WO2018123753A1 - 液圧鉗子システム - Google Patents
液圧鉗子システム Download PDFInfo
- Publication number
- WO2018123753A1 WO2018123753A1 PCT/JP2017/045657 JP2017045657W WO2018123753A1 WO 2018123753 A1 WO2018123753 A1 WO 2018123753A1 JP 2017045657 W JP2017045657 W JP 2017045657W WO 2018123753 A1 WO2018123753 A1 WO 2018123753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- pressure
- hydraulic fluid
- estimated
- motor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/02—Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
- F15B15/04—Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member with oscillating cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B7/00—Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
- F15B7/06—Details
- F15B7/08—Input units; Master units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/02—Gripping heads and other end effectors servo-actuated
- B25J15/0206—Gripping heads and other end effectors servo-actuated comprising articulated grippers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/14—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
- B25J9/144—Linear actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/28—Means for indicating the position, e.g. end of stroke
- F15B15/2815—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
- F15B15/2838—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT with out using position sensors, e.g. by volume flow measurement or pump speed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00535—Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
- A61B2017/00539—Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20515—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/633—Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6651—Control of the prime mover, e.g. control of the output torque or rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7052—Single-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/765—Control of position or angle of the output member
- F15B2211/7653—Control of position or angle of the output member at distinct positions, e.g. at the end position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2215/00—Fluid-actuated devices for displacing a member from one position to another
- F15B2215/30—Constructional details thereof
Definitions
- the present invention relates to a hydraulic forceps system including a robot forceps that opens and closes a gripper using hydraulic pressure.
- FIG. 9 of Patent Document 1 describes a pneumatic actuator used for such robot forceps.
- FIG. 4 shows the pneumatic actuator 100.
- a piston 130 is accommodated in a cylinder 140, and the piston 130 is connected to the gripper 110 by a rod 120.
- the cylinder 140 is provided with a displacement sensor 150 that detects the amount of movement of the piston 130.
- the displacement sensor 150 is used for calculating the external force F.
- the displacement sensor 150 can also be used as a position sensor for detecting the position of the piston 130 in order to control the opening and closing of the gripper 110.
- the tip of the robot forceps is very thin, it is difficult to provide such a position sensor (displacement sensor 150) at the tip of the robot forceps.
- an object of the present invention is to make it possible to control the opening and closing of the gripper without providing a position sensor at the tip of the robot forceps.
- the present invention provides a gripper, a first piston connected to the gripper, and a first pressure chamber that accommodates the first piston and is filled with hydraulic fluid together with the first piston.
- 1 cylinder, 2nd piston, 2nd cylinder which accommodates said 2nd piston and forms the 2nd pressure chamber filled with said hydraulic fluid with said 2nd piston, said 1st pressure chamber and said 2nd pressure chamber
- a robot forceps including a communication path that communicates and a motor that drives the second piston via a linear motion mechanism, a position sensor that is used to detect the position of the second piston, and a command position for the first piston.
- a control device for controlling the motor based on the first piston based on the position of the second piston detected using the position sensor.
- a hydraulic forceps system comprising: an observer for deriving an estimated position of the engine; and a position control unit for deriving a target rotational speed of the motor based on a deviation between the estimated position of the first piston and the command position.
- the movement amount of the first piston connected to the gripper in other words, the first piston on the distal end side of the robot forceps is substantially influenced by the external force. Without being proportional to the amount of movement of the second piston.
- the second piston is driven by a motor via a linear motion mechanism. Therefore, if the control device controls the motor based on the command position for the first piston, the opening and closing of the gripper can be controlled. Further, the control device includes an observer for deriving an estimated position of the first piston based on the position of the second piston, and the estimated position of the first piston is compared with the command position. There is no need to provide a position sensor for detection. That is, the opening / closing of the gripper can be controlled without providing a position sensor at the tip of the robot forceps.
- the position sensor may be a rotary encoder that detects a rotational displacement amount of the motor and converts the rotational displacement amount into a position of the second piston.
- the hydraulic forceps system further includes a pressure sensor that detects a pressure of the hydraulic fluid, and the observer detects the pressure of the hydraulic fluid detected by the pressure sensor and the position sensor.
- the estimated position of the first piston may be derived based on the position of the two pistons. According to this configuration, the estimation accuracy of the position of the first piston can be improved as compared with the case where the estimated position of the first piston is derived based only on the position of the second piston.
- the observer derives an estimated position of the second piston and an estimated pressure of the hydraulic fluid, and a deviation between the pressure of the hydraulic fluid detected by the pressure sensor and the estimated pressure of the hydraulic fluid and the position sensor
- An estimation error is calculated based on a deviation between the position of the second piston and the estimated position of the second piston detected by using the feedback, and the calculated estimation error is fed back to the derivation of the estimated position of the first piston. Also good.
- the opening and closing of the gripper can be controlled without providing a position sensor at the tip of the robot forceps.
- FIG. 1 is a schematic configuration diagram of a hydraulic forceps system according to an embodiment of the present invention. It is a block diagram of an observer. A matrix representing a state variable. It is a schematic block diagram of the conventional pneumatic actuator used for robot forceps.
- FIG. 1 shows a hydraulic forceps system 1 according to an embodiment of the present invention.
- the hydraulic forceps system 1 includes a robot forceps 2 and a control device 7.
