WO2018123426A1 - 直流整流子電動機の回転に関する情報を取得する装置及び方法 - Google Patents

直流整流子電動機の回転に関する情報を取得する装置及び方法 Download PDF

Info

Publication number
WO2018123426A1
WO2018123426A1 PCT/JP2017/043025 JP2017043025W WO2018123426A1 WO 2018123426 A1 WO2018123426 A1 WO 2018123426A1 JP 2017043025 W JP2017043025 W JP 2017043025W WO 2018123426 A1 WO2018123426 A1 WO 2018123426A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
rotation
signal
electric motor
pulse signal
Prior art date
Application number
PCT/JP2017/043025
Other languages
English (en)
French (fr)
Inventor
勤 阿部
軍安 都
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018123426A1 publication Critical patent/WO2018123426A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present disclosure relates to an apparatus and a method for acquiring information related to rotation of a DC commutator motor.
  • Patent Document 1 requires a frequency counter. Therefore, the rotation amount cannot be acquired based on the voltage between the terminals of the motor whose drive voltage is PWM controlled without using the frequency counter.
  • An apparatus is an apparatus for acquiring information related to rotation of an electric motor having a commutator, and a net voltage obtained from a voltage between terminals of the electric motor whose driving voltage is PWM-controlled, and A calculation unit that calculates information related to rotation of the electric motor based on current flowing through the electric motor;
  • FIG. 1 is a schematic diagram illustrating a configuration example of an apparatus 100 according to an embodiment of the present invention.
  • the apparatus 100 is an apparatus that acquires information about the rotation of the electric motor 10 (hereinafter referred to as “rotation information”).
  • rotation information information about the rotation of the electric motor 10
  • the apparatus 100 acquires rotation information of the electric motor 10 based on the voltage V between the terminals of the electric motor 10 and the current Im flowing through the electric motor 10.
  • the apparatus 100 may control the rotation position of the rotation shaft of the electric motor 10 based on the acquired rotation information without using a rotation sensor such as a hall sensor, for example.
  • the electric motor 10 is, for example, a DC commutator motor including a commutator.
  • the electric motor 10 is used, for example, for raising and lowering the window of an automobile, adjusting the angle of a door mirror, adjusting the air flow rate in an air conditioner, adjusting the optical axis of a headlight, and the like.
  • FIG. 2 is a schematic diagram of an example of the commutator 20.
  • the commutator 20 includes eight commutator pieces 20a separated from each other by slits 20s.
  • the slit angle ⁇ c which is the central angle of the arc of each commutator piece 20a, is about 45 degrees.
  • the electric motor 10 is connected to a power source via four switches SW1 to SW4.
  • switches SW1 to SW4 When the switch SW1 and the switch SW3 are in the closed state (conducting state), they rotate forward clockwise, and when the switch SW2 and the switch SW4 are in the closed state (conducting state), the counterclockwise direction is reversed. It is configured to rotate.
  • the current flowing through the forward rotating motor 10 has a positive value
  • the current flowing through the reverse rotating motor 10 has a negative value
  • the switch SW2 and the switch SW3 are closed (conductive state)
  • the current flowing through the forward rotating motor 10 has a negative value
  • the current flowing through the reverse rotating motor 10 has a positive value.
  • the voltage detection unit 10a is configured to detect the voltage V between the terminals of the electric motor 10.
  • the current detection unit 10b is configured to detect a current Im flowing through the electric motor 10.
  • the apparatus 100 mainly includes a voltage filter unit 30, a rotation angular velocity calculation unit 31, a rotation angle calculation unit 32, a current filter unit 33, a first signal generation unit 34, a second signal generation unit 35, a rotation information calculation unit 36, and the like.
  • the voltage filter unit 30 is a functional element configured to adjust the voltage V output from the voltage detection unit 10a.
  • the voltage filter unit 30 adjusts the voltage V so that the rotation angular velocity calculation unit 31 can appropriately calculate the rotation angular velocity of the electric motor 10.
