WO2018123763A1 - Resin composition and filament-like molded article - Google Patents

Resin composition and filament-like molded article Download PDF

Info

Publication number
WO2018123763A1
WO2018123763A1 PCT/JP2017/045711 JP2017045711W WO2018123763A1 WO 2018123763 A1 WO2018123763 A1 WO 2018123763A1 JP 2017045711 W JP2017045711 W JP 2017045711W WO 2018123763 A1 WO2018123763 A1 WO 2018123763A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polylactic acid
filament
polyamide
monofilament
Prior art date
Application number
PCT/JP2017/045711
Other languages
French (fr)
Japanese (ja)
Inventor
あづさ 臼井
彰太 野口
松岡 文夫
雄俊 中谷
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2018517240A priority Critical patent/JP6359230B1/en
Publication of WO2018123763A1 publication Critical patent/WO2018123763A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters

Definitions

  • the present invention relates to a resin composition for a modeling material of a hot melt lamination method 3D printer, and a filament-shaped molded body comprising the same.
  • 3D printers that produce 3D objects (3D objects) based on 3D CAD and 3D computer graphics data have been rapidly spreading in recent years, especially for industrial use.
  • 3D printer modeling methods include optical modeling, ink jet, powder gypsum modeling, powder sintering modeling, and hot melt additive modeling.
  • polylactic acid has a melting point of about 170 ° C., has a relatively low melting point among plastics, and melts at a low temperature. Therefore, polylactic acid is suitable as a modeling material for 3D printers for individuals.
  • polylactic acid has better formability than the ABS resin, and the resulting molded article has a small warpage, and therefore, it is desired to use polylactic acid as a modeling material.
  • polylactic acid itself is hard, and a molded article made of polylactic acid may be harder than that of ABS resin, so that there are cases where streaking or surface polishing cannot be performed as a finish after shaping.
  • Patent Document 1 discloses a composition in which polylactic acid is blended with a styrene-based resin, polyester, or the like as a hot-melt lamination type three-dimensional modeling material that is easy to polish the surface. However, this material was not sufficiently improved in abrasiveness.
  • the present invention is intended to solve the above-mentioned problems, and is a resin composition that can be suitably used as a modeling material when a three-dimensional model is obtained by a 3D printer, and is flexible and abrasive. It is an object of the present invention to provide a resin composition that can satisfactorily produce an excellent three-dimensional model and a filament-shaped molded body comprising the same.
  • the inventors of the present invention have arrived at the present invention as a result of studies to solve the above problems. That is, the gist of the present invention is as follows.
  • Hot melt lamination method 3D printer resin composition for molding material which contains polylactic acid (A) and polyamide copolymer (B), and includes polylactic acid (A) and polyamide copolymer (B ) And a mass ratio (A / B) of 90/10 to 25/75.
  • the flexural modulus is 1.5 to 3.2 GPa, and the wear mass during the wear test is 1.2 to 2.0 times the wear mass of polylactic acid (A).
  • the resin composition according to (1) contains (3) The resin composition according to (1) or (2), further comprising a filler (C).
  • Hot melt lamination method 3D printer molding material molded body comprising the resin composition according to any one of (1) to (3) and having a diameter of 0.2 to 5.0 mm A filamentous shaped product characterized by the above.
  • the resin composition of the present invention is obtained by blending an appropriate amount of polylactic acid and a polyamide copolymer, it is possible to obtain a filament-shaped molded body free from thick spots.
  • the filament-shaped molded object which consists of a resin composition of this invention is suitable as a modeling material of 3D printer, and it is possible to produce the three-dimensional molded item excellent in the softness
  • the resin composition of the present invention is a resin composition containing polylactic acid (A) and a polyamide copolymer, and is a mass ratio (A / B) of polylactic acid (A) and polyamide copolymer (B). ) Is 90/10 to 25/75.
  • poly (L-lactic acid), poly (D-lactic acid), a mixture thereof, and a copolymer containing two or more copolymerization components can be used.
  • poly (L-lactic acid) is preferably the main component.
  • the polylactic acid (A) mainly composed of poly (L-lactic acid) preferably has a D-lactic acid content of 10 mol% or less, and more preferably 6 mol% or less.
  • Polylactic acid (A) preferably has a melt flow rate (MFR) of 0.3 to 15 g / 10 min at a temperature of 190 ° C. and a load of 2.16 kg from the viewpoint of moldability and performance.
  • MFR melt flow rate
  • Examples of commercially available products of polylactic acid include “4032D” (D-lactic acid content: 1.4 mol%, MFR 3 g / 10 min), “3001D” (D-lactic acid content: 1.4 mol%, MFR 10 g) manufactured by NatureWorks. / 10 minutes), or “4060D” (D-lactic acid content 10 mol%, MFR 3.5 g / 10 minutes). These may be used in combination.
  • the resin composition of the present invention needs to contain a polyamide copolymer (B).
  • a polyamide copolymer (B) By blending polyamide with polylactic acid (A), the resin composition is improved in flexibility, and when the polyamide is a copolymer containing a copolymer component, Abrasiveness and yarn production are also improved.
  • the mass ratio (A / B) of the polylactic acid (A) and the polyamide copolymer (B) needs to be 90/10 to 25/75, and in particular, 90/10 to 50/50. Preferably, it is 75/25 to 50/50.
  • the proportion of the polyamide copolymer (B) is less than 10% by mass, the resulting molded article has low flexibility and polishing properties.
  • the filament-shaped molded body foams when melted by the 3D printer. Satisfactory shaped objects cannot be obtained. In addition, the resulting molded article also has poor polishing properties. Furthermore, the filament-shaped molded body is likely to have a variation in diameter, and when the variation becomes large, the filament supply amount (discharge amount) in the 3D printer may fluctuate, and a satisfactory shaped product may not be obtained.
  • the copolymer component constituting the polyamide copolymer (B) in the present invention is not particularly limited as long as it has a polyamide-forming ability, and examples thereof include polyamide 6, polyamide 11, polyamide 12, polyamide 66, and polyamide 69. , Polyamide 610, polyamide 612, polyamide 613, and polyamide 10T.
  • the polyamide copolymer (B) containing two or more of the above copolymerization components has flexibility, good compatibility with polylactic acid (A), close melting point to polylactic acid (A), Because it is easy to mix with lactic acid (A), polyamide 6/66 copolymer, polyamide 6/12 copolymer, polyamide 6/66/12 copolymer, isophthalic acid / adipic acid / 1,6-hexamethylenediamine A polycondensate of / bis (3-methyl-4-aminocyclohexyl) methane is preferred.
  • polyamide copolymers examples include “5023” (6/66 copolymer, melting point 196 ° C.), “7034” (6/12 copolymer, melting point 201 ° C.), or “ 6434 ”(6/66/12 copolymer, melting point 188 ° C.) and“ CX1004 ”manufactured by Unitika (isophthalic acid / adipic acid / 1,6-hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) ) Polycondensate of methane, melting point 210 ° C.).
  • the polyamide copolymer (B) as described above has a very good compatibility with the polylactic acid (A) and is sufficiently compatible even in the absence of a compatibilizing agent.
  • a filament-shaped molded body having no spots can be obtained, but the resin composition of the present invention does not prevent the usual compatibilizing agent from being contained.
  • the compatibilizing agent include Alfon series manufactured by Toa Gosei Co., Ltd., Modiper A series manufactured by NOF Corporation, SAG series manufactured by Trendsign Co., Ltd., and JONCRYL ADR series manufactured by BASF.
  • the compatibilizing agent containing a functional group having reactivity such as an epoxy group or an allyl group may react with the polylactic acid (A) and the polylactic acid (A) may be easily gelled.
  • the polylactic acid (A) is gelled, it becomes difficult to obtain a filament-shaped molded body with good spinning properties, and the molded product obtained using the filament-shaped molded body has a gelled portion on the surface, Quality may be degraded.
  • the resin composition of the present invention can improve the polishing properties by further containing a filler (C).
  • a filler C
  • fillers glass beads, glass fiber powder, wollastonite, mica, synthetic mica, sericite, talc, clay, zeolite, bentonite, kaolinite, dronite, silica, potassium titanate, finely divided silicic acid, shirasu balloon, Calcium carbonate, magnesium carbonate, barium sulfate, aluminum oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum silicate, zirconium silicate, gypsum, graphite, montmorillonite, carbon black, calcium sulfide, zinc oxide, boron nitride, cellulose fiber, etc. Is mentioned.
  • the particle diameter of the filler (C) is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less, in order to obtain a filament-shaped molded body with good yarn forming properties.
  • the particle size of the filler (C) exceeds 100 ⁇ m, the filter of the spinning machine may be clogged and the filtration pressure may increase during the production of the filament-shaped molded body. Moreover, the filament-shaped molded body obtained may become rough and may deteriorate in quality.
  • the content of the filler (C) in the resin composition is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the content of the filler (C) exceeds 30% by mass in the resin composition, the yarn-forming property is lowered, and the resulting filament-shaped molded body may have large diameter variations and large surface roughness. May be.
  • the mass ratio (talc / calcium carbonate) is preferably 80/20 to 20/80 from the viewpoint of yarn-making properties and the smoothness of the filament-shaped molded body, and 70/30 More preferably, it is ⁇ 30 / 70.
  • the nozzle may be easily contaminated during production of the filament-shaped molded body and modeling with a 3D printer. Therefore, when the resin composition of this invention contains a filler (C), it is preferable to also contain an antifouling agent.
  • an antifouling agent a metal soap, a fluorine-based lubricant, a lubricant mainly composed of a fatty acid amide or the like can be used.
  • Metal soap refers to fatty acid salts of metals other than alkali metals, and examples of main metals include magnesium, calcium, zinc, copper, lead, aluminum, iron, cobalt, chromium, and manganese.
  • fluorine-based lubricant examples include perfluoroalkane, perfluorocarboxylic acid ester, perfluoro organic compound, and fluorinated polymer.
  • aliphatic amide examples include oleic acid amide, ethylenebisstearic acid amide, and the like. .
  • a fluorine-based lubricant, vinylidene fluoride / hexafluoropropylene copolymer is preferable because of its great effect.
  • commercially available products examples include PPA series manufactured by Daikin Industries.
  • the resin composition of the present invention is a colorant containing a dye or a pigment, an antistatic agent, a terminal blocking agent, an anti-ultraviolet agent, a light stabilizer, an antifogging agent, and an antifog, as long as the object of the present invention is not impaired Agents, plasticizers, flame retardants, anti-coloring agents, antioxidants, mold release agents, moisture-proofing agents, oxygen barrier agents, crystal nucleating agents, and the like. Moreover, you may contain 2 or more types of these. However, the particle diameter of these additives is preferably 100 ⁇ m or less in order to obtain a filament-shaped molded body with good yarn forming properties.
  • the resin composition of the present invention is excellent in flexibility because the polyamide copolymer (B) is blended with the polylactic acid (A), and the flexural modulus, which is an index indicating flexibility, is 3.2 GPa or less.