- the control device 7 may be mounted on the master side device or may be mounted on the slave side device.
- the control device 7 may be incorporated in a drive unit 21 described later of the robot forceps 2.
- the robot forceps 2 opens and closes the gripper 24 using the hydraulic pressure of the hydraulic fluid 20.
- the hydraulic fluid 20 is not particularly limited, and is, for example, physiological saline or oil.
- the robot forceps 2 includes a drive unit 21, an insertion shaft 22 that extends from the drive unit 21 and is inserted into a patient's body, and a gripper 24 that includes a pair of claws 25 provided at the distal end of the insertion shaft 22.
- the drive unit 21 may incorporate a mechanism for sliding the insertion shaft 22 in its axial direction and a mechanism for rotating the insertion shaft 22 about its central axis.
- the distal end portion of the insertion shaft 22 may be configured to be swingable, and a mechanism for swinging the distal end portion may be incorporated in the drive unit 21.
- the insertion shaft 22 is a highly rigid tube that extends linearly.
- the insertion shaft 22 may be a flexible tube.
- the first cylinder 31 is disposed in the distal end portion of the insertion shaft 22.
- the central axis of the first cylinder 31 coincides with the central axis of the insertion shaft 22.
- the first cylinder 31 has a tubular portion, a front wall that closes the inside of the tubular portion from the gripper 24 side, and a rear wall that closes the inside of the tubular portion from the opposite side of the gripper 24.
- the first piston 32 is accommodated in the first cylinder 31.
- a first pressure chamber 3A is formed between the first piston 32 and the rear wall of the first cylinder 31, and a back pressure chamber 3B is formed between the first piston 32 and the front wall of the first cylinder 31. ing.
- the inside of the first pressure chamber 3A is filled with the hydraulic fluid 20, and the inside of the back pressure chamber 3B is open to the atmosphere.
- a spring 34 that biases the first piston 32 is disposed in the back pressure chamber 3B.
- the first piston 32 is connected to the gripper 24 via the link mechanism 23 by a rod 33 that penetrates the front wall of the first cylinder 31.
- the link mechanism 23 converts the linear motion of the rod 33 into the opening / closing motion of the gripper 24.
- the 2nd cylinder 41 connected with the 1st cylinder 31 by the communicating path 26 is arrange
- the axial direction of the second cylinder 41 is parallel to the axial direction of the insertion shaft 22.
- the axial direction of the second cylinder 41 is not particularly limited.
- the second cylinder 41 has a tubular portion, a front wall that closes the inside of the tubular portion from the insertion shaft 22 side, and a rear wall that closes the inside of the tubular portion from the side opposite to the insertion shaft 22.
- the second piston 42 is accommodated in the second cylinder 41.
- a second pressure chamber 4A is formed between the second piston 42 and the front wall of the second cylinder 41, and a back pressure chamber 4B is formed between the second piston 42 and the rear wall of the second cylinder 41. ing.
- the inside of the second pressure chamber 4A is filled with the hydraulic fluid 20, and the inside of the back pressure chamber 4B is open to the atmosphere.
- the communication path 26 described above extends in the insertion shaft 22 and communicates the first pressure chamber 3A and the second pressure chamber 4A.
- the communication path 26 is also filled with the hydraulic fluid 20.
- the communication path 26 is configured by a metal tube or a resin flexible tube.
- the second piston 42 is connected to the linear motion mechanism 51 by a rod 43 that penetrates the rear wall of the second cylinder 41.
- the linear motion mechanism 51 is also connected to the output shaft 53 of the motor 52.
- the linear motion mechanism 51 converts the rotational motion of the output shaft 53 of the motor 52 into the linear motion of the rod 43. That is, the motor 52 drives the second piston 42 via the linear motion mechanism 51 and the rod 43.
- the motor 52 is, for example, a servo motor.
- the command position tx 1 for the first piston 32 is input to the control device 7 from the master side device described above.
- an opening degree command to the gripper 24 is input to the control device 7, and the control device 7 may include a command position calculation unit that calculates a command position tx 1 for the first piston 32 from the opening degree command.
- the control device 7 controls the motor 52 based on the command position tx 1 for the first piston 32.
- the control device 7 includes, for example, a memory such as a ROM or a RAM and a CPU, and a program stored in the ROM is executed by the CPU.
- the control device 7 includes a position control unit 71, a speed control unit 72, an inverter unit 73, a differentiation unit 75 and an observer 8.
- the control device 7 may be a single device or may be divided into a plurality of devices.
- control device 7 is electrically connected to the pressure sensor 61 and the position sensor 62.
- the pressure sensor 61 is for detecting the pressure P of the hydraulic fluid 20
- the position sensor 62 is used for a detection of the position x 2 of the second piston 42.
- the position sensor 62 is a rotary encoder provided in the motor 52, detects the rotational displacement amount of the motor 52, and converts the rotational displacement amount into the position x 2 of the second piston 42.
- the position sensor 62 may be a linear encoder provided on the linear motion mechanism 51, the position x 2 of the second piston 42 provided in the second cylinder 41 may be directly detected.
- the observer 8 derives the estimated position ex 1 of the first piston 32 based on the pressure P of the hydraulic fluid 20 detected by the pressure sensor 61 and the position x 2 of the second piston 42 detected using the position sensor 62. To do. The function of the observer 8 will be described in detail later.