  • the voltage filter unit 30 is a low-pass filter, and is configured to remove high-frequency components from the waveform of the voltage V output from the voltage detection unit 10 a as noise.
  • the rotational angular velocity calculation unit 31 is a functional element configured to calculate the rotational angular velocity of the electric motor 10 based on the voltage V between the terminals of the electric motor 10 and the current Im flowing through the electric motor 10. In the example of FIG. 1, the rotational angular velocity calculation unit 31 calculates the rotational angular velocity ⁇ based on Expression (1).
  • Ke is a counter electromotive voltage constant
  • Rm is an internal resistance of the electric motor 10
  • Lm is an inductance of the electric motor 10
  • dIm / dt is a single derivative of the current Im.
  • the single differentiation of the current Im is, for example, the difference between the previous value of the current Im and the current value of the current Im.
  • the rotation angular velocity calculation unit 31 may be configured to calculate, for example, the rotation angular velocity ⁇ of the electric motor 10 for each predetermined control cycle and output the calculated rotation angular velocity ⁇ to the rotation angle calculation unit 32.
  • the rotation angle calculation unit 32 is a functional element configured to calculate the rotation angle ⁇ of the electric motor 10. In the example of FIG. 1, the rotation angle calculation unit 32 calculates the rotation angle ⁇ based on Expression (2).
  • the rotation angle calculation unit 32 calculates, for example, the rotation angle ⁇ by accumulating the rotation angular velocity ⁇ output by the rotation angular velocity calculation unit 31 at every predetermined control cycle, and the calculated rotation angle ⁇ is input to the second signal generation unit 35. It may be configured to output in response.
  • the rotation angle calculation unit 32 may be configured to reset the rotation angle ⁇ to zero according to the synchronization command from the second signal generation unit 35.
  • the current filter unit 33 is a functional element configured to adjust the current Im output from the current detection unit 10b.
  • the current filter unit 33 adjusts the current Im so that the first signal generation unit 34 can appropriately detect the ripple component Ir of the current Im.
  • the current filter unit 33 is a band-pass filter, and is configured to remove components other than the ripple component Ir from the waveform of the current Im output from the current detection unit 10b.
  • the ripple component Ir is a periodic component included in the current Im, and is generated mainly due to contact / separation between the commutator piece 20a and the brush. Therefore, typically, the angle at which the electric motor 10 rotates during one cycle of the ripple component Ir is equal to the inter-slit angle ⁇ c.
  • the first signal generation unit 34 is a functional element configured to generate a signal indicating that the electric motor 10 has rotated by a predetermined angle. For example, the first signal generation unit 34 generates a ripple detection signal (first pulse signal Pa) based on the waveform of the ripple component Ir output from the current filter unit 33.
  • FIG. 3 is a diagram illustrating an example of the timing at which the first signal generation unit 34 generates the first pulse signal Pa.
  • the first signal generation unit 34 generates the first pulse signal Pa every time the ripple component Ir exceeds the reference current value Ib.
  • the first pulse signal Pa is generated at times t1, t2, t3,. T1, T2, T3,..., Tn, etc. indicate the period of the ripple component, and ⁇ 1, ⁇ 2, ⁇ 3,..., ⁇ n, etc. are generated when the first signal generator 34 generates the first pulse signal.
  • the rotation angle ⁇ is shown.
  • the rotation angle ⁇ is a value calculated by the rotation angle calculation unit 32.
  • the first signal generation unit 34 typically generates the first pulse signal Pa when the magnitude of the rotation angle ⁇ is substantially equal to a predetermined angle (for example, the inter-slit angle ⁇ c).
  • the first signal generation unit 34 when the current Im and its ripple component Ir become small during the inertia rotation period after the power of the motor 10 is turned off, the first signal generation unit 34 generates the first pulse signal Pa based on the waveform of the ripple component Ir. It may not be generated. In addition, for example, when an inrush current occurs immediately after the electric motor 10 is turned on, the first signal generation unit 34 may erroneously generate the first pulse signal Pa according to the inrush current. Such generation omission or erroneous generation of the first pulse signal Pa reduces the reliability of the rotation information of the electric motor 10 output by the apparatus 100.