  • the flexural modulus is preferably 1.5 to 3.2 GPa.
  • the resin composition of the present invention contains a suitable amount of the polyamide copolymer (B) in the polylactic acid (A), details are unknown, but it is excellent in abrasiveness.
  • the wear mass at the time of the wear test which is an index indicating the abrasiveness, is 1.2 of the wear mass in the case of polylactic acid (A) alone not blended with the polyamide copolymer (B). It is preferably at least twice, more preferably at least 1.3 times, and even more preferably at least 1.4 times.
  • the upper limit of the wear mass is preferably 2.0 times the wear mass in the case of polylactic acid (A) alone in order to prevent the molded article from being deformed.
  • the resin composition of the present invention can be produced by mixing the polylactic acid (A) and the polyamide copolymer (B).
  • a general kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a Brabender can be used. It is preferred to use an extruder.
  • the resin composition is prepared by, for example, a method in which these resins are melt-kneaded and extruded under conditions of a cylinder temperature of 160 to 230 ° C. and a die temperature of 180 to 240 ° C., and the strand is cooled and then cut into a pellet size. Is preferred. If a biaxial spinning device is used, a filament-shaped molded body is produced as it is without producing pellets of the resin composition from the melt-kneaded polylactic acid (A) and the polyamide copolymer (B). It is also possible.
  • the filamentary molded product of the present invention is composed of the resin composition of the present invention.
  • a resin composition By making a resin composition into the shape of a filament, it can be used suitably as a modeling material of a hot melt lamination method 3D printer.
  • the filament shaped article may be monofilament or multifilament, but monofilament is preferred. These may be unstretched or stretched.
  • the filament shaped body preferably has a diameter of 0.2 to 5.0 mm, more preferably 1.5 to 3.2 mm, and even more preferably 1.6 to 3.1 mm.
  • the diameter of the filament-shaped molded body is an average of the maximum major axis and the minimum minor axis in a cross section cut perpendicular to the longitudinal direction of the filament-shaped molded body. If the diameter of the filament-shaped molded body is less than 0.2 mm, the filament-shaped molded body may become too thin and may not be suitable for a general-purpose hot-melt lamination method 3D printer.
  • the upper limit of the diameter of the filament-shaped molded object suitable for a general purpose hot melt lamination method 3D printer is about 5.0 mm.
  • the resin composition of the present invention is melted at 170 to 270 ° C., extruded from a nozzle hole with a metering supply device, and this is placed in a liquid bath at 20 to 80 ° C.
  • the method include a method in which after cooling and solidification, the material is taken up at a spinning speed of 1 to 50 m / min and wound on a bobbin or the like.
  • the monofilament may be drawn after winding the monofilament after spinning once, or the monofilament may not be taken up after spinning and may be drawn continuously after spinning.
  • the film is stretched, if it is subjected to appropriate heat stretching and heat treatment, a more stable filament is formed, and the formed filament increases in filament strength and improves the smoothness and bending resistance of the filament surface.
  • Gas chromatography (Hewlett Packard, HP-6890) uses helium (He) as a carrier gas at a flow rate of 1.8 ml / min, an oven program held at 90 ° C. for 3 minutes, and at 50 ° C./min at 220 ° C. The temperature was raised to 1 minute and maintained for 1 minute.
  • the column was DB-17 (30 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m) manufactured by J & W, the detector was FID (temperature 300 ° C.), and the internal standard method was used for measurement. The ratio (%) of the peak area of D-lactic acid methyl ester to the total peak area of methyl lactate was calculated, and this was defined as the D-form content (mol%).
  • MFR Melt flow rate of polylactic acid
  • the mass of the disk before and after the wear test was measured, and the difference in mass before and after that was taken as the wear mass.
  • the abrasion mass was evaluated by dividing the abrasion mass of the disk made of each resin composition by the abrasion mass of the disk of Comparative Example 1 composed only of polylactic acid.
  • Diameter of monofilament The obtained monofilament was cut perpendicularly to the longitudinal direction of the monofilament every 20 cm to obtain 30 measurement samples. In each sample, the maximum major axis and the minimum minor axis in the cross section were measured using a micrometer, and the average was taken as the diameter of each sample. The diameter of all 30 samples was averaged to calculate the monofilament diameter.
  • the various raw materials used for the Example and the comparative example are as follows.
  • Polylactic acid ⁇ Polylactic acid resin (“3001D” manufactured by NatureWorks, D-lactic acid content: 1.4 mol%, MFR: 10 g / 10 min) ⁇ Polylactic acid resin (“4060D” manufactured by NatureWorks, D-lactic acid content 10 mol%, MFR 3.5 g / 10 min) ⁇ polyamide ⁇ ⁇ Polyamide 6/66/12 copolymer (“6434B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 188 ° C.) ⁇ Polyamide 6/12 copolymer (“7034B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 201 ° C.) ⁇ Polyamide 6/66 copolymer (“5023B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 196 ° C.) ⁇ Polyamide copolymer (“CX1004" manufactured by Unitika Ltd., melting point 210
  • the mixture was kneaded and extruded under the conditions of a temperature of 200 ° C., a screw rotation speed of 120 rpm, and a discharge rate of 7 kg / h. Subsequently, the strand discharged from the tip of the extruder was cooled by a cooling bath, then taken up by a pelletizer and cut to obtain a master batch pellet (M) of an antifouling agent.
  • M master batch pellet
  • Example 1 Using a twin screw extruder (Ikegai Co., Ltd., PCM-30, screw diameter 29 mm, L / D30, die diameter 3 mm, hole number 3), 90 parts by mass of polylactic acid (A) and polyamide copolymer (B) 10 parts by mass of polyamide 6/66/12 copolymer was blended and fed to an extruder. The mixture was kneaded and extruded under the conditions of a temperature of 215 ° C., a screw rotation speed of 120 rpm, and a discharge rate of 7 kg / h.
  • A polylactic acid
  • B polyamide copolymer
  • the strand discharged from the tip of the extruder was cooled by a cooling bath, then taken up by a pelletizer and cut to obtain a pellet of a resin composition.
  • the obtained pellets of the resin composition were dried under the conditions of 65 ° C. ⁇ 48 hr to make the moisture content 0.01%.
  • the dried resin composition pellets were obtained by using a spinning tester (manufactured by Fuji Filter Industry Co., Ltd., screw diameter: 30 mm, melt extrusion zone: 1000 mm), and the resulting monofilament diameter was 1.75 mm at a spinning temperature of 205 ° C.
  • the amount of discharge was adjusted so that the diameter of the monofilament was 5 mm, and it was extruded from a spinneret having a round cross section having one hole with a monofilament hole diameter of 5 mm. Subsequently, the extruded monofilament was immersed in 50 ° C. cooling water 20 cm below the spinneret and taken out while adjusting with a cooling time of 1 minute to obtain a monofilament (monofilament production method A).
  • Examples 3 to 4 Resin composition pellets having a moisture content of 0.01% were obtained in the same manner as in Example 2 except that the kneading temperature was changed to 210 ° C.
  • the dried resin composition pellets were subjected to a monofilament production apparatus (single screw extruder (manufactured by Nippon Steel Works, screw diameter 60 mm, melt extrusion zone 1200 mm)) at a spinning temperature of 220 ° C. Then, the discharge amount was adjusted so that the diameter of the obtained monofilament was 1.74 mm, and the monofilament was extruded from a spinneret having a round cross section having a hole diameter of 5 mm.
  • Example 4 the extruded monofilament was immersed in 50 ° C. cooling water 20 cm below the spinneret and taken out while adjusting at a take-up speed of 30 m / min to obtain a monofilament.
  • the cooling time was about 1 minute (monofilament production method B (stretch ratio 1)).
  • Example 4 spinning and stretching were performed continuously. That is, under the same conditions as in Example 3, the discharge amount was adjusted so that the diameter of the obtained monofilament was 1.75 mm, and the resin composition was extruded from the spinneret, and then taken out. The cooling time was about 1 minute. Further, the film was stretched 3 times in a warm bath at 70 ° C. and then further heat treated at a temperature of 180 ° C. to obtain a monofilament (monofilament production method B (stretching ratio: 3)).
  • Examples 5-17, 19, 28-29 Resin composition pellets in the same manner as in Example 3 except that the parts of the master batches of polylactic acid, polyamide copolymer, filler and antifouling agent were changed to those shown in Tables 1 and 2 and blended. Got. And the monofilament was obtained with the manufacturing method B like Example 3, 4 using the pellet of the obtained resin composition.
  • Tables 1 and 2 show the evaluation results of the resin compositions and monofilaments obtained in Examples and Comparative Examples.
  • the resin compositions obtained in the examples were excellent in abrasiveness, flexibility, and yarn production, and the obtained monofilaments were excellent in the formability in a 3D printer. For this reason, these resin compositions can be used suitably as a modeling material of a hot melt lamination method 3D printer.
  • the monofilament of Example 4 stretched 3 times using the pellets of the resin composition of Example 3 has improved bending resistance and surface roughness compared to the unstretched monofilament obtained in Example 3. Was also improved.
  • the resin compositions containing the fillers of Examples 5 to 17, 19, 23 to 24, and 28 to 29 had no adverse effect on the yarn forming property and maintained flexibility. Moreover, the obtained monofilament was excellent also in the moldability in 3D printer.
  • the resin composition containing a filler was further improved in abrasiveness and retained flexibility.
  • the monofilament obtained from the resin composition containing a filler can be used more suitably as a modeling material for the hot melt lamination method 3D printer.
  • the monofilaments stretched three times in Examples 7, 12, 15, 17, and 29 had improved bending resistance and improved surface roughness compared to unstretched monofilaments.
  • the monofilaments of Examples 16 and 17 contained a stain preventive agent, the stain did not adhere to the nozzle during modeling by the 3D printer.
  • the resin composition of Comparative Example 1 was only polylactic acid, the elastic modulus was high and the flexibility was poor, and the polishing property was also poor.
  • the resin composition of Comparative Example 2 was inferior in flexibility and polishability because the polyamide copolymer content was too small.
  • the resin composition of Comparative Example 3 was inferior in yarn-making property and polishing property because the polyamide copolymer content was excessive. Since the resin composition of Comparative Example 4 was only a polyamide copolymer, the polishability was poor.
  • the polyamide did not contain a copolymer component and was polyamide 6, it was poor in abrasiveness and inferior in yarn production.
  • the obtained monofilaments had variations in diameter, and could not be shaped without biting into the roller that supplies the filament to the liquefier of the hot melt lamination method 3D printer.
  • the yarn forming property was inferior and a monofilament could not be obtained.
  • the resin composition of Comparative Example 7 does not contain a polyamide copolymer, and since a filler is simply added to polylactic acid, the yarn-making property is slightly inferior, the flexibility is greatly reduced, and the brittleness is obtained. There was no significant improvement in abrasiveness.

Abstract

A resin composition used in a fabrication material for a fused deposition modeling 3D printer, said resin composition characterized by containing a polylactic acid (A) and a polyamide copolymer (B), wherein the mass ratio (A/B) of the polylactic acid (A) to the polyamide copolymer (B) is 90/10 to 25/75.

Description

樹脂組成物およびフィラメント状成形体Resin composition and filament-shaped molded body
 本発明は、熱溶解積層法3Dプリンターの造形材料用の樹脂組成物と、それからなるフィラメント状成形体に関する。 The present invention relates to a resin composition for a modeling material of a hot melt lamination method 3D printer, and a filament-shaped molded body comprising the same.
 3DCADや3次元コンピューターグラフィックスのデータを元に、立体造形物(3次元のオブジェクト)を作製する3Dプリンターは、近年、産業向けを中心に急速に普及している。3Dプリンターの造形方法には、光造形、インクジェット、粉末石膏造形、粉末焼結造形、熱溶解積層造形等の方法がある。 3D printers that produce 3D objects (3D objects) based on 3D CAD and 3D computer graphics data have been rapidly spreading in recent years, especially for industrial use. Examples of 3D printer modeling methods include optical modeling, ink jet, powder gypsum modeling, powder sintering modeling, and hot melt additive modeling.
 近年、個人向け等の低価格の3Dプリンターの多くは、熱溶解積層法を採用している。この熱溶解積層法3Dプリンターにおいては、造形材料として、フィラメント状成形体が使用され、造形材料を構成する樹脂として、ポリ乳酸やABS樹脂が使用されることが多い。
 ポリ乳酸は、融点が約170℃であり、プラスチックの中でも比較的融点が低く、低温で溶融するため、個人向けの3Dプリンターの造形材料に適している。また、ポリ乳酸は、ABS樹脂と比較して、造形性が良好であり、得られる造形物は反りが小さいことから、造形材料としてポリ乳酸を使用することが要望されている。しかしながら、ポリ乳酸は、それ自体が硬く、ポリ乳酸からなる造形物は、ABS樹脂のそれと比較して硬くてもろいため、造形後の仕上げとしてスジ彫りや表面研磨などができないことがあった。
In recent years, many low-cost 3D printers for personal use have adopted a hot melt lamination method. In this hot melt lamination method 3D printer, a filament-shaped molded body is used as a modeling material, and polylactic acid or ABS resin is often used as a resin constituting the modeling material.
Polylactic acid has a melting point of about 170 ° C., has a relatively low melting point among plastics, and melts at a low temperature. Therefore, polylactic acid is suitable as a modeling material for 3D printers for individuals. In addition, polylactic acid has better formability than the ABS resin, and the resulting molded article has a small warpage, and therefore, it is desired to use polylactic acid as a modeling material. However, polylactic acid itself is hard, and a molded article made of polylactic acid may be harder than that of ABS resin, so that there are cases where streaking or surface polishing cannot be performed as a finish after shaping.
 特許文献1には、表面研磨しやすい熱溶解積層方式三次元造形素材として、ポリ乳酸にスチレン系樹脂やポリエステル等を配合した組成が開示されている。しかしながら、この素材は、研磨性が十分に向上したものではなかった。 Patent Document 1 discloses a composition in which polylactic acid is blended with a styrene-based resin, polyester, or the like as a hot-melt lamination type three-dimensional modeling material that is easy to polish the surface. However, this material was not sufficiently improved in abrasiveness.
国際公報第2015/037574号International Publication No. 2015/037574
 本発明は、前記の問題点を解決しようとするものであり、3Dプリンターにより立体造形物を得る際の造形材料として好適に使用することができる樹脂組成物であって、柔軟性および研磨性に優れた立体造形物を良好に作製することができる樹脂組成物およびそれからなるフィラメント状成形体を提供しようとするものである。 The present invention is intended to solve the above-mentioned problems, and is a resin composition that can be suitably used as a modeling material when a three-dimensional model is obtained by a 3D printer, and is flexible and abrasive. It is an object of the present invention to provide a resin composition that can satisfactorily produce an excellent three-dimensional model and a filament-shaped molded body comprising the same.
 本発明者らは、上記課題を解決するために検討した結果、本発明に到達した。すなわち、本発明の要旨は下記の通りである。
(1)熱溶解積層法3Dプリンターの造形材料用樹脂組成物であって、ポリ乳酸(A)とポリアミド共重合体(B)とを含有し、ポリ乳酸(A)とポリアミド共重合体(B)との質量比(A/B)が90/10~25/75であることを特徴とする樹脂組成物。
(2)曲げ弾性率が1.5~3.2GPaであり、摩耗試験時の摩耗質量が、ポリ乳酸(A)の摩耗質量に対して、1.2~2.0倍であることを特徴とする(1)記載の樹脂組成物。
(3)さらに、充填剤(C)を含有することを特徴とする(1)または(2)記載の樹脂組成物。
(4)熱溶解積層法3Dプリンターの造形材料用成形体であって、(1)~(3)のいずれかに記載の樹脂組成物で構成され、直径が0.2~5.0mmであることを特徴とするフィラメント状成形体。
The inventors of the present invention have arrived at the present invention as a result of studies to solve the above problems. That is, the gist of the present invention is as follows.
(1) Hot melt lamination method 3D printer resin composition for molding material, which contains polylactic acid (A) and polyamide copolymer (B), and includes polylactic acid (A) and polyamide copolymer (B ) And a mass ratio (A / B) of 90/10 to 25/75.
(2) The flexural modulus is 1.5 to 3.2 GPa, and the wear mass during the wear test is 1.2 to 2.0 times the wear mass of polylactic acid (A). The resin composition according to (1).
(3) The resin composition according to (1) or (2), further comprising a filler (C).
(4) Hot melt lamination method 3D printer molding material molded body, comprising the resin composition according to any one of (1) to (3) and having a diameter of 0.2 to 5.0 mm A filamentous shaped product characterized by the above.
 本発明の樹脂組成物は、ポリ乳酸とポリアミド共重合体とを適量配合してなるものであるため、太さ斑のないフィラメント状成形体を得ることが可能である。そして、本発明の樹脂組成物からなるフィラメント状成形体は、3Dプリンターの造形材料として好適であり、柔軟性および研磨性に優れた立体造形物を作製することが可能である。 Since the resin composition of the present invention is obtained by blending an appropriate amount of polylactic acid and a polyamide copolymer, it is possible to obtain a filament-shaped molded body free from thick spots. And the filament-shaped molded object which consists of a resin composition of this invention is suitable as a modeling material of 3D printer, and it is possible to produce the three-dimensional molded item excellent in the softness | flexibility and abrasiveness.
 以下、本発明を詳細に説明する。
 まず、本発明の樹脂組成物について説明する。本発明の樹脂組成物は、ポリ乳酸(A)とポリアミド共重合体とを含有する樹脂組成物であって、ポリ乳酸(A)とポリアミド共重合体(B)との質量比(A/B)が90/10~25/75である。
Hereinafter, the present invention will be described in detail.
First, the resin composition of the present invention will be described. The resin composition of the present invention is a resin composition containing polylactic acid (A) and a polyamide copolymer, and is a mass ratio (A / B) of polylactic acid (A) and polyamide copolymer (B). ) Is 90/10 to 25/75.
 本発明の樹脂組成物で用いられるポリ乳酸としては、ポリ(L-乳酸)、ポリ(D-乳酸)、これらの混合物、および2種以上の共重合成分を含む共重合体を用いることができ、生分解性および成形加工性の観点から、ポリ(L-乳酸)を主体とすることが好ましい。ポリ(L-乳酸)を主体とするポリ乳酸(A)は、D-乳酸の含有量が10モル%以下であることが好ましく、6モル%以下であることがより好ましい。 As polylactic acid used in the resin composition of the present invention, poly (L-lactic acid), poly (D-lactic acid), a mixture thereof, and a copolymer containing two or more copolymerization components can be used. From the viewpoint of biodegradability and moldability, poly (L-lactic acid) is preferably the main component. The polylactic acid (A) mainly composed of poly (L-lactic acid) preferably has a D-lactic acid content of 10 mol% or less, and more preferably 6 mol% or less.
 ポリ乳酸(A)は、成形加工性や性能の点から、温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が0.3~15g/10分であることが好ましい。 Polylactic acid (A) preferably has a melt flow rate (MFR) of 0.3 to 15 g / 10 min at a temperature of 190 ° C. and a load of 2.16 kg from the viewpoint of moldability and performance.
 ポリ乳酸の市販品としては、例えば、NatureWorks社製『4032D』(D-乳酸含有量1.4モル%、MFR3g/10分)、『3001D』(D-乳酸含有量1.4モル%、MFR10g/10分)、あるいは『4060D』(D-乳酸含有量10モル%、MFR3.5g/10分)が挙げられ、これらを混合して使用してもよい。 Examples of commercially available products of polylactic acid include “4032D” (D-lactic acid content: 1.4 mol%, MFR 3 g / 10 min), “3001D” (D-lactic acid content: 1.4 mol%, MFR 10 g) manufactured by NatureWorks. / 10 minutes), or “4060D” (D-lactic acid content 10 mol%, MFR 3.5 g / 10 minutes). These may be used in combination.
 本発明の樹脂組成物は、ポリアミド共重合体(B)を含有することが必要である。ポリ乳酸(A)にポリアミドを配合することにより、樹脂組成物は、柔軟性が向上し、ポリアミドが共重合成分を含有する共重合体であると、樹脂組成物は、柔軟性に加えて、研磨性と製糸性も向上する。
 ポリ乳酸(A)とポリアミド共重合体(B)との質量比(A/B)が90/10~25/75であることが必要であり、中でも90/10~50/50であることが好ましく、75/25~50/50であることがより好ましい。ポリアミド共重合体(B)の割合が10質量%未満であると、得られる造形物は、柔軟性および研磨性が低いものとなる。一方、ポリアミド共重合体(B)の割合が75質量%を超えて、吸湿量が多いポリアミド共重合体(B)の割合が多くなると、フィラメント状成形体は、3Dプリンターでの溶融時に発泡し、満足な造形物が得られなくなる。また得られる造形物は、研磨性も低下する。さらには、フィラメント状成形体は、直径にバラツキが生じやすく、バラツキが大きくなると、3Dプリンターでのフィラメント供給量(吐出量)が変動し、満足な造形物が得られなくなることがある。
The resin composition of the present invention needs to contain a polyamide copolymer (B). By blending polyamide with polylactic acid (A), the resin composition is improved in flexibility, and when the polyamide is a copolymer containing a copolymer component, Abrasiveness and yarn production are also improved.
The mass ratio (A / B) of the polylactic acid (A) and the polyamide copolymer (B) needs to be 90/10 to 25/75, and in particular, 90/10 to 50/50. Preferably, it is 75/25 to 50/50. When the proportion of the polyamide copolymer (B) is less than 10% by mass, the resulting molded article has low flexibility and polishing properties. On the other hand, when the proportion of the polyamide copolymer (B) exceeds 75% by mass and the proportion of the polyamide copolymer (B) having a large amount of moisture absorption increases, the filament-shaped molded body foams when melted by the 3D printer. Satisfactory shaped objects cannot be obtained. In addition, the resulting molded article also has poor polishing properties. Furthermore, the filament-shaped molded body is likely to have a variation in diameter, and when the variation becomes large, the filament supply amount (discharge amount) in the 3D printer may fluctuate, and a satisfactory shaped product may not be obtained.
 本発明におけるポリアミド共重合体(B)を構成する共重合成分としては、ポリアミド形成能を有するものであれば、特に限定されず、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド613、およびポリアミド10T等が挙げられる。上記共重合成分を2種以上含むポリアミド共重合体(B)としては、柔軟性を有し、ポリ乳酸(A)との相溶性が良好であり、ポリ乳酸(A)と融点が近く、ポリ乳酸(A)と混合しやすいことから、ポリアミド6/66共重合体、ポリアミド6/12共重合体、ポリアミド6/66/12共重合体、イソフタル酸/アジピン酸/1,6-ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体等が好ましい。 The copolymer component constituting the polyamide copolymer (B) in the present invention is not particularly limited as long as it has a polyamide-forming ability, and examples thereof include polyamide 6, polyamide 11, polyamide 12, polyamide 66, and polyamide 69. , Polyamide 610, polyamide 612, polyamide 613, and polyamide 10T. The polyamide copolymer (B) containing two or more of the above copolymerization components has flexibility, good compatibility with polylactic acid (A), close melting point to polylactic acid (A), Because it is easy to mix with lactic acid (A), polyamide 6/66 copolymer, polyamide 6/12 copolymer, polyamide 6/66/12 copolymer, isophthalic acid / adipic acid / 1,6-hexamethylenediamine A polycondensate of / bis (3-methyl-4-aminocyclohexyl) methane is preferred.
 ポリアミド共重合体の市販品としては、例えば、宇部興産社製『5023』(6/66共重合体、融点196℃)、『7034』(6/12共重合体、融点201℃)、あるいは『6434』(6/66/12共重合体、融点188℃)、さらに、ユニチカ社製『CX1004』(イソフタル酸/アジピン酸/1,6-ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、融点210℃)が挙げられる。 Examples of commercially available polyamide copolymers include “5023” (6/66 copolymer, melting point 196 ° C.), “7034” (6/12 copolymer, melting point 201 ° C.), or “ 6434 ”(6/66/12 copolymer, melting point 188 ° C.) and“ CX1004 ”manufactured by Unitika (isophthalic acid / adipic acid / 1,6-hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) ) Polycondensate of methane, melting point 210 ° C.).
 本発明の樹脂組成物において、上記のようなポリアミド共重合体(B)は、ポリ乳酸(A)との相溶性が非常に良く、相溶化剤がない状態でも、十分に相溶し、直径に斑のないフィラメント状成形体を得ることができるが、本発明の樹脂組成物は、通常の相溶化剤を含有することを妨げるものではない。相溶化剤としては、例えば、東亜合成社製のアルフォンシリーズ、日油社製のモディパーAシリーズ、トレンドサイン社製のSAGシリーズ、BASF社製のJONCRYL ADRシリーズ等が挙げられる。
 なお、エポキシ基やアリル基等の反応性を有する官能基を含有する相溶化剤は、これらの官能基がポリ乳酸(A)と反応し、ポリ乳酸(A)がゲル化しやすくなることがある。ポリ乳酸(A)がゲル化すると、フィラメント状成形体を製糸性よく得ることが困難になるとともに、フィラメント状成形体を使用して得られる造形物は、表面にゲル化した部分が現れて、品位が低下することがある。
In the resin composition of the present invention, the polyamide copolymer (B) as described above has a very good compatibility with the polylactic acid (A) and is sufficiently compatible even in the absence of a compatibilizing agent. A filament-shaped molded body having no spots can be obtained, but the resin composition of the present invention does not prevent the usual compatibilizing agent from being contained. Examples of the compatibilizing agent include Alfon series manufactured by Toa Gosei Co., Ltd., Modiper A series manufactured by NOF Corporation, SAG series manufactured by Trendsign Co., Ltd., and JONCRYL ADR series manufactured by BASF.
In addition, the compatibilizing agent containing a functional group having reactivity such as an epoxy group or an allyl group may react with the polylactic acid (A) and the polylactic acid (A) may be easily gelled. . When the polylactic acid (A) is gelled, it becomes difficult to obtain a filament-shaped molded body with good spinning properties, and the molded product obtained using the filament-shaped molded body has a gelled portion on the surface, Quality may be degraded.
 本発明の樹脂組成物は、さらに充填剤(C)を含有することにより、研磨性を向上させることが可能である。充填剤としては、ガラスビーズ、ガラス繊維粉、ワラストナイト、マイカ、合成マイカ、セリサイト、タルク、クレー、ゼオライト、ベントナイト、カオリナイト、ドロナイト、シリカ、チタン酸カリウム、微粉ケイ酸、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化チタン、ケイ酸アルミニウム、ケイ酸ジルコニウム、石膏、グラファイト、モンモリロナイト、カーボンブラック、硫化カルシウム、酸化亜鉛、窒化ホウ素、セルロースファイバー等が挙げられる。
 中でも、マイカやタルク、炭酸カルシウムが好ましく、またこれらの併用も、研磨性向上の点から特に好ましい。炭酸カルシウムは、含有水分が多いため、ポリ乳酸(A)を分解し、粘度低下を引き起こすおそれがあることから、疎水処理が施されたものであることがより好ましい。
 充填剤(C)の粒径は、製糸性よくフィラメント状成形体を得るために、100μm以下であることが好ましく、50μm以下であることがより好ましい。充填剤(C)は、粒径が100μmを超えると、フィラメント状成形体製造時において、紡糸機のフィルターに詰り、濾過圧が上昇することがある。また得られるフィラメント状成形体は、ざらつきが強くなって、品位が低下することがある。
The resin composition of the present invention can improve the polishing properties by further containing a filler (C). As fillers, glass beads, glass fiber powder, wollastonite, mica, synthetic mica, sericite, talc, clay, zeolite, bentonite, kaolinite, dronite, silica, potassium titanate, finely divided silicic acid, shirasu balloon, Calcium carbonate, magnesium carbonate, barium sulfate, aluminum oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum silicate, zirconium silicate, gypsum, graphite, montmorillonite, carbon black, calcium sulfide, zinc oxide, boron nitride, cellulose fiber, etc. Is mentioned.
Of these, mica, talc, and calcium carbonate are preferable, and the combination of these is particularly preferable from the viewpoint of improving the polishing properties. Since calcium carbonate contains a large amount of moisture, it may decompose the polylactic acid (A) and cause a decrease in viscosity. Therefore, the calcium carbonate is more preferably subjected to a hydrophobic treatment.
The particle diameter of the filler (C) is preferably 100 μm or less, and more preferably 50 μm or less, in order to obtain a filament-shaped molded body with good yarn forming properties. When the particle size of the filler (C) exceeds 100 μm, the filter of the spinning machine may be clogged and the filtration pressure may increase during the production of the filament-shaped molded body. Moreover, the filament-shaped molded body obtained may become rough and may deteriorate in quality.
 樹脂組成物における充填剤(C)の含有量は30質量%以下が好ましく、20質量%以下がより好ましい。樹脂組成物は、充填剤(C)の含有量が30質量%を超えると、製糸性が低下し、得られるフィラメント状成形体は、直径のバラツキが大きくなることがあり、表面のざらつきも大きくなることがある。
 また、タルクと炭酸カルシウムを併用する場合、製糸性およびフィラメント状成形体の平滑性の点から、質量比(タルク/炭酸カルシウム)は80/20~20/80であることが好ましく、70/30~30/70であることがより好ましい。
The content of the filler (C) in the resin composition is preferably 30% by mass or less, and more preferably 20% by mass or less. When the content of the filler (C) exceeds 30% by mass in the resin composition, the yarn-forming property is lowered, and the resulting filament-shaped molded body may have large diameter variations and large surface roughness. May be.
In the case where talc and calcium carbonate are used in combination, the mass ratio (talc / calcium carbonate) is preferably 80/20 to 20/80 from the viewpoint of yarn-making properties and the smoothness of the filament-shaped molded body, and 70/30 More preferably, it is ˜30 / 70.
 本発明の樹脂組成物は、上記のような充填剤(C)を含有することにより、フィラメント状成形体の作製時および、3Dプリンターでの造形時に、ノズルに汚れが出やすくなることがある。そのため、本発明の樹脂組成物は、充填剤(C)を含有する場合は、汚れ防止剤も含有することが好ましい。
 汚れ防止剤としては、金属セッケン、フッ素系滑剤、脂肪酸アミドなどを主成分とする滑剤などを用いることができる。金属セッケンは、アルカリ金属以外の金属の脂肪酸塩のことをいい、主な金属として、マグネシウム、カルシウム、亜鉛、銅、鉛、アルミニウム、鉄、コバルト、クロム、マンガンなどが挙げられる。また、フッ素系滑剤としては、パーフルオロアルカン、パーフルオロカルボン酸エステル、パーフルオロ有機化合物やフッ化ポリマーなどが挙げられ、脂肪族アミドとしては、オレイン酸アミド、エチレンビスステアリン酸アミドなどが挙げられる。中でも、フッ素系滑剤のフッ化ビニリデン・ヘキサフルオロプロピレン共重合体は、効果が大きく、好ましい。市販品としては、例えば、ダイキン工業社製のPPAシリーズが挙げられる。
When the resin composition of the present invention contains the filler (C) as described above, the nozzle may be easily contaminated during production of the filament-shaped molded body and modeling with a 3D printer. Therefore, when the resin composition of this invention contains a filler (C), it is preferable to also contain an antifouling agent.
As the antifouling agent, a metal soap, a fluorine-based lubricant, a lubricant mainly composed of a fatty acid amide or the like can be used. Metal soap refers to fatty acid salts of metals other than alkali metals, and examples of main metals include magnesium, calcium, zinc, copper, lead, aluminum, iron, cobalt, chromium, and manganese. Examples of the fluorine-based lubricant include perfluoroalkane, perfluorocarboxylic acid ester, perfluoro organic compound, and fluorinated polymer. Examples of the aliphatic amide include oleic acid amide, ethylenebisstearic acid amide, and the like. . Among these, a fluorine-based lubricant, vinylidene fluoride / hexafluoropropylene copolymer, is preferable because of its great effect. Examples of commercially available products include PPA series manufactured by Daikin Industries.
 さらに、本発明の樹脂組成物は、本発明の目的を損なわない範囲で、染料または顔料を含む着色剤、帯電防止剤、末端封鎖剤、紫外線防止剤、光安定剤、防曇剤、防霧剤、可塑剤、難燃剤、着色防止剤、酸化防止剤、離型剤、防湿剤、酸素バリア剤、結晶核剤等を含有することができる。またこれらを2種以上含有してもよい。ただし、これらの添加剤の粒径は、製糸性よくフィラメント状成形体を得るために、100μm以下であることが好ましい。 Further, the resin composition of the present invention is a colorant containing a dye or a pigment, an antistatic agent, a terminal blocking agent, an anti-ultraviolet agent, a light stabilizer, an antifogging agent, and an antifog, as long as the object of the present invention is not impaired Agents, plasticizers, flame retardants, anti-coloring agents, antioxidants, mold release agents, moisture-proofing agents, oxygen barrier agents, crystal nucleating agents, and the like. Moreover, you may contain 2 or more types of these. However, the particle diameter of these additives is preferably 100 μm or less in order to obtain a filament-shaped molded body with good yarn forming properties.
 本発明の樹脂組成物は、ポリ乳酸(A)にポリアミド共重合体(B)を配合したため、柔軟性に優れるものであり、柔軟性を示す指標である曲げ弾性率が3.2GPa以下であることが好ましく、中でも曲げ弾性率は、1.5~3.2GPaであることが好ましい。 The resin composition of the present invention is excellent in flexibility because the polyamide copolymer (B) is blended with the polylactic acid (A), and the flexural modulus, which is an index indicating flexibility, is 3.2 GPa or less. In particular, the flexural modulus is preferably 1.5 to 3.2 GPa.
 また、本発明の樹脂組成物は、ポリ乳酸(A)にポリアミド共重合体(B)を適量配合するものであるため、詳細は不明であるが、研磨性に優れるものである。本発明の樹脂組成物において、研磨性を示す指標である摩耗試験時の摩耗質量は、ポリアミド共重合体(B)を配合していないポリ乳酸(A)単独の場合の摩耗質量の1.2倍以上であることが好ましく、1.3倍以上であることがより好ましく、1.4倍以上であることがさらに好ましい。また摩耗質量の上限は、造形物の型崩れを防止するために、ポリ乳酸(A)単独の場合の摩耗質量の2.0倍であることが好ましい。 Moreover, since the resin composition of the present invention contains a suitable amount of the polyamide copolymer (B) in the polylactic acid (A), details are unknown, but it is excellent in abrasiveness. In the resin composition of the present invention, the wear mass at the time of the wear test, which is an index indicating the abrasiveness, is 1.2 of the wear mass in the case of polylactic acid (A) alone not blended with the polyamide copolymer (B). It is preferably at least twice, more preferably at least 1.3 times, and even more preferably at least 1.4 times. In addition, the upper limit of the wear mass is preferably 2.0 times the wear mass in the case of polylactic acid (A) alone in order to prevent the molded article from being deformed.
 本発明の樹脂組成物は、上記のポリ乳酸(A)とポリアミド共重合体(B)とを混合することによって作製することができる。両樹脂の混合には、単軸押出機、二軸押出機、ロール混練機、ブラベンダー等の一般的な混練機を使用することができ、なかでも、混練状態の向上のため、二軸の押出機を使用することが好ましい。樹脂組成物は、例えば、シリンダー温度160~230℃、ダイス温度180~240℃の条件で、これらの樹脂を溶融混練して押出して、ストランドを冷却後、ペレットサイズにカットする方法で作製することが好ましい。なお、二軸の紡糸装置を使用すれば、溶融混練したポリ乳酸(A)とポリアミド共重合体(B)とから、樹脂組成物のペレットを作製することなく、そのままフィラメント状成形体を作製することも可能である。 The resin composition of the present invention can be produced by mixing the polylactic acid (A) and the polyamide copolymer (B). For the mixing of both resins, a general kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a Brabender can be used. It is preferred to use an extruder. The resin composition is prepared by, for example, a method in which these resins are melt-kneaded and extruded under conditions of a cylinder temperature of 160 to 230 ° C. and a die temperature of 180 to 240 ° C., and the strand is cooled and then cut into a pellet size. Is preferred. If a biaxial spinning device is used, a filament-shaped molded body is produced as it is without producing pellets of the resin composition from the melt-kneaded polylactic acid (A) and the polyamide copolymer (B). It is also possible.
 次に、本発明のフィラメント状成形体は、本発明の樹脂組成物で構成されてなるものである。樹脂組成物をフィラメントの形状とすることで、熱溶解積層法3Dプリンターの造形材料として好適に使用することができる。フィラメント状成形体は、モノフィラメントでも、マルチフィラメントでもよいが、モノフィラメントが好ましい。またこれらは未延伸のものであっても延伸したものであってもよい。 Next, the filamentary molded product of the present invention is composed of the resin composition of the present invention. By making a resin composition into the shape of a filament, it can be used suitably as a modeling material of a hot melt lamination method 3D printer. The filament shaped article may be monofilament or multifilament, but monofilament is preferred. These may be unstretched or stretched.
 フィラメント状成形体は、直径が0.2~5.0mmであることが好ましく、1.5~3.2mmであることがより好ましく、中でも1.6~3.1mmであることがさらに好ましい。フィラメント状成形体の直径とは、フィラメント状成形体の長手方向に対して垂直に切断した断面における、最大長径と最小短径の平均である。フィラメント状成形体は、直径が0.2mm未満であると、細くなりすぎて、汎用の熱溶解積層法3Dプリンターに適さないことがある。なお、汎用の熱溶解積層法3Dプリンターに適したフィラメント状成形体の直径の上限は、5.0mm程度である。 The filament shaped body preferably has a diameter of 0.2 to 5.0 mm, more preferably 1.5 to 3.2 mm, and even more preferably 1.6 to 3.1 mm. The diameter of the filament-shaped molded body is an average of the maximum major axis and the minimum minor axis in a cross section cut perpendicular to the longitudinal direction of the filament-shaped molded body. If the diameter of the filament-shaped molded body is less than 0.2 mm, the filament-shaped molded body may become too thin and may not be suitable for a general-purpose hot-melt lamination method 3D printer. In addition, the upper limit of the diameter of the filament-shaped molded object suitable for a general purpose hot melt lamination method 3D printer is about 5.0 mm.
 モノフィラメントからなるフィラメント状成形体を作製する方法としては、本発明の樹脂組成物を、170~270℃で溶融し、定量供給装置でノズル孔から押出し、これを20~80℃の液浴中で冷却固化後、紡糸速度1~50m/分で引き取り、ボビン等に巻き取る方法等が挙げられる。なお、モノフィラメントの形状にする際、ある程度の範囲内の倍率で延伸を施してもよい。モノフィラメントの延伸は、紡糸後のモノフィラメントを一度巻き取ってからおこなってもよく、また、モノフィラメントは、紡糸後に巻き取らず、紡糸に続いて、連続的に延伸してもよい。延伸に際して、適度な加熱延伸、熱処理を施すと、より安定したフィラメントが形成され、形成されたフィラメントは、フィラメント強度が増加し、フィラメント表面の平滑性、耐屈曲性が向上する。 As a method for producing a filament-shaped molded body composed of monofilaments, the resin composition of the present invention is melted at 170 to 270 ° C., extruded from a nozzle hole with a metering supply device, and this is placed in a liquid bath at 20 to 80 ° C. Examples of the method include a method in which after cooling and solidification, the material is taken up at a spinning speed of 1 to 50 m / min and wound on a bobbin or the like. In addition, when making into the shape of a monofilament, you may extend | stretch by the magnification within a certain range. The monofilament may be drawn after winding the monofilament after spinning once, or the monofilament may not be taken up after spinning and may be drawn continuously after spinning. When the film is stretched, if it is subjected to appropriate heat stretching and heat treatment, a more stable filament is formed, and the formed filament increases in filament strength and improves the smoothness and bending resistance of the filament surface.
 以下、本発明を実施例によりさらに具体的に説明する。実施例および比較例の樹脂組成物およびフィラメント状成形体の評価に用いた測定法は、次のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples. The measurement methods used for the evaluation of the resin compositions and filament-shaped molded bodies of Examples and Comparative Examples are as follows.
(1)ポリ乳酸(A)のD体含有量
 ポリ乳酸(A)約0.3gを1N-水酸化カリウム/メタノール溶液6mlに加え、65℃にて充分撹拌し、ポリ乳酸樹脂を分解させた後、硫酸450μlを加えて、65℃にて撹拌し、乳酸メチルエステルとした。このサンプル5ml、純水3ml、および、塩化メチレン13mlを混合して振り混ぜた。静置分離後、下部の有機層を約1.5ml採取し、HPLC用ディスクフィルター(孔径0.45μm)でろ過し、ガスクロマトグラフィーで測定した。
 ガスクロマトグラフィー(Hewlett Packard社製、HP-6890)は、ヘリウム(He)をキャリアガスとして、流速1.8ml/minで、オーブンプログラムは90℃で3分間保持し、50℃/minで220℃まで昇温し、1分間保持する条件でおこなった。カラムは、J&W社製DB-17(30m×0.25mm×0.25μm)を用い、検出器はFID(温度300℃)、内部標準法で測定した。乳酸メチルエステルの全ピーク面積に占めるD-乳酸メチルエステルのピーク面積の割合(%)を算出し、これをD体含有量(モル%)とした。
(1) D-form content of polylactic acid (A) About 0.3 g of polylactic acid (A) was added to 6 ml of a 1N potassium hydroxide / methanol solution and sufficiently stirred at 65 ° C. to decompose the polylactic acid resin. Thereafter, 450 μl of sulfuric acid was added and stirred at 65 ° C. to obtain methyl lactate. 5 ml of this sample, 3 ml of pure water, and 13 ml of methylene chloride were mixed and shaken. After stationary separation, about 1.5 ml of the lower organic layer was collected, filtered through a disk filter for HPLC (pore size 0.45 μm), and measured by gas chromatography.
Gas chromatography (Hewlett Packard, HP-6890) uses helium (He) as a carrier gas at a flow rate of 1.8 ml / min, an oven program held at 90 ° C. for 3 minutes, and at 50 ° C./min at 220 ° C. The temperature was raised to 1 minute and maintained for 1 minute. The column was DB-17 (30 m × 0.25 mm × 0.25 μm) manufactured by J & W, the detector was FID (temperature 300 ° C.), and the internal standard method was used for measurement. The ratio (%) of the peak area of D-lactic acid methyl ester to the total peak area of methyl lactate was calculated, and this was defined as the D-form content (mol%).
(2)ポリ乳酸(A)のメルトフローレート(MFR)
 東洋精機製作所社製メルトインデクサーF-B01を用いて、JIS K7210に準拠して測定した。試験温度190℃、試験荷重2.16kgの条件で測定した。
(2) Melt flow rate (MFR) of polylactic acid (A)
Measurement was performed according to JIS K7210 using a melt indexer F-B01 manufactured by Toyo Seiki Seisakusho. The measurement was performed under the conditions of a test temperature of 190 ° C. and a test load of 2.16 kg.
(3)研磨性
 得られた樹脂組成物のペレット(65℃×48hrの条件で乾燥して、水分率を0.01%としたもの)を用いて、射出成形機(日精樹脂社製、NEX-110型)を用い、シリンダー温度190~220℃、金型温度30~40℃の条件で、直径10mm、厚さ2mmの円板を作製した。
 テーバー摩耗試験機(東洋精機製、Rotary Abrasion Testen)を用いて、JIS K7204に準拠して、円板の摩耗試験を実施した。用いた摩耗輪はH-22であり、回転数は1000回転とした。
 摩耗試験前後の円板の質量を測定してその前後の質量差を摩耗質量とした。各樹脂組成物からなる円板における摩耗質量を、ポリ乳酸のみから構成される比較例1の円板の摩耗質量で除して、研磨性を評価した。
(3) Abrasiveness Using a pellet of the obtained resin composition (dried under the condition of 65 ° C. × 48 hr and having a moisture content of 0.01%), an injection molding machine (NEX manufactured by Nissei Plastics Co., Ltd.) -110 type), and a disk having a diameter of 10 mm and a thickness of 2 mm was produced under conditions of a cylinder temperature of 190 to 220 ° C. and a mold temperature of 30 to 40 ° C.
Using a Taber abrasion tester (Toray Seiki, Rotary Ablation Testen), a disc abrasion test was performed in accordance with JIS K7204. The wear wheel used was H-22, and the rotation speed was 1000 rotations.
The mass of the disk before and after the wear test was measured, and the difference in mass before and after that was taken as the wear mass. The abrasion mass was evaluated by dividing the abrasion mass of the disk made of each resin composition by the abrasion mass of the disk of Comparative Example 1 composed only of polylactic acid.
(4)柔軟性
 得られた樹脂組成物のペレット(65℃×48hrの条件で乾燥して、水分率を0.01%としたもの)を用いて、射出成形機(日精樹脂社製、NEX-110型)を用い、シリンダー温度190~220℃、金型温度30~40℃の条件で、ISO準拠の一般物性測定用試験片(ダンベル片)を作製し、曲げ弾性率を測定した。
(4) Flexibility An injection molding machine (manufactured by Nissei Resin Co., Ltd., NEX) was used by using pellets of the obtained resin composition (dried at 65 ° C. × 48 hr and having a moisture content of 0.01%). -110), a test piece for general physical property measurement (dumbbell piece) conforming to ISO was prepared under conditions of a cylinder temperature of 190 to 220 ° C. and a mold temperature of 30 to 40 ° C., and the flexural modulus was measured.
(5)製糸性
 紡糸速度10m/分にて24時間、繊経1.75mmのモノフィラメントを採取した際の糸切れ回数により、以下のように3段階で評価した。
〇:糸切れが0回
△:糸切れ回数が1~3回
×:糸切れ回数が4回以上、もしくはフィラメントの引取不可
(5) Spinnability Evaluation was made in three stages as follows according to the number of yarn breaks when a monofilament with a fiber warp of 1.75 mm was collected for 24 hours at a spinning speed of 10 m / min.
○: Thread breakage 0 times △: Thread breakage count 1 to 3 times ×: Thread breakage count 4 times or more, or take-off of filament is impossible
(6)モノフィラメントの直径
 得られたモノフィラメントを、20cm毎に、モノフィラメントの長手方向に対して垂直に切断し、測定サンプルを30個得た。各サンプルにおいて、断面における最大長径と最小短径を、マイクロメーターを用いて測定し、その平均を各サンプルの直径とした。全30サンプルの直径を平均して、モノフィラメントの直径を算出した。
(6) Diameter of monofilament The obtained monofilament was cut perpendicularly to the longitudinal direction of the monofilament every 20 cm to obtain 30 measurement samples. In each sample, the maximum major axis and the minimum minor axis in the cross section were measured using a micrometer, and the average was taken as the diameter of each sample. The diameter of all 30 samples was averaged to calculate the monofilament diameter.
(7)モノフィラメントの直径バラツキ
 上記(6)において算出した、全サンプルの直径の最大値(M1)と最小値(M2)を用いて、モノフィラメントの直径バラツキを算出した。
 直径バラツキ=(M1-M2)/2
(7) Diameter variation of monofilament The diameter variation of the monofilament was calculated using the maximum value (M1) and the minimum value (M2) of the diameters of all the samples calculated in (6) above.
Diameter variation = (M1-M2) / 2
(8)モノフィラメントの耐屈曲性
 JIS P8115に記載のMIT耐折度試験に準じて、マイズ試験機社製、MIT耐折度試験機を用い、荷重5N、クランプ先端R0.38mm、つかみ間隔2.0mm、試験速度175rpm、折り曲げ角度135度で実施し、モノフィラメントの耐折回数を計測した。測定には、標準状態(室温22±2℃、湿度50±2%)で48時間以上放置した試料を用いた。耐折回数により、以下のように4段階で評価した。本発明においては、耐折回数は5回以上であることが好ましく、さらには30回以上であることが好ましく、100回以上であることがより好ましい。
◎:100回以上
○:30~99回
△:5~29回
×:5回未満
(8) Bending resistance of monofilament According to the MIT folding resistance test described in JIS P8115, a load of 5 N, a clamp tip R of 0.38 mm, and a gripping interval are used. The test was carried out at 0 mm, a test speed of 175 rpm, and a bending angle of 135 degrees, and the number of times the monofilament was folded was measured. For the measurement, a sample that was left in a standard state (room temperature 22 ± 2 ° C., humidity 50 ± 2%) for 48 hours or more was used. The evaluation was made in four stages according to the number of folding times as follows. In the present invention, the folding endurance is preferably 5 times or more, more preferably 30 times or more, and more preferably 100 times or more.
◎: 100 times or more ○: 30 to 99 times △: 5 to 29 times ×: Less than 5 times
(9)フィラメントのざらつき
 フィラメント表面が平滑であれば「5」、ざらつきが最も大きいものを「1」とする5段階評価を評価者5人によりおこない、その平均値でフィラメントのざらつきを評価した。
(9) Roughness of the filament The five-step evaluation was performed by five evaluators, where “5” was given if the filament surface was smooth, and “1” was given the largest roughness, and the average roughness was evaluated.
(10)3Dプリンター造形性
 得られたモノフィラメントを用いて、3Dプリンター(FLASHFORGE社製、CREATOR PRO)を用いて、ノズル温度190~240℃、テーブル温度50℃の条件でISOダンベル片を造形し、その結果により以下の3段階で評価した。
○:問題なく造形可能
△:気泡を含有し造形性やや難
×:造形不可
(10) 3D printer modeling property Using the obtained monofilament, an ISO dumbbell piece was molded using a 3D printer (manufactured by FLASHFORGE, CREATOR PRO) under the conditions of a nozzle temperature of 190 to 240 ° C and a table temperature of 50 ° C. Based on the results, evaluation was made in the following three stages.
○: Possible to model without problems △: Contains bubbles and slightly difficult to model ×: Not possible to model
(11)3Dプリンターのノズル汚れ
 上記(10)3Dプリンター造形性の評価に用いた方法で、ISOダンベル片の造形を10回繰り返しおこない、その間のノズルの汚れを観察した。その結果により、以下の3段階で評価した。
○:10回造形後もノズルに汚れが付着していなかった。
△:10回造形後にノズルに少量汚れが付着していた。
×:ノズルに付着した汚れが、造形したISOダンベル片にも付着していた。
(11) Nozzle dirt of 3D printer By the method used for the evaluation of the above (10) 3D printer formability, the ISO dumbbell piece was shaped 10 times, and the nozzle dirt was observed during that time. Based on the results, evaluation was made in the following three stages.
○: Dirt was not adhered to the nozzle even after 10 moldings.
Δ: A small amount of dirt adhered to the nozzle after modeling 10 times.
X: The dirt adhering to the nozzle also adhered to the shaped ISO dumbbell piece.
 また、実施例、比較例に用いた各種原料は次の通りである。
〔ポリ乳酸〕
・ポリ乳酸樹脂(NatureWorks社製『3001D』、D-乳酸含有量1.4モル%、MFR10g/10分)
・ポリ乳酸樹脂(NatureWorks社製『4060D』、D-乳酸含有量10モル%、MFR3.5g/10分)
〔ポリアミド〕
・ポリアミド6/66/12共重合体(宇部興産社製『6434B』、押出成形用、融点188℃)
・ポリアミド6/12共重合体(宇部興産社製『7034B』、押出成形用、融点201℃)
・ポリアミド6/66共重合体(宇部興産社製『5023B』、押出成形用、融点196℃)
・ポリアミド共重合体(ユニチカ社製『CX1004』、融点210℃)
・ポリアミド6(ユニチカ社製『A1030BRL』、融点225℃)
・ポリアミド12(アルケマ社製『AMNO』、融点181℃)
〔相溶化剤〕
・グラフトコポリマー(日油社製『モディパーA-4400』、主鎖:EGMA、側鎖:AS)
〔充填剤〕
・タルク(竹原化学工業社製『ハイミクロンタルクHE5』、平均粒子径1.6μm)
・炭酸カルシウム(竹原化学工業社製『SMP-1510T』、最大粒子径30μm)
・マイカ(レプコ社製『S-200HG』、平均粒子径55μm)
〔汚れ防止剤のマスターバッチペレット〕
 二軸押出機(池貝社製、PCM-30)を用い、ポリ乳酸(3001D)99質量部と、汚れ防止剤(フッ化ビニリデン・ヘキサフルオロプロピレン共重合体、ダイキン工業社製『PPA DA-310ST』)1質量部とをブレンドして押出機に供給した。温度200℃、スクリュー回転数120rpm、吐出量7kg/hの条件で混練、押出した。引き続き、押出機先端から吐出されたストランドを、冷却バスで冷却後、ペレタイザーにて引き取り、カッティングして汚れ防止剤のマスターバッチペレット(M)を得た。
Moreover, the various raw materials used for the Example and the comparative example are as follows.
[Polylactic acid]
・ Polylactic acid resin (“3001D” manufactured by NatureWorks, D-lactic acid content: 1.4 mol%, MFR: 10 g / 10 min)
・ Polylactic acid resin (“4060D” manufactured by NatureWorks, D-lactic acid content 10 mol%, MFR 3.5 g / 10 min)
〔polyamide〕
・ Polyamide 6/66/12 copolymer (“6434B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 188 ° C.)
・ Polyamide 6/12 copolymer (“7034B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 201 ° C.)
・ Polyamide 6/66 copolymer (“5023B” manufactured by Ube Industries, Ltd., for extrusion molding, melting point 196 ° C.)
・ Polyamide copolymer ("CX1004" manufactured by Unitika Ltd., melting point 210 ° C)
Polyamide 6 ("A1030BRL" manufactured by Unitika Ltd., melting point 225 ° C)
・ Polyamide 12 (“AMNO” manufactured by Arkema, melting point 181 ° C.)
[Compatibilizer]
・ Graft copolymer (“MODIPA A-4400” manufactured by NOF Corporation, main chain: EGMA, side chain: AS)
〔filler〕
・ Talc ("Hi-micron talc HE5" manufactured by Takehara Chemical Industry Co., Ltd., average particle size 1.6μm)
・ Calcium carbonate (Takehara Chemical Industries "SMP-1510T", maximum particle size 30μm)
・ Mica (Lepco's “S-200HG”, average particle size 55 μm)
[Master batch pellet of antifouling agent]
Using a twin screw extruder (Ikegai, PCM-30), 99 parts by mass of polylactic acid (3001D) and an antifouling agent (vinylidene fluoride / hexafluoropropylene copolymer, “PPA DA-310ST” manufactured by Daikin Industries, Ltd.) ] 1 part by mass was blended and fed to the extruder. The mixture was kneaded and extruded under the conditions of a temperature of 200 ° C., a screw rotation speed of 120 rpm, and a discharge rate of 7 kg / h. Subsequently, the strand discharged from the tip of the extruder was cooled by a cooling bath, then taken up by a pelletizer and cut to obtain a master batch pellet (M) of an antifouling agent.
実施例1
 二軸押出機(池貝社製、PCM-30、スクリュー径29mm、L/D30、ダイス径3mm、孔数3)を用い、ポリ乳酸(A)90質量部と、ポリアミド共重合体(B)としてポリアミド6/66/12共重合体10質量部とをブレンドして、押出機に供給した。温度215℃、スクリュー回転数120rpm、吐出量7kg/hの条件で混練、押出した。引き続き、押出機先端から吐出されたストランドを、冷却バスで冷却後、ペレタイザーにて引き取り、カッティングして樹脂組成物のペレットを得た。得られた樹脂組成物のペレットを65℃×48hrの条件で乾燥して、水分率を0.01%とした。
 次にこの乾燥させた樹脂組成物ペレットを、スピニングテスター(富士フィルター工業社製、スクリュー径30mm、溶融押出しゾーン1000mm)を用い、紡糸温度205℃の条件で、得られるモノフィラメントの直径が1.75mmになるように吐出量を調整して、モノフィラメント孔径5mmで1孔有する丸断面の紡糸口金から押出した。引き続き、押出されたモノフィラメントを、紡糸口金より20cm下の冷却温水50℃に浸漬し、冷却時間1分で調整しながら引き取り、モノフィラメントを得た(モノフィラメント製造方法A)。
Example 1
Using a twin screw extruder (Ikegai Co., Ltd., PCM-30, screw diameter 29 mm, L / D30, die diameter 3 mm, hole number 3), 90 parts by mass of polylactic acid (A) and polyamide copolymer (B) 10 parts by mass of polyamide 6/66/12 copolymer was blended and fed to an extruder. The mixture was kneaded and extruded under the conditions of a temperature of 215 ° C., a screw rotation speed of 120 rpm, and a discharge rate of 7 kg / h. Subsequently, the strand discharged from the tip of the extruder was cooled by a cooling bath, then taken up by a pelletizer and cut to obtain a pellet of a resin composition. The obtained pellets of the resin composition were dried under the conditions of 65 ° C. × 48 hr to make the moisture content 0.01%.
Next, the dried resin composition pellets were obtained by using a spinning tester (manufactured by Fuji Filter Industry Co., Ltd., screw diameter: 30 mm, melt extrusion zone: 1000 mm), and the resulting monofilament diameter was 1.75 mm at a spinning temperature of 205 ° C. The amount of discharge was adjusted so that the diameter of the monofilament was 5 mm, and it was extruded from a spinneret having a round cross section having one hole with a monofilament hole diameter of 5 mm. Subsequently, the extruded monofilament was immersed in 50 ° C. cooling water 20 cm below the spinneret and taken out while adjusting with a cooling time of 1 minute to obtain a monofilament (monofilament production method A).
実施例2、18、20~27、比較例1~7
 ポリ乳酸、ポリアミド共重合体、充填剤および相溶化剤の質量部を表1、2に示すものに変更してブレンドした以外は、実施例1と同様にして、樹脂組成物のペレットを得た。そして、得られた樹脂組成物のペレットを用いて、実施例1と同様にして、製造方法Aにより、モノフィラメントを得た。
Examples 2, 18, 20 to 27, Comparative Examples 1 to 7
Resin composition pellets were obtained in the same manner as in Example 1 except that the parts by weight of polylactic acid, polyamide copolymer, filler and compatibilizer were changed to those shown in Tables 1 and 2 and blended. . And the monofilament was obtained with the manufacturing method A like Example 1 using the pellet of the obtained resin composition.
実施例3~4
 混練温度を210℃に変更した以外は、実施例2と同様の方法で、水分率0.01%の樹脂組成物ペレットを得た。
 実施例3においては、この乾燥させた樹脂組成物ペレットを、モノフィラメント製造装置(単軸押出機(日本製鋼所社製、スクリュー径60mm、溶融押出しゾーン1200mm))を用い、紡糸温度220℃の条件で、得られるモノフィラメントの直径が1.74mmになるように吐出量を調整して、孔径5mmで1孔有する丸断面の紡糸口金から押出した。引き続き、押し出されたモノフィラメントを紡糸口金より20cm下の冷却温水50℃に浸漬し、引き取り速度30m/分で調整しながら引き取り、モノフィラメントを得た。冷却時間は約1分であった(モノフィラメント製造方法B(延伸倍率1))。
 実施例4においては、紡糸・延伸を連続的におこなった。すなわち、実施例3と同様の条件で、得られるモノフィラメントの直径が1.75mmになるように吐出量を調整して、紡糸口金から樹脂組成物を押出した後、引き取った。冷却時間は約1分であった。さらに引き続き70℃の温浴下で3倍に延伸して、さらに引き続き、温度180℃で熱処理し、モノフィラメントを得た(モノフィラメント製造方法B(延伸倍率3))。
Examples 3 to 4
Resin composition pellets having a moisture content of 0.01% were obtained in the same manner as in Example 2 except that the kneading temperature was changed to 210 ° C.
In Example 3, the dried resin composition pellets were subjected to a monofilament production apparatus (single screw extruder (manufactured by Nippon Steel Works, screw diameter 60 mm, melt extrusion zone 1200 mm)) at a spinning temperature of 220 ° C. Then, the discharge amount was adjusted so that the diameter of the obtained monofilament was 1.74 mm, and the monofilament was extruded from a spinneret having a round cross section having a hole diameter of 5 mm. Subsequently, the extruded monofilament was immersed in 50 ° C. cooling water 20 cm below the spinneret and taken out while adjusting at a take-up speed of 30 m / min to obtain a monofilament. The cooling time was about 1 minute (monofilament production method B (stretch ratio 1)).
In Example 4, spinning and stretching were performed continuously. That is, under the same conditions as in Example 3, the discharge amount was adjusted so that the diameter of the obtained monofilament was 1.75 mm, and the resin composition was extruded from the spinneret, and then taken out. The cooling time was about 1 minute. Further, the film was stretched 3 times in a warm bath at 70 ° C. and then further heat treated at a temperature of 180 ° C. to obtain a monofilament (monofilament production method B (stretching ratio: 3)).
実施例5~17、19、28~29
 ポリ乳酸、ポリアミド共重合体、充填剤および汚れ防止剤のマスターバッチの質量部を表1、2に示すものに変更してブレンドした以外は、実施例3と同様にして、樹脂組成物のペレットを得た。そして、得られた樹脂組成物のペレットを用いて、実施例3、4と同様にして、製造方法Bにより、モノフィラメントを得た。
Examples 5-17, 19, 28-29
Resin composition pellets in the same manner as in Example 3 except that the parts of the master batches of polylactic acid, polyamide copolymer, filler and antifouling agent were changed to those shown in Tables 1 and 2 and blended. Got. And the monofilament was obtained with the manufacturing method B like Example 3, 4 using the pellet of the obtained resin composition.
 実施例、比較例で得られた樹脂組成物およびモノフィラメントの評価結果を表1、2に示す。 Tables 1 and 2 show the evaluation results of the resin compositions and monofilaments obtained in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で得られた樹脂組成物は、研磨性、柔軟性、製糸性に優れ、得られたモノフィラメントは、3Dプリンターにおける造形性に優れていた。このため、これらの樹脂組成物は、熱溶解積層法3Dプリンターの造形材料として、好適に使用することができるものであった。
 実施例3の樹脂組成物のペレットを用いて、3倍延伸した実施例4のモノフィラメントは、実施例3で得られた未延伸のモノフィラメントに比べて、耐屈曲性が向上し、また表面のざらつきも改善された。
 実施例5~17、19、23~24、28~29の、充填剤を含有する樹脂組成物は、製糸性に悪影響が及ぼされておらず、柔軟性も保持していた。また、得られたモノフィラメントは、3Dプリンターにおける造形性にも優れていた。また、充填剤を含有する樹脂組成物は、研磨性がさらに向上され、柔軟性も保持されていた。このため、充填剤を含有する樹脂組成物から得られるモノフィラメントは、熱溶解積層法3Dプリンターの造形材料として、さらに好適に使用することができるものであった。また、実施例7、12、15、17、29の3倍延伸したモノフィラメントは、未延伸のモノフィラメントに比べて耐屈曲性が向上し、また表面のざらつきも改善されていた。また、実施例16、17のモノフィラメントは、汚れ防止剤を含有するため、3Dプリンターによる造形時において、ノズルに汚れが付着することがなかった。
The resin compositions obtained in the examples were excellent in abrasiveness, flexibility, and yarn production, and the obtained monofilaments were excellent in the formability in a 3D printer. For this reason, these resin compositions can be used suitably as a modeling material of a hot melt lamination method 3D printer.
The monofilament of Example 4 stretched 3 times using the pellets of the resin composition of Example 3 has improved bending resistance and surface roughness compared to the unstretched monofilament obtained in Example 3. Was also improved.
The resin compositions containing the fillers of Examples 5 to 17, 19, 23 to 24, and 28 to 29 had no adverse effect on the yarn forming property and maintained flexibility. Moreover, the obtained monofilament was excellent also in the moldability in 3D printer. Moreover, the resin composition containing a filler was further improved in abrasiveness and retained flexibility. For this reason, the monofilament obtained from the resin composition containing a filler can be used more suitably as a modeling material for the hot melt lamination method 3D printer. In addition, the monofilaments stretched three times in Examples 7, 12, 15, 17, and 29 had improved bending resistance and improved surface roughness compared to unstretched monofilaments. In addition, since the monofilaments of Examples 16 and 17 contained a stain preventive agent, the stain did not adhere to the nozzle during modeling by the 3D printer.
 一方、比較例1の樹脂組成物は、ポリ乳酸のみであったため、弾性率が高く柔軟性に劣り、また研磨性も劣った。
 比較例2の樹脂組成物は、ポリアミド共重合体の含有量が過少であったため、柔軟性および研磨性が劣った。
 比較例3の樹脂組成物は、ポリアミド共重合体の含有量が過多であったため、製糸性および研磨性が劣った。
 比較例4の樹脂組成物は、ポリアミド共重合体のみであったため、研磨性が劣った。
 比較例5の樹脂組成物は、ポリアミドが共重合成分を含有せず、ポリアミド6であったため、研磨性に劣り、製糸性に劣っていた。また、得られたモノフィラメントは、直径にバラツキが生じ、熱溶解積層法3Dプリンターの液化機にフィラメントを供給するローラに食い込まず、造形することができなかった。
 比較例6の樹脂組成物は、ポリアミドが共重合成分を含有せず、ポリアミド12であったため、製糸性に劣り、モノフィラメントを得ることができなかった。
 比較例7の樹脂組成物は、ポリアミド共重合体を含有せず、ポリ乳酸に単に充填剤を添加したため、製糸性がやや劣り、柔軟性が大幅に低下し、脆い性状を有するものであり、研磨性についても大幅な向上が認められなかった。
 
 
 
On the other hand, since the resin composition of Comparative Example 1 was only polylactic acid, the elastic modulus was high and the flexibility was poor, and the polishing property was also poor.
The resin composition of Comparative Example 2 was inferior in flexibility and polishability because the polyamide copolymer content was too small.
The resin composition of Comparative Example 3 was inferior in yarn-making property and polishing property because the polyamide copolymer content was excessive.
Since the resin composition of Comparative Example 4 was only a polyamide copolymer, the polishability was poor.
In the resin composition of Comparative Example 5, since the polyamide did not contain a copolymer component and was polyamide 6, it was poor in abrasiveness and inferior in yarn production. In addition, the obtained monofilaments had variations in diameter, and could not be shaped without biting into the roller that supplies the filament to the liquefier of the hot melt lamination method 3D printer.
In the resin composition of Comparative Example 6, since the polyamide did not contain a copolymerization component and was polyamide 12, the yarn forming property was inferior and a monofilament could not be obtained.
The resin composition of Comparative Example 7 does not contain a polyamide copolymer, and since a filler is simply added to polylactic acid, the yarn-making property is slightly inferior, the flexibility is greatly reduced, and the brittleness is obtained. There was no significant improvement in abrasiveness.


Claims (4)

  1.  熱溶解積層法3Dプリンターの造形材料用樹脂組成物であって、ポリ乳酸(A)とポリアミド共重合体(B)とを含有し、ポリ乳酸(A)とポリアミド共重合体(B)との質量比(A/B)が90/10~25/75であることを特徴とする樹脂組成物。 A resin composition for modeling material of a hot melt lamination method 3D printer, comprising polylactic acid (A) and a polyamide copolymer (B), and comprising polylactic acid (A) and a polyamide copolymer (B) A resin composition having a mass ratio (A / B) of 90/10 to 25/75.
  2.  曲げ弾性率が1.5~3.2GPaであり、摩耗試験時の摩耗質量が、ポリ乳酸(A)の摩耗質量に対して、1.2~2.0倍であることを特徴とする請求項1記載の樹脂組成物。 The bending elastic modulus is 1.5 to 3.2 GPa, and the wear mass during the wear test is 1.2 to 2.0 times the wear mass of polylactic acid (A). Item 2. The resin composition according to Item 1.
  3.  さらに、充填剤(C)を含有することを特徴とする請求項1または2記載の樹脂組成物。 The resin composition according to claim 1, further comprising a filler (C).
  4.  熱溶解積層法3Dプリンターの造形材料用成形体であって、請求項1~3のいずれかに記載の樹脂組成物で構成され、直径が0.2~5.0mmであることを特徴とするフィラメント状成形体。
     
     
     
    A molding for molding material of a hot melt lamination method 3D printer, characterized in that it is composed of the resin composition according to any one of claims 1 to 3 and has a diameter of 0.2 to 5.0 mm. Filament shaped body.


PCT/JP2017/045711 2016-12-26 2017-12-20 Resin composition and filament-like molded article WO2018123763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018517240A JP6359230B1 (en) 2016-12-26 2017-12-20 Resin composition and filament-shaped molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-250317 2016-12-26
JP2016250317 2016-12-26
JP2017182457 2017-09-22
JP2017-182457 2017-09-22

Publications (1)

Publication Number Publication Date
WO2018123763A1 true WO2018123763A1 (en) 2018-07-05

Family

ID=62707621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045711 WO2018123763A1 (en) 2016-12-26 2017-12-20 Resin composition and filament-like molded article

Country Status (3)

Country Link
JP (1) JP6359230B1 (en)
TW (1) TW201831596A (en)
WO (1) WO2018123763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001257A (en) * 2018-06-27 2020-01-09 ユニチカ株式会社 Resin composition and filamentous molded article
WO2020181236A1 (en) * 2019-03-06 2020-09-10 Poly-Med, Inc. Polymer suitable for additive manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295093B2 (en) 2017-09-01 2023-06-20 ポリ-メド インコーポレイテッド Polymers for Additive Manufacturing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217445A (en) * 2006-02-14 2007-08-30 Toray Ind Inc Antistatic polylactic acid resin composition and molded article consisting of the same
JP2010100047A (en) * 2008-09-24 2010-05-06 Fujifilm Corp Resin composition for laser carving, relief printing original plate for laser carving, manufacturing method for relief printing plate, and relief printing plate
JP2014524858A (en) * 2011-07-26 2014-09-25 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer powder for manufacturing three-dimensional objects
WO2015037574A1 (en) * 2013-09-11 2015-03-19 東レ株式会社 Material for fused-deposition-type three-dimensional modeling, and filament for fused-deposition-type 3d printing device
JP2015150781A (en) * 2014-02-14 2015-08-24 帝人株式会社 Method for producing three-dimensionally shaped object, and three-dimensionally shaped object obtained thereby
JP2016020401A (en) * 2014-07-11 2016-02-04 ユニチカ株式会社 Molding material
US20160069001A1 (en) * 2014-09-05 2016-03-10 Bnk Co., Ltd. Method of preparing antimicrobial 3d-printing filament
JP2016094679A (en) * 2014-11-13 2016-05-26 ユニチカ株式会社 Polylactic acid monofilament
WO2018003379A1 (en) * 2016-07-01 2018-01-04 宇部興産株式会社 Heat-melting lamination-type material for 3d printer and heat-melting lamination-type filament for 3d printer using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549652B2 (en) * 2011-08-18 2014-07-16 藤倉化成株式会社 Chromium thin film coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217445A (en) * 2006-02-14 2007-08-30 Toray Ind Inc Antistatic polylactic acid resin composition and molded article consisting of the same
JP2010100047A (en) * 2008-09-24 2010-05-06 Fujifilm Corp Resin composition for laser carving, relief printing original plate for laser carving, manufacturing method for relief printing plate, and relief printing plate
JP2014524858A (en) * 2011-07-26 2014-09-25 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer powder for manufacturing three-dimensional objects
WO2015037574A1 (en) * 2013-09-11 2015-03-19 東レ株式会社 Material for fused-deposition-type three-dimensional modeling, and filament for fused-deposition-type 3d printing device
JP2015150781A (en) * 2014-02-14 2015-08-24 帝人株式会社 Method for producing three-dimensionally shaped object, and three-dimensionally shaped object obtained thereby
JP2016020401A (en) * 2014-07-11 2016-02-04 ユニチカ株式会社 Molding material
US20160069001A1 (en) * 2014-09-05 2016-03-10 Bnk Co., Ltd. Method of preparing antimicrobial 3d-printing filament
JP2016094679A (en) * 2014-11-13 2016-05-26 ユニチカ株式会社 Polylactic acid monofilament
WO2018003379A1 (en) * 2016-07-01 2018-01-04 宇部興産株式会社 Heat-melting lamination-type material for 3d printer and heat-melting lamination-type filament for 3d printer using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001257A (en) * 2018-06-27 2020-01-09 ユニチカ株式会社 Resin composition and filamentous molded article
JP7064763B2 (en) 2018-06-27 2022-05-11 ユニチカ株式会社 Resin composition and filament molding
WO2020181236A1 (en) * 2019-03-06 2020-09-10 Poly-Med, Inc. Polymer suitable for additive manufacturing
EP3935099A4 (en) * 2019-03-06 2022-12-14 Poly-Med Inc. Polymer suitable for additive manufacturing

Also Published As

Publication number Publication date
JPWO2018123763A1 (en) 2018-12-27
TW201831596A (en) 2018-09-01
JP6359230B1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6782069B2 (en) Polyamide molding material, molded article manufactured from it, and intended use
JP6359230B1 (en) Resin composition and filament-shaped molded body
JP2017132076A (en) Glossiness filament for melting laminate type 3d printer
JP7064763B2 (en) Resin composition and filament molding
JP7288664B2 (en) Filament for Fused Lamination Method 3D Modeling and Shaped Objects Made by Modeling the Filament
WO2019189328A1 (en) Resin composition and filament-like molded body formed from same
CN111171541A (en) Modified PC/ABS composition for 3D printing and preparation method thereof
JP7130256B2 (en) RESIN COMPOSITION FOR MODELING MATERIAL FOR FOTUS LAYER METHOD 3D PRINTER AND FILAMENT-FORMED PRODUCT THEREOF
JP2016204550A (en) Resin composition and filament molded body
JP7435996B2 (en) Resin composition for three-dimensional modeling using hot-melt lamination method, and filament-like molded bodies and shaped bodies made from the same
JP7328679B2 (en) RESIN COMPOSITION AND FILAMENTAL MOLDED PRODUCT CONSISTING THE SAME
JP5565971B2 (en) Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same
JP7325189B2 (en) Monofilament for 3D printer, usage thereof, and modeling method
JP2016094679A (en) Polylactic acid monofilament
JP2010174158A (en) Polyamide resin composition, polyamide resin film, and method for manufacturing polyamide resin film
JP2021080369A (en) Resin composition for molding material of fused deposition modeling 3d printer and pellet and filament thereof
JP2024043228A (en) Cellulose acetate composition, modeling material for 3D printer, 3D printed article, and manufacturing method thereof
JP2024043230A (en) Cellulose acetate composition, molding material for 3D printers, 3D printed product, and method for producing same
JP2010174064A (en) Glass fiber-reinforced resin composition
JP2019135285A (en) Polylactic acid resin composition
JP2024016486A (en) Filament and its manufacturing method
WO2005065908A1 (en) Method for producing polyolefin-polyamide resin composition
JP2024043227A (en) Cellulose acetate composition, molding material for 3D printers, 3D printed product, and method for producing same
JP4662619B2 (en) Fishing line containing metal
JP4564420B2 (en) Continuous molding method for thin molded products

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517240

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888592

Country of ref document: EP

Kind code of ref document: A1