WO2018123515A1 - ガス分離膜の品質評価方法とその評価装置 - Google Patents

ガス分離膜の品質評価方法とその評価装置 Download PDF

Info

Publication number
WO2018123515A1
WO2018123515A1 PCT/JP2017/044167 JP2017044167W WO2018123515A1 WO 2018123515 A1 WO2018123515 A1 WO 2018123515A1 JP 2017044167 W JP2017044167 W JP 2017044167W WO 2018123515 A1 WO2018123515 A1 WO 2018123515A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation membrane
separation
membrane
ideal
Prior art date
Application number
PCT/JP2017/044167
Other languages
English (en)
French (fr)
Inventor
大亮 権藤
正也 板倉
怜史 今坂
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2018123515A1 publication Critical patent/WO2018123515A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention relates to a gas separation membrane quality evaluation method and an evaluation apparatus therefor, and a method for measuring an actual separation coefficient of a mixed gas and an apparatus for measuring the method.
  • a microporous membrane such as a zeolite membrane is widely used as a means for separating a gas of a plurality of components.
  • Patent Document 1 evaluates using an ideal separation coefficient.
  • Cited Document 2 in addition to the ideal separation coefficient, measurement of an actual separation coefficient indicating an actual separation coefficient using a mixed gas is also performed.
  • Cited Document 1 gas is supplied at a constant pressure, and the flow rate of the gas that is permeated is measured with a flow meter. At this time, the gas separation performance is obtained from the gas permeation rate Q obtained by the following equation, and the ratio of Q It is disclosed that an ideal separation factor ⁇ of gas is obtained from (a ratio obtained by dividing Q of a gas component that easily permeates a separation membrane by Q of a gas component that does not easily permeate a separation membrane).
  • Q 1 and Q 2 indicate the permeation amounts [mol ⁇ (m 2 ⁇ s) ⁇ 1 ] of a highly permeable gas and a low permeable gas, respectively, and P 1 and P 2 are respectively The pressure [Pa] of the highly permeable gas and the low permeable gas as the supply gas is shown.
  • Q ′ 1 and Q ′ 2 indicate the permeation amounts [mol ⁇ (m 2 ⁇ s) ⁇ 1 ] of a highly permeable gas and a low permeable gas, respectively
  • P ′ 1 and P ′ 2 Respectively show the partial pressure [Pa] of the highly permeable gas and the low permeable gas in the supply gas.
  • the method of evaluating the separation performance of the separation membrane based on the ideal separation factor of Patent Document 1 and Patent Document 2 is measured because each of the two component gases can be calculated from the flow rate and pressure through the separation membrane as a single component gas.
  • the actual separation coefficient ⁇ ′ described in Patent Document 2 has an advantage that it shows actual performance as an evaluation of an actual separation membrane. There is a disadvantage that it takes time to evaluate.
  • Step 1 Create a calibration curve for each gas type of the mixed gas using gas chromatography before the permeation test.
  • Step 2 Collect the mixed gas on the supply side, analyze the composition of the mixed gas by gas chromatography based on the calibration curve, control the mixture to a predetermined mixing ratio, and keep the pressure on the supply side constant.
  • Step 3 Perform a permeation test, collect the permeate side gas, and analyze its composition by gas chromatography.
  • Step 4 Measure the gas permeation with a flow meter.
  • Step 5 Repeat steps 3 and 4 until the gas chromatography analysis results are stable.
  • Step 6 The actual separation factor is calculated from the concentration of each component on the permeation side, the gas partial pressure on the supply side, and the gas permeation amount.
  • the present invention maintains the advantage of the simplicity of the means for evaluating the ideal separation coefficient, and a method for obtaining an actual separation coefficient that indicates the performance of an actual separation membrane and its evaluation Providing equipment.
  • the present inventor has completed a method for calculating an actual separation coefficient with a simple evaluation means and an evaluation apparatus therefor.
  • the present invention 1 is a quality evaluation method for a gas separation membrane for separating a mixed gas, wherein the mixed gas includes a first component gas and a second component gas that is less permeable to the gas separation membrane than the first component gas, The step (1) of calculating the permeability of the first component gas when the one-component gas is allowed to permeate through the gas separation membrane as a single-component gas, and the first step when the second component gas is permeated through the gas separation membrane as the single-component gas.
  • step (2) of calculating the permeability of the two-component gas and a step of calculating an ideal separation coefficient of the gas separation membrane for the mixed gas from the ratio of the permeability of the first component gas to the calculated permeability of the second component gas
  • step (3) Ideal separation factor calculated by Characterized in that it comprises a step (4) to be converted to the actual separation factor.
  • the ideal separation coefficient obtained in the step (3) is calculated in advance for each of the plurality of gas separation membranes and the actual separation coefficient representing the separation performance for the actual mixed gas.
  • the present invention 1 has been completed by finding that there is a correlation between the ideal separation factor and the actual separation factor. It is an opportunity.
  • the permeability is an amount expressed by gas permeation flow rate ⁇ ⁇ membrane area ⁇ time ⁇ pressure difference ⁇ , and its unit is mol / (m 2 Spa).
  • the ideal separation factor the transparency of the transparent easy gas separation membrane as Q 1
  • the transparency of the transparent hard gas separation membrane When Q 2 is a coefficient calculated by Q 1 / Q 2 .
  • the actual separation coefficient is a coefficient represented by (Q ′ 1 / Q ′ 2 ) / (P ′ 1 / P ′ 2 ), and Q ′ 1 and Q ′ 2 are gases having high permeability, respectively.
  • P ′ 1 and P ′ 2 are the partial pressures of the highly permeable gas and the low permeable gas in the supply gas, respectively, and the permeability of the low permeable gas (mol / (m 2 spa)). It is.