  • the second signal generator 35 can generate a signal representing that the electric motor 10 has rotated by a predetermined angle with higher accuracy.
  • the second signal generation unit 35 is a functional element configured to generate a signal indicating that the electric motor 10 has rotated by a predetermined angle.
  • the second signal generation unit 35 generates a pseudo ripple signal (second pulse signal Pb) based on the rotation angle ⁇ output by the rotation angle calculation unit 32 and the first pulse signal Pa output by the first signal generation unit 34. May be configured to generate.
  • FIG. 4 is a diagram illustrating an example of timing at which the second signal generation unit 35 generates the second pulse signal Pb.
  • the second signal generator 35 generates the second pulse signal Pb when the rotation angle ⁇ reaches a predetermined angle, for example.
  • the predetermined angle is, for example, the slit-to-slit angle ⁇ c.
  • the second pulse signals Pb3, Pb5, and Pb6 are generated when the absolute values of the rotation angles ⁇ 3, ⁇ 7, and ⁇ 9 reach the inter-slit angle ⁇ c at times t3, t7, and t9.
  • the second pulse signal Pb When the second pulse signal Pb is generated, the second signal generator 35 outputs a synchronization command to the rotation angle calculator 32.
  • the rotation angle calculation unit 32 resets the rotation angle ⁇ to zero.
  • the second signal generation unit 35 generates the second pulse signal Pb2 and does not receive the first pulse signal Pa, and the absolute value of the rotation angle ⁇ 3 is the slit-to-slit angle.
  • the second pulse signal Pb3 is generated.
  • the second signal generation unit 35 determines that the absolute value of the rotation angle ⁇ calculated by the rotation angle calculation unit 32 is the angle between the slits. As long as ⁇ c is reached, the second pulse signal Pb is generated. Therefore, generation omission of the first pulse signal Pa can be reliably prevented.
  • the second signal generation unit 35 is, for example, when the rotation angle ⁇ when the first signal generation unit 34 generates the first pulse signal Pa is equal to or greater than the first threshold ⁇ u and less than the inter-slit angle ⁇ c.
  • a pulse signal Pb is generated.
  • the first threshold value ⁇ u may be a preset value or a dynamically set value.
  • the rotation angles ⁇ 1, ⁇ 2, and ⁇ 5 when the first signal generation unit 34 generates the first pulse signals Pa1, Pa2, and Pa4 are equal to or greater than the first threshold ⁇ u and less than the inter-slit angle ⁇ c.
  • the second signal generator 35 can determine that the first pulse signals Pa1, Pa2, Pa5 generated by the first signal generator 34 at times t1, t2, t5 are not noise. Therefore, the second signal generator 35 generates the second pulse signals Pb1, Pb2, and Pb4 at times t1, t2, and t5. When the second pulse signal Pb is generated, the second signal generator 35 outputs a synchronization command to the rotation angle calculator 32.
  • the second signal generation unit 35 does not generate the second pulse signal Pb, for example, when the rotation angle ⁇ when the first signal generation unit 34 generates the first pulse signal Pa is less than the second threshold ⁇ d.
  • the second threshold value ⁇ d may be a preset value or a dynamically set value. Such a situation typically occurs after the second pulse signal Pb is generated due to the rotation angle ⁇ reaching a predetermined angle.
  • the first signal generation unit 34 performs the first pulse.
  • a signal Pa3 is generated.
  • the rotation angle ⁇ 4 at this time is less than the second threshold value ⁇ d. That is, the rotation angle ⁇ 4 integrated after being reset at time t3 is still less than the angle ⁇ .
  • the second signal generation unit 35 can determine that the first pulse signal Pa3 generated by the first signal generation unit 34 at time t4 can be integrated with the second pulse signal Pb3 generated at time t3. Specifically, the second signal generator 35 should generate the second pulse signal Pb3 when the first pulse signal Pa3 is generated.
  • the first pulse signal Pa3 is generated in order to reliably prevent the generation of the pulse signal. Previously, the second pulse signal Pb3 was generated.
  • the second signal generator 35 generates the first pulse signal Pa3 generated immediately after generating the second pulse signal Pb3, and the first pulse signal Pa that should have been generated simultaneously with the second pulse signal Pb3. Can be considered.
  • the second signal generation unit 35 outputs a synchronization command to the rotation angle calculation unit 32 without generating the second pulse signal Pb at time t4.
  • a broken-line arrow toward “x” in FIG. 4 indicates that the second pulse signal Pb is not generated based on the first pulse signal Pa3. The same applies to the broken-line arrows toward the other “x”.
  • the second signal generator 35 generates the second pulse signal when the rotation angle ⁇ when the first signal generator 34 generates the first pulse signal Pa is greater than or equal to the second threshold ⁇ d and less than the first threshold ⁇ u. Pb is not generated, and a synchronization command is not output to the rotation angle calculation unit 32.
  • the rotation angle ⁇ 6 when the first signal generation unit 34 generates the first pulse signal Pa5 at time t6 is equal to or greater than the second threshold ⁇ d and less than the first threshold ⁇ u.
  • the second signal generation unit 35 can determine that the first pulse signal Pa5 is based on noise. Therefore, the second signal generation unit 35 does not generate the second pulse signal Pb at time t6 and does not output a synchronization command to the rotation angle calculation unit 32. That is, the influence of the first pulse signal Pa5 based on noise can be completely eliminated.
  • the second signal generation unit 35 reduces the current Im and its ripple component Ir during the inertia rotation period after the power of the motor 10 is turned off, and the first signal generation unit 34 has a waveform of the ripple component Ir. Even if the first pulse signal Pa cannot be generated based on the second pulse signal Pb, the second pulse signal Pb can be generated.
  • the second signal generation unit 35 for example, generates an inrush current immediately after the motor 10 is turned on, and the first signal generation unit 34 erroneously generates the first pulse signal Pa according to the inrush current. Even in this case, the second pulse signal Pb corresponding to the first pulse signal Pa is not generated. That is, the influence of the first pulse signal Pa can be completely eliminated.
  • the apparatus 100 can improve the reliability of the rotation information of the electric motor 10 by calculating the rotation information of the electric motor 10 based on the second pulse signal Pb instead of the first pulse signal Pa.
  • the second signal generation unit 35 is configured to output a direction signal indicating the rotation direction of the electric motor 10.
  • the second signal generation unit 35 is configured to output a signal indicating the forward rotation direction if the rotation angle ⁇ is a positive value, and to output a signal indicating the reverse rotation direction if the rotation angle ⁇ is a negative value.
  • the rotation angle ⁇ has a positive value when the current flowing through the motor 10 is a positive value, and has a negative value when the current flowing through the motor 10 is a negative value.
  • the rotation angle ⁇ has a positive value when the current flowing through the motor 10 is a negative value, and has a negative value when the current flowing through the motor 10 is a positive value.
  • the rotation information calculation unit 36 is a functional element configured to calculate rotation information of the electric motor 10.
  • the rotation information of the electric motor 10 includes, for example, a rotation amount (rotation angle) from the reference rotation position, a rotation number from the reference rotation position, and the like.
  • the rotation information of the electric motor 10 may include a relative position of the upper edge of the window with respect to a reference position, an opening amount of the window, and the like.
  • statistical values such as an average value, maximum value, minimum value, and intermediate value of the rotational angular velocity ⁇ in a certain period may be included. In the example of FIG.
  • the rotation information calculation unit 36 calculates rotation information of the electric motor 10 based on the output of the second signal generation unit 35. For example, the amount of rotation after the rotation of the electric motor 10 is calculated by multiplying the number of second pulse signals Pb generated after the rotation of the electric motor 10 is multiplied by the inter-slit angle ⁇ c. At this time, for example, the rotation information calculation unit 36 determines whether to increment or decrement the number of second pulse signals Pb based on the direction signal output together with the second pulse signal Pb by the second signal generation unit 35. Alternatively, the rotation information calculation unit 36 separately counts the number of second pulse signals Pb received together with the direction signal representing the forward rotation direction and the number of second pulse signals Pb received together with the direction signal representing the reverse rotation direction. Then, the rotation amount of the electric motor 10 may be calculated based on the difference between them.
  • FIG. 5 is a flowchart of the rotation amount calculation process.
  • the apparatus 100 performs the rotation amount calculation process while the electric motor 10 is being driven.
  • apparatus 100 acquires voltage V and current Im (step ST1).
  • the apparatus 100 acquires the voltage V output from the voltage detection unit 10a and the current Im output from the current detection unit 10b for each predetermined control period.
  • the apparatus 100 calculates the rotational angular velocity ⁇ and the rotational angle ⁇ (step ST2).
  • the rotational angular velocity calculation unit 31 of the apparatus 100 calculates the rotational angular velocity ⁇ for each predetermined control cycle by substituting the voltage V and the current Im into the equation (1).
  • the rotation angle calculation unit 32 of the apparatus 100 calculates the rotation angle ⁇ by integrating the rotation angular velocities ⁇ calculated for each control cycle.
  • the device 100 determines whether or not the rotation angle ⁇ is less than a predetermined angle (step ST3).
  • the second signal generation unit 35 of the apparatus 100 determines whether or not the rotation angle ⁇ is less than the inter-slit angle ⁇ c.
  • the second signal generator 35 determines that the first pulse signal Pa has not been generated at the expected timing. Then, the second pulse signal Pb is generated (step ST10), and the rotation angle ⁇ is reset (step ST11). This is a case where the rotation angle ⁇ has reached the inter-slit angle ⁇ c before the first pulse signal Pa is generated.
  • the absolute value of the rotation angle ⁇ is the rotation angle at times t3, t7, and t9. This corresponds to the case where ⁇ 3, ⁇ 7, and ⁇ 9 are reached.
  • the second signal generator 35 determines whether or not the first pulse signal Pa is generated (step ST4). . In the example of FIG. 1, it is determined whether or not the first pulse signal Pa is generated by the first signal generation unit 34.
  • the second signal generation unit 35 When it is determined that the first pulse signal Pa has not yet been generated when the rotation angle ⁇ is less than the inter-slit angle ⁇ c (NO in step ST4), the second signal generation unit 35 generates the second pulse signal Pb. The rotation angle ⁇ is not reset. Then, the rotation information calculation unit 36 calculates the rotation amount of the electric motor 10 based on the output of the second signal generation unit 35. In this case, there is no change in the calculated rotation amount. This corresponds to the case where the rotation angle ⁇ is the rotation angle ⁇ 0 at time t0 in the example of FIG.
  • the second signal generation unit 35 determines whether the rotation angle ⁇ is less than the first threshold ⁇ u (step ST5). This is to determine whether or not the first pulse signal Pa generated earlier than the intended timing is based on noise.
  • the second signal generator 35 When it is determined that the rotation angle ⁇ is equal to or greater than the first threshold ⁇ u (NO in step ST5), the second signal generator 35 operates in the same manner as when the first pulse signal Pa is generated at the expected timing. To do. That is, the second pulse signal Pb is generated (step ST10), and the rotation angle ⁇ is reset (step ST11). This is because it can be determined that the first pulse signal Pa generated earlier than the expected timing is not based on noise. This corresponds to the case where the first pulse signals Pa1, Pa2, Pa4 are generated at times t1, t2, t5 in the example of FIG.
  • the second signal generator 35 When it is determined that the rotation angle ⁇ is less than the first threshold value ⁇ u (YES in step ST5), the second signal generator 35 cannot determine at this time that the first pulse signal Pa is not based on noise. This is because the first pulse signal Pa is not generated earlier than the expected timing but may be generated later than the expected timing. Therefore, the second signal generator 35 determines whether or not the rotation angle ