated peaks.
  • GPC gel permeation chromatography
  • RI area ratio of each of the separated peaks.
  • You can. n is usually 1 ⁇ n ⁇ 5, but more preferably 1 ⁇ n ⁇ 3.
  • the average value n is 1, there arises a problem that the solvent solubility is low and crystals are precipitated.
  • the average value n is 5 or more, the flowability at the time of molding is deteriorated, and there arises a problem that the characteristics as a cured product cannot be exhibited.
  • the viscosity of the resin solution is lowered and the impregnation property is improved.
  • the solvent can be removed at a low temperature when it is taken out as a solid, self-polymerization is unlikely to occur and it is easy to handle.
  • the area% can be measured by GPC (gel permeation chromatography), and in this embodiment, it is measured under the following conditions.
  • GPC gel permeation chromatography
  • -GPC analysis GPC: DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
  • Linked eluent tetrahydrofuran Flow rate: 0.5 ml / min.
  • the softening point of the maleimide resin of the present embodiment is preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., further preferably 90 ° C. to 120 ° C., and particularly preferably 95 ° C. to 120 ° C. be.
  • the melt viscosity at 150 ° C. is 0.05 to 100 Pa ⁇ s, preferably 0.1 to 40 Pa ⁇ s. However, this value may be exceeded by increasing the molecular weight in the polymerization when removing the solvent.
  • the acid value of the maleimide resin of the present embodiment is preferably 30 mgKOH / g, more preferably 1 to 15 mgKOH / g. If the acid value is high, there are many molecules that are not maleimided, and the structure having a carboxylic acid becomes excessive, which affects the electrical properties and water resistance.
  • the content of each of the maleimide compounds represented by the above formulas (2) to (4) in N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide is the HPLC area percentage.
  • the maleimide compound represented by the formula (2) 30 area% or more and less than 60 area%, preferably 35 area% or more and less than 55 area%, and more preferably 40 area% or more and less than 55 area%.
  • the present compound having an asymmetric structure is 30 area% or more, the solvent solubility is improved and the dielectric property is improved.
  • an additional step such as removing the maleimide compound represented by the above formula (3) by crystallization is required, which causes an increase in manufacturing cost and an increase in industrial waste. Not preferable in terms of points.
  • the maleimide compound represented by the formula (3) preferably less than 50 area%, more preferably 2 area% or more and less than 35 area%, and preferably 5 area% or more and less than 30 area%. .. When it is less than 50 area%, the solvent solubility is improved and the electrical characteristics are also good.
  • the maleimide compound represented by the formula (4) preferably 15 area% or more and less than 60 area%, and more preferably 25 area% or more and less than 50 area%.
  • the maleimide compound represented by the above formula (3) has the highest influence on the problem of crystallinity and the problem of deterioration of electrical characteristics
  • the maleimide compound represented by the formula (2) and the formula (4) are used.
  • the total ratio of the maleimide compounds represented is preferably 50 area% or more, preferably 60 area% or more, in N, N'-(phenylene-di- (2,2-propylidene) -di-phenylene) bismaleimide. Is more preferable, and 70 area% or more is particularly preferable.
  • the area ratio (O / P) of ortho-orientation and para-orientation is 50% or more and less than 300%. It is preferable, and it is more preferable that it is 100% or more and less than 200%. When the area ratio (O / P) is 50% or more, the solvent solubility and the electrical characteristics are good. Further, if it is less than 300%, problems such as an increase in manufacturing cost and an increase in industrial waste do not occur.
  • the area ratio (O / P) of ortho-orientation and para-orientation is calculated by the following formula.
  • Area ratio of ortho-orientation to para-orientation (area% of maleimide compound represented by the above formula (4)) ⁇ 2 + (area% of maleimide compound represented by the above formula (2)) / ( Area% of the maleimide compound represented by the formula (3)) ⁇ 2 + (Area% of the maleimide compound represented by the formula (2))
  • HPLC High Performance Liquid Chromatography
  • LC-20AD manufactured by Shimadzu Corporation Photodiode array detector SPD-M20A manufactured by Shimadzu Corporation Column oven CTO-20A manufactured by Shimadzu Corporation Column: Intersil ODS-2.5 ⁇ m, 4.6 ⁇ 250 mm 40 °
  • MobilePhaseA Acet Nitrile (AN)
  • MobilePhaseB Water (W) TimeProgram: 0-28 min.
  • AN / W 30% / 70% ⁇ 100% / 0% 28-40 min.
  • AN / W 100% / 0% Flow Rate: 1.0 mL / min.
  • the measurement wavelength of HPLC is preferably in the range of 210 to 230 nm. This is because measurement is possible at other wavelengths, but the actual content may differ from the actual content due to the difference in absorption wavelength.
  • the ratio can also be calculated by NMR. When NMR is used, the ratio can be calculated from the peak intensity ratio of the isopropylidene group appearing at 1-2 ppm using 13 C-NMR.
  • the maleimide resin according to one embodiment of the present invention has high solubility in a solvent and high solubility in other resins, and can be treated as a maleimide solution (hereinafter, also simply referred to as varnish) or a curable resin composition. .. Further, the cured product of the maleimide resin according to the embodiment of the present invention is excellent in electrical characteristics, heat resistance, weather resistance, hygroscopicity, and flame retardancy.
  • Examples of usable solvents include ketones such as acetone, ethyl methyl ketone and cyclohexanone, hydrocarbons such as benzene, toluene, xylene, tetramethyl benzene and cyclohexane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and dipropylene glycol.
  • ketones such as acetone, ethyl methyl ketone and cyclohexanone
  • hydrocarbons such as benzene, toluene, xylene, tetramethyl benzene and cyclohexane
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether and dipropylene glycol.
  • Glycol ethers such as dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate , Esters such as dialkyl glutarate, dialkyl succinate, dialkyl adipate, cyclic esters such as ⁇ -butyrolactone, petroleum-based solvents such as petroleum ether, petroleum naphtha, hydrocarbon petroleum naphtha, and solvent naphtha.
  • ketones, hydrocarbons and esters are preferable, hydrocarbons are more preferable, and aromatic hydrocarbons are particularly preferable. These may be used alone or in combination of two or more.
  • the solvent is used in a range in which the solid content concentration of the obtained varnish excluding the solvent is usually 10 to 80% by weight, preferably 20 to 70% by weight.
  • a maleimide solution can be obtained by dissolving the maleimide resin in a solvent, but it is preferable to provide the solvent used at the time of synthesis as the maleimide solution as it is. This is because industrial waste and energy consumption are reduced.
  • an aromatic amine resin represented by the following formula (5) can be used as a precursor.
  • n is the number of repetitions, and the average value is 1 ⁇ n ⁇ 5.
  • the production method of the aromatic amine resin represented by the above formula (5) is not particularly limited.
  • aniline and m-diisopropenylbenzene or m-di ( ⁇ -hydroxyisopropyl) benzene are reacted at 180 to 250 ° C. in the presence of an acidic catalyst to form the formula (5).
  • a maleimide resin is synthesized using an amine resin having a molecular weight distribution and containing an asymmetric amine to improve solvent solubility and dielectric properties in a cured product thereof. be able to.
  • the aromatic amine resins represented by the formula (5) the aromatic amine compound represented by the formula (6) is preferably 30 area% or more and less than 60 area% in terms of HPLC area percentage, preferably 30 area. It is more preferably% or more and less than 55 area%, and particularly preferably 35 area% or more and less than 50 area%.
  • the acidic catalysts used are hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, and methane.
  • acidic catalysts such as sulfonic acid.
  • protonic acids such as hydrochloric acid, p-toluenesulfonic acid and methanesulfonic acid are preferable. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is usually 1 to 30% by weight, preferably 1 to 17% by weight, more preferably 1 to 12% by weight, particularly preferably 1 to 7% by weight, based on the aniline used. If it is too much, the target compound having an asymmetric structure is few, and the compound having a symmetrical structure is preferentially formed. If the amount is too small, not only the progress of the reaction will be slowed down, but also the reaction may not be completed, which is not preferable.
  • the reaction may be carried out using an organic solvent such as toluene or xylene, or may be carried out without a solvent.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out without a solvent.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out without a solvent.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out using an organic solvent such as toluene or xylene, or may be carried out without a solvent.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out without a solvent.
  • the reaction temperature is too high, the asymmetric structure will be recombined after formation, and the symmetric structure will be formed preferentially, so that the desired solvent solubility and electrical characteristics cannot be exhibited.
  • water is produced as a by-product when di ( ⁇ -hydroxyisopropyl) benzene is used, it is removed from the system while being azeotropically heated with a solvent when the temperature is raised.
  • the acidic catalyst is neutralized with an alkaline aqueous solution, a water-insoluble organic solvent is added to the oil layer, and washing is repeated until the wastewater becomes neutral, and then the solvent and excess aniline derivative are removed under heating and reduced pressure. ..
  • the reaction solution is filtered after the reaction is completed to remove the catalyst. Further, since diphenylamine is by-produced depending on the reaction temperature and the type of catalyst, it is preferable to remove it if necessary.
  • the diphenylamine derivative is removed to 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.2% by weight or less under high temperature and high vacuum or by means such as steam distillation.
  • the maleimide resin of the present embodiment contains, for example, an aromatic amine resin represented by the above formula (5), maleic acid or maleic anhydride (hereinafter, also referred to as "maleic anhydride”) as a solvent and a catalyst. It is obtained by adding or dehydrating and condensing underneath.
  • an aromatic amine resin represented by the above formula (5)
  • maleic acid or maleic anhydride hereinafter, also referred to as "maleic anhydride”
  • a water-insoluble solvent As the solvent used in the reaction, it is necessary to remove the water generated during the reaction from the system, so a water-insoluble solvent is used.
  • aromatic solvents such as toluene and xylene, aliphatic solvents such as cyclohexane and n-hexane, ethers such as diethyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, methyl isobutyl ketone, cyclopentanone and the like.
  • the above-mentioned ketone solvent and the like can be mentioned, but the present invention is not limited to these, and two or more kinds may be used in combination.
  • an aprotic polar solvent can be used in combination.
  • dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like can be mentioned, and two or more of them may be used in combination.
  • an aprotic polar solvent it is preferable to use a solvent having a boiling point higher than that of the water-insoluble solvent used in combination.
  • the catalyst used in the reaction is an acidic catalyst, and is not particularly limited, and examples thereof include p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and phosphoric acid.
  • the amount of the acidic catalyst used is usually 0.1 to 10% by weight, preferably 1 to 5% by weight, based on the aromatic amine resin. If there are many acid catalysts, the para-orientation becomes strong, which may adversely affect the crystallinity and dielectric properties.
  • an aromatic amine resin represented by the above formula (5) is dissolved in toluene and N-methyl-2-pyrrolidone, and maleic anhydride is added thereto to produce an amic acid, and then p-toluenesulfon.
  • the reaction is carried out by adding an acid and removing the water produced under reflux conditions from the system.
  • maleic anhydride is dissolved in toluene, and an N-methyl-2-pyrrolidone solution of the aromatic amine resin represented by the above formula (5) is added under stirring to produce an amic acid, and then p-.
  • the reaction is carried out while adding toluenesulfonic acid and removing the water produced under reflux conditions from the system.
  • maleic anhydride is dissolved in toluene, p-toluenesulfonic acid is added, and an N-methyl-2-pyrrolidone solution of the aromatic amine resin represented by the above formula (5) is added dropwise in a stirred / refluxed state.
  • the water that azeotropes on the way is removed to the outside of the system, and the toluene is returned to the inside of the system to carry out the reaction (the above is the first stage reaction).
  • maleic anhydride is usually used in an amount of 1 to 3 times, preferably 1.2 to 2.0 times the equivalent of the amino group of the aromatic amine resin represented by the formula (5). do.
  • the time of the re-dehydration ring closure reaction is usually 1 to 5 hours, preferably 1 to 3 hours, and the above-mentioned aprotic polar solvent may be added if necessary.
  • the mixture is cooled and washed with water until the water is neutral.
  • the solvent may be distilled off or another solvent may be added to adjust the resin solution to a desired concentration, or the solvent may be completely retained. It may be removed and taken out as a solid resin.
  • the curable resin composition of the present embodiment may contain a compound capable of cross-linking with the maleimide resin of the present embodiment.
  • the compound include functional groups (or functional groups) capable of cross-linking with a maleimide resin such as an amino group, a cyanate group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an allyl group, a metallicyl group, an acrylic group, a methacryl group, a vinyl group and a conjugated diene group.
  • the amine compound and the maleimide compound are not particularly limited as long as they have a structure), and therefore, an aromatic amine resin represented by the above formula (5) may be used.
  • the maleimide resin can be self-polymerized, it can be used alone. Further, an amine compound other than the aromatic amine resin represented by the formula (5) or a maleimide compound other than the maleimide resin represented by the formula (1) may be used in combination.
  • the content of the maleimide resin represented by the formula (1) in the curable resin composition of the present embodiment is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight. %. In the above range, the physical properties of the cured product tend to be high in mechanical strength, high in peel strength, and high in heat resistance.
  • amine compound that can be blended in the curable resin composition of the present embodiment a conventionally known amine compound can be used.
  • Specific examples of amine compounds include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, and 1,3-bisaminomethyl.
  • Cyclohexane bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, norbornene diamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, dicyandiamide, polyoxypropylene Examples thereof include, but are not limited to, diamines, polyoxypropylene triamines, N-aminoethylpiperazines, and aniline / formalin resins. These may be used alone or in combination of two or more. Further, the aromatic amine resin described in the claims of Patent Document 3 is particularly preferable because it is excellent in low hygroscopicity, flame retardancy, and dielectric properties.
  • maleimide compound that can be blended in the curable resin composition of the embodiment
  • a conventionally known maleimide compound can be used.
  • Specific examples of the maleimide compound include 4,4'-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2'-bis [4- (4-maleimidephenoxy) phenyl] propane, 3,3.
  • the maleimide compound is preferably in the range of 5 times or less, more preferably 2 times or less of the maleimide resin of the present embodiment in terms of weight ratio. Further, the maleimide resin described in claim 3 of Patent Document 3 is particularly preferable because it is excellent in low hygroscopicity, flame retardancy, and dielectric properties.
  • cyanate ester compound that can be blended in the curable resin composition of the present embodiment
  • a conventionally known cyanate ester compound can be used.
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensations of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include cyanate ester compounds obtained by reacting a substance with cyanide halide, but the present invention is not limited thereto. These may be used alone or in combination of two or more.
  • phenols examples include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
  • the cyanate ester compound whose synthesis method is described in Japanese Patent Application Laid-Open No. 2005-264154 is particularly preferable as the cyanate ester compound because it is excellent in low hygroscopicity, flame retardancy and dielectric properties.
  • an epoxy resin can be further blended.
  • any conventionally known epoxy resin can be used.
  • Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensations of phenols and ketones, and polycondensates of bisphenols and various aldehydes.
  • Alicyclic epoxies typified by glycidyl ether-based epoxy resins obtained by glycidylizing alcohols, 4-vinyl-1-cyclohexene epoxides, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, etc.
  • examples thereof include, but are not limited to, resins, glycidylamine-based epoxy resins typified by tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol, and glycidyl ester-based epoxy resins. These may be used alone or in combination of two or more.
  • the epoxy resin obtained by subjecting a phenol aralkyl resin obtained by a condensation reaction of phenols with a bishalogenomethyl aralkyl derivative or an aralkyl alcohol derivative as a raw material and reacting with epichlorohydrin by dehydroxylation is a low moisture absorption and flame retardant. It is particularly preferable as an epoxy resin because it has excellent properties and dielectric properties.
  • the blending amount is not particularly limited, but is preferably 0.1 to 10 times, more preferably 0.2 to 4 times, the weight ratio of the maleimide resin. If the blending amount of the epoxy resin is 0.1 times or less of that of the maleimide resin, the cured product may become brittle, and if it is 10 times or more, the dielectric properties may deteriorate.
  • a compound having a phenol resin can be further blended.
  • the phenol resin that can be blended any conventionally known phenol resin can be used.
  • Specific examples of phenolic resins include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) and phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl.
  • Polycondensate of substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaaldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.), Polymers of phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadien, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.), phenols and ketones.
  • the phenol aralkyl resin obtained by subjecting phenols to the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative in a condensation reaction is particularly preferable as a phenol resin because it is excellent in low moisture absorption, flame retardancy and dielectric properties. .. Further, when the above-mentioned phenol resin has an allyl group or a metalyl group, the reactivity with the maleimide group is better than that of the hydroxyl group, so that the curing rate is increased and the cross-linking points are increased, so that the strength and heat resistance are increased. Therefore, it is preferable.
  • an allyl ether body obtained by allylating the hydroxyl group of the phenol resin or a metalyl ether body obtained by metallizing the hydroxyl group can also be blended, and the water absorption is lowered because the hydroxyl group is etherified.
  • a compound having an acid anhydride group can be further blended.
  • the compound having an acid anhydride group that can be blended any conventionally known compound can be used.
  • Specific examples of the compound having an acid anhydride group include 1,2,3,4-butanetetracarboxylic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3.
  • a catalyst for curing can be added to the curable resin composition of the present embodiment, if necessary.
  • imidazoles such as 2-methylimidazole, 2-ethyl imidazole, 2-phenyl imidazole, 2-ethyl-4-methyl imidazole, 2-undecyl imidazole, 1-cyanoethyl-2-ethyl-4-methyl imidazole, triethylamine
  • Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Hosphins such as tributylphosphine and trioctylphosphine, organic metal salts such as tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphth
  • Metal chlorides organic peroxides such as di-tert-butyl peroxide and dicumyl peroxide, azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, ores such as hydrochloric acid, sulfuric acid and phosphoric acid.
  • examples thereof include acids, Lewis acids such as boron trifluoride, and salts such as sodium carbonate and lithium chloride.
  • the above-mentioned amines, phosphines, and further organic peroxides are preferably blended.
  • the blending amount of the curing catalyst is preferably in the range of 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the total of the curable resin composition.
  • polystyrene butadiene copolymer a curable polymer such as a styrene butadiene copolymer, and further substituted or unsubstituted polyphenylene ether, polystyrene, and a fluororesin.
  • a functional group those having a structure such as 1,2-vinyl group, acrylic group, methacrylic group, allyl group, metallicl group, vinylbenzene and inden in the molecule are preferable.
  • a combination with a styrene-butadiene copolymer having a 1,2 vinyl group, acrylic, a polyphenylene ether having a methacryl group, or the like is preferable from the viewpoints of dielectric properties, film properties, and the like.
  • a known additive can be added to the curable resin composition of the present embodiment, if necessary.
  • the additives include curing agents for epoxy resins, modified products of acrylonitrile copolymers, polyethylene, polyimides, maleimide compounds, maleimide resins, cyanate ester compounds, cyanate ester resins, silicone gels, silicone oils, and the like.
  • inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, and fillers such as silane coupling agents.
  • Examples thereof include surface treatment agents, mold release agents, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.
  • the blending amount of these additives is preferably in the range of 1,000 parts by weight or less, more preferably 700 parts by weight or less, based on 100 parts by weight of the curable resin composition.
  • the method for preparing the curable resin composition of the present embodiment is not particularly limited, but each component may be uniformly mixed or prepolymerized.
  • the maleimide resin and the cyanate ester compound are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent.
  • the maleimide resin of the present embodiment and, if necessary, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives may be added to prepolymerize.
  • an extruder, kneader, roll or the like is used in the absence of a solvent, and a reaction kettle with a stirrer is used in the presence of a solvent.
  • a prepreg can be obtained by heating and melting the curable resin composition of the present embodiment, lowering the viscosity, and impregnating reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber.
  • a prepreg can also be obtained by impregnating the fibers as described above with the varnish and heating and drying the varnish.
  • the fiber to be used it is preferable to use not only E glass but also low dielectric glass such as NE glass, glass fiber using quartz glass and the like, especially in high frequency applications.
  • the blending amount of these fibers is preferably 10% by volume to 70% by volume, particularly preferably 20% by volume to 65% by volume, based on 100% by volume of the total amount of the resin.
  • the total amount of fibers and filler is preferably 80% by volume or less with respect to 100% by volume of the total amount of resin. If it exceeds 80% by volume, not only the sheet becomes brittle, but also the flowability at the time of curing later is not obtained, which makes it difficult to handle as a substrate.
  • the above prepreg is cut into a desired shape, laminated with copper foil or the like if necessary, and then the curable resin composition is heat-cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Thereby, a laminated board for electric and electronic (printed wiring board) and a carbon fiber reinforcing material can be obtained.
  • 320 parts of the aromatic amine resin (SA-1) represented by the above formula (5) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure with a rotary evaporator.
  • the amine equivalent of the aromatic amine resin (SA-1) was 180.5 g / eq, and the softening point was 45 ° C.
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 28%.
  • the amine equivalent of the aromatic amine resin (A-1) was 187.9 g / eq, and the softening point was 59 ° C.
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 176%.
  • a maleimide resin (SM-1) represented by the above formula (1) was obtained.
  • the obtained maleimide resin (SM-1) had a softening point of 100 ° C. and an acid value of 9 mgKOH / g.
  • n 1 body was 73%, and the average n was 1.37.
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 30%.
  • Example 1 A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 197 parts of the aromatic amine resin (A-1) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state.
  • A-1 aromatic amine resin
  • a maleimide resin (M-1) represented by the above formula (1) was obtained by completely distilling off the solvent in 50 parts of the obtained resin solution, especially under heating and reduced pressure.
  • the obtained maleimide resin (M-1) had a softening point of 115 ° C. and an acid value of 7.5 mgKOH / g.
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 163%.
  • Example 2 A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 197 parts of the aromatic amine resin (A-2) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state.
  • A-2 aromatic amine resin
  • the maleimide resin (M-2) represented by the above formula (1) was obtained by completely distilling off the mixture.
  • the obtained maleimide resin (M-2) had a softening point of 111 ° C. and an acid value of 8 mgKOH / g.
  • n 1 body was 56%, and the average n was 1.78.
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 120%.
  • Examples 3 to 5 The amine resins obtained in Synthesis Examples 6, 8 and 9 were synthesized in the same manner as in Example 1. The results are shown in Table 2.
  • Example 14 A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 8 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 190 parts of an aromatic amine resin (A-11) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state.
  • A-11 aromatic amine resin
  • the area ratio (o / p) of the ortho-orientation and the para-orientation was 127%.
  • a maleimide resin (M-11) represented by the above formula (1) was obtained by completely distilling off the solvent in 50 parts of the obtained resin solution, especially under heating and reduced pressure.
  • the obtained maleimide resin (M-11) had a softening point of 126 ° C. and an acid value of 9.5 mgKOH / g.
  • Examples 11 and 12, Comparative Examples 5 and 6 The maleimide resins M-1 and M-3 obtained in Examples 1 and 3 and SM-1 and SM-2 obtained in Comparative Examples 1 and 2 were catalysts (DCP; dikmyl) with respect to 50 parts by weight, respectively. 0.75 parts by weight of peroxide (manufactured by Kayaku Akzo Corporation) was blended and cured at 250 ° C. for 2 hours. A plate of 2.5 mm ⁇ 50 mm ⁇ 0.25 mm was cut out from the obtained cured product, and the dielectric constant and dielectric loss tangent at frequencies of 1 and 10 GHz were measured using a cavity resonator (ADMS01OC1 manufactured by AET). Shown in 4.
  • DCP dikmyl
  • peroxide manufactured by Kayaku Akzo Corporation
  • the maleimide resin of the present embodiment has excellent dielectric properties not only at 1 GHz but also at 10 GHz.
  • the maleimide resin of the present embodiment has excellent dielectric properties even in the high frequency region. It was also confirmed that the maleimide resin of the present embodiment has a small difference depending on the temperature and has high environmental resistance.
  • Example 15 Comparative Examples 8 and 9 Using the maleimide resin (M-11) obtained in Example 14, the maleimide resin (SM-1) obtained in Comparative Example 1, and the maleimide resin (SM-2) obtained in Comparative Example 2, Table 6 Various epoxy resins, curing agents, and curing accelerators are mixed in the proportions (parts by weight) described in the above, kneaded with a mixing roll, tableted, and then a resin molded body is prepared by transfer molding and cured at 200 ° C. for 2 hours. rice field. Table 6 shows the results of measuring the physical characteristics of the cured product thus obtained for the following items. In addition, for each cured product, the change in elastic modulus with temperature was measured by a dynamic viscoelastic device (DMA). The results are shown in FIG.
  • DMA dynamic viscoelastic device
  • -TMA Tg Glass transition temperature measured by a thermomechanical characteristic device.
  • -DMA elastic modulus Measured by a dynamic viscoelasticity tester (DMA).
  • -Td5 5% thermogravimetric reduction temperature: The obtained cured product was crushed into powder, and the thermal decomposition temperature was measured by TG-DTA using a sample of 100 mesh pass and 200 mesh on. The temperature at which the weight was reduced by 5% as measured at a sample amount of 10 mg, a heating rate of 10 ° C./min, and an air amount of 200 ml / hr.
  • -Bending elastic modulus Measured in accordance with JIS K-6911.
  • -Permittivity and dielectric loss tangent Measured at room temperature using a cavity resonator (manufactured by AET).
  • E1 NC-3000-L (Nippon Kayaku Epoxy Equivalent 271g / eq)
  • P1 Kayahard GPH-65 (Nippon Kayaku Co., Ltd. hydroxyl group equivalent 200 g / eq)
  • the cured product of Example 15 has a high elastic modulus in the room temperature to low temperature region, contributes to the rigidity of the substrate, and maintains a high elastic modulus even in the temperature region during solder reflow.
  • it can be said that it is excellent in weather resistance due to heat because it has been confirmed that it has high heat resistance (Tg) and excellent stability at the time of heat (heat resistance decomposition Td5).
  • Tg heat resistance
  • Td5 heat resistance decomposition
  • the dielectric properties it was confirmed that the influence of the deterioration of the dielectric properties due to the epoxy resin compounding could be suppressed, and that both the dielectric constant and the dielectric loss tangent were excellent.
  • Example 16 Comparative Example 10 50 parts by weight of the maleimide resin (M-11) obtained in Example 14 and the maleimide resin (SM-1) obtained in Comparative Example 1 were catalysts (DCP; dicumyl peroxide, chemical agent Nourion Co., Ltd.). (Manufactured by) 0.75 parts by weight, transferred molding at 175 ° C., and then cured at 250 ° C. for 2 hours. A plate of 2.5 mm ⁇ 50 mm ⁇ 0.25 mm was cut out from the obtained cured product, and its dielectric constant and dielectric loss tangent were immersed in water at room temperature for 24 hours after drying using a cavity resonator (manufactured by AET). After that, the results of measurement at a frequency of 10 GHz are shown in Table 7.