- Differentiator 75 differentiates the position x 2 of the second piston 42 which is detected using the position sensor 62 and calculates the current rotational speed V of the motor 52.
- the relationship between the deviation ⁇ V and the target current Ct is set in advance.
- a current sensor 74 is provided on the power line between the inverter unit 73 and the motor 52.
- the inverter unit 73 supplies current to the motor 52 so that the deviation between the current Cn detected by the current sensor 74 and the target current Ct is small.
- the observer 8 models the movement amount of the second piston 42 and the first piston 32 when the force F is applied to the second piston 42, and can be expressed by the following state equation 1 and output equation 2. .
- the dot symbol to be written on the variable is shown on the upper right of the variable.
- X ⁇ AX + BF (1)
- Y CX (2)
- x 1 position x 2 of the first piston: position P of the second piston: pressure of the working fluid
- F force applied to the second piston
- B Matrix indicating the coefficients in the state equation 1
- C Matrix matrices A and B indicating the coefficients in the output equation 2 are obtained from the state equation for the first piston 32, the state equation for the second piston 42, and the like.
- the observer 8 first obtains the estimated state variable eX ⁇ using the matrices A and B, and then integrates this to calculate the estimated state variable X ⁇ . That is, the observer 8 derives not only the estimated position ex 1 of the first piston 32 but also the estimated position ex 2 of the second piston 42 and the estimated pressure eP of the hydraulic fluid 20. The derived estimated position ex 1 of the first piston 32 is compared with the command position tx 1 for the first piston 32 as described above.
- the incompressible hydraulic fluid 20 is used, so that the first piston 32 connected to the gripper 24, in other words, on the distal end side of the robot forceps 2.
- the movement amount of a certain first piston 32 is proportional to the movement amount of the second piston 42 without being substantially affected by an external force.
- the second piston 42 is driven by the motor 52 via the linear motion mechanism 51. Therefore, if the control device 7 controls the motor 52 based on the command position tx 1 for the first piston 32, the opening and closing of the gripper 24 can be controlled.
- the controller 7 includes an observer 8 to derive an estimated position ex 1 the first piston 32 on the basis of the position x 2 of the second piston 42, the estimated position ex 1 a command position tx 1 of the first piston 32 Therefore, there is no need to provide a position sensor for detecting the position of the first piston 32. That is, the opening / closing of the gripper 24 can be controlled without providing a position sensor at the tip of the robot forceps 2.
- the pressure sensor 61 is not provided, and the observer 8 may derive the estimated position ex 1 of the first piston 32 based only on the position x 2 of the second piston 42 detected using the position sensor 62.
- the estimated position of the first piston 32 on the basis of the pressure P of the hydraulic fluid 20 which is detected by the position x 2 and the pressure sensor 61 of the second piston 42 which is detected using the position sensor 62 If ex 1 is derived, the estimation accuracy of the position of the first piston 32 can be improved as compared with the case where the estimated position ex 1 of the first piston 32 is derived only based on the position x 2 of the second piston 42. .
- the first piston 32 moves backward by the biasing force of the spring 34.
- another hydraulic fluid supply / discharge mechanism including the second cylinder 41, the second piston 42, the linear motion mechanism 51, and the motor 52 is provided, and the second pressure chamber 4A of the other hydraulic fluid supply / discharge mechanism is the first.
- the first piston 32 may be retracted by the hydraulic pressure of hydraulic fluid supplied to the back pressure chamber 3B, connected to the back pressure chamber 3B between the front wall of the one cylinder 31 and the first piston 32.
- one end of the wire may be fixed to the first piston 32, and the first piston 32 may be retracted by pulling the wire.
- a means for allowing correction to the observer 8 according to the state of the first piston 32 and / or the second piston 42, the load condition, the individual difference of the robot forceps 2, the surrounding environment, and the like is separately provided. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Ophthalmology & Optometry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
- Actuator (AREA)
Abstract
液圧鉗子システムは、グリッパー、グリッパーと連結された第1ピストン、第1ピストンと共に作動液で満たされる第1圧力室を形成する第1シリンダ、第2ピストン第2ピストンと共に作動液で満たされる第2圧力室を形成する第2シリンダ、第1圧力室と第2圧力室とを連通する連通路、および直動機構を介して第2ピストンを駆動するモータ、を含むロボット鉗子と、第1ピストンに対する指令位置に基づいてモータを制御する制御装置と、第2ピストンの位置の検出に用いられる位置センサと、を備え、制御装置は、位置センサを用いて検出される第2ピストンの位置に基づいて、第1ピストンの推定位置を導出するオブザーバと、第1ピストンの推定位置と指令位置との偏差に基づいて、モータの目標回転速度を導出する位置制御部と、を含む。
Description
本発明は、液圧を利用してグリッパーの開閉を行うロボット鉗子を含む液圧鉗子システムに関する。
従来から、手術支援ロボットでは、ワイヤの引っ張りおよび引き戻しによってグリッパーの開閉を行うワイヤ駆動式のロボット鉗子が用いられている。近年では、ワイヤ駆動式のロボット鉗子に代えて、空気圧を利用してグリッパーの開閉を行うロボット鉗子も提案されてきている。例えば、特許文献1の図9には、そのようなロボット鉗子に用いられる空気圧アクチュエータが記載されている。図4に、その空気圧アクチュエータ100を示す。
具体的に、空気圧アクチュエータ100では、シリンダ140内にピストン130が収容され、そのピストン130がロッド120によりグリッパー110と連結されている。シリンダ140には、ピストン130の移動量を検出する変位センサ150が設けられている。変位センサ150は、外力Fの算出に用いられる。
ところで、図4に示す空気圧アクチュエータ100において、変位センサ150を、グリッパー110の開閉を制御するためにピストン130の位置を検出する位置センサとして使用することも可能である。しかしながら、ロボット鉗子の先端部は非常に細いため、そのような位置センサ(変位センサ150)をロボット鉗子の先端部に設けることは困難である。
そこで、本発明は、ロボット鉗子の先端部に位置センサを設けることなく、グリッパーの開閉を制御できるようにすることを目的とする。
前記課題を解決するために、本発明は、グリッパー、前記グリッパーと連結された第1ピストン、前記第1ピストンを収容して前記第1ピストンと共に作動液で満たされる第1圧力室を形成する第1シリンダ、第2ピストン、前記第2ピストンを収容して前記第2ピストンと共に前記作動液で満たされる第2圧力室を形成する第2シリンダ、前記第1圧力室と前記第2圧力室とを連通する連通路、および直動機構を介して前記第2ピストンを駆動するモータ、を含むロボット鉗子と、前記第2ピストンの位置の検出に用いられる位置センサと、前記第1ピストンに対する指令位置に基づいて前記モータを制御する制御装置と、を備え、前記制御装置は、前記位置センサを用いて検出される前記第2ピストンの位置に基づいて、前記第1ピストンの推定位置を導出するオブザーバと、前記第1ピストンの推定位置と前記指令位置との偏差に基づいて、前記モータの目標回転速度を導出する位置制御部と、を含む、液圧鉗子システムを提供する。
上記の構成によれば、非圧縮性の作動液が用いられるので、グリッパーと連結された第1ピストン、換言すればロボット鉗子の先端側にある第1ピストンの移動量は、外力にほぼ影響されることなく第2ピストンの移動量と比例する。しかも、第2ピストンは、直動機構を介してモータにより駆動される。よって、制御装置が第1ピストンに対する指令位置に基づいてモータを制御すれば、グリッパーの開閉を制御することができる。さらに、制御装置は、第2ピストンの位置に基づいて第1ピストンの推定位置を導出するオブザーバを含み、この第1ピストンの推定位置と指令位置とが比較されるので、第1ピストンの位置を検出する位置センサを設ける必要がない。すなわち、ロボット鉗子の先端部に位置センサを設けることなく、グリッパーの開閉を制御することができる。
例えば、前記位置センサは、前記モータの回転変位量を検出し、その回転変位量を前記第2ピストンの位置に変換するロータリエンコーダであってもよい。
上記の液圧鉗子システムは、前記作動液の圧力を検出する圧力センサをさらに備え、前記オブザーバは、前記圧力センサで検出される前記作動液の圧力および前記位置センサを用いて検出される前記第2ピストンの位置に基づいて、前記第1ピストンの推定位置を導出してもよい。この構成によれば、第2ピストンの位置のみに基づいて第1ピストンの推定位置を導出する場合よりも、第1ピストンの位置の推定精度を向上させることができる。
例えば、前記オブザーバは、前記第2ピストンの推定位置および前記作動液の推定圧力を導出し、前記圧力センサで検出される前記作動液の圧力と前記作動液の推定圧力との偏差および前記位置センサを用いて検出される前記第2ピストンの位置と前記第2ピストンの推定位置との偏差に基づいて推定誤差を算出し、算出した推定誤差を前記第1ピストンの推定位置の導出にフィードバックしてもよい。
本発明によれば、ロボット鉗子の先端に位置センサを設けることなく、グリッパーの開閉を制御することができる。
図1に、本発明の一実施形態に係る液圧鉗子システム1を示す。この液圧鉗子システム1は、ロボット鉗子2と制御装置7を含む。
例えば、液圧鉗子システム1が手術支援ロボットに用いられる場合、スレーブ側装置に取り付けられるロボット鉗子2をマスタ側装置で医師が遠隔操作する。この場合、制御装置7は、マスタ側装置に搭載されてもよいし、スレーブ側装置に搭載されてもよい。あるいは、制御装置7は、ロボット鉗子2の後述する駆動ユニット21に組み込まれてもよい。