  • Q ′ 1 and Q ′ 2 are permeability measured by a gas concentration measurement unit such as gas chromatography and a flow rate measurement unit such as an integrating flow meter, and the unit is mol / (m 2 spa).
  • P ′ 1 and P ′ 2 are gas partial pressures of the respective gases of the supply gas.
  • the correlation between the ideal separation factor and the actual separation factor may be a linear correlation or a non-linear correlation. If there is some correlation between the ideal separation factor and the actual separation factor, the ideal separation factor can be converted into the actual separation factor according to the relationship.
  • the present invention 2 is a composite of a porous support-zeolite membrane in which a gas separation membrane is formed by forming a zeolite membrane having a pore diameter of 0.6 nm or less on a porous support, and the mixed gas is hydrogen ( H 2 ), oxygen (O 2 ), nitrogen (N 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), sulfur hexafluoride ( It is formed from two kinds of gases selected from the group consisting of SF 6 ), propane (C 3 H 8 ), propylene (C 3 H 6 ) and water (H 2 O). This is a quality evaluation method for the gas separation membrane.
  • the present invention 3 is the gas separation membrane quality evaluation method according to the present invention 2, wherein the zeolite membrane has pores of 10-membered ring pores or less.
  • the present invention 4 is the gas separation membrane quality evaluation method according to the present invention 2 or 3, wherein the zeolite membrane contains an MFI type zeolite structure.
  • the present invention 5 is the porous support-zeolite membrane composite in which the gas separation membrane is a zeolite support having a pore diameter of 0.4 nm or less formed on the porous support, and the mixed gas is hydrogen ( H 2 ), oxygen (O 2 ), nitrogen (N 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ), sulfur hexafluoride ( It is formed from two kinds of gases selected from the group consisting of SF 6 ), propane (C 3 H 8 ), propylene (C 3 H 6 ) and water (H 2 O). This is a quality evaluation method for the gas separation membrane.
  • the present invention 6 is the quality evaluation method for a gas separation membrane according to the present invention 5, wherein the zeolite membrane has pores of eight-membered ring pores or less.
  • the present invention 7 is the gas separation membrane quality evaluation method according to the present invention 5 or 6, wherein the zeolite membrane includes a CHA-type zeolite structure.
  • the present invention 8 is an apparatus for evaluating the quality of a gas separation membrane for separating a mixed gas, and includes a first gas supply unit and a second gas supply unit that supply single component gases, which are component gases of the mixed gas, to the gas separation membrane, respectively. And a first pressure measuring unit that measures the pressure of the non-permeate side gas of the gas separation membrane when the single component gas is permeated through the gas separation membrane, and a second that measures the pressure of the permeate side gas of the gas separation membrane.
  • Gas separation membrane having a pressure measurement unit, a flow rate measurement unit for measuring the flow rate of the permeation side gas of the gas separation membrane, and a gas concentration measurement unit for measuring the concentration of each component gas contained in the permeation side gas of the gas separation membrane
  • An ideal separation coefficient computing unit that calculates an ideal separation coefficient of a single component gas from the measurement results of the first pressure measuring unit, the second pressure measuring unit, and the flow rate measuring unit, and a plurality of gas separation membranes
  • the ideal separation factor calculator A computing means including a correlation map obtained by previously obtaining a correlation between the obtained ideal separation coefficient and the actual separation coefficient representing the separation performance of the actual mixed gas obtained by using the flow rate measuring unit and the gas concentration measuring unit. It is characterized by having.
  • the present invention 8 is a gas separation membrane quality evaluation apparatus using the measurement method of the present invention 1.
  • the ideal separation factor is calculated by an ideal separation factor calculator that calculates an ideal separation factor obtained from the permeability of the single component gas.
  • the ideal separation factor obtained by the ideal separation factor calculator and the actual separation factor representing the separation performance of the actual mixed gas obtained using the flow rate measuring unit and the gas concentration measuring unit.
  • the correlation map obtained by obtaining the correlation in advance is stored in the calculation means, and is used when converting the ideal separation coefficient into the actual separation coefficient.
  • the calculation means further includes a gas selection instruction unit for selecting a gas to be supplied to the gas separation membrane, a flow rate measuring unit, and a gas concentration measuring unit. It has a correlation map creating unit that creates a correlation map from the actual separation coefficient representing the obtained separation performance of the actual mixed gas and the ideal separation coefficient calculated by the ideal separation coefficient computing unit.
  • the supply means of the mixed gas the single component gas of the first gas supply unit and the second gas supply unit may be mixed and supplied, or the first gas and the second gas may be supplied at a predetermined ratio. Alternatively, a mixed gas cylinder filled with the above may be separately prepared and supplied.
  • the gas separation membrane quality evaluation apparatus of the present invention 8 further includes a correlation map creating unit, it is possible to automatically calculate the actual separation coefficient.
  • an actual separation coefficient indicating the performance of an actual separation membrane can be obtained with the simplicity of the means for evaluating the ideal separation coefficient.
  • FIG. 1 is a gas separation membrane quality evaluation apparatus according to a first embodiment. It is a figure which shows the correlation of the permeability ratio at the time of a single component test (ideal separation factor), and the permeability ratio at the time of a mixing test (actual separation factor).
  • FIG. 1 shows an example of a gas separation membrane quality evaluation apparatus (1) according to the present invention.
  • a solid line arrow in FIG. 1 indicates an actual gas flow, and an alternate long and short dash line arrow indicates a data flow.
  • the two kinds of gases are respectively stored in the first gas cylinder (32) and the second gas cylinder (42) in the first gas supply section (3) and the second gas supply section (4), and the flow rate of the supply gas is It is controlled by the first regulator (31), the second regulator (41), the first flow rate controller (33) and the second flow rate controller (43).
  • either the gas from the first gas cylinder (32) or the gas from the second gas cylinder (42) is supplied to the separation membrane module (5) as a single component gas. Is performed by adjusting the first regulator (31), the second regulator (41), the first flow rate controller (33) and the second flow rate controller (43).
  • the gas pressure of the gas that does not pass through the gas separation membrane (51) is measured by the first pressure measurement unit (61), and the gas pressure of the gas that passes through the gas separation membrane (51) is measured by the second pressure measurement unit (62). Is done.
  • the pressure of the supply side gas is adjusted by the first back pressure valve (63), and the pressure of the permeate side gas is adjusted by the second back pressure valve (64).
  • the ideal separation factor is calculated by the ideal separation factor calculator (71) in the calculation means (7).
  • the information for calculating the ideal separation factor is the gas separation membrane non-permeate side pressure (dotted line) measured by the first pressure measurement unit (61) and the gas separation membrane measured by the second pressure measurement unit (62). It can be calculated from the permeation side pressure (dashed line) and the information on the permeation amount of the supply gas measured by the flow rate measuring unit (81) described later.
  • the actual separation factor is measured by supplying the mixed gas to the separation membrane module (5), and will be described below in order.
  • the mixing ratio and gas flow rate of the two mixed gases are controlled using the first regulator (31), the second regulator (41), the first flow controller (33), and the second flow controller (43).
  • the ratio becomes constant, the concentration of each component gas is measured and confirmed using gas chromatography or the like (in FIG. 1, the gas concentration measuring unit (82)). Thereafter, the pressure on the supply gas side is kept constant by using the first back pressure valve (63).
  • the gas that has passed through the gas separation membrane (51) passes through the second back pressure valve (64), passes through the three-way valve (66), and is sent to the flow rate measurement unit (81) and the gas concentration measurement unit (82).
  • the flow rate of the permeate side gas and the concentration of each component of the two kinds of mixed gas are measured.
  • Each measured data is sent to the correlation map creation unit (73) to create the correlation map (72), and sent to the calculation unit (not shown) that converts the ideal separation factor into the real separation factor.
  • the coefficient is output.
  • the non-permeate side gas of the gas separation membrane (51) passes through the exhaust port (65), and the permeate side gas of the gas separation membrane (51) passes through the exhaust ports (83) and (84) and is discharged to the outside as exhaust gas. .
  • the gas separation membrane (51) was a CHA-type zeolite membrane synthesized on a porous support.
  • the present invention is not limited to the zeolite membrane in principle, and may be a separation membrane such as a hollow fiber membrane.
  • the single component test was performed using two kinds of gases, CO 2 gas and CH 4 gas.
  • the flow rate of CO 2 gas was 10 L / min, and the flow rate of CH 4 gas was also 10 L / min.
  • the temperature was 40 ° C., the pressure was adjusted by the back pressure valves (63) and (64), and the total pressure was 0.4 MPa.
  • a CHA-type zeolite membrane having five types of separation factors was prepared and used for the test.
  • the mixed gas test is performed using the CHA-type zeolite membrane used in the single component test, and is a mixed gas of CO 2 gas and CH 4 gas with a molar composition ratio CO 2 / CH 4 of 50/50 and a gas flow rate of CO 2. Two gases were 5 L / min, and CH 4 gas was also 5 L / min. The temperature and total pressure were the same as the single component gas.
  • the correlation map created from the measurement results is shown in FIG.
  • the horizontal axis represents the permeability ratio (ideal separation factor) during the single component test, and the vertical axis represents the permeability ratio (actual separation factor) during the mixing test.
  • a very high linearity is observed, the linear correlation coefficient is 0.9979, and five data are almost on the straight line.
  • a reliable real separation factor can be calculated simply by measuring the ideal separation factor, which is the permeability ratio during a single component test using two types of gas, CO 2 gas and CH 4 gas. It can be performed.
  • Gas separation membrane quality evaluation device 3 First gas supply unit 4: Second gas supply unit 5: Separation membrane module 7: Calculation means 31: First regulator 32: First gas cylinder 33: First flow rate controller 41: Second regulator 42: second gas cylinder 43: second flow rate controller 51: gas separation membrane 61: first pressure measurement unit 62: second pressure measurement unit 63: first back pressure valve 64: second back pressure valve 65: exhaust port 66 : Three-way valve 71: ideal separation coefficient calculation unit 72: correlation map 73: correlation map creation unit 74: gas selection instruction unit 81: flow rate measurement unit 82: gas concentration measurement unit 83, 84: exhaust port

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

理想分離係数の評価手段の簡便さという長所を維持して、現実の分離膜の性能を示している実分離係数を求める方法およびその評価装置を提供する。 本発明は、混合ガスを分離するガス分離膜の品質評価方法であって、混合ガスが第1成分ガスおよび第1成分ガスよりも前記ガス分離膜を透過しにくい第2成分ガスを含み、第1成分ガスを単ガスとして前記ガス分離膜に透過させるときの第1成分ガスの透過度を算出する工程(1)と、第2成分ガスを単ガスとして前記ガス分離膜に透過させるときの第2成分ガスの透過度を算出する工程(2)と、算出された前記第2成分ガスの透過度に対する前記第1成分ガスの透過度の比から前記混合ガスに対する前記ガス分離膜の理想分離係数を算出する工程(3)と、複数のガス分離膜のそれぞれに対して、予め求めておいた理想分離係数と実際の混合ガスに対する分離性能を表す実分離係数との相関関係を利用して、工程(3)によって算出された理想分離係数を実分離係数に換算する工程(4)とを含む。

Description

ガス分離膜の品質評価方法とその評価装置
 本発明は、ガス分離膜の品質評価方法およびその評価装置であって、混合ガスの実分離係数を測定する方法およびその測定をする装置に関する。
 ゼオライト膜などのミクロ多孔質膜は、複数成分のガスを分離する手段として多用されており、その膜の品質評価方法として、特許文献1では理想分離係数を用いて評価している。また、引用文献2では、理想分離係数以外に混合ガスを用いた実際の分離係数を示す実分離係数の計測も行われている。
 引用文献1には、一定圧力でガスを供給し、透過してくる気体流量を流量計で測定し、この際に、下記式で求められる気体透過速度Qにより気体分離性能を求め、Qの比(分離膜を透過しやすいガス成分のQを、分離膜を透過しにくいガス成分のQで除した比)からガスの理想分離係数αを求めることが開示されている。
Q={ガス透過流量(cm・STP)}÷{膜面積(cm)×時間(秒)×圧力差(cmHg)}
 引用文献2には、α=(Q/Q)/(P/P)の式で理想分離係数を求めることが開示されている。ここで、QおよびQは、それぞれ、透過性の高いガスおよび透過性の低いガスの透過量[mol・(m・s)-1]を示し、PおよびPは、それぞれ、供給ガスである透過性の高いガスおよび透過性の低いガスの圧力[Pa]を示す。
 また、引用文献2には、α’=(Q’/Q’)/(P’/P’)の式で実分離係数を求めることが開示されている。ここで、Q’およびQ’は、それぞれ、透過性の高いガスおよび透過性の低いガスの透過量[mol・(m・s)-1]を示し、P’およびP’は、それぞれ、供給ガス中の透過性の高いガスおよび透過性の低いガスの分圧[Pa]を示している。
特開2009-34614号公報 特開2012-66242号公報
 特許文献1および特許文献2の理想分離係数によって分離膜の分離性能を評価する方法は、2成分ガスのそれぞれを単成分ガスとして分離膜を通し、流量と圧力とから算出することが可能なので測定が簡便であるという長所を有しているが、実際の分離膜の直接的な評価である実分離係数α’とはずれがあるという短所を有している。
 実際に特許文献2によると、例えば、二酸化炭素とメタンの分離において、理想分離係数が89で、実分離係数が73であることが記載されている(明細書段落[0118]および段落[0120])。
 一方、特許文献2に記載の実分離係数α’は、実際の分離膜の評価としては現実の性能を示しているという長所を有するが、分離膜透過ガスの成分定量分析を、ガスクロマトグラフィー等を用いて行う必要があり、評価に手間がかかるという短所を有する。
 実際のガスクロマトグラフィーを用いた実分離係数の算出は以下のような複雑な手順を踏む必要がある。
 ステップ1;透過試験前に、ガスクロマトグラフィーを用いて混合ガスのガス種ごとに検量線を作成する。
 ステップ2;供給側の混合ガスを採取し、検量線に基づいて混合ガスの組成をガスクロマトグラフィーで分析し、所定の混合比にコントロールするとともに、供給側の圧力を一定に保持する。
 ステップ3;透過試験を行い、透過側のガスを採取し、その組成をガスクロマトグラフィーで分析する。
 ステップ4;流量計でガス透過量を測定する。
 ステップ5;ガスクロマトグラフィーの分析結果が安定するまでステップ3および4の工程を繰り返す。
 ステップ6;透過側の各成分の濃度、供給側のガス分圧とガスの透過量から実分離係数を算出する。
 このような従来技術の長所、短所に鑑み、本発明は理想分離係数の評価手段の簡便さという長所を維持して、現実の分離膜の性能を示している実分離係数を求める方法およびその評価装置を提供する。
 本発明者は、上記従来技術の長所、短所に鑑み、簡便な評価手段で実分離係数を算出する方法およびその評価装置を完成するに至った。
 本発明1は、混合ガスを分離するガス分離膜の品質評価方法であって、混合ガスが第1成分ガスおよび第1成分ガスよりもガス分離膜を透過しにくい第2成分ガスを含み、第1成分ガスを単成分ガスとしてガス分離膜に透過させるときの第1成分ガスの透過度を算出する工程(1)と、第2成分ガスを単成分ガスとしてガス分離膜に透過させるときの第2成分ガスの透過度を算出する工程(2)と、算出された第2成分ガスの透過度に対する第1成分ガスの透過度の比から混合ガスに対するガス分離膜の理想分離係数を算出する工程(3)と、複数のガス分離膜のそれぞれに対して、予め求めておいた理想分離係数と実際の混合ガスに対する分離性能を表す実分離係数との相関関係を利用して、工程(3)によって算出された理想分離係数を実分離係数に換算する工程(4)とを含むことを特徴とする。
 本発明1は、工程(3)で求めた理想分離係数を、複数のガス分離膜のそれぞれに対して、予め求めておいた理想分離係数と実際の混合ガスに対する分離性能を表す実分離係数との相関関係を利用して実分離係数に換算することを特徴としており、理想分離係数と実分離係数の間には相関関係が存在することを見出したことが本発明1を完成するに至った契機となっている。
 ここで、透過度とは、ガス透過流量÷{膜面積×時間×圧力差}で表される量であり、その単位は、mol/(msPa)である。また、理想分離係数は、分離膜を透過しやすいガスの透過度をQとし、分離膜を透過しにくいガスの透過度をQとすると、Q/Qで算出される係数である。
 また、実分離係数は、(Q’/Q’)/(P’/P’)で表される係数であり、Q’およびQ’は、それぞれ、透過性の高いガスおよび透過性の低いガスの透過度(mol/(msPa))を示し、P’およびP’は、それぞれ、供給ガス中の透過性の高いガスおよび透過性の低いガスの分圧である。Q’およびQ’は、ガスクロマトグラフィー等のガス濃度測定部および積算流量計等の流量測定部により計測される透過度であり、単位はmol/(msPa)である。P’およびP’は、供給ガスのそれぞれのガスのガス分圧である。
 理想分離係数と実分離係数の間の相関関係は、線形相関関係であってもよく、非線形相関関係であっても良い。理想分離係数と実分離係数の間に何らかの相関関係があれば、その関係に従って理想分離係数から実分離係数への変換が可能となる。
 本発明2は、ガス分離膜が多孔質支持体上に細孔径0.6nm以下のゼオライト膜が製膜されてなる多孔質支持体-ゼオライト膜の複合体であって、混合ガスが、水素(H)、酸素(O)、窒素(N)、二酸化炭素(CO)、メタン(CH)、エタン(C)、エチレン(C)、六フッ化硫黄(SF)、プロパン(C)、プロピレン(C)および水(HO)からなる群から選ばれる2種のガスから形成されることを特徴とする本発明1に記載のガス分離膜の品質評価方法である。
 本発明3は、ゼオライト膜が10員環細孔以下の細孔を有することを特徴とする本発明2に記載のガス分離膜の品質評価方法である。
 本発明4は、ゼオライト膜がMFI型のゼオライト構造を含むことを特徴とする本発明2または本発明3に記載のガス分離膜の品質評価方法である。
 本発明5は、前記ガス分離膜が多孔質支持体上に細孔径0.4nm以下のゼオライト膜が製膜された多孔質支持体-ゼオライト膜の複合体であって、混合ガスが、水素(H)、酸素(O)、窒素(N)、二酸化炭素(CO)、メタン(CH)、エタン(C)、エチレン(C)、六フッ化硫黄(SF)、プロパン(C)、プロピレン(C)および水(HO)からなる群から選ばれる2種のガスから形成されることを特徴とする本発明1に記載のガス分離膜の品質評価方法である。
 本発明6は、ゼオライト膜が8員環細孔以下の細孔を有することを特徴とする本発明5に記載のガス分離膜の品質評価方法である。
 本発明7は、ゼオライト膜がCHA型のゼオライト構造を含むことを特徴とする本発明5または本発明6に記載のガス分離膜の品質評価方法である。
 本発明8は、混合ガスを分離するガス分離膜の品質評価装置であり、混合ガスの各成分ガスである単成分ガスをそれぞれガス分離膜に供給する第1ガス供給部および第2ガス供給部と、単成分ガスをガス分離膜に透過させた際における、ガス分離膜の非透過側ガスの圧力を計測する第1圧力測定部と、ガス分離膜の透過側ガスの圧力を計測する第2圧力測定部と、ガス分離膜の透過側ガスの流量を計測する流量測定部と、ガス分離膜の透過側ガスに含まれる各成分ガスの濃度を計測するガス濃度測定部とを有するガス分離膜の品質評価装置であって、第1圧力測定部、第2圧力測定部および前記流量測定部の測定結果から単成分ガスの理想分離係数を算出する理想分離係数演算部と、複数のガス分離膜に対して、理想分離係数演算部によって求めた理想分離係数と流量測定部およびガス濃度測定部を用いて求めた実際の混合ガスの分離性能を表す実分離係数との間の相関を予め求めて得られた相関マップとを含む演算手段を備えていることを特徴とする。
 本発明8は、本発明1の測定方法を利用したガス分離膜の品質評価装置である。理想分離係数は、単成分ガスの透過度から求めた理想分離係数を算出する理想分離係数演算部において算出される。
 複数のガス分離膜に対して、理想分離係数演算部によって求めた理想分離係数と流量測定部およびガス濃度測定部を用いて求めた実際の混合ガスの分離性能を表す実分離係数との間の相関を予め求めて得られた相関マップは、演算手段の中に納められ、理想分離係数を実分離係数へ換算する際に利用される。
 本発明9は、本発明8のガス分離膜の品質評価装置において、演算手段にさらに、ガス分離膜に供給するガスを選択するガス選択指示部と、流量測定部およびガス濃度測定部を用いて求めた実際の混合ガスの分離性能を表す実分離係数と理想分離係数演算部によって算出された理想分離係数とから相関マップを作成する相関マップ作成部を有することを特徴とする。前記混合ガスの供給手段としては、第1ガス供給部および第2ガス供給部の単成分ガスを混合して供給するものであっても良く、あるいは第1ガスと第2ガスとを所定の比率で充填した混合ガスボンベを別途用意して供給するものであっても良い。
 本発明9は、本発明8のガス分離膜の品質評価装置にさらに、相関マップ作成部を有しているので、実分離係数の算出を全て自動で行うことが可能となる。
 本発明によれば、理想分離係数の評価手段の簡便さで、現実の分離膜の性能を示している実分離係数を求めることができる。
本実施例1に係るガス分離膜の品質評価装置である。 単成分試験時の透過度比(理想分離係数)と混合試験時の透過度比(実分離係数)の相関を示す図である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、本発明によるガス分離膜の品質評価装置(1)の一例を示す。図1内の実線矢印は実際のガスの流れを、一点鎖線矢印はデータの流れを示す。
 2種のガスは、第1ガス供給部(3)および第2ガス供給部(4)の中の第1ガスボンベ(32)と第2ガスボンベ(42)にそれぞれ収容され、供給ガスの流量は、第1レギュレータ(31)、第2レギュレータ(41)、第1流量コントローラ(33)および第2流量コントローラ(43)によってコントロールされる。
 理想分離係数を計測する際は、単成分ガスとして第1ガスボンベ(32)からのガスまたは第2ガスボンベ(42)からのガスの何れかが分離膜モジュール(5)に供給されるが、その選択は第1レギュレータ(31)、第2レギュレータ(41)、第1流量コントローラ(33)および第2流量コントローラ(43)を調節して行う。
 ガス分離膜(51)を透過しないガスのガス圧は第1圧力測定部(61)で測定され、ガス分離膜(51)を透過するガスのガス圧は第2圧力測定部(62)で測定される。供給側ガスの圧力は、第1背圧弁(63)で調整され、透過側ガスの圧力は、第2背圧弁(64)で調整される。
 理想分離係数は、演算手段(7)内の理想分離係数演算部(71)で算出される。理想分離係数の算出のための情報は、第1圧力測定部(61)で測定されるガス分離膜非透過側圧力(一点鎖線)、第2圧力測定部(62)で測定されるガス分離膜透過側圧力(一点鎖線)、後述の流量測定部(81)で測定される供給ガスの透過量の情報から算出することができる。
 次に、実分離係数は、混合ガスを分離膜モジュール(5)に供給して測定するのであるが、以下、順を追って説明する。
 2種の混合ガスの混合比およびガス流量は、第1レギュレータ(31)、第2レギュレータ(41)、第1流量コントローラ(33)、第2流量コントローラ(43)を用いてコントロールするが、混合比が一定になった時点で、ガスクロマトグラフィー等(図1ではガス濃度測定部(82))を用いて成分ガスそれぞれの濃度測定を行って確認する。その後、供給ガス側の圧力を、第1背圧弁(63)を用いて一定に保つ。
 ガス分離膜(51)を透過したガスは、第2背圧弁(64)を通過して、三方弁(66)を通って、流量測定部(81)とガス濃度測定部(82)に送られて、透過側ガスの流量と、2種混合ガスの各成分の濃度が測定される。
 測定された各データは、相関マップ作成部(73)に送られ相関マップ(72)が作成され、理想分離係数を実分離係数へ変換する演算部(図示せず)に送られて、実分離係数がアウトプットされる。
 ガス分離膜(51)の非透過側ガスは排気口(65)を通り、ガス分離膜(51)の透過側ガスは排気口(83)、(84)を通り、外部へ排ガスとして排出される。
 ガスをどのように流すかの指示は、演算手段(7)内のガス選択指示部(74)によって、第1ガス供給部(3)および第2ガス供給部(4)へなされる。
 実際に図1で示すガス分離膜の品質評価装置(1)を用いて理想分離係数と実分離係数を計測した結果について以下に説明する。
 ガス分離膜(51)は、多孔質支持体上に合成したCHA型ゼオライト膜を用いた。本発明は、その原理上、ゼオライト膜に限られるものではなく、中空糸膜等の分離膜であっても良い。
 単成分試験は、COガスとCHガスの2種のガスを用いて行った。COガスの流量は10L/minとし、CHガスの流量も同じく10L/minとした。温度は40℃とし、圧力は背圧弁(63),(64)で調節し、全圧を0.4MPaとした。
 CHA型ゼオライト膜は、5種類の分離係数を有するものを準備し試験に供した。
 混合ガス試験は、単成分試験に用いたCHA型ゼオライト膜を用いて行い、COガスとCHガスの混合ガスで、モル組成比CO/CHを50/50とし、ガス流量はCOガスを5L/minとし、CHガスも同じく5L/minとした。温度および全圧は単成分ガスと同じとした。
 測定結果から作成した相関マップが図2である。横軸は単成分試験時の透過度比(理想分離係数)で、縦軸は混合試験時の透過度比(実分離係数)を示す。図2を見ると、非常に高い線形性が見られ、線形相関係数は0.9979であり、ほとんど直線上に5つのデータが乗っている。
 この相関マップを用いることによって、COガスとCHガスの2種のガスを用いた単成分試験時の透過度比である理想分離係数を測定するだけで信頼性のある実分離係数の算出を行うことができる。
 計測が容易な理想分離係数と予め取得した相関マップを使うことによって、ガス分離膜の実際の分離性能を表す実分離係数の算出が可能となるので利用価値が高い。
1:ガス分離膜の品質評価装置
3:第1ガス供給部
4:第2ガス供給部
5:分離膜モジュール
7:演算手段
31:第1レギュレータ
32:第1ガスボンベ
33:第1流量コントローラ
41:第2レギュレータ
42:第2ガスボンベ
43:第2流量コントローラ
51:ガス分離膜
61:第1圧力測定部
62:第2圧力測定部
63:第1背圧弁
64:第2背圧弁
65:排気口
66:三方弁
71:理想分離係数演算部
72:相関マップ
73:相関マップ作成部
74:ガス選択指示部
81:流量測定部
82:ガス濃度測定部
83、84:排気口

Claims (9)

  1.  混合ガスを分離するガス分離膜の品質評価方法であって、
     当該混合ガスが第1成分ガスおよび第1成分ガスよりも前記ガス分離膜を透過しにくい第2成分ガスを含み、
     第1成分ガスを単成分ガスとして前記ガス分離膜に透過させるときの第1成分ガスの透過度を算出する工程(1)と、
     第2成分ガスを単成分ガスとして前記ガス分離膜に透過させるときの第2成分ガスの透過度を算出する工程(2)と、
     算出された前記第2成分ガスの透過度に対する前記第1成分ガスの透過度の比から前記混合ガスに対する前記ガス分離膜の理想分離係数を算出する工程(3)と、
     複数のガス分離膜のそれぞれに対して、予め求めておいた前記理想分離係数と実際の混合ガスに対する分離性能を表す実分離係数との相関関係を利用して、前記工程(3)によって算出された理想分離係数を実分離係数に換算する工程(4)と、
    を含むことを特徴とするガス分離膜の品質評価方法。
  2.  前記ガス分離膜が多孔質支持体上に細孔径0.6nm以下のゼオライト膜が製膜されてなる多孔質支持体-ゼオライト膜の複合体であって、
     前記混合ガスが、水素(H)、酸素(O)、窒素(N)、二酸化炭素(CO)、メタン(CH)、エタン(C)、エチレン(C)、六フッ化硫黄(SF)、プロパン(C)、プロピレン(C)および水(HO)からなる群から選ばれる2種のガスから形成されることを特徴とする請求項1に記載のガス分離膜の品質評価方法。
  3.  前記ゼオライト膜が10員環細孔以下の細孔を有することを特徴とする請求項2に記載のガス分離膜の品質評価方法。
  4.  前記ゼオライト膜がMFI型のゼオライト構造を含むことを特徴とする請求項2または請求項3に記載のガス分離膜の品質評価方法。
  5.  前記ガス分離膜が多孔質支持体上に細孔径0.4nm以下のゼオライト膜が製膜された多孔質支持体-ゼオライト膜の複合体であって、
     前記混合ガスが、水素(H)、酸素(O)、窒素(N)、二酸化炭素(CO)、メタン(CH)、エタン(C)、エチレン(C)、六フッ化硫黄(SF)、プロパン(C)、プロピレン(C)および水(HO)からなる群から選ばれる2種のガスから形成されることを特徴とする請求項1に記載のガス分離膜の品質評価方法。
  6.  前記ゼオライト膜が8員環細孔以下の細孔を有することを特徴とする請求項5に記載のガス分離膜の品質評価方法。
  7.  前記ゼオライト膜がCHA型のゼオライト構造を含むことを特徴とする請求項5または請求項6に記載のガス分離膜の品質評価方法。
  8.  混合ガスを分離するガス分離膜の品質評価装置であり、
     前記混合ガスの各成分ガスである単成分ガスをそれぞれ前記ガス分離膜に供給する第1ガス供給部および第2ガス供給部と、
     前記単成分ガスを前記ガス分離膜に透過させた際における、
     前記ガス分離膜の非透過側ガスの圧力を計測する第1圧力測定部と、
     前記ガス分離膜の透過側ガスの圧力を計測する第2圧力測定部と、
     前記ガス分離膜の透過側ガスの流量を計測する流量測定部と、
     前記ガス分離膜の透過側ガスに含まれる各成分ガスの濃度を計測するガス濃度測定部と、
    を有するガス分離膜の品質評価装置であって、
     第1圧力測定部、第2圧力測定部および前記流量測定部の測定結果から単成分ガスの理想分離係数を算出する理想分離係数演算部と、
     複数のガス分離膜に対して、前記理想分離係数演算部によって求めた理想分離係数と流量測定部およびガス濃度測定部を用いて求めた実際の混合ガスの分離性能を表す実分離係数との間の相関を予め求めて得られた相関マップと、
    を含む演算手段を備えていることを特徴とするガス分離膜の品質評価装置。
  9.  請求項8のガス分離膜の品質評価装置において、
     前記演算手段にさらに、
     前記ガス分離膜に供給するガスを選択するガス選択指示部と、
     前記流量測定部および前記ガス濃度測定部を用いて求めた実際の混合ガスの分離性能を表す実分離係数と前記理想分離係数演算部によって算出された理想分離係数とから相関マップを作成する相関マップ作成部と、
    を有するガス分離膜の品質評価装置。
PCT/JP2017/044167 2016-12-28 2017-12-08 ガス分離膜の品質評価方法とその評価装置 WO2018123515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255057A JP6643223B2 (ja) 2016-12-28 2016-12-28 ガス分離膜の品質評価方法とその評価装置
JP2016-255057 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123515A1 true WO2018123515A1 (ja) 2018-07-05

Family

ID=62711011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044167 WO2018123515A1 (ja) 2016-12-28 2017-12-08 ガス分離膜の品質評価方法とその評価装置

Country Status (2)

Country Link
JP (1) JP6643223B2 (ja)
WO (1) WO2018123515A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032330A (ja) * 2018-08-28 2020-03-05 日立造船株式会社 ガス分離システム及びガス分離方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114714A (ja) * 1984-11-09 1986-06-02 ザ リサーチ フアウンデーシヨン オブ ステイト ユニバーシイテイ オブ ニユーヨーク ガス分離用複合膜の製造方法
JPH0398631A (ja) * 1989-09-05 1991-04-24 Phillips Petroleum Co ガス混合物分離用半透膜
JP2009034614A (ja) * 2007-08-02 2009-02-19 National Institute Of Advanced Industrial & Technology 中空糸炭素膜とその製造方法
WO2009054460A1 (ja) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation 気体分離膜
JP2012066242A (ja) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp ガス分離用ゼオライト膜複合体
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114714A (ja) * 1984-11-09 1986-06-02 ザ リサーチ フアウンデーシヨン オブ ステイト ユニバーシイテイ オブ ニユーヨーク ガス分離用複合膜の製造方法
JPH0398631A (ja) * 1989-09-05 1991-04-24 Phillips Petroleum Co ガス混合物分離用半透膜
JP2009034614A (ja) * 2007-08-02 2009-02-19 National Institute Of Advanced Industrial & Technology 中空糸炭素膜とその製造方法
WO2009054460A1 (ja) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation 気体分離膜
JP2012066242A (ja) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp ガス分離用ゼオライト膜複合体
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体

Also Published As

Publication number Publication date
JP6643223B2 (ja) 2020-02-12
JP2018103150A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
Yu et al. Highly permeable and selective tubular zeolite CHA membranes
Wang et al. Characterization of hollow fiber membranes in a permeator using binary gas mixtures
Yu et al. Industrially relevant CHA membranes for CO2/CH4 separation
Avila et al. Concentration polarization in SAPO-34 membranes at high pressures
Koester et al. Water vapor permeance: The interplay of feed and permeate activity
Wu et al. Transport study of pure and mixed gases through PDMS membrane
MY153638A (en) High flux selectivity sapo-34 membranes for co2/ch4 separations
Tawalbeh et al. Modeling the transport of CO2, N2, and their binary mixtures through highly permeable silicalite-1 membranes using Maxwell− Stefan equations
Haraya et al. A study of concentration polarization phenomenon on the surface of a gas separation membrane
Peng et al. Analysis of the gas transport performance through PDMS/PS composite membranes using the resistances-in-series model
Boon et al. Modelling and systematic experimental investigation of mass transfer in supported palladium-based membrane separators
WO2018123515A1 (ja) ガス分離膜の品質評価方法とその評価装置
Zito et al. Mutual influence in permeation of CO2-containing mixtures through a SAPO-34 membrane
Kerber et al. Mass transfer and selectivity analysis of a dense membrane contactor for upgrading biogas
Neubauer et al. Combination of membrane separation and gas condensation for advanced natural gas conditioning
Kim et al. Practical designs of membrane contactors and their performances in CO2/CH4 separation
Uchytil et al. Influence of capillary condensation effects on mass transport through porous membranes
Feng et al. A study of silicone rubber/polysulfone composite membranes: correlating H2/N2 and O2/N2 permselectivities
US6845651B2 (en) Quick BET method and apparatus for determining surface area and pore distribution of a sample
Rautenbach et al. A variation in fiber properties affects the performance of defect-free hollow fiber membrane modules for air separation
JP6645773B2 (ja) 細孔径評価装置および細孔径評価方法
Lababidi Air separation by polysulfone hollow fibre membrane permeators in series: Experimental and simulation results
Song et al. Effect of Light Gas Components on CO2 Permeation through DD3R Membranes
Narinsky Applicability conditions of idealized flow models for gas separation by asymmetric membrane
KR101791440B1 (ko) 분리막 성능 측정 장치 및 이를 사용한 분리막 성능 측정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886943

Country of ref document: EP

Kind code of ref document: A1