Abstract

Provided is a maleimide resin represented by formula (1). The content of N,N'-(phenylene-di-(2,2-propylidene)-di-phenylene)bismaleimide in the maleimide resin is no more than 98% by area in terms of GPC areal percentage. The content of a maleimide compound represented by formula (2) in the N,N'-(phenylene-di-(2,2-propylidene)-di-phenylene)bismaleimide is at least 30% and less than 60% by area in terms of HPLC areal percentage. (In formula (1), n is the number of repeating units, and the average value thereof is such that 1 < n < 5.)

Description

マレイミド樹脂およびその製造方法、マレイミド溶液、並びに、硬化性樹脂組成物およびその硬化物Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product
 本発明は、マレイミド樹脂およびその製造方法、マレイミド溶液、並びに、硬化性樹脂組成物およびその硬化物に関するものである。本発明は、半導体封止材、プリント配線板、ビルドアップ積層板などの電気・電子部品や、炭素繊維強化プラスティック、ガラス繊維強化プラスティックなどの軽量高強度材料に好適に使用される。 The present invention relates to a maleimide resin and a method for producing the same, a maleimide solution, and a curable resin composition and a cured product thereof. INDUSTRIAL APPLICABILITY The present invention is suitably used for electrical / electronic parts such as semiconductor encapsulants, printed wiring boards, and build-up laminated boards, and lightweight and high-strength materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。例えば、従来の半導体チップは金属製のリードフレームに搭載することが主流であったが、近年のCPUなど高度な処理能力のある半導体チップは高分子材料で作られる積層板に搭載されることが多くなっている。CPU等素子の高速化が進み、クロック周波数が高くなるにつれて、信号伝搬遅延や伝送損失の問題が拡大しており、配線板に低誘電率化、低誘電正接化が求められている。特に、近年の5Gの機運の高まりにより、Sub6だけでなく、10GHz以上、特に28GHz以上の準ミリ波、ミリ波における電気特性が重要視され始め、これらの領域で安定して使用できる材料が求められている。同時に、素子の高速化に伴い、チップの発熱が大きくなっているため耐熱性を高める必要も生じている。 In recent years, the required characteristics of laminated boards on which electrical and electronic components are mounted have become broader and more sophisticated due to the expansion of their fields of use. For example, conventional semiconductor chips are mainly mounted on metal lead frames, but semiconductor chips with high processing power such as CPUs in recent years may be mounted on laminates made of polymer materials. There are many. As the speed of elements such as CPUs increases and the clock frequency increases, the problems of signal propagation delay and transmission loss are increasing, and the wiring board is required to have a low dielectric constant and a low dielectric loss tangent. In particular, due to the recent increase in the momentum of 5G, electrical characteristics not only in Sub6 but also in quasi-millimeter waves and millimeter waves of 10 GHz or higher, especially 28 GHz or higher, have begun to be emphasized, and materials that can be used stably in these regions are required. Has been done. At the same time, as the speed of the element increases, the heat generated by the chip increases, so that it is necessary to increase the heat resistance.
 また、携帯電話などのモバイル電子機器の普及により、精密電子機器が屋外環境や人体の極近傍で使用・携帯されるようになってきているため、外的環境(特に耐湿熱環境)に対する耐性が必要とされている。更に、自動車分野においては急速に電子化が進み、エンジンの近くに精密電子機器が配置されることもあり、耐熱・耐湿性がより高いレベルで要求されるようになっている。また、自動車用途や携帯機器などに用いられる為、難燃性等の安全性もよりいっそう重要となっているが、近年の環境問題意識の向上によりハロゲン系難燃剤の使用が忌避されているため、ハロゲンを使用しないで難燃性を付与する必要性が増している。 In addition, with the spread of mobile electronic devices such as mobile phones, precision electronic devices have come to be used and carried in outdoor environments and in the immediate vicinity of the human body, so that they are resistant to the external environment (especially moisture-resistant heat-resistant environment). is required. Furthermore, in the field of automobiles, digitization is progressing rapidly, and precision electronic devices may be placed near the engine, so that heat resistance and moisture resistance are required at a higher level. In addition, since it is used for automobiles and mobile devices, safety such as flame retardancy is becoming more important, but the use of halogen-based flame retardants has been avoided due to the recent increase in awareness of environmental issues. , There is an increasing need to impart flame retardancy without using halogens.
 従来、特許文献1のようなビスフェノールA型シアネートエステル化合物とビスマレイミド化合物を併用した樹脂であるBTレジンを使用した配線板が、耐熱性や耐薬品、電気特性などに優れており、高性能配線板として幅広く使用されてきたが、上記のように更なる高性能を要求される状況下において改善が必要となっている。 Conventionally, a wiring board using BT resin, which is a resin in which a bisphenol A type cyanate ester compound and a bismaleimide compound are used in combination as in Patent Document 1, is excellent in heat resistance, chemical resistance, electrical characteristics, etc., and is a high-performance wiring. Although it has been widely used as a board, it needs to be improved under the circumstances where higher performance is required as described above.
 また、近年は省エネルギーの観点から飛行機、自動車、列車、船舶等の軽量化が進んでいる。従来は金属材料を用いていたものを、軽量で高強度な炭素繊維複合材料に置き換える検討が乗物分野で特に行われている。例えばボーイング787においては複合材料の比率を上げることで軽量化を行い、燃費効率を大幅に改善している。航空分野ではさらなる軽量化のために、エンジン回りの部材にも炭素繊維複合材を導入する動きもあり、当然に高いレベルの耐熱性が要求されてきている。自動車分野では一部ではあるが複合材料製のプロペラシャフトを搭載しており、また高級車向けに車体を複合材料で作る動きもある。炭素繊維複合材の分野では、従来はエポキシ樹脂のビスフェノールA型ジグリシジルエーテルやテトラグリシジルジアミノジフェニルメタンなどと、硬化剤としてジアミノジフェニルメタン、ジアミノジフェニルスルホンなどを使用した複合材料が用いられてきたが、より軽量化・高耐熱化を進めるためには複合材料の適用を広げる必要があり、そのための材料としてマレイミド樹脂が一つの手段として検討されている。 In recent years, the weight of airplanes, automobiles, trains, ships, etc. has been reduced from the viewpoint of energy saving. In the field of vehicles, studies have been made especially on replacing what used to be a metal material with a lightweight and high-strength carbon fiber composite material. For example, in the Boeing 787, the weight is reduced by increasing the ratio of the composite material, and the fuel efficiency is greatly improved. In the aviation field, there is a movement to introduce carbon fiber composite materials to the members around the engine in order to further reduce the weight, and naturally a high level of heat resistance is required. In the automobile field, it is equipped with a propeller shaft made of composite material, although it is a part, and there is also a movement to make the car body from composite material for luxury cars. In the field of carbon fiber composite materials, composite materials using epoxy resins such as bisphenol A type diglycidyl ether and tetraglycidyl diaminodiphenylmethane and diaminodiphenylmethane and diaminodiphenylsulfone as curing agents have been used. In order to promote weight reduction and high heat resistance, it is necessary to expand the application of composite materials, and maleimide resin is being studied as one means for that purpose.
 このような中、市場で入手可能なマレイミド化合物、あるいはビスマレイミド樹脂は、従来使用されてきたエポキシ樹脂等に比べると大幅に耐熱性が向上し、上述のような用途に使用したいという強いニーズがあるものの、誘電特性、特に高周波領域での誘電特性が十分とは言えず、高速通信ニーズに応えられない。さらには空気中の水分を吸収することで電気特性が大幅に悪化してしまうという問題があり、その適用範囲は限定的であった。 Under these circumstances, the maleimide compounds or bismaleimide resins available on the market have significantly improved heat resistance as compared with the epoxy resins and the like that have been conventionally used, and there is a strong need to use them for the above-mentioned applications. However, the dielectric properties, especially the dielectric properties in the high frequency region, are not sufficient to meet the needs for high-speed communication. Furthermore, there is a problem that the electrical characteristics are significantly deteriorated by absorbing the moisture in the air, and the applicable range is limited.
 これに対して、特許文献2、3のようマレイミド樹脂も開発されているが、いまだ十分とは言えない。 On the other hand, maleimide resins have been developed as in Patent Documents 2 and 3, but they are not yet sufficient.
日本国特公昭54-30440号公報Japanese Patent Publication No. 54-30440 日本国特開平3-100016号公報Japanese Patent Application Laid-Open No. 3-100016 日本国特開2009-1783号公報Japanese Patent Application Laid-Open No. 2009-1783 日本国特公平4-75222号公報Japan Special Fairness No. 4-75222 Gazette 日本国特公平6-37465号公報Japan Special Fairness No. 6-37465
 本発明は、溶剤溶解性に優れ、高周波領域においても電気特性に優れたマレイミド樹脂を提供することで、特に5Gに代表される高速通信技術の発展に寄与する。 The present invention contributes to the development of high-speed communication technology typified by 5G by providing a maleimide resin having excellent solvent solubility and excellent electrical characteristics even in a high frequency region.
 本発明者らは上記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。
 すなわち本発明は以下の[1]~[7]に関する。
[1]
 下記式(1)で表されるマレイミド樹脂であって、
 前記マレイミド樹脂中、N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドの含有量がGPC面積百分率で98面積%以下であって、
 前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、下記式(2)で表されるマレイミド化合物の含有量がHPLC面積百分率で30面積%以上60面積%未満であるマレイミド樹脂。
As a result of diligent research to solve the above problems, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [7].
[1]
A maleimide resin represented by the following formula (1).
The content of N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide in the maleimide resin is 98 area% or less in GPC area percentage.
In the N, N'-(phenylene-di- (2,2-propylidene) -di-phenylene) bismaleimide, the content of the maleimide compound represented by the following formula (2) is 30 area% or more in HPLC area percentage. Maleimide resin that is less than 60 area%.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、nは繰り返し数であり、その平均値は1<n<5である。) (In equation (1), n is the number of repetitions, and the average value is 1 <n <5.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[2]
 前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドにおいて、HPLC面積百分率によるオルソ配向とパラ配向の面積比(O/P)が、100%以上200%未満である、前項[1]に記載のマレイミド樹脂。
[2]
In the N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide, the area ratio (O / P) of ortho-orientation and para-orientation by HPLC area percentage is 100% or more and 200. The maleimide resin according to the preceding item [1], which is less than%.
[3]
 前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、下記式(3)で表されるマレイミド化合物の含有量がHPLC面積百分率で50面積%未満である、前項[1]または[2]に記載のマレイミド樹脂。
Figure JPOXMLDOC01-appb-C000006
[3]
In the N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide, the content of the maleimide compound represented by the following formula (3) is less than 50 area% in HPLC area percentage. The maleimide resin according to the preceding item [1] or [2].
Figure JPOXMLDOC01-appb-C000006
[4]
 前項[1]~[3]のいずれか一項に記載のマレイミド樹脂と有機溶剤を含むマレイミド溶液であって、前記有機溶剤がケトン類、炭化水素類、及びエステル類からなる群から選択される1種以上であるマレイミド溶液。
[5]
 前項[1]~[3]のいずれか一項に記載のマレイミド樹脂、又は前項[4]に記載のマレイミド溶液を含む硬化性樹脂組成物であって、さらに硬化促進剤を含有する硬化性樹脂組成物。
[6]
 前項[1]~[3]のいずれか一項に記載のマレイミド樹脂、又は前項[5]に記載の硬化性樹脂組成物を硬化して得られる硬化物。
[7]
 アニリンとジイソプロペニルベンゼンまたはジ(α-ヒドロキシイソプロピル)ベンゼンに、アニリンの総量に対して1~12重量%のプロトン酸を添加して、140~190℃で反応させて芳香族アミン樹脂を得る工程と、前記芳香族アミン樹脂をマレイミド化する工程と、を含む、前項[1]~[3]のいずれか一項に記載のマレイミド樹脂の製造方法。
[4]
A maleimide solution containing the maleimide resin and an organic solvent according to any one of the above items [1] to [3], wherein the organic solvent is selected from the group consisting of ketones, hydrocarbons, and esters. One or more maleimide solutions.
[5]
A curable resin composition containing the maleimide resin according to any one of the preceding items [1] to [3] or the maleimide solution according to the preceding item [4], and further containing a curing accelerator. Composition.
[6]
A cured product obtained by curing the maleimide resin according to any one of the preceding items [1] to [3] or the curable resin composition according to the preceding item [5].
[7]
To aniline and diisopropenylbenzene or di (α-hydroxyisopropyl) benzene, 1 to 12% by weight of protonic acid is added to the total amount of aniline and reacted at 140 to 190 ° C. to obtain an aromatic amine resin. The method for producing a maleimide resin according to any one of the preceding items [1] to [3], which comprises a step and a step of converting the aromatic amine resin into maleimide.
 本発明のマレイミド樹脂は溶剤溶解性に優れるだけでなく、その硬化物は高周波領域においても電気特性に優れ、電子材料や構造材等の各種用途に有用である。 The maleimide resin of the present invention is not only excellent in solvent solubility, but its cured product is also excellent in electrical properties even in a high frequency region, and is useful for various applications such as electronic materials and structural materials.
実施例15及び比較例8~9の硬化物における、温度による弾性率の変化を示すグラフである。It is a graph which shows the change of elastic modulus with temperature in the cured product of Example 15 and Comparative Examples 8-9.
 以下、本発明の一実施形態について詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.
 本実施形態のマレイミド樹脂は、下記式(1)で表される。 The maleimide resin of this embodiment is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (式(1)中、nは繰り返し数であり、その平均値は1<n<5である) (In equation (1), n is the number of repetitions, and the average value is 1 <n <5)
 式(1)中、nの値はマレイミド樹脂のゲルパーミエーションクロマトグラフィー(GPC、検出器:RI)の測定により求められた数平均分子量、あるいは分離したピークの各々の面積比から算出することが出来る。nは通常1<n<5であるであるが、1<n<3であることがより好ましい。
 平均値nが1の場合は溶剤溶解性が低く結晶が析出してしまう問題が生じる。一方、平均値nが5以上である場合、成型時のフロー性が悪くなり、硬化物としての特性が発揮できない問題が生じる。
In the formula (1), the value of n can be calculated from the number average molecular weight obtained by the measurement of gel permeation chromatography (GPC, detector: RI) of the maleimide resin, or the area ratio of each of the separated peaks. You can. n is usually 1 <n <5, but more preferably 1 <n <3.
When the average value n is 1, there arises a problem that the solvent solubility is low and crystals are precipitated. On the other hand, when the average value n is 5 or more, the flowability at the time of molding is deteriorated, and there arises a problem that the characteristics as a cured product cannot be exhibited.
 本実施形態のマレイミド樹脂中の式(1)中、n=1体であるN,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドのGPC分析(RI)による含有率は、GPC面積百分率で98面積%以下であり、好ましくは20~90面積%、より好ましくは30~80面積%、さらに好ましくは40~75面積%、最も好ましくは40~70面積%の範囲である。n=1体の含有量が98面積%以下であると、耐熱性が良好となる。また結晶性が低下し、溶剤溶解性が良好となる。一方、n=1体の下限値が20面積%以上であると樹脂溶液の粘度が低下し、含浸性が良好となる。また固体として取り出す際に低温で溶剤を除去できるため、自己重合が起こりづらく取り扱いが容易である。 GPC analysis (RI) of N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide in the formula (1) in the maleimide resin of the present embodiment. The GPC area percentage is 98 area% or less, preferably 20 to 90 area%, more preferably 30 to 80 area%, still more preferably 40 to 75 area%, and most preferably 40 to 70 area%. Is the range of. When the content of n = 1 body is 98 area% or less, the heat resistance becomes good. In addition, the crystallinity is lowered and the solvent solubility is improved. On the other hand, when the lower limit of n = 1 body is 20 area% or more, the viscosity of the resin solution is lowered and the impregnation property is improved. Further, since the solvent can be removed at a low temperature when it is taken out as a solid, self-polymerization is unlikely to occur and it is easy to handle.
 上記面積%は、GPC(ゲルパーミエーションクロマトグラフィー)で測定することができ、本実施形態では、以下の条件で測定している。
・GPC分析
 GPC:DGU-20A3R,LC-20AD,SIL-20AHT,RID-20A,SPD-20A,CTO-20A,CBM-20A(いずれも島津製作所製)
 カラム:Shodex KF-603、KF-602x2、KF-601x2
 連結溶離液:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折検出器)
The area% can be measured by GPC (gel permeation chromatography), and in this embodiment, it is measured under the following conditions.
-GPC analysis GPC: DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
Columns: Shodex KF-603, KF-602x2, KF-601x2
Linked eluent: tetrahydrofuran Flow rate: 0.5 ml / min.
Column temperature: 40 ° C
Detection: RI (Differential Refractometer)
 本実施形態のマレイミド樹脂の軟化点は50℃~150℃であることが好ましく、より好ましくは80℃~120℃であり、更に好ましくは90℃~120℃、特に好ましくは95℃~120℃である。また、150℃での溶融粘度は0.05~100Pa・s、好ましくは0.1~40Pa・sである。ただし、溶剤除去時の重合において高分子量化することでこの値を超えてしまう場合がある。該好ましい範囲は溶液の状態から固形化した際のn=1のGPCにおける面積%の変化量が3面積%以下の時の指標である。
 本実施形態のマレイミド樹脂の酸価は30mgKOH/gであることが好ましく、1~15mgKOH/gであることがさらに好ましい。酸価が高いとマレイミド化されていない分子が多く、カルボン酸を有する構造が過剰となってしまうことから、電気特性や耐水性に影響を及ぼす。
The softening point of the maleimide resin of the present embodiment is preferably 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., further preferably 90 ° C. to 120 ° C., and particularly preferably 95 ° C. to 120 ° C. be. The melt viscosity at 150 ° C. is 0.05 to 100 Pa · s, preferably 0.1 to 40 Pa · s. However, this value may be exceeded by increasing the molecular weight in the polymerization when removing the solvent. The preferable range is an index when the amount of change in area% in GPC of n = 1 when solidified from the state of the solution is 3 area% or less.
The acid value of the maleimide resin of the present embodiment is preferably 30 mgKOH / g, more preferably 1 to 15 mgKOH / g. If the acid value is high, there are many molecules that are not maleimided, and the structure having a carboxylic acid becomes excessive, which affects the electrical properties and water resistance.
 本実施形態のマレイミド樹脂は、前記式(1)におけるn=1体であるN,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドとして、位置異性体である下記式(2)~(4)で表されるマレイミド化合物を含有する。 The maleimide resin of the present embodiment is a positional isomer as N, N'-(phenylene-di- (2,2-propylidene) -di-phenylene) bismaleimide, which is n = 1 in the above formula (1). It contains a maleimide compound represented by the following formulas (2) to (4).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、前記式(2)~(4)で表されるマレイミド化合物それぞれの含有率は、HPLC面積百分率で以下であることが好ましい。
 前記式(2)で表されるマレイミド化合物;30面積%以上60面積%未満であり、35面積%以上55面積%未満であることが好ましく、40面積%以上55面積%未満がさらに好ましい。非対称構造を有する本化合物が30面積%以上であることで溶剤溶解性が向上するほか、誘電特性が向上する。一方、60面積%以上とするためには、晶析により前記式(3)で表されるマレイミド化合物を除去するなどの追加工程が必要となるため、製造コストの上昇や産業廃棄物増大などの点において好ましくない。
 前記式(3)で表されるマレイミド化合物;50面積%未満であることが好ましく、2面積%以上35面積%未満であることがさらに好ましく、5面積%以上30面積%未満であることが好ましい。50面積%未満であることにより、溶剤溶解性が向上し、電気特性も良好となる。
 前記式(4)で表されるマレイミド化合物;15面積%以上60面積%未満であることが好ましく、25面積%以上50面積%未満であることがさらに好ましい。15面積%以上であることで誘電特性は良好となり、60面積%未満であることで硬化性や密着性が良好となり、基板等の作成時の不具合を抑制できる。
 なお、結晶性の問題、および電気特性悪化の問題については前記式(3)で表されるマレイミド化合物が最も影響が高いことから、式(2)で表されるマレイミド化合物と式(4)で表されるマレイミド化合物の合計比率は、N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、50面積%以上であることが好ましく、60面積%以上であることがさらに好ましく、70面積%以上であることが特に好ましい。
The content of each of the maleimide compounds represented by the above formulas (2) to (4) in N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide is the HPLC area percentage. The following is preferable.
The maleimide compound represented by the formula (2); 30 area% or more and less than 60 area%, preferably 35 area% or more and less than 55 area%, and more preferably 40 area% or more and less than 55 area%. When the present compound having an asymmetric structure is 30 area% or more, the solvent solubility is improved and the dielectric property is improved. On the other hand, in order to increase the area to 60 area% or more, an additional step such as removing the maleimide compound represented by the above formula (3) by crystallization is required, which causes an increase in manufacturing cost and an increase in industrial waste. Not preferable in terms of points.
The maleimide compound represented by the formula (3); preferably less than 50 area%, more preferably 2 area% or more and less than 35 area%, and preferably 5 area% or more and less than 30 area%. .. When it is less than 50 area%, the solvent solubility is improved and the electrical characteristics are also good.
The maleimide compound represented by the formula (4); preferably 15 area% or more and less than 60 area%, and more preferably 25 area% or more and less than 50 area%. When it is 15 area% or more, the dielectric property is good, and when it is less than 60 area%, the curability and adhesion are good, and defects at the time of producing a substrate or the like can be suppressed.
Since the maleimide compound represented by the above formula (3) has the highest influence on the problem of crystallinity and the problem of deterioration of electrical characteristics, the maleimide compound represented by the formula (2) and the formula (4) are used. The total ratio of the maleimide compounds represented is preferably 50 area% or more, preferably 60 area% or more, in N, N'-(phenylene-di- (2,2-propylidene) -di-phenylene) bismaleimide. Is more preferable, and 70 area% or more is particularly preferable.
 また、N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、オルソ配向とパラ配向の面積比(O/P)は50%以上300%未満であることが好ましく、100%以上200%未満であることがさらに好ましい。
 面積比(O/P)が50%以上であると、溶剤溶解性や電気特性が良好となる。また、300%未満であれば、製造コストの上昇や産業廃棄物増大などの問題が発生しない。
 なお、オルソ配向とパラ配向の面積比(O/P)は、下記式にて算出される。
 オルソ配向とパラ配向の面積比(O/P)=(前記式(4)で表されるマレイミド化合物の面積%)×2+(前記式(2)で表されるマレイミド化合物の面積%)/(前記式(3)で表されるマレイミド化合物の面積%)×2+(前記式(2)で表されるマレイミド化合物の面積%)
Further, in N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide, the area ratio (O / P) of ortho-orientation and para-orientation is 50% or more and less than 300%. It is preferable, and it is more preferable that it is 100% or more and less than 200%.
When the area ratio (O / P) is 50% or more, the solvent solubility and the electrical characteristics are good. Further, if it is less than 300%, problems such as an increase in manufacturing cost and an increase in industrial waste do not occur.
The area ratio (O / P) of ortho-orientation and para-orientation is calculated by the following formula.
Area ratio of ortho-orientation to para-orientation (O / P) = (area% of maleimide compound represented by the above formula (4)) × 2 + (area% of maleimide compound represented by the above formula (2)) / ( Area% of the maleimide compound represented by the formula (3)) × 2 + (Area% of the maleimide compound represented by the formula (2))
 上記含有率は、HPLC(高速液体クロマトグラフィー)で測定することができ、本実施形態では、以下の条件で測定している。
・HPLC分析
 株式会社島津製作所社製 送液ユニット LC-20AD
 株式会社島津製作所社製 フォトダイオードアレイ検出器 SPD-M20A
 株式会社島津製作所社製 カラムオーブン CTO-20A
 カラム:Intersil ODS-2.5μm,4.6×250mm 40℃
 MobilPhaseA:アセト二トリル(AN)
 MobilPhaseB:水(W)
 TimeProgram:
 0-28min.AN/W=30%/70% → 100%/0%
 28-40min.AN/W=100%/0%
 FlowRate:1.0mL/min.
 Detection:UV 200-274nm,PDA
 測定波長:225nm
The above content can be measured by HPLC (High Performance Liquid Chromatography), and in this embodiment, it is measured under the following conditions.
・ HPLC analysis Liquid transfer unit LC-20AD manufactured by Shimadzu Corporation
Photodiode array detector SPD-M20A manufactured by Shimadzu Corporation
Column oven CTO-20A manufactured by Shimadzu Corporation
Column: Intersil ODS-2.5 μm, 4.6 × 250 mm 40 ° C
MobilePhaseA: Acet Nitrile (AN)
MobilePhaseB: Water (W)
TimeProgram:
0-28 min. AN / W = 30% / 70% → 100% / 0%
28-40 min. AN / W = 100% / 0%
Flow Rate: 1.0 mL / min.
Detection: UV 200-274nm, PDA
Measurement wavelength: 225 nm
 HPLCの測定波長は210~230nmの範囲が好ましい。他の波長でも測定は可能であるが、その吸収波長の差異から実際の含有量とかけ離れる場合があるためである。またNMRによりその比率を算出することもできる。NMRを用いる場合、13C-NMRを用いて1-2ppmに現れるイソプロピリデン基のピーク強度比で比率の算出が可能である。 The measurement wavelength of HPLC is preferably in the range of 210 to 230 nm. This is because measurement is possible at other wavelengths, but the actual content may differ from the actual content due to the difference in absorption wavelength. The ratio can also be calculated by NMR. When NMR is used, the ratio can be calculated from the peak intensity ratio of the isopropylidene group appearing at 1-2 ppm using 13 C-NMR.
 本発明の一実施形態に係るマレイミド樹脂は、溶剤への溶解性及び他の樹脂との溶解性が高く、マレイミド溶液(以下、単にワニスともいう)、あるいは硬化性樹脂組成物として取り扱うことができる。また、本発明の一実施形態に係るマレイミド樹脂の硬化物は、電気特性、耐熱性、耐候性、吸湿性、難燃性に優れる。 The maleimide resin according to one embodiment of the present invention has high solubility in a solvent and high solubility in other resins, and can be treated as a maleimide solution (hereinafter, also simply referred to as varnish) or a curable resin composition. .. Further, the cured product of the maleimide resin according to the embodiment of the present invention is excellent in electrical characteristics, heat resistance, weather resistance, hygroscopicity, and flame retardancy.
 使用可能な溶剤としては、例えば、アセトン、エチルメチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、テトラメチルベンゼン、シクロヘキサン等の炭化水素類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のエステル類、γ-ブチロラクトン等の環状エステル類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤、などが挙げられ、これらの中でケトン類、炭化水素類、エステル類が好ましく、炭化水素類であることがさらに好ましく、芳香族炭化水素類であることが特に好ましい。これらは単独で用いてもよく、2種以上併用してもよい。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80重量%、好ましくは20~70重量%となる範囲で使用する。
 なお、マレイミド樹脂を溶剤に溶解させることでマレイミド溶液とすることができるが、合成時に使用する溶剤をそのままマレイミド溶液として提供することが好ましい。産業上廃棄物、消費エネルギーが少なくなるためである。
Examples of usable solvents include ketones such as acetone, ethyl methyl ketone and cyclohexanone, hydrocarbons such as benzene, toluene, xylene, tetramethyl benzene and cyclohexane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and dipropylene glycol. Glycol ethers such as dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate , Esters such as dialkyl glutarate, dialkyl succinate, dialkyl adipate, cyclic esters such as γ-butyrolactone, petroleum-based solvents such as petroleum ether, petroleum naphtha, hydrocarbon petroleum naphtha, and solvent naphtha. Among these, ketones, hydrocarbons and esters are preferable, hydrocarbons are more preferable, and aromatic hydrocarbons are particularly preferable. These may be used alone or in combination of two or more. The solvent is used in a range in which the solid content concentration of the obtained varnish excluding the solvent is usually 10 to 80% by weight, preferably 20 to 70% by weight.
A maleimide solution can be obtained by dissolving the maleimide resin in a solvent, but it is preferable to provide the solvent used at the time of synthesis as the maleimide solution as it is. This is because industrial waste and energy consumption are reduced.
 つづいて、本実施形態のマレイミド樹脂の製造方法について説明するが、本製法に限定されるものではない。 Next, the method for producing the maleimide resin of the present embodiment will be described, but the method is not limited to this method.
[芳香族アミン樹脂の製造方法]
 本実施形態のマレイミド樹脂は、前駆体として下記式(5)で表される芳香族アミン樹脂を用いることができる。
[Manufacturing method of aromatic amine resin]
As the maleimide resin of the present embodiment, an aromatic amine resin represented by the following formula (5) can be used as a precursor.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (式(5)中、nは繰り返し数であり、その平均値は1<n<5である。) (In equation (5), n is the number of repetitions, and the average value is 1 <n <5.)
 前記式(5)で表される芳香族アミン樹脂の製法は特に限定されない。例えば、特許文献4では、アニリンとm-ジイソプロペニルベンゼンまたはm-ジ(α-ヒドロキシイソプロピル)ベンゼンとを、酸性触媒の存在下で180~250℃で反応させることにより前記式(5)におけるn=1体が主成分として得られることが開示されている。このn=1体の中には、下記式(6)で表される1-(o-アミノクミル)-3-(p-アミノクミル)ベンゼン、下記式(7)で表される1,3-ビス(p-アミノクミル)ベンゼン、下記式(8)で表される1,3-ビス(o-アミノクミル)ベンゼンの3つの異性体が含まれる。 The production method of the aromatic amine resin represented by the above formula (5) is not particularly limited. For example, in Patent Document 4, aniline and m-diisopropenylbenzene or m-di (α-hydroxyisopropyl) benzene are reacted at 180 to 250 ° C. in the presence of an acidic catalyst to form the formula (5). It is disclosed that n = 1 body is obtained as a main component. Among these n = 1 bodies are 1- (o-aminocumyl) -3- (p-aminocumyl) benzene represented by the following formula (6) and 1,3-bis represented by the following formula (7). It contains three isomers of (p-aminocumyl) benzene and 1,3-bis (o-aminocumyl) benzene represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 特許文献4では、さらに副成分として含まれるn=2~5体を晶析により精製して純度98%の1,3-ビス(p-アミノクミル)ベンゼンを得ている。また、特許文献5では、1,3-ビス(p-アミノクミル)ベンゼンをマレイミド化してN,N’-(1,3-フェニレン-ジ-(2,2-プロピリデン)-ジ-p-フェニレン)ビスマレイミドを合成して結晶の生成物を得ているが、これを溶剤に溶解するためには加熱が必要であり、加熱後に室温で放置すると数時間で結晶が析出してしまう。そのため、樹脂組成物を調整する場合も結晶が析出する可能性があり、N,N’-(1,3-フェニレン-ジ-(2,2-プロピリデン)-ジ-p-フェニレン)ビスマレイミドの濃度が高まるほど結晶化の可能性が高くなる。プリント配線板や複合材を作製するために、ガラスクロスや炭素繊維をワニスに含浸させて樹脂を付着させるが、結晶が析出してしまうと含浸作業が不可能となり、一方溶解状態を保つために温度を上げると組成物の反応が早まってしまい、ワニスの可使時間が短くなってしまう。 In Patent Document 4, further n = 2 to 5 bodies contained as subcomponents are purified by crystallization to obtain 1,3-bis (p-aminocumyl) benzene having a purity of 98%. Further, in Patent Document 5, 1,3-bis (p-aminocumyl) benzene is maleiminated to form N, N'-(1,3-phenylene-di- (2,2-propanol) -di-p-phenylene). Benzeneimide is synthesized to obtain a crystal product, but heating is required to dissolve it in a solvent, and if it is left at room temperature after heating, crystals will precipitate within a few hours. Therefore, crystals may precipitate even when the resin composition is adjusted, and N, N'-(1,3-phenylene-di- (2,2-propanol) -di-p-phenylene) bismaleimide The higher the concentration, the higher the possibility of crystallization. In order to manufacture printed wiring boards and composite materials, varnish is impregnated with glass cloth or carbon fiber to attach resin, but if crystals are precipitated, impregnation work becomes impossible, while in order to maintain the dissolved state. Increasing the temperature accelerates the reaction of the composition and shortens the pot life of the varnish.
 本発明の一実施形態に係る製造方法では、分子量分布を有し、かつ非対称アミンを含有するアミン樹脂を用いてマレイミド樹脂を合成することで溶剤溶解性、またその硬化物において誘電特性を向上させることができる。
 前記式(5)で表される芳香族アミン樹脂中、前記式(6)で表される芳香族アミン化合物は、HPLC面積百分率で30面積%以上60面積%未満であることが好ましく、30面積%以上55面積%未満であることがさらに好ましく、35面積%以上50面積%未満であることが特に好ましい。
In the production method according to one embodiment of the present invention, a maleimide resin is synthesized using an amine resin having a molecular weight distribution and containing an asymmetric amine to improve solvent solubility and dielectric properties in a cured product thereof. be able to.
Among the aromatic amine resins represented by the formula (5), the aromatic amine compound represented by the formula (6) is preferably 30 area% or more and less than 60 area% in terms of HPLC area percentage, preferably 30 area. It is more preferably% or more and less than 55 area%, and particularly preferably 35 area% or more and less than 50 area%.
 前記式(5)で表される芳香族アミン樹脂を合成する際、用いられる酸性触媒は、塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸等の酸性触媒等が挙げられる。本実施形態においては塩酸、p-トルエンスルホン酸、メタンスルホン酸などのプロトン酸が好ましい。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用されるアニリンに対して、通常1~30重量%、好ましくは1~17重量%、さらに好ましくは1~12重量%、特に好ましくは1~7重量%であり、多すぎると目的とする非対称構造の化合物が少なく、対称構造を有する化合物が優先してできてしまう。少なすぎると反応の進行が遅くなるだけでなく、反応が完結できない場合もあることから好ましくない。 When synthesizing the aromatic amine resin represented by the formula (5), the acidic catalysts used are hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, and methane. Examples thereof include acidic catalysts such as sulfonic acid. In this embodiment, protonic acids such as hydrochloric acid, p-toluenesulfonic acid and methanesulfonic acid are preferable. These may be used alone or in combination of two or more. The amount of the catalyst used is usually 1 to 30% by weight, preferably 1 to 17% by weight, more preferably 1 to 12% by weight, particularly preferably 1 to 7% by weight, based on the aniline used. If it is too much, the target compound having an asymmetric structure is few, and the compound having a symmetrical structure is preferentially formed. If the amount is too small, not only the progress of the reaction will be slowed down, but also the reaction may not be completed, which is not preferable.
 反応は必要によりトルエン、キシレンなどの有機溶剤を使用して行っても、無溶剤で行っても良い。例えば、アニリンと溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除くことが好ましい。しかる後にジイソプロペニルベンゼンまたはジ(α-ヒドロキシイソプロピル)ベンゼンを添加し、その後溶剤を系内から除きながら昇温して140~190℃、好ましくは160~190℃で5~50時間、好ましくは5~30時間反応を行う。反応温度が高すぎる場合、非対称構造が生成後に再結合し、対称構造が優先してできてしまうため、目的とする溶剤溶解性、電気特性を発揮できない。ジ(α-ヒドロキシイソプロピル)ベンゼンを使用した時には水が副生されるため、昇温時に溶剤と共沸させながら系内から除去する。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返したのち、溶剤および過剰のアニリン誘導体を加熱減圧下において除去する。活性白土やイオン交換樹脂を用いた場合は、反応終了後に反応液を濾過して触媒を除去する。
 また、反応温度や触媒の種類によってはジフェニルアミンが副生するため、必要に応じて除去することが好ましい。高温・高真空下で、もしくは水蒸気蒸留等の手段を用いて、ジフェニルアミン誘導体を1重量%以下、好ましくは0.5重量%以下、より好ましくは0.2重量%以下まで除去する。
If necessary, the reaction may be carried out using an organic solvent such as toluene or xylene, or may be carried out without a solvent. For example, after adding an acidic catalyst to a mixed solution of aniline and a solvent, if the catalyst contains water, it is preferable to remove the water from the system by azeotropic boiling. After that, diisopropenylbenzene or di (α-hydroxyisopropyl) benzene is added, and then the temperature is raised while removing the solvent from the system to 140 to 190 ° C., preferably 160 to 190 ° C. for 5 to 50 hours, preferably. The reaction is carried out for 5 to 30 hours. If the reaction temperature is too high, the asymmetric structure will be recombined after formation, and the symmetric structure will be formed preferentially, so that the desired solvent solubility and electrical characteristics cannot be exhibited. Since water is produced as a by-product when di (α-hydroxyisopropyl) benzene is used, it is removed from the system while being azeotropically heated with a solvent when the temperature is raised. After completion of the reaction, the acidic catalyst is neutralized with an alkaline aqueous solution, a water-insoluble organic solvent is added to the oil layer, and washing is repeated until the wastewater becomes neutral, and then the solvent and excess aniline derivative are removed under heating and reduced pressure. .. When activated clay or an ion exchange resin is used, the reaction solution is filtered after the reaction is completed to remove the catalyst.
Further, since diphenylamine is by-produced depending on the reaction temperature and the type of catalyst, it is preferable to remove it if necessary. The diphenylamine derivative is removed to 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.2% by weight or less under high temperature and high vacuum or by means such as steam distillation.
 本実施形態のマレイミド樹脂は、例えば、前記式(5)で表される芳香族アミン樹脂と、マレイン酸または無水マレイン酸(以下、「マレイン酸無水物」ともいう。)を溶剤、触媒の存在下に付加もしくは脱水縮合反応させることで得られる。 The maleimide resin of the present embodiment contains, for example, an aromatic amine resin represented by the above formula (5), maleic acid or maleic anhydride (hereinafter, also referred to as "maleic anhydride") as a solvent and a catalyst. It is obtained by adding or dehydrating and condensing underneath.
[マレイミド樹脂の製造方法]
 反応で使用する溶剤は反応中に生成する水を系内から除去する必要があるため、非水溶性の溶剤を使用する。例えばトルエン、キシレンなどの芳香族溶剤、シクロヘキサン、n-ヘキサンなどの脂肪族溶剤、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルイソブチルケトン、シクロペンタノンなどのケトン系溶剤などが挙げられるがこれらに限定されるものではなく、2種以上を併用しても良い。
[Manufacturing method of maleimide resin]
As the solvent used in the reaction, it is necessary to remove the water generated during the reaction from the system, so a water-insoluble solvent is used. For example, aromatic solvents such as toluene and xylene, aliphatic solvents such as cyclohexane and n-hexane, ethers such as diethyl ether and diisopropyl ether, ester solvents such as ethyl acetate and butyl acetate, methyl isobutyl ketone, cyclopentanone and the like. The above-mentioned ketone solvent and the like can be mentioned, but the present invention is not limited to these, and two or more kinds may be used in combination.
 また、前記非水溶性溶剤に加えて非プロトン性極性溶剤を併用することもできる。例えば、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドンなどが挙げられ、2種以上を併用しても良い。非プロトン性極性溶剤を使用する場合は、併用する非水溶性溶剤よりも沸点の高いものを使用することが好ましい。 Further, in addition to the water-insoluble solvent, an aprotic polar solvent can be used in combination. For example, dimethyl sulfone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like can be mentioned, and two or more of them may be used in combination. When an aprotic polar solvent is used, it is preferable to use a solvent having a boiling point higher than that of the water-insoluble solvent used in combination.
 また、反応で使用する触媒は酸性触媒であり、特に限定されないが、例えば、p-トルエンスルホン酸、ヒドロキシ-p-トルエンスルホン酸、メタンスルホン酸、硫酸、リン酸等が挙げられる。酸性触媒の使用量は、芳香族アミン樹脂に対して通常0.1~10重量%、好ましくは1~5重量%である。酸触媒が多い場合、パラ配向性が強くなり、結晶性や誘電特性に悪影響を及ぼすおそれがある。 The catalyst used in the reaction is an acidic catalyst, and is not particularly limited, and examples thereof include p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, and phosphoric acid. The amount of the acidic catalyst used is usually 0.1 to 10% by weight, preferably 1 to 5% by weight, based on the aromatic amine resin. If there are many acid catalysts, the para-orientation becomes strong, which may adversely affect the crystallinity and dielectric properties.
 例えば、トルエンとN-メチル-2-ピロリドンに前記式(5)で表される芳香族アミン樹脂を溶解し、そこへマレイン酸無水物を添加してアミック酸を生成し、その後p-トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。 For example, an aromatic amine resin represented by the above formula (5) is dissolved in toluene and N-methyl-2-pyrrolidone, and maleic anhydride is added thereto to produce an amic acid, and then p-toluenesulfon. The reaction is carried out by adding an acid and removing the water produced under reflux conditions from the system.
 または、マレイン酸無水物をトルエンに溶解し、撹拌下で前記式(5)で表される芳香族アミン樹脂のN-メチル-2-ピロリドン溶液を添加してアミック酸を生成し、その後p-トルエンスルホン酸を加えて、還流条件下で生成する水を系内から除去しながら反応を行う。 Alternatively, maleic anhydride is dissolved in toluene, and an N-methyl-2-pyrrolidone solution of the aromatic amine resin represented by the above formula (5) is added under stirring to produce an amic acid, and then p-. The reaction is carried out while adding toluenesulfonic acid and removing the water produced under reflux conditions from the system.
 または、マレイン酸無水物をトルエンに溶解し、p-トルエンスルホン酸を加え、撹拌・還流状態において前記式(5)で表される芳香族アミン樹脂のN-メチル-2-ピロリドン溶液を滴下しながら、途中で共沸してくる水は系外へ除き、トルエンは系内へ戻しながら反応を行う(以上、第一段反応)。 Alternatively, maleic anhydride is dissolved in toluene, p-toluenesulfonic acid is added, and an N-methyl-2-pyrrolidone solution of the aromatic amine resin represented by the above formula (5) is added dropwise in a stirred / refluxed state. However, the water that azeotropes on the way is removed to the outside of the system, and the toluene is returned to the inside of the system to carry out the reaction (the above is the first stage reaction).
 いずれの方法においても、マレイン酸無水物は前記式(5)で表される芳香族アミン樹脂のアミノ基に対して、通常1~3倍当量、好ましくは1.2~2.0倍当量使用する。 In either method, maleic anhydride is usually used in an amount of 1 to 3 times, preferably 1.2 to 2.0 times the equivalent of the amino group of the aromatic amine resin represented by the formula (5). do.
 未閉環のアミック酸を少なくするためには、上記に列記したマレイミド化反応後に反応溶液に水を加え、樹脂溶液層と水層に分離させ、過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒などは水層側に溶解しているので、これを分液除去し、さらに同様の操作を繰り返して過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒の除去を徹底する。過剰のマレイン酸や無水マレイン酸、非プロトン性極性溶媒、触媒が除去された有機層のマレイミド樹脂溶液に触媒を再度添加して加熱還流条件下での残存アミック酸の脱水閉環反応を再度行っても構わない(以上、第二段反応)。本手法を行うことにより酸価が低いマレイミド樹脂溶液が得られるが、本実施形態においては第一段反応のみであっても差し支えない。 In order to reduce the amount of unclosed ring amic acid, water is added to the reaction solution after the maleimization reaction listed above to separate the resin solution layer and the aqueous layer, and excess maleic acid, maleic anhydride, and aprotic polarity. Since the solvent, catalyst, etc. are dissolved on the aqueous layer side, separate and remove them, and repeat the same operation to thoroughly remove excess maleic acid, maleic anhydride, aprotic polar solvent, and catalyst. .. The catalyst is added again to the maleimide resin solution of the organic layer from which excess maleic acid, maleic anhydride, aprotic polar solvent, and catalyst have been removed, and the dehydration ring closure reaction of the residual amic acid under heating / reflux conditions is performed again. It does not matter (the above is the second stage reaction). By performing this method, a maleimide resin solution having a low acid value can be obtained, but in the present embodiment, only the first-stage reaction may be used.
 再脱水閉環反応の時間は通常1~5時間、好ましくは1~3時間であり、必要により前述の非プロトン性極性溶剤を添加しても良い。反応終了後、冷却して、水洗水が中性になるまで水洗を繰り返す。その後、加熱減圧下において水を共沸脱水で除いてから、溶剤を留去したり、別の溶剤を加えたりして所望の濃度の樹脂溶液に調整しても良いし、溶剤を完全に留去して固形の樹脂として取り出しても良い。 The time of the re-dehydration ring closure reaction is usually 1 to 5 hours, preferably 1 to 3 hours, and the above-mentioned aprotic polar solvent may be added if necessary. After completion of the reaction, the mixture is cooled and washed with water until the water is neutral. Then, after removing water by azeotropic dehydration under heating and reduced pressure, the solvent may be distilled off or another solvent may be added to adjust the resin solution to a desired concentration, or the solvent may be completely retained. It may be removed and taken out as a solid resin.
 次に、本実施形態の硬化性樹脂組成物について説明する。
 本実施形態の硬化性樹脂組成物には、本実施形態のマレイミド樹脂と架橋反応可能な化合物を含有することができる。当該化合物としては、アミノ基、シアネート基、フェノール性水酸基、アルコール性水酸基、アリル基、メタリル基、アクリル基、メタクリル基、ビニル基、共役ジエン基などのマレイミド樹脂と架橋反応し得る官能基(或いは構造)を有する化合物であれば特に限定されない
 アミン化合物とマレイミド化合物は架橋反応するので、前記式(5)で表される芳香族アミン樹脂を用いても良い。マレイミド樹脂は自己重合も可能なので単独使用も可能である。また、前記式(5)で表される芳香族アミン樹脂以外のアミン化合物または前記式(1)で表されるマレイミド樹脂以外のマレイミド化合物を併用してもかまわない。
Next, the curable resin composition of the present embodiment will be described.
The curable resin composition of the present embodiment may contain a compound capable of cross-linking with the maleimide resin of the present embodiment. Examples of the compound include functional groups (or functional groups) capable of cross-linking with a maleimide resin such as an amino group, a cyanate group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an allyl group, a metallicyl group, an acrylic group, a methacryl group, a vinyl group and a conjugated diene group. The amine compound and the maleimide compound are not particularly limited as long as they have a structure), and therefore, an aromatic amine resin represented by the above formula (5) may be used. Since the maleimide resin can be self-polymerized, it can be used alone. Further, an amine compound other than the aromatic amine resin represented by the formula (5) or a maleimide compound other than the maleimide resin represented by the formula (1) may be used in combination.
 本実施形態の硬化性樹脂組成物中の前記式(1)で表されるマレイミド樹脂の含有量は、10重量%以上であることが好ましく、より好ましくは15重量%以上、さらに好ましくは20重量%である。上記範囲の場合、硬化物の物性において機械強度が高く、ピール強度も高く、さらに耐熱性も高くなる傾向がある。 The content of the maleimide resin represented by the formula (1) in the curable resin composition of the present embodiment is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight. %. In the above range, the physical properties of the cured product tend to be high in mechanical strength, high in peel strength, and high in heat resistance.
 本実施形態の硬化性樹脂組成物に配合し得るアミン化合物としては従来公知のアミン化合物を使用することができる。アミン化合物の具体例としては、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ジエチルアミノプロピルアミン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン、ジアミノジフェニルメタン、メタフェニレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、N-アミノエチルピペラジン、アニリン・ホルマリン樹脂などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 また、特許文献3の特許請求の範囲に記載されている芳香族アミン樹脂は、低吸湿性、難燃性、誘電特性に優れているため特に好ましい。
As the amine compound that can be blended in the curable resin composition of the present embodiment, a conventionally known amine compound can be used. Specific examples of amine compounds include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, diethylaminopropylamine, isophoronediamine, and 1,3-bisaminomethyl. Cyclohexane, bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, norbornene diamine, 1,2-diaminocyclohexane, diaminodiphenylmethane, metaphenylenediamine, diaminodiphenylsulfone, dicyandiamide, polyoxypropylene Examples thereof include, but are not limited to, diamines, polyoxypropylene triamines, N-aminoethylpiperazines, and aniline / formalin resins. These may be used alone or in combination of two or more.
Further, the aromatic amine resin described in the claims of Patent Document 3 is particularly preferable because it is excellent in low hygroscopicity, flame retardancy, and dielectric properties.
 実施形態の硬化性樹脂組成物に配合し得るマレイミド化合物としては従来公知のマレイミド化合物を使用することができる。マレイミド化合物の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド化合物の配合量は、重量比で本実施形態のマレイミド樹脂の好ましくは5倍以下、より好ましくは2倍以下の範囲である。
 また、特許文献3の請求項に記載されているマレイミド樹脂は、低吸湿性、難燃性、誘電特性に優れているため特に好ましい。
As the maleimide compound that can be blended in the curable resin composition of the embodiment, a conventionally known maleimide compound can be used. Specific examples of the maleimide compound include 4,4'-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2'-bis [4- (4-maleimidephenoxy) phenyl] propane, 3,3. '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenylether bismaleimide, 4,4'-diphenylsulphon bismaleimide , 1,3-Bis (3-maleimidephenoxy) benzene, 1,3-bis (4-maleimidephenoxy) benzene and the like, but are not limited thereto. These may be used alone or in combination of two or more. The blending amount of the maleimide compound is preferably in the range of 5 times or less, more preferably 2 times or less of the maleimide resin of the present embodiment in terms of weight ratio.
Further, the maleimide resin described in claim 3 of Patent Document 3 is particularly preferable because it is excellent in low hygroscopicity, flame retardancy, and dielectric properties.
 本実施形態の硬化性樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
As the cyanate ester compound that can be blended in the curable resin composition of the present embodiment, a conventionally known cyanate ester compound can be used. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensations of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Examples thereof include cyanate ester compounds obtained by reacting a substance with cyanide halide, but the present invention is not limited thereto. These may be used alone or in combination of two or more.
Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
Further, the cyanate ester compound whose synthesis method is described in Japanese Patent Application Laid-Open No. 2005-264154 is particularly preferable as the cyanate ester compound because it is excellent in low hygroscopicity, flame retardancy and dielectric properties.
 本実施形態の硬化性樹脂組成物において、さらにエポキシ樹脂を配合することができる。配合し得るエポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができる。エポキシ樹脂の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物及びアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、フェノール類とビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているためエポキシ樹脂として特に好ましい。
In the curable resin composition of the present embodiment, an epoxy resin can be further blended. As the epoxy resin that can be blended, any conventionally known epoxy resin can be used. Specific examples of epoxy resins include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensations of phenols and ketones, and polycondensates of bisphenols and various aldehydes. Alicyclic epoxies typified by glycidyl ether-based epoxy resins obtained by glycidylizing alcohols, 4-vinyl-1-cyclohexene epoxides, 3,4-epoxycyclohexylmethyl-3,4'-epoxycyclohexanecarboxylate, etc. Examples thereof include, but are not limited to, resins, glycidylamine-based epoxy resins typified by tetraglycidyldiaminodiphenylmethane (TGDDM) and triglycidyl-p-aminophenol, and glycidyl ester-based epoxy resins. These may be used alone or in combination of two or more.
Further, the epoxy resin obtained by subjecting a phenol aralkyl resin obtained by a condensation reaction of phenols with a bishalogenomethyl aralkyl derivative or an aralkyl alcohol derivative as a raw material and reacting with epichlorohydrin by dehydroxylation is a low moisture absorption and flame retardant. It is particularly preferable as an epoxy resin because it has excellent properties and dielectric properties.
 エポキシ樹脂を配合する場合、配合量は特に限定されないが、好ましくは重量比でマレイミド樹脂の0.1~10倍であり、より好ましくは0.2~4倍の範囲である。エポキシ樹脂の配合量がマレイミド樹脂の0.1倍以下になると硬化物が脆くなるおそれがあり、10倍以上になると誘電特性が低下するおそれがある。 When the epoxy resin is blended, the blending amount is not particularly limited, but is preferably 0.1 to 10 times, more preferably 0.2 to 4 times, the weight ratio of the maleimide resin. If the blending amount of the epoxy resin is 0.1 times or less of that of the maleimide resin, the cured product may become brittle, and if it is 10 times or more, the dielectric properties may deteriorate.
 本実施形態の硬化性樹脂組成物において、さらにフェノール樹脂を有する化合物を配合することができる。
 配合し得るフェノール樹脂としては、従来公知のフェノール樹脂のいずれも使用することができる。フェノール樹脂の具体例としてはビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、α,α,α’,α’-ベンゼンジメタノール、ビフェニルジメタノール、α,α,α’,α’-ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
 また、フェノール類と前記のビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂は、低吸湿性、難燃性、誘電特性に優れているためフェノール樹脂として特に好ましい。
 また、上記のフェノール樹脂がアリル基やメタリル基を有したものの場合は、マレイミド基に対する反応性が水酸基よりも良いため、硬化速度が速くなるとともに、架橋点が増えるため強度や耐熱性が高くなるため好ましい。
 また、上記フェノール樹脂の水酸基をアリル化したアリルエーテル体やメタリル化したメタリルエーテル体も配合可能であり、水酸基がエーテル化されているため吸水性が低くなる。
In the curable resin composition of the present embodiment, a compound having a phenol resin can be further blended.
As the phenol resin that can be blended, any conventionally known phenol resin can be used. Specific examples of phenolic resins include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) and phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl. Polycondensate of substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaaldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.), Polymers of phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadien, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.), phenols and ketones. Polycondensates with species (acetones, methylethylketones, methylisobutylketones, acetophenones, benzophenones, etc.), phenols and aromatic dimethanols (benzenedimethanol, α, α, α', α'-benzenedimethanol, biphenyldi. Polycondensation with methanol, α, α, α', α'-biphenyldimethanol, etc., and polycondensation of phenols with aromatic dichloromethyls (α, α'-dichloroxylene, bischloromethylbiphenyl, etc.) Examples include, but are not limited to, bisphenols and polycondensates of various aldehydes, and modified products thereof. These may be used alone or in combination of two or more.
Further, the phenol aralkyl resin obtained by subjecting phenols to the above-mentioned bishalogenomethyl aralkyl derivative or aralkyl alcohol derivative in a condensation reaction is particularly preferable as a phenol resin because it is excellent in low moisture absorption, flame retardancy and dielectric properties. ..
Further, when the above-mentioned phenol resin has an allyl group or a metalyl group, the reactivity with the maleimide group is better than that of the hydroxyl group, so that the curing rate is increased and the cross-linking points are increased, so that the strength and heat resistance are increased. Therefore, it is preferable.
Further, an allyl ether body obtained by allylating the hydroxyl group of the phenol resin or a metalyl ether body obtained by metallizing the hydroxyl group can also be blended, and the water absorption is lowered because the hydroxyl group is etherified.
 本実施形態の硬化性樹脂組成物において、さらに酸無水物基を有する化合物を配合することができる。
 配合し得る酸無水物基を有する化合物としては、従来公知のいずれも使用することができる。酸無水物基を有する化合物の具体例としては1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等が挙げられる。
 酸無水物基を有する化合物は単独又は2種以上混合して用いることができる。また、酸無水物基とアミンが反応した結果、アミック酸となるが、さらに200℃~300℃で加熱すると脱水反応によりイミド構造となり、耐熱性に非常に優れた材料となる。
In the curable resin composition of the present embodiment, a compound having an acid anhydride group can be further blended.
As the compound having an acid anhydride group that can be blended, any conventionally known compound can be used. Specific examples of the compound having an acid anhydride group include 1,2,3,4-butanetetracarboxylic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3. 4-Cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride, pyromellitic acid anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl- 3-Cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxo tetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride, etc. Can be mentioned.
Compounds having an acid anhydride group can be used alone or in admixture of two or more. Further, as a result of the reaction between the acid anhydride group and the amine, it becomes an amic acid, but when it is further heated at 200 ° C. to 300 ° C., it becomes an imide structure by a dehydration reaction, and becomes a material having excellent heat resistance.
 本実施形態の硬化性樹脂組成物には必要に応じて硬化用の触媒(硬化促進剤)を配合することができる。例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類、オクチル酸スズ、オクチル酸亜鉛、ジブチルスズジマレエート、ナフテン酸亜鉛、ナフテン酸コバルト、オレイン酸スズ等の有機金属塩、塩化亜鉛、塩化アルミニウム、塩化スズなどの金属塩化物、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、塩酸、硫酸、リン酸などの鉱酸、三フッ化ホウ素などのルイス酸、炭酸ナトリウムや塩化リチウム等の塩類などが挙げられる。特に本実施形態においては上述のアミン類、ホスフィン類、さらには有機過酸化物の配合が好ましい。硬化用の触媒の配合量は、硬化性樹脂組成物の合計100重量部に対して好ましくは10重量部以下、より好ましくは5重量部以下の範囲である。 A catalyst for curing (curing accelerator) can be added to the curable resin composition of the present embodiment, if necessary. For example, imidazoles such as 2-methylimidazole, 2-ethyl imidazole, 2-phenyl imidazole, 2-ethyl-4-methyl imidazole, 2-undecyl imidazole, 1-cyanoethyl-2-ethyl-4-methyl imidazole, triethylamine, Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) undecene-7, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Hosphins such as tributylphosphine and trioctylphosphine, organic metal salts such as tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphthenate, tin oleate, zinc chloride, aluminum chloride, tin chloride, etc. Metal chlorides, organic peroxides such as di-tert-butyl peroxide and dicumyl peroxide, azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, ores such as hydrochloric acid, sulfuric acid and phosphoric acid. Examples thereof include acids, Lewis acids such as boron trifluoride, and salts such as sodium carbonate and lithium chloride. In particular, in the present embodiment, the above-mentioned amines, phosphines, and further organic peroxides are preferably blended. The blending amount of the curing catalyst is preferably in the range of 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the total of the curable resin composition.
 本実施形態においては特に誘電特性の面から、ポリブタジエン及びこの変性物、スチレンブタジエン共重合体などの硬化性のポリマー、さらには置換、あるいは無置換のポリフェニレンエーテル、ポリスチレン、フッ素樹脂の配合は好ましく、特に官能基として1,2-ビニル基、アクリル基、メタクリル基、アリル基、メタリル基、ビニルベンゼン、インデンなどの構造をその分子に有する物が好ましい。特に1,2ビニル基を有するスチレンブタジエン共重合体や、アクリル、あるいはメタクリル基を有するポリフェニレンエーテルなどとの組み合わせは誘電特性、フィルム特性などの面から好ましい。 In the present embodiment, particularly from the viewpoint of dielectric properties, it is preferable to blend polybutadiene and a modified product thereof, a curable polymer such as a styrene butadiene copolymer, and further substituted or unsubstituted polyphenylene ether, polystyrene, and a fluororesin. In particular, as a functional group, those having a structure such as 1,2-vinyl group, acrylic group, methacrylic group, allyl group, metallicl group, vinylbenzene and inden in the molecule are preferable. In particular, a combination with a styrene-butadiene copolymer having a 1,2 vinyl group, acrylic, a polyphenylene ether having a methacryl group, or the like is preferable from the viewpoints of dielectric properties, film properties, and the like.
 更に本実施形態の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、エポキシ樹脂用硬化剤、アクリロニトリル共重合体の変性物、ポリエチレン、ポリイミド、マレイミド系化合物、マレイミド樹脂、シアネートエステル系化合物、シアネートエステル樹脂、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100重量部に対して好ましくは1,000重量部以下、より好ましくは700重量部以下の範囲である。 Further, a known additive can be added to the curable resin composition of the present embodiment, if necessary. Specific examples of the additives that can be used include curing agents for epoxy resins, modified products of acrylonitrile copolymers, polyethylene, polyimides, maleimide compounds, maleimide resins, cyanate ester compounds, cyanate ester resins, silicone gels, silicone oils, and the like. In addition, inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, and fillers such as silane coupling agents. Examples thereof include surface treatment agents, mold release agents, and colorants such as carbon black, phthalocyanine blue, and phthalocyanine green. The blending amount of these additives is preferably in the range of 1,000 parts by weight or less, more preferably 700 parts by weight or less, based on 100 parts by weight of the curable resin composition.
 本実施形態の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えばマレイミド樹脂とシアネートエステル化合物を触媒の存在下または不存在下、溶剤の存在下または不存在下において加熱することによりプレポリマー化する。同様に、本実施形態のマレイミド樹脂と、必要によりエポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の不存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 The method for preparing the curable resin composition of the present embodiment is not particularly limited, but each component may be uniformly mixed or prepolymerized. For example, the maleimide resin and the cyanate ester compound are prepolymerized by heating in the presence or absence of a catalyst and in the presence or absence of a solvent. Similarly, the maleimide resin of the present embodiment and, if necessary, an epoxy resin, an amine compound, a maleimide compound, a cyanate ester compound, a phenol resin, an acid anhydride compound and other additives may be added to prepolymerize. For mixing or prepolymerizing each component, for example, an extruder, kneader, roll or the like is used in the absence of a solvent, and a reaction kettle with a stirrer is used in the presence of a solvent.
 本実施形態の硬化性樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。また、前記ワニスを、上述のような繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。使用する繊維としては、特に高周波用途においてはEガラスだけでなく、NEガラスなどの低誘電ガラス、石英ガラスなどを用いたガラス繊維の使用が好ましい。これら繊維物の配合量は樹脂総量100体積%に対して10体積%~70体積%、特に20体積%~65体積%が好ましい。またフィラー等と組み合わせて取り扱うことも可能であり、その場合、繊維およびフィラーの総計は樹脂総量100体積%に対して80体積%以下であることが好ましい。80体積%を超えるとシートがもろくなるばかりか、のちの硬化時のフロー性がでず、基板として取り扱うことが困難となる。
 上記のプリプレグを所望の形に裁断し、必要により銅箔などと積層後に、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより、電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
A prepreg can be obtained by heating and melting the curable resin composition of the present embodiment, lowering the viscosity, and impregnating reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber. A prepreg can also be obtained by impregnating the fibers as described above with the varnish and heating and drying the varnish. As the fiber to be used, it is preferable to use not only E glass but also low dielectric glass such as NE glass, glass fiber using quartz glass and the like, especially in high frequency applications. The blending amount of these fibers is preferably 10% by volume to 70% by volume, particularly preferably 20% by volume to 65% by volume, based on 100% by volume of the total amount of the resin. It can also be handled in combination with a filler or the like, in which case the total amount of fibers and filler is preferably 80% by volume or less with respect to 100% by volume of the total amount of resin. If it exceeds 80% by volume, not only the sheet becomes brittle, but also the flowability at the time of curing later is not obtained, which makes it difficult to handle as a substrate.
The above prepreg is cut into a desired shape, laminated with copper foil or the like if necessary, and then the curable resin composition is heat-cured while applying pressure to the laminate by a press molding method, an autoclave molding method, a sheet winding molding method, or the like. Thereby, a laminated board for electric and electronic (printed wiring board) and a carbon fiber reinforcing material can be obtained.
 以下、実施例、比較例により本発明を具体的に説明するが、本発明は以下の例に限定されない。尚、本文中「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。軟化点及び溶融粘度は下記の方法で測定した。
軟化点:JIS K-7234に準じた方法で測定
酸価:JIS K-0070:1992に準じた方法で測定
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples. In the text, "parts" and "%" represent "parts by weight" and "% by weight", respectively. The softening point and the melt viscosity were measured by the following methods.
Softening point: Measured according to JIS K-7234 Acid value: Measured according to JIS K-0070: 1992
・GPC(ゲルパーミエーションクロマトグラフィー)分析
 GPC:DGU-20A3R,LC-20AD,SIL-20AHT,RID-20A,SPD-20A,CTO-20A,CBM-20A(いずれも島津製作所製)
 カラム:Shodex KF-603、KF-602x2、KF-601x2
 連結溶離液:テトラヒドロフラン
 流速:0.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折検出器)
-GPC (Gel Permeation Chromatography) Analysis GPC: DGU-20A3R, LC-20AD, SIL-20AHT, RID-20A, SPD-20A, CTO-20A, CBM-20A (all manufactured by Shimadzu Corporation)
Columns: Shodex KF-603, KF-602x2, KF-601x2
Linked eluent: tetrahydrofuran Flow rate: 0.5 ml / min.
Column temperature: 40 ° C
Detection: RI (Differential Refractometer)
・マレイミド当量
GPCの面積%より算出。
-Calculated from the area% of maleimide equivalent GPC.
・HPLC(高速液体クロマトグラフィー)分析
 株式会社島津製作所社製 送液ユニット LC-20AD
 株式会社島津製作所社製 フォトダイオードアレイ検出器 SPD-M20A
 株式会社島津製作所社製 カラムオーブン CTO-20A
 カラム:Intersil ODS-2.5μm,4.6×250mm 40℃
 MobilPhaseA:アセト二トリル(AN)
 MobilPhaseB:水(W)
 TimeProgram:
 0-28min.AN/W=30%/70% → 100%/0%
 28-40min.AN/W=100%/0%
 FlowRate:1.0mL/min.
 Detection:UV 200-274nm,PDA
 測定波長:225nm
・ HPLC (High Performance Liquid Chromatography) Analysis Liquid Feeding Unit LC-20AD manufactured by Shimadzu Corporation
Photodiode array detector SPD-M20A manufactured by Shimadzu Corporation
Column oven CTO-20A manufactured by Shimadzu Corporation
Column: Intersil ODS-2.5 μm, 4.6 × 250 mm 40 ° C
MobilePhaseA: Acet Nitrile (AN)
MobilePhaseB: Water (W)
TimeProgram:
0-28 min. AN / W = 30% / 70% → 100% / 0%
28-40 min. AN / W = 100% / 0%
Flow Rate: 1.0 mL / min.
Detection: UV 200-274nm, PDA
Measurement wavelength: 225 nm
[合成例1]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン373部、トルエン150部、m-ジ(α-ヒドロキシイソプロピル)ベンゼン194部、活性白土(日本活性白土製 E)75部を仕込み、水、トルエンを留去しながら系内を6時間かけて170℃まで昇温し、この温度で20時間反応をした。その後室温まで冷却し、トルエンを600部加えてろ過により活性白土を除去した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより前記式(5)で表される芳香族アミン樹脂(SA-1)320部を得た。芳香族アミン樹脂(SA-1)のアミン当量は180.5g/eq、軟化点は45℃であった。GPC分析(RI)により、n=1体は78.8面積%であり、平均のnは1.22であった。HPLC分析によるn=1体中の異性体の比率については表1に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は28%であった。
 オルソ配向とパラ配向のHPLC分析による面積比(O/P)=(前記式(7)で表される芳香族アミン化合物の面積%)×2+(前記式(6)で表される芳香族アミン化合物の面積%)/(前記式(8)で表される芳香族アミン化合物の面積%)×2+(前記式(6)で表される芳香族アミン化合物の面積%)
[Synthesis Example 1]
In a flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer, 373 parts of aniline, 150 parts of toluene, 194 parts of m-di (α-hydroxyisopropyl) benzene, and activated clay (E made in Japan) 75 parts were charged, the temperature inside the system was raised to 170 ° C. over 6 hours while distilling off water and toluene, and the reaction was carried out at this temperature for 20 hours. Then, the mixture was cooled to room temperature, 600 parts of toluene was added, and activated clay was removed by filtration. Next, 320 parts of the aromatic amine resin (SA-1) represented by the above formula (5) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure with a rotary evaporator. The amine equivalent of the aromatic amine resin (SA-1) was 180.5 g / eq, and the softening point was 45 ° C. According to GPC analysis (RI), n = 1 body was 78.8 area%, and the average n was 1.22. The ratio of isomers in n = 1 body by HPLC analysis is shown in Table 1. The area ratio (o / p) of the ortho-orientation and the para-orientation was 28%.
Area ratio (O / P) by HPLC analysis of ortho-orientation and para-orientation = (area% of aromatic amine compound represented by the above formula (7)) × 2 + (aromatic amine represented by the above formula (6)) Compound area%) / (Aromatic amine compound area% represented by the formula (8)) x 2+ (Aromatic amine compound area% represented by the formula (6))
[合成例2]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン804部とトルエン432部、35%塩酸450部を仕込み、昇温をしながら水、トルエンを留去して系内を170℃とし、この温度で1,3-ジイソプロペニルベンゼン158部を1.5時間かけて滴下し、同温度で30時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液87部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下でトルエン432部を加え、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去した後、トルエン864部を加えて加熱溶解後、シクロヘキサンを864部加えて晶析・ろ過・乾燥を行うことで、前記式(5)で表される芳香族アミン樹脂(SA―2)303部を得た。GPC分析(RI)により、n=1体98%以上であり、平均のnは1であった。HPLC分析によるn=1体中の異性体の比率については表1に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は0%であった。
[Synthesis Example 2]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 804 parts of aniline, 432 parts of toluene, and 450 parts of 35% hydrochloric acid, and water and toluene were distilled off while raising the temperature. The temperature was set to 170 ° C., and 158 parts of 1,3-diisopropenylbenzene was added dropwise at this temperature over 1.5 hours, and the reaction was carried out at the same temperature for 30 hours. Then, while cooling, 87 parts of a 30% sodium hydroxide aqueous solution was slowly added dropwise so that the inside of the system did not reflux violently, 432 parts of toluene was added at 80 ° C. or lower, and the mixture was allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and washing of the reaction solution with water was repeated until the washing solution became neutral. Next, excess aniline and toluene were distilled off from the oil layer with a rotary evaporator under heating and reduced pressure, 864 parts of toluene was added to dissolve the mixture, and 864 parts of cyclohexane was added to perform crystallization, filtration, and drying. 303 parts of the aromatic amine resin (SA-2) represented by (5) was obtained. According to GPC analysis (RI), n = 98% or more per body, and the average n was 1. The ratio of isomers in n = 1 body by HPLC analysis is shown in Table 1. The area ratio (o / p) of the ortho-orientation and the para-orientation was 0%.
[合成例3]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン373部とトルエン250部、35%塩酸10部を仕込み、昇温をしながら水、トルエンを留去して系内を170℃とし、この温度で1,3-ジイソプロペニルベンゼン194部を1.5時間かけて滴下し、同温度で45時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液17.4部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下でトルエン300部を加え、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより前記式(5)で表される芳香族アミン樹脂(A-1)306部を得た。芳香族アミン樹脂(A-1)のアミン当量は187.9g/eq、軟化点は59℃であった。GPC分析(RI)により、n=1体は62.5面積%であり、平均のnは1.45であった。HPLC分析によるn=1体中の異性体の比率については表1に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は176%であった。
[Synthesis Example 3]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 373 parts of aniline, 250 parts of toluene, and 10 parts of 35% hydrochloric acid, and water and toluene were distilled off while raising the temperature. The temperature was set to 170 ° C., and 194 parts of 1,3-diisopropenylbenzene was added dropwise at this temperature over 1.5 hours, and the reaction was carried out at the same temperature for 45 hours. Then, while cooling, 17.4 parts of a 30% sodium hydroxide aqueous solution was slowly added dropwise so that the inside of the system did not reflux violently, 300 parts of toluene was added at 80 ° C. or lower, and the mixture was allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and washing of the reaction solution with water was repeated until the washing solution became neutral. Then, excess aniline and toluene were distilled off from the oil layer under heating and reduced pressure with a rotary evaporator to obtain 306 parts of the aromatic amine resin (A-1) represented by the above formula (5). The amine equivalent of the aromatic amine resin (A-1) was 187.9 g / eq, and the softening point was 59 ° C. According to GPC analysis (RI), n = 1 body was 62.5 area%, and the average n was 1.45. The ratio of isomers in n = 1 body by HPLC analysis is shown in Table 1. The area ratio (o / p) of the ortho-orientation and the para-orientation was 176%.
[合成例4~12]
 合成例3において使用触媒、触媒量、アニリン量、反応温度、反応時間を変え、アミン樹脂A-2からA-10を合成した。結果を表1に示す。
[Synthesis Examples 4 to 12]
In Synthesis Example 3, the catalyst used, the amount of catalyst, the amount of aniline, the reaction temperature, and the reaction time were changed, and amine resins A-2 to A-10 were synthesized. The results are shown in Table 1.
[合成例13]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン192部とトルエン123部、1,3-ジイソプロペニルベンゼン194部を仕込み、撹拌しながら、35%塩酸21部を仕込んだ。その後、昇温をしながら水、トルエンを留去して系内を160℃とし、24時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液30部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下でトルエン20部を加え、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去した後、次いでロータリーエバポレーターで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより前記式(5)で表される芳香族アミン樹脂(A-11)158部を得た。芳香族アミン樹脂(A-13)のアミン当量は186g/eq、軟化点は58.8℃であった。GPC分析(RI)により、n=1体は64.9面積%であり、HPLC分析によるn=1体中の異性体の比率については表1に示す。
[Synthesis Example 13]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 192 parts of aniline, 123 parts of toluene, and 194 parts of 1,3-diisopropenylbenzene, and 21 parts of 35% hydrochloric acid while stirring. Was prepared. Then, while raising the temperature, water and toluene were distilled off to bring the temperature inside the system to 160 ° C., and the reaction was carried out for 24 hours. Then, while cooling, 30 parts of a 30% sodium hydroxide aqueous solution was slowly added dropwise so that the inside of the system did not reflux violently, 20 parts of toluene was added at 80 ° C. or lower, and the mixture was allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and washing of the reaction solution with water was repeated until the washing solution became neutral. Next, excess aniline and toluene are distilled off from the oil layer under heating and reduced pressure with a rotary evaporator, and then excess aniline and toluene are distilled off from the oil layer under heating and reducing pressure with a rotary evaporator, thereby being represented by the above formula (5). 158 parts of the aromatic amine resin (A-11) was obtained. The amine equivalent of the aromatic amine resin (A-13) was 186 g / eq, and the softening point was 58.8 ° C. According to GPC analysis (RI), n = 1 body is 64.9 area%, and the ratio of isomers in n = 1 body by HPLC analysis is shown in Table 1.
Figure JPOXMLDOC01-appb-T000015

HCl:35%塩酸水溶液(純正化学製)
Figure JPOXMLDOC01-appb-T000015

HCl: 35% aqueous hydrochloric acid solution (manufactured by Junsei Chemical Co., Ltd.)
[比較例1]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸4部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(SA-1)197部をN-メチル-2-ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去し、トルエンを加熱減圧下において完全に留去することにより前記式(1)で表されるマレイミド樹脂(SM-1)を得た。得られたマレイミド樹脂(SM-1)の軟化点は100℃、酸価は9mgKOH/gであった。GPC分析(RI)により、n=1体は73%であり、平均のnは1.37であった。HPLC分析によるn=1体中の異性体の比率については表2に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は30%であった。
[Comparative Example 1]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 197 parts of an aromatic amine resin (SA-1) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state. During this period, the condensed water and toluene that azeotrope under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, then the organic layer toluene was returned to the inside of the system, and the water was discharged to the outside of the system. After the completion of dropping the resin solution, the reaction was carried out for 6 hours while maintaining a reflux state and performing a dehydration operation. After completion of the reaction, washing with water was repeated 4 times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotrope of toluene and water under heating and reduced pressure of 70 ° C. or lower. Next, 2 parts of methanesulfonic acid was added, and the reaction was carried out in a heated reflux state for 2 hours. After completion of the reaction, water washing was repeated 4 times until the water was neutralized, and then water was removed from the system by azeotropic boiling of ruen and water under heating and reduced pressure of 70 ° C. or lower, and toluene was heated and reduced under reduced pressure. By completely distilling off, a maleimide resin (SM-1) represented by the above formula (1) was obtained. The obtained maleimide resin (SM-1) had a softening point of 100 ° C. and an acid value of 9 mgKOH / g. According to GPC analysis (RI), n = 1 body was 73%, and the average n was 1.37. The ratio of isomers in n = 1 by HPLC analysis is shown in Table 2. The area ratio (o / p) of the ortho-orientation and the para-orientation was 30%.
[比較例2]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸3.3部を仕込み、加熱還流状態とした。次に、1,3-ビス(p-アミノクミル)ベンゼン(SA-2)172部をN-メチル-2-ピロリドン66部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら2時間反応を行った。反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸1.7部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで3回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において完全に留去することによりマレイミド樹脂(SM-2)237部を得た。得られたマレイミド樹脂(SM-2)の軟化点は91℃、酸価は3mgKOH/gであった。GPC分析(RI)により、n=1体は95%、平均のnは1.02であった。n=1体中の異性体の比率については表2に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は0%であった。
[Comparative Example 2]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 3.3 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 172 parts of 1,3-bis (p-aminocumyl) benzene (SA-2) in 66 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added over 3 hours while maintaining the reflux state. And dropped. During this period, the condensed water and toluene that azeotrope under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, then the organic layer toluene was returned to the inside of the system, and the water was discharged to the outside of the system. After the completion of dropping the resin solution, the reaction was carried out for 2 hours while maintaining a reflux state and performing a dehydration operation. After completion of the reaction, washing with water was repeated 4 times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotrope of toluene and water under heating and reduced pressure of 70 ° C. or lower. Next, 1.7 parts of methanesulfonic acid was added, and the reaction was carried out in a heated reflux state for 2 hours. After completion of the reaction, water washing was repeated 3 times until the water was neutralized, and then water was removed from the system by azeotropic boiling of ruen and water under heating and reduced pressure of 70 ° C. or lower, and then toluene was heated and reduced under reduced pressure. 237 parts of maleimide resin (SM-2) was obtained by completely distilling off the mixture. The obtained maleimide resin (SM-2) had a softening point of 91 ° C. and an acid value of 3 mgKOH / g. By GPC analysis (RI), n = 1 body was 95%, and the average n was 1.02. The ratio of isomers in n = 1 is shown in Table 2. The area ratio (o / p) of the ortho-orientation and the para-orientation was 0%.
[実施例1]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸4部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(A-1)197部をN-メチル-2-ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において約70-80%程度の樹脂濃度になるまで溶剤を留去した後、トルエンを追加して樹脂濃度60%に調整をした。これによりマレイミド樹脂(M-1)を含有するマレイミド溶液(V1)を得た。GPC分析(RI)により、n=1体は57%、平均のnは1.80であった。HPLC分析によるn=1体中の異性体の比率については表2に示す。得られた樹脂溶液を50部とりわけ、加熱減圧下、溶剤を完全に留去することにより前記式(1)で表されるマレイミド樹脂(M-1)を得た。得られたマレイミド樹脂(M-1)の軟化点は115℃、酸価は7.5mgKOH/gであった。また、そのオルソ配向とパラ配向の面積比(o/p)は163%であった。
[Example 1]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 197 parts of the aromatic amine resin (A-1) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state. During this period, the condensed water and toluene that azeotrope under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, then the organic layer toluene was returned to the inside of the system, and the water was discharged to the outside of the system. After the completion of dropping the resin solution, the reaction was carried out for 6 hours while maintaining a reflux state and performing a dehydration operation. After completion of the reaction, washing with water was repeated 4 times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotrope of toluene and water under heating and reduced pressure of 70 ° C. or lower. Next, 2 parts of methanesulfonic acid was added, and the reaction was carried out in a heated reflux state for 2 hours. After completion of the reaction, water washing was repeated 4 times until the water was neutralized, and then water was removed from the system by azeotropic distillation of toluene and water under heating and reduced pressure of 70 ° C. or lower, and then toluene was heated and reduced under reduced pressure. After distilling off the solvent until the resin concentration reached about 70-80%, toluene was added to adjust the resin concentration to 60%. As a result, a maleimide solution (V1) containing a maleimide resin (M-1) was obtained. According to GPC analysis (RI), n = 1 body was 57%, and the average n was 1.80. The ratio of isomers in n = 1 by HPLC analysis is shown in Table 2. A maleimide resin (M-1) represented by the above formula (1) was obtained by completely distilling off the solvent in 50 parts of the obtained resin solution, especially under heating and reduced pressure. The obtained maleimide resin (M-1) had a softening point of 115 ° C. and an acid value of 7.5 mgKOH / g. The area ratio (o / p) of the ortho-orientation and the para-orientation was 163%.
[実施例2]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸4部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(A-2)197部をN-メチル-2-ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において完全に留去することにより前記式(1)で表されるマレイミド樹脂(M-2)を得た。得られたマレイミド樹脂(M-2)の軟化点は111℃、酸価は8mgKOH/gであった。GPC分析(RI)により、n=1体は56%、平均のnは1.78であった。HPLC分析によるn=1体中の異性体の比率については表2に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は120%であった。
[Example 2]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 4 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 197 parts of the aromatic amine resin (A-2) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state. During this period, the condensed water and toluene that azeotrope under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, then the organic layer toluene was returned to the inside of the system, and the water was discharged to the outside of the system. After the completion of dropping the resin solution, the reaction was carried out for 6 hours while maintaining a reflux state and performing a dehydration operation. After completion of the reaction, washing with water was repeated 4 times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotrope of toluene and water under heating and reduced pressure of 70 ° C. or lower. Next, 2 parts of methanesulfonic acid was added, and the reaction was carried out in a heated reflux state for 2 hours. After completion of the reaction, water washing was repeated 4 times until the water was neutralized, and then water was removed from the system by azeotropic boiling of ruen and water under heating and reduced pressure of 70 ° C. or lower, and then toluene was heated and reduced under reduced pressure. The maleimide resin (M-2) represented by the above formula (1) was obtained by completely distilling off the mixture. The obtained maleimide resin (M-2) had a softening point of 111 ° C. and an acid value of 8 mgKOH / g. According to GPC analysis (RI), n = 1 body was 56%, and the average n was 1.78. The ratio of isomers in n = 1 by HPLC analysis is shown in Table 2. The area ratio (o / p) of the ortho-orientation and the para-orientation was 120%.
[実施例3~5]
 合成例6、8、9で得られたアミン樹脂について、実施例1と同様に合成を行った。結果を表2に示す。
[Examples 3 to 5]
The amine resins obtained in Synthesis Examples 6, 8 and 9 were synthesized in the same manner as in Example 1. The results are shown in Table 2.
[実施例14]
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部、メタンスルホン酸8部を仕込み、加熱還流状態とした。次に、芳香族アミン樹脂(A-11)190部をN-メチル-2-ピロリドン95部とトルエン100部に溶解した樹脂溶液を、還流状態を保ちながら3時間かけて滴下した。この間、還流条件で共沸してくる縮合水とトルエンをディーンスターク共沸蒸留トラップ内で冷却・分液した後、有機層であるトルエンは系内に戻し、水は系外へ排出した。樹脂溶液の滴下終了後、還流状態を保ち、脱水操作をしながら6時間反応を行った。
 反応終了後、水洗を4回繰り返してメタンスルホン酸及び過剰の無水マレイン酸を除去し、70℃以下の加熱減圧下においてトルエンと水の共沸により、水を系内から除去した。次いで、メタンスルホン酸2部を加え、加熱還流状態で2時間反応を行った。反応終了後、水洗水が中性になるまで4回水洗を繰り返したのち、70℃以下の加熱減圧下においてルエンと水の共沸により、水を系内から除去したのち、トルエンを加熱減圧下において約70-80%程度の樹脂濃度になるまで溶剤を留去した後、トルエンを追加して樹脂濃度60%に調製をした。これによりマレイミド樹脂(M-11)を含有するマレイミド溶液(V-11)を得た。GPC分析(RI)により、n=1体は48.1%、平均のnは1.85であった。HPLC分析によるn=1体中の異性体の比率については表2に示す。また、そのオルソ配向とパラ配向の面積比(o/p)は127%であった。
 得られた樹脂溶液を50部とりわけ、加熱減圧下、溶剤を完全に留去することにより前記式(1)で表されるマレイミド樹脂(M-11)を得た。得られたマレイミド樹脂(M-11)の軟化点は126℃、酸価は9.5mgKOH/gであった。
[Example 14]
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride, 300 parts of toluene, and 8 parts of methanesulfonic acid, and brought into a heated reflux state. Next, a resin solution prepared by dissolving 190 parts of an aromatic amine resin (A-11) in 95 parts of N-methyl-2-pyrrolidone and 100 parts of toluene was added dropwise over 3 hours while maintaining a reflux state. During this period, the condensed water and toluene that azeotrope under reflux conditions were cooled and separated in the Dean-Stark azeotropic distillation trap, then the organic layer toluene was returned to the inside of the system, and the water was discharged to the outside of the system. After the completion of dropping the resin solution, the reaction was carried out for 6 hours while maintaining a reflux state and performing a dehydration operation.
After completion of the reaction, washing with water was repeated 4 times to remove methanesulfonic acid and excess maleic anhydride, and water was removed from the system by azeotrope of toluene and water under heating and reduced pressure of 70 ° C. or lower. Next, 2 parts of methanesulfonic acid was added, and the reaction was carried out in a heated reflux state for 2 hours. After completion of the reaction, water washing was repeated 4 times until the water was neutralized, and then water was removed from the system by azeotropic boiling of ruen and water under heating and reduced pressure of 70 ° C. or lower, and then toluene was heated and reduced under reduced pressure. After distilling off the solvent until the resin concentration reached about 70-80%, toluene was added to prepare the resin concentration to 60%. As a result, a maleimide solution (V-11) containing a maleimide resin (M-11) was obtained. According to GPC analysis (RI), n = 1 body was 48.1%, and the average n was 1.85. The ratio of isomers in n = 1 by HPLC analysis is shown in Table 2. The area ratio (o / p) of the ortho-orientation and the para-orientation was 127%.
A maleimide resin (M-11) represented by the above formula (1) was obtained by completely distilling off the solvent in 50 parts of the obtained resin solution, especially under heating and reduced pressure. The obtained maleimide resin (M-11) had a softening point of 126 ° C. and an acid value of 9.5 mgKOH / g.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[比較例3、4、実施例6~10]
 比較例1、2、実施例1~5で得られたマレイミド樹脂を樹脂分が60%になるようにトルエンに溶解し、マレイミド樹脂溶液VSM-1、2、VM-1~5を得た。得られたマレイミド樹脂溶液を-10℃において3か月間保管したのち、結晶の析出有無を観察した。結晶の析出が観察されたものは×、観察されなかったものを〇として、表3に示す。
[Comparative Examples 3 and 4, Examples 6 to 10]
The maleimide resins obtained in Comparative Examples 1 and 2 and Examples 1 to 5 were dissolved in toluene so that the resin content was 60% to obtain maleimide resin solutions VSM-1, 2 and VM-1 to 5. The obtained maleimide resin solution was stored at −10 ° C. for 3 months, and then the presence or absence of crystal precipitation was observed. Table 3 shows those in which crystal precipitation was observed as x and those in which no crystal precipitation was observed as 〇.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表3より、本実施形態のマレイミド樹脂は溶液安定性に優れることが確認された。 From Table 3, it was confirmed that the maleimide resin of this embodiment has excellent solution stability.
[実施例11、12、比較例5、6]
 実施例1、3で得られたマレイミド樹脂M-1、M-3、および比較例1、2で得られたSM-1、SM-2を各々50重量部に対して触媒(DCP;ジクミルパーオキサイド、化薬ヌーリオン社製)0.75重量部を配合し、250℃で2時間硬化させた。得られた硬化物から2.5mm×50mm×0.25mmの板を切り出し、1、10GHzの周波数における誘電率、誘電正接を、空洞共振機(AET社製 ADMS01OC1)を用いて測定した結果を表4に示す。
[Examples 11 and 12, Comparative Examples 5 and 6]
The maleimide resins M-1 and M-3 obtained in Examples 1 and 3 and SM-1 and SM-2 obtained in Comparative Examples 1 and 2 were catalysts (DCP; dikmyl) with respect to 50 parts by weight, respectively. 0.75 parts by weight of peroxide (manufactured by Kayaku Akzo Corporation) was blended and cured at 250 ° C. for 2 hours. A plate of 2.5 mm × 50 mm × 0.25 mm was cut out from the obtained cured product, and the dielectric constant and dielectric loss tangent at frequencies of 1 and 10 GHz were measured using a cavity resonator (ADMS01OC1 manufactured by AET). Shown in 4.
Figure JPOXMLDOC01-appb-T000018