ロボット鉗子2は、作動液20の液圧を利用してグリッパー24の開閉を行うものである。作動液20は、特に限定されるものではないが、例えば、生理食塩水や油などである。
具体的に、ロボット鉗子2は、駆動ユニット21と、駆動ユニット21から延びて患者の体内に挿入される挿入シャフト22と、挿入シャフト22の先端に設けられた、一対の爪25からなるグリッパー24を含む。なお、図示は省略するが、駆動ユニット21には、挿入シャフト22をその軸方向にスライドさせる機構、および挿入シャフト22をその中心軸回りに回転させる機構が組み込まれてもよい。さらに、挿入シャフト22の先端部が揺動可能に構成され、その先端部を揺動させる機構が駆動ユニット21に組み込まれてもよい。
本実施形態では、挿入シャフト22が、直線状に延びる高剛性の管である。ただし、挿入シャフト22は、フレキシブルな管であってもよい。
挿入シャフト22の先端部内には、第1シリンダ31が配置されている。本実施形態では、第1シリンダ31の中心軸が挿入シャフト22の中心軸と一致している。第1シリンダ31は、管状部と、管状部の内部をグリッパー24側から閉塞する前壁と、管状部の内部をグリッパー24と反対側から閉塞する後壁を有している。
第1シリンダ31内には、第1ピストン32が収容されている。第1ピストン32と第1シリンダ31の後壁との間には第1圧力室3Aが形成され、第1ピストン32と第1シリンダ31の前壁との間には背圧室3Bが形成されている。第1圧力室3A内は作動液20で満たされており、背圧室3B内は大気中に開放されている。本実施形態では、背圧室3B内に、第1ピストン32を付勢するスプリング34が配置されている。
第1ピストン32は、第1シリンダ31の前壁を貫通するロッド33によりリンク機構23を介してグリッパー24と連結されている。リンク機構23は、ロッド33の直線運動をグリッパー24の開閉運動に変換する。
駆動ユニット21内には、連通路26により第1シリンダ31と接続された第2シリンダ41が配置されている。本実施形態では、第2シリンダ41の軸方向が、挿入シャフト22の軸方向と平行である。ただし、第2シリンダ41の軸方向は、特に限定されるものではない。第2シリンダ41は、管状部と、管状部の内部を挿入シャフト22側から閉塞する前壁と、管状部の内部を挿入シャフト22と反対側から閉塞する後壁を有している。
第2シリンダ41内には、第2ピストン42が収容されている。第2ピストン42と第2シリンダ41の前壁との間には第2圧力室4Aが形成され、第2ピストン42と第2シリンダ41の後壁との間には背圧室4Bが形成されている。第2圧力室4A内は作動液20で満たされており、背圧室4B内は大気中に開放されている。
上述した連通路26は、挿入シャフト22内を延びており、第1圧力室3Aと第2圧力室4Aとを連通している。この連通路26内も作動液20で満たされている。例えば、連通路26は、金属製の管または樹脂製のフレキシブルなチューブで構成される。
第2ピストン42は、第2シリンダ41の後壁を貫通するロッド43により直動機構51と連結されている。直動機構51は、モータ52の出力シャフト53とも連結されている。直動機構51は、モータ52の出力シャフト53の回転運動をロッド43の直線運動に変換する。つまり、モータ52は、直動機構51およびロッド43を介して第2ピストン42を駆動する。モータ52は、例えばサーボモータである。
モータ52の一方向への回転によって第2ピストン42が前進すると、作動液20が第2圧力室4Aから第1圧力室3Aへ供給されて第1ピストン32がスプリング34の付勢力に抗して前進する。一方、モータ52の逆方向への回転によって第2ピストン42が後退すると、スプリング34の付勢力によって第1ピストン32が後退しながら作動液20が第1圧力室3Aから第2圧力室4Aへ排出される。すなわち、第2シリンダ41、第2ピストン42、直動機構51およびモータ52は、第1圧力室3Aに対する作動液給排機構を構成する。
制御装置7へは、例えば上述したマスタ側装置から第1ピストン32に対する指令位置tx1が入力される。ただし、制御装置7にグリッパー24への開度指令が入力され、制御装置7が、その開度指令から第1ピストン32に対する指令位置tx1を算出する指令位置算出部を含んでもよい。
制御装置7は、第1ピストン32に対する指令位置tx1に基づいてモータ52を制御する。制御装置7は、例えば、ROMやRAMなどのメモリとCPUからなり、ROMに格納されたプログラムがCPUにより実行される。具体的に、制御装置7は、位置制御部71、速度制御部72、インバータ部73、微分部75およびオブザーバ8を含む。制御装置7は、単一の機器であってもよいし、複数の機器に分割されてもよい。
本実施形態では、制御装置7が、圧力センサ61および位置センサ62と電気的に接続されている。圧力センサ61は、作動液20の圧力Pを検出するものであり、位置センサ62は、第2ピストン42の位置x2の検出に用いられるものである。
本実施形態では、位置センサ62が、モータ52に設けられたロータリエンコーダであり、モータ52の回転変位量を検出し、その回転変位量を第2ピストン42の位置x2に変換する。ただし、位置センサ62は、直動機構51に設けられたリニアエンコーダであってもよいし、第2シリンダ41に設けられて第2ピストン42の位置x2を直接的に検出してもよい。
オブザーバ8は、圧力センサ61で検出される作動液20の圧力Pおよび位置センサ62を用いて検出される第2ピストン42の位置x2に基づいて、第1ピストン32の推定位置ex1を導出する。なお、オブザーバ8の機能については、後述にて詳細に説明する。
位置制御部71は、第1ピストン32の推定位置ex1と第1ピストン32に対する指令位置tx1の偏差Δx1(=tx1-ex1)に基づいて、モータ52の目標回転速度Vtを導出する。偏差Δx1と目標回転速度Vtとの関係は、予め設定されている。
微分部75は、位置センサ62を用いて検出される第2ピストン42の位置x2を微分してモータ52の現在回転速度Vを算出する。速度制御部72は、モータ52の目標回転速度Vtと現在回転速度Vとの偏差ΔV(=Vt-V)に基づいて、モータ52の目標電流Ctを導出する。偏差ΔVと目標電流Ctとの関係は、予め設定されている。
インバータ部73とモータ52と間の電力線には、電流センサ74が設けられている。インバータ部73は、電流センサ74で検出される電流Cnと目標電流Ctとの偏差が小さくなるように、モータ52へ電流を供給する。
次に、図2を参照して、オブザーバ8の機能について詳細に説明する。オブザーバ8は、第2ピストン42に力Fを加えたときの第2ピストン42および第1ピストン32の移動量をモデル化したものであり、以下の状態方程式1および出力方程式2で示すことができる。なお、以下では、ニュートンの記法に従って変数の上に記すべきドット記号を変数の右上に記す。