※表中の「-」は未測定であることを示す。
Figure JPOXMLDOC01-appb-T000018

* "-" In the table indicates that it has not been measured.
 表4より、本実施形態のマレイミド樹脂は1GHzだけでなく、10GHzにおいても優れた誘電特性を有することが確認された。 From Table 4, it was confirmed that the maleimide resin of the present embodiment has excellent dielectric properties not only at 1 GHz but also at 10 GHz.
[実施例13、比較例7]
 実施例4で得られたマレイミド樹脂M-4、および比較例1で得られたSM-1を各々50重量部に対して触媒(2E4MZ:2-エチル-4-メチルイミダゾール(東京化成工業社製))1.5重量部を配合し、250℃で2時間硬化させた。得られた硬化物から50mm×50mm×0.25mmの板を切り出し、平衡形円板共振器法(共振器:FATEC製平衡形円板共振器使用)を用いて、25℃、150℃における各周波数による誘電正接を測定した結果を表5に示す。
[Example 13, Comparative Example 7]
50 parts by weight of the maleimide resin M-4 obtained in Example 4 and SM-1 obtained in Comparative Example 1 were catalysts (2E4MZ: 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)). )) 1.5 parts by weight was blended and cured at 250 ° C. for 2 hours. A plate of 50 mm × 50 mm × 0.25 mm was cut out from the obtained cured product, and each at 25 ° C. and 150 ° C. using the balanced disc resonator method (resonator: using a FATEC balanced disc resonator). Table 5 shows the results of measuring the dielectric loss tangent by frequency.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表5より、本実施形態のマレイミド樹脂は高周波領域においても優れた誘電特性を有することが確認された。また、本実施形態のマレイミド樹脂は温度による差異も小さく、高い環境耐性も有することが確認された。 From Table 5, it was confirmed that the maleimide resin of the present embodiment has excellent dielectric properties even in the high frequency region. It was also confirmed that the maleimide resin of the present embodiment has a small difference depending on the temperature and has high environmental resistance.
[実施例15 比較例8,9]
 実施例14で得られたマレイミド樹脂(M-11)、比較例1で得られたマレイミド樹脂(SM-1)および比較例2で得られたマレイミド樹脂(SM-2)を使用し、表6に記載の割合(重量部)で各種のエポキシ樹脂、硬化剤、硬化促進剤を配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、200℃で2時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表6に示す。また、各硬化物について、動的粘弾性装置(DMA)によって温度による弾性率の変化を測定した。結果を図1に示す。
[Example 15 Comparative Examples 8 and 9]
Using the maleimide resin (M-11) obtained in Example 14, the maleimide resin (SM-1) obtained in Comparative Example 1, and the maleimide resin (SM-2) obtained in Comparative Example 2, Table 6 Various epoxy resins, curing agents, and curing accelerators are mixed in the proportions (parts by weight) described in the above, kneaded with a mixing roll, tableted, and then a resin molded body is prepared by transfer molding and cured at 200 ° C. for 2 hours. rice field. Table 6 shows the results of measuring the physical characteristics of the cured product thus obtained for the following items. In addition, for each cured product, the change in elastic modulus with temperature was measured by a dynamic viscoelastic device (DMA). The results are shown in FIG.
 ・TMA Tg: 熱機械特性装置によって測定 ガラス転移温度。
 ・DMA弾性率: 動的粘弾性試験機(DMA)により測定。
 ・Td5(5%熱重量減少温度):得られた硬化物を粉砕し粉状にしたものを100メッシュパス、200メッシュオンのサンプルを用い、TG-DTAにより熱分解温度を測定。サンプル量10mg、昇温速度10℃/min、空気量200ml/hrで測定し、重量が5%減少した温度。
 ・曲げ弾性率:JIS K-6911に準拠して測定。
 ・誘電率及び誘電正接: 空洞共振機(AET社製)を用いて室温で測定。
-TMA Tg: Glass transition temperature measured by a thermomechanical characteristic device.
-DMA elastic modulus: Measured by a dynamic viscoelasticity tester (DMA).
-Td5 (5% thermogravimetric reduction temperature): The obtained cured product was crushed into powder, and the thermal decomposition temperature was measured by TG-DTA using a sample of 100 mesh pass and 200 mesh on. The temperature at which the weight was reduced by 5% as measured at a sample amount of 10 mg, a heating rate of 10 ° C./min, and an air amount of 200 ml / hr.
-Bending elastic modulus: Measured in accordance with JIS K-6911.
-Permittivity and dielectric loss tangent: Measured at room temperature using a cavity resonator (manufactured by AET).
Figure JPOXMLDOC01-appb-T000020

E1:NC-3000-L(日本化薬製 エポキシ当量271g/eq)
P1:カヤハードGPH-65(日本化薬製 水酸基当量200g/eq)
C1:2E4MZ:2-エチル-4-メチルイミダゾール(東京化成工業社製)
Figure JPOXMLDOC01-appb-T000020

E1: NC-3000-L (Nippon Kayaku Epoxy Equivalent 271g / eq)
P1: Kayahard GPH-65 (Nippon Kayaku Co., Ltd. hydroxyl group equivalent 200 g / eq)
C1: 2E4MZ: 2-Ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.)
 表6の結果より、実施例15の硬化物は室温から低温領域において高い弾性率を有し、基板の剛性に寄与するとともに、半田リフロー時の温度領域においても高い弾性率を維持していることが確認された。また、耐熱性(Tg)も高く、熱時の安定性(耐熱分解 Td5)においても優れることが確認できたことから熱による耐候性に優れると言える。さらに誘電特性においては、エポキシ樹脂配合による誘電特性の悪化の影響を抑えることができており、誘電率、誘電正接ともに優れることが確認された。 From the results in Table 6, the cured product of Example 15 has a high elastic modulus in the room temperature to low temperature region, contributes to the rigidity of the substrate, and maintains a high elastic modulus even in the temperature region during solder reflow. Was confirmed. In addition, it can be said that it is excellent in weather resistance due to heat because it has been confirmed that it has high heat resistance (Tg) and excellent stability at the time of heat (heat resistance decomposition Td5). Furthermore, regarding the dielectric properties, it was confirmed that the influence of the deterioration of the dielectric properties due to the epoxy resin compounding could be suppressed, and that both the dielectric constant and the dielectric loss tangent were excellent.
[実施例16、比較例10]
 実施例14で得られたマレイミド樹脂(M-11)および比較例1で得られたマレイミド樹脂(SM-1)を各々50重量部に対して触媒(DCP;ジクミルパーオキサイド、化薬ヌーリオン社製)0.75重量部で配合し、175℃のトランスファー成型を行ったのち、250℃で2時間硬化させた。得られた硬化物から2.5mm×50mm×0.25mmの板を切り出し、その誘電率及び誘電正接を空洞共振機(AET社製)を用い、乾燥後と24時間室温にて水に浸漬した後、10GHzの周波数において測定した結果を表7に示す。
[Example 16, Comparative Example 10]
50 parts by weight of the maleimide resin (M-11) obtained in Example 14 and the maleimide resin (SM-1) obtained in Comparative Example 1 were catalysts (DCP; dicumyl peroxide, chemical agent Nourion Co., Ltd.). (Manufactured by) 0.75 parts by weight, transferred molding at 175 ° C., and then cured at 250 ° C. for 2 hours. A plate of 2.5 mm × 50 mm × 0.25 mm was cut out from the obtained cured product, and its dielectric constant and dielectric loss tangent were immersed in water at room temperature for 24 hours after drying using a cavity resonator (manufactured by AET). After that, the results of measurement at a frequency of 10 GHz are shown in Table 7.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表7の結果より、実施例16の硬化物は吸水試験後の誘電特性の低下が少なく、吸湿性が低いことから耐候性に優れることが確認された。 From the results in Table 7, it was confirmed that the cured product of Example 16 had little deterioration in dielectric properties after the water absorption test and had low hygroscopicity, and thus had excellent weather resistance.
 本出願は、2020年3月11日出願の日本特許出願2020-41840号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2020-41840 filed on March 11, 2020, the contents of which are incorporated herein by reference.

Claims (7)

  1.  下記式(1)で表されるマレイミド樹脂であって、
     前記マレイミド樹脂中、N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドの含有量がGPC面積百分率で98面積%以下であって、
     前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、下記式(2)で表されるマレイミド化合物の含有量がHPLC面積百分率で30面積%以上60面積%未満であるマレイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、nは繰り返し数であり、その平均値は1<n<5である。)
    Figure JPOXMLDOC01-appb-C000002
    A maleimide resin represented by the following formula (1).
    The content of N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide in the maleimide resin is 98 area% or less in GPC area percentage.
    In the N, N'-(phenylene-di- (2,2-propylidene) -di-phenylene) bismaleimide, the content of the maleimide compound represented by the following formula (2) is 30 area% or more in HPLC area percentage. Maleimide resin that is less than 60 area%.
    Figure JPOXMLDOC01-appb-C000001

    (In equation (1), n is the number of repetitions, and the average value thereof is 1 <n <5.)
    Figure JPOXMLDOC01-appb-C000002
  2.  前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミドにおいて、HPLC面積百分率によるオルソ配向とパラ配向の面積比(O/P)が、100%以上200%未満である、請求項1に記載のマレイミド樹脂。 In the N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide, the area ratio (O / P) of the ortho-orientation and the para-orientation by the HPLC area percentage is 100% or more and 200. The maleimide resin according to claim 1, which is less than%.
  3.  前記N,N’-(フェニレン-ジ-(2,2-プロピリデン)-ジ-フェニレン)ビスマレイミド中、下記式(3)で表されるマレイミド化合物の含有量がHPLC面積百分率で50面積%未満である、請求項1または2に記載のマレイミド樹脂。
    Figure JPOXMLDOC01-appb-C000003
    In the N, N'-(phenylene-di- (2,2-propanol) -di-phenylene) bismaleimide, the content of the maleimide compound represented by the following formula (3) is less than 50 area% in HPLC area percentage. The maleimide resin according to claim 1 or 2.
    Figure JPOXMLDOC01-appb-C000003
  4.  請求項1~3のいずれか一項に記載のマレイミド樹脂と有機溶剤を含むマレイミド溶液であって、前記有機溶剤がケトン類、炭化水素類、及びエステル類からなる群から選択される1種以上であるマレイミド溶液。 A maleimide solution containing the maleimide resin and an organic solvent according to any one of claims 1 to 3, wherein the organic solvent is selected from the group consisting of ketones, hydrocarbons, and esters. Maleimide solution.
  5.  請求項1~3のいずれか一項に記載のマレイミド樹脂、又は請求項4に記載のマレイミド溶液を含む硬化性樹脂組成物であって、さらに硬化促進剤を含有する硬化性樹脂組成物。 A curable resin composition containing the maleimide resin according to any one of claims 1 to 3 or the maleimide solution according to claim 4, which further contains a curing accelerator.
  6.  請求項1~3のいずれか一項に記載のマレイミド樹脂、又は請求項5に記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the maleimide resin according to any one of claims 1 to 3 or the curable resin composition according to claim 5.
  7.  アニリンとジイソプロペニルベンゼンまたはジ(α-ヒドロキシイソプロピル)ベンゼンとに、アニリンの総量に対して1~12重量%のプロトン酸を添加して、140~190℃で反応させて芳香族アミン樹脂を得る工程と、
     前記芳香族アミン樹脂をマレイミド化する工程と、を含む、
     請求項1~3のいずれか一項に記載のマレイミド樹脂の製造方法。
    An aromatic amine resin is prepared by adding 1 to 12% by weight of protonic acid to aniline and diisopropenylbenzene or di (α-hydroxyisopropyl) benzene with respect to the total amount of aniline and reacting at 140 to 190 ° C. The process of obtaining and
    A step of maleimizing the aromatic amine resin, and the like.
    The method for producing a maleimide resin according to any one of claims 1 to 3.
PCT/JP2021/008836 2020-03-11 2021-03-05 Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof WO2021182360A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227027700A KR20220152203A (en) 2020-03-11 2021-03-05 Maleimide resin, method for producing the same, maleimide solution, and curable resin composition and cured product thereof
JP2021537765A JP7005821B1 (en) 2020-03-11 2021-03-05 Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
CN202180016765.2A CN115210293A (en) 2020-03-11 2021-03-05 Maleimide resin and method for producing the same, maleimide solution, curable resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041840 2020-03-11
JP2020-041840 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182360A1 true WO2021182360A1 (en) 2021-09-16

Family

ID=77671682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008836 WO2021182360A1 (en) 2020-03-11 2021-03-05 Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP7005821B1 (en)
KR (1) KR20220152203A (en)
CN (1) CN115210293A (en)
TW (1) TW202140607A (en)
WO (1) WO2021182360A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102756A1 (en) * 2020-11-12 2022-05-19 味の素株式会社 Resin composition
WO2023171215A1 (en) * 2022-03-08 2023-09-14 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene
JPS6335561A (en) * 1986-07-30 1988-02-16 Mitsui Petrochem Ind Ltd Novel bismaleimide compound and production thereof
JPH01216957A (en) * 1988-02-24 1989-08-30 Mitsui Petrochem Ind Ltd Bis(2-acetoxy-2-propyl)benzene and production thereof
JPH05155824A (en) * 1991-02-14 1993-06-22 Sumitomo Chem Co Ltd Polyaminooligomer and its production
WO2017170551A1 (en) * 2016-03-29 2017-10-05 日本化薬株式会社 Maleimide resin, curable resin composition and cured product of same
WO2020054601A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH408038A (en) * 1961-12-22 1966-02-28 Bayer Ag Process for the preparation of new aromatic amino compounds
JPS5430440A (en) 1977-08-10 1979-03-06 Japan Storage Battery Co Ltd Inverter
JPH03100016A (en) 1989-09-14 1991-04-25 Mitsui Toatsu Chem Inc Preparation of polymaleimide compound
JP2855138B2 (en) 1990-07-17 1999-02-10 財団法人東北電気保安協会 How to replace the operation cord of a pole switch etc.
WO1993012933A1 (en) * 1991-12-27 1993-07-08 Sumitomo Chemical Company, Limited Polyamino-oligomer and polymaleimide compound
JPH0637465A (en) 1992-07-17 1994-02-10 Mitsubishi Electric Corp Fitting device for cover
JPH06234708A (en) * 1992-10-21 1994-08-23 Lonza Ag Production of 4,4'-(phenylenediisopropyl)bis(2,6- dialkylaniline)
JPH11216957A (en) * 1998-02-04 1999-08-10 Nippon Paper Industries Co Ltd Thermal recording body
JP5030297B2 (en) 2007-05-18 2012-09-19 日本化薬株式会社 Laminate resin composition, prepreg and laminate
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
US20210284800A1 (en) * 2018-09-12 2021-09-16 Nipponkayaku Kabushiki Kaisha Maleimide resin, curable resin composition, and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene
JPS6335561A (en) * 1986-07-30 1988-02-16 Mitsui Petrochem Ind Ltd Novel bismaleimide compound and production thereof
JPH01216957A (en) * 1988-02-24 1989-08-30 Mitsui Petrochem Ind Ltd Bis(2-acetoxy-2-propyl)benzene and production thereof
JPH05155824A (en) * 1991-02-14 1993-06-22 Sumitomo Chem Co Ltd Polyaminooligomer and its production
WO2017170551A1 (en) * 2016-03-29 2017-10-05 日本化薬株式会社 Maleimide resin, curable resin composition and cured product of same
WO2020054601A1 (en) * 2018-09-12 2020-03-19 日本化薬株式会社 Maleimide resin, curable resin composition, and cured product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102756A1 (en) * 2020-11-12 2022-05-19 味の素株式会社 Resin composition
WO2023171215A1 (en) * 2022-03-08 2023-09-14 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board

Also Published As

Publication number Publication date
TW202140607A (en) 2021-11-01
JPWO2021182360A1 (en) 2021-09-16
JP7005821B1 (en) 2022-02-10
CN115210293A (en) 2022-10-18
KR20220152203A (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6689475B1 (en) Maleimide resin, curable resin composition and cured product thereof
JP5030297B2 (en) Laminate resin composition, prepreg and laminate
JP6429862B2 (en) Aromatic amine resin, maleimide resin, curable resin composition and cured product thereof
JP6752390B1 (en) Maleimide resin, curable resin composition and cured product thereof
JP6764470B2 (en) Maleimide resin, curable resin composition and cured product thereof
WO2021182360A1 (en) Maleimide resin and method for producing same, maleimide solution, and curable resin composition and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
WO2018199157A1 (en) Maleimide resin composition, prepreg and cured product of same
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP7464474B2 (en) Maleimide resin, curable resin composition and cured product thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767012

Country of ref document: EP

Kind code of ref document: A1