X・=AX+BF ・・・(1)
Y=CX ・・・(2)
X・,X,Y:図3に示す行列で表される状態変数
x1:第1ピストンの位置
x2:第2ピストンの位置
P:作動液の圧力
F:第2ピストンに加えられる力
A、B:状態方程式1中の係数を示す行列
C:出力方程式2中の係数を示す行列
行列A,Bは、第1ピストン32に関する状態方程式および第2ピストン42に関する状態方程式などから求められる。
Y=CX ・・・(2)
X・,X,Y:図3に示す行列で表される状態変数
x1:第1ピストンの位置
x2:第2ピストンの位置
P:作動液の圧力
F:第2ピストンに加えられる力
A、B:状態方程式1中の係数を示す行列
C:出力方程式2中の係数を示す行列
行列A,Bは、第1ピストン32に関する状態方程式および第2ピストン42に関する状態方程式などから求められる。
より詳しくは、オブザーバ8は、まず行列A,Bを用いて推定状態変数eX・を求め、ついでこれを積分して推定状態変数X・を算出する。つまり、オブザーバ8は、第1ピストン32の推定位置ex1だけでなく、第2ピストン42の推定位置ex2および作動液20の推定圧力ePも導出する。導出された第1ピストン32の推定位置ex1は、上述したように第1ピストン32に対する指令位置tx1と比較される。
さらに、オブザーバ8は、行列Cを用いて第2ピストン42の推定位置ex2および作動液20の推定圧力ePを抜き出し、それらを位置センサ62を用いて検出される第2ピストン42の位置x2および圧力センサ61で検出される作動液20の圧力Pと比較する。そして、オブザーバ8は、第2ピストン42の検出された位置x2と推定位置ex2との偏差Δx2(=x2-ex2)と、作動液20の検出された圧力Pと推定圧力ePとの偏差ΔP(=P-eP)とに基づき、行列Kを用いて状態変数X・の全要素についての推定誤差を算出する。その後、オブザーバ8は、算出した推定誤差を推定状態変数eX・の演算にフィードバックする。換言すれば、推定誤差は、第1ピストン32の推定位置ex1の導出にフォードバックされる。
以上説明したように、本実施形態の液圧鉗子システム1では、非圧縮性の作動液20が用いられるので、グリッパー24と連結された第1ピストン32、換言すればロボット鉗子2の先端側にある第1ピストン32の移動量は、外力にほぼ影響されることなく第2ピストン42の移動量と比例する。しかも、第2ピストン42は、直動機構51を介してモータ52により駆動される。よって、制御装置7が第1ピストン32に対する指令位置tx1に基づいてモータ52を制御すれば、グリッパー24の開閉を制御することができる。さらに、制御装置7は、第2ピストン42の位置x2に基づいて第1ピストン32の推定位置ex1を導出するオブザーバ8を含み、この第1ピストン32の推定位置ex1と指令位置tx1とが比較されるので、第1ピストン32の位置を検出する位置センサを設ける必要がない。すなわち、ロボット鉗子2の先端部に位置センサを設けることなく、グリッパー24の開閉を制御することができる。
(変形例)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
例えば、圧力センサ61が設けられず、オブザーバ8が、位置センサ62を用いて検出される第2ピストン42の位置x2のみに基づいて第1ピストン32の推定位置ex1を導出してもよい。ただし、前記実施形態のように、位置センサ62を用いて検出される第2ピストン42の位置x2および圧力センサ61で検出される作動液20の圧力Pに基づいて第1ピストン32の推定位置ex1を導出すれば、第2ピストン42の位置x2のみに基づいて第1ピストン32の推定位置ex1を導出する場合よりも、第1ピストン32の位置の推定精度を向上させることができる。
前記実施形態では、スプリング34の付勢力によって第1ピストン32が後退する。しかし、第2シリンダ41、第2ピストン42、直動機構51およびモータ52を含む作動液給排機構がもう1つ設けられるとともに、もう1つの作動液給排機構の第2圧力室4Aが第1シリンダ31の前壁と第1ピストン32の間の背圧室3Bと接続されて、背圧室3Bに供給される作動液の液圧によって第1ピストン32が後退してもよい。あるいは、第1ピストン32にワイヤの一端が固定され、ワイヤの引っ張りによって第1ピストン32が後退してもよい。
また、オブザーバ8に対して、第1ピストン32および/または第2ピストン42の状態、負荷条件、ロボット鉗子2の個体差、周辺環境などに応じて補正をかけることを可能とする手段が別途設けられてもよい。
1 液圧鉗子システム
2 ロボット鉗子
20 作動液
24 グリッパー
26 連通路
31 第1シリンダ
32 第1ピストン
3A 第1圧力室
41 第2シリンダ
42 第2ピストン
4A 第2圧力室
51 直動機構
52 モータ
61 圧力センサ
62 位置センサ
7 制御装置
8 オブザーバ
2 ロボット鉗子
20 作動液
24 グリッパー
26 連通路
31 第1シリンダ
32 第1ピストン
3A 第1圧力室
41 第2シリンダ
42 第2ピストン
4A 第2圧力室
51 直動機構
52 モータ
61 圧力センサ
62 位置センサ
7 制御装置
8 オブザーバ
Claims (4)
- グリッパー、前記グリッパーと連結された第1ピストン、前記第1ピストンを収容して前記第1ピストンと共に作動液で満たされる第1圧力室を形成する第1シリンダ、第2ピストン、前記第2ピストンを収容して前記第2ピストンと共に前記作動液で満たされる第2圧力室を形成する第2シリンダ、前記第1圧力室と前記第2圧力室とを連通する連通路、および直動機構を介して前記第2ピストンを駆動するモータ、を含むロボット鉗子と、
前記第2ピストンの位置の検出に用いられる位置センサと、
前記第1ピストンに対する指令位置に基づいて前記モータを制御する制御装置と、を備え、
前記制御装置は、
前記位置センサを用いて検出される前記第2ピストンの位置に基づいて、前記第1ピストンの推定位置を導出するオブザーバと、
前記第1ピストンの推定位置と前記指令位置との偏差に基づいて、前記モータの目標回転速度を導出する位置制御部と、を含む、液圧鉗子システム。 - 前記位置センサは、前記モータの回転変位量を検出し、その回転変位量を前記第2ピストンの位置に変換するロータリエンコーダである、請求項1に記載の液圧鉗子システム。
- 前記作動液の圧力を検出する圧力センサをさらに備え、
前記オブザーバは、前記圧力センサで検出される前記作動液の圧力および前記位置センサを用いて検出される前記第2ピストンの位置に基づいて、前記第1ピストンの推定位置を導出する、請求項1または2に記載の液圧鉗子システム。 - 前記オブザーバは、前記第2ピストンの推定位置および前記作動液の推定圧力を導出し、前記圧力センサで検出される前記作動液の圧力と前記作動液の推定圧力との偏差および前記位置センサを用いて検出される前記第2ピストンの位置と前記第2ピストンの推定位置との偏差に基づいて推定誤差を算出し、算出した推定誤差を前記第1ピストンの推定位置の導出にフィードバックする、請求項3に記載の液圧鉗子システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17886085.4A EP3563790B1 (en) | 2016-12-27 | 2017-12-20 | Hydraulic forceps system |
US16/474,428 US11053960B2 (en) | 2016-12-27 | 2017-12-20 | Hydraulic forceps system |
CN201780080837.3A CN110087575B (zh) | 2016-12-27 | 2017-12-20 | 液压钳子系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-252568 | 2016-12-27 | ||
JP2016252568A JP6550368B2 (ja) | 2016-12-27 | 2016-12-27 | 液圧鉗子システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123753A1 true WO2018123753A1 (ja) | 2018-07-05 |
Family
ID=62707483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045657 WO2018123753A1 (ja) | 2016-12-27 | 2017-12-20 | 液圧鉗子システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11053960B2 (ja) |
EP (1) | EP3563790B1 (ja) |
JP (1) | JP6550368B2 (ja) |
CN (1) | CN110087575B (ja) |
WO (1) | WO2018123753A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021126233A (ja) * | 2020-02-12 | 2021-09-02 | リバーフィールド株式会社 | 手術用ロボット |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR1008783B (el) | 2015-06-17 | 2016-06-09 | Γιαννης Χρηστου Στεφανιδης | Ενδαγγειακος καθετηρας στηριξης με κινουμενο μπαλονι |
US11738180B2 (en) | 2016-08-23 | 2023-08-29 | Shuttle Catheters Pc | Endovascular remotely steerable guidewire catheter |
JP6577936B2 (ja) * | 2016-12-27 | 2019-09-18 | 川崎重工業株式会社 | 液圧鉗子システム |
US11071441B2 (en) | 2018-04-20 | 2021-07-27 | Verb Surgical Inc. | Surgical robotic tool multi-motor actuator and controller |
JP2020141862A (ja) | 2019-03-06 | 2020-09-10 | 川崎重工業株式会社 | 液圧医療機器および手術支援ロボット |
CN110477999B (zh) * | 2019-08-29 | 2021-07-02 | 湖南瀚德微创医疗科技有限公司 | 一种输出恒定夹持力的手术夹钳 |
CN111096774B (zh) * | 2020-02-25 | 2020-08-14 | 青岛大学附属医院 | 一种微创外科组织夹钳 |
JP2021191382A (ja) * | 2020-06-05 | 2021-12-16 | 国立大学法人 岡山大学 | 穿刺針把持装置及びこの穿刺針把持装置を備えた穿刺ロボット |
GR1010093B (el) * | 2020-12-18 | 2021-09-30 | Ιωαννης Χρηστου Στεφανιδης | Καθετηρας |
GR1010101B (el) * | 2020-12-18 | 2021-10-11 | Ιωαννης Χρηστου Στεφανιδης | Καθετηρας |
US20240225759A1 (en) * | 2021-05-19 | 2024-07-11 | Covidien Lp | Actuation assemblies for surgical instruments such as for use in robotic surgical systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013517898A (ja) * | 2010-01-26 | 2013-05-20 | ケアフュージョン2200、インコーポレイテッド | 動力付き信号制御手動関節装置および使用方法 |
JP2013220273A (ja) | 2012-04-18 | 2013-10-28 | Tokyo Institute Of Technology | 外力算出方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431645A (en) * | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US5791231A (en) * | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
WO2000018330A1 (en) * | 1998-09-30 | 2000-04-06 | Impra, Inc. | Delivery mechanism for implantable stent |
US20100241137A1 (en) * | 2000-07-20 | 2010-09-23 | Mark Doyle | Hand-actuated articulating surgical tool |
CN100384364C (zh) * | 2002-09-30 | 2008-04-30 | 赛特莱恩技术有限公司 | 活塞致动的内窥工具 |
JP2009539509A (ja) * | 2006-06-14 | 2009-11-19 | マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド | 直角プーリ駆動機構付きの手術マニピュレータ |
DE102007022122B4 (de) * | 2007-05-11 | 2019-07-11 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Greifvorrichtung für eine Chirurgie-Roboter-Anordnung |
CN201614281U (zh) * | 2010-03-31 | 2010-10-27 | 苏州通锦精密工业有限公司 | 液体加注机的加注量反馈检测装置 |
US8652031B2 (en) * | 2011-12-29 | 2014-02-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Remote guidance system for medical devices for use in environments having electromagnetic interference |
-
2016
- 2016-12-27 JP JP2016252568A patent/JP6550368B2/ja active Active
-
2017
- 2017-12-20 EP EP17886085.4A patent/EP3563790B1/en active Active
- 2017-12-20 US US16/474,428 patent/US11053960B2/en active Active
- 2017-12-20 CN CN201780080837.3A patent/CN110087575B/zh not_active Expired - Fee Related
- 2017-12-20 WO PCT/JP2017/045657 patent/WO2018123753A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013517898A (ja) * | 2010-01-26 | 2013-05-20 | ケアフュージョン2200、インコーポレイテッド | 動力付き信号制御手動関節装置および使用方法 |
JP2013220273A (ja) | 2012-04-18 | 2013-10-28 | Tokyo Institute Of Technology | 外力算出方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3563790A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021126233A (ja) * | 2020-02-12 | 2021-09-02 | リバーフィールド株式会社 | 手術用ロボット |
Also Published As
Publication number | Publication date |
---|---|
US20190345959A1 (en) | 2019-11-14 |
EP3563790A4 (en) | 2020-08-12 |
JP2018102633A (ja) | 2018-07-05 |
CN110087575B (zh) | 2021-12-28 |
US11053960B2 (en) | 2021-07-06 |
JP6550368B2 (ja) | 2019-07-24 |
EP3563790B1 (en) | 2024-02-28 |
CN110087575A (zh) | 2019-08-02 |
EP3563790A1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018123753A1 (ja) | 液圧鉗子システム | |
JP6577936B2 (ja) | 液圧鉗子システム | |
CN108778642B (zh) | 关节型机器人及其气弹簧的气体减少状态推定方法 | |
JP5336434B2 (ja) | 弾性体アクチュエータの制御装置及び制御方法、並びに、制御プログラム | |
WO2014030363A1 (ja) | 外力推定装置及び鉗子システム | |
CN110914547A (zh) | 液压驱动装置 | |
CN114554998B (zh) | 手术机器人系统、外力推定装置以及程序 | |
JP3329443B2 (ja) | パラレルリンク型力覚入出力装置 | |
US10814499B2 (en) | Actuator device and control method | |
CN112847332A (zh) | 工作机构 | |
JP6632507B2 (ja) | リンク機構の制御装置、マニピュレータ、及びリンク機構の制御方法 | |
JP6081232B2 (ja) | 液圧装置、液圧システム、液圧装置の制御方法および液圧システムの制御方法 | |
KR20210134894A (ko) | 드라이브 시스템 | |
KR102541988B1 (ko) | 액추에이터 장치 및 이의 제어방법 | |
KR20150041346A (ko) | 다관절 매니퓰레이터 제어 방법 및 제어 시스템 | |
WO2021039917A1 (ja) | 車両の電動倍力装置 | |
JP7357575B2 (ja) | 制御装置、及びそれを備える液圧システム | |
CN116849821A (zh) | 耗材控制装置、从属机器人及柔性导管头端弯曲度控制方法 | |
JP2018146084A (ja) | ショベル | |
JP2008023681A (ja) | 力覚提示装置、および、それを備えたパワーアシストアームおよびパワーアシスト装置 | |
JP2009236214A (ja) | 力覚提示装置およびそれを備えたパワーアシストシステム | |
JPS61293782A (ja) | 緩衝機能を有するロボツトア−ム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017886085 Country of ref document: EP Effective date: 20190729 |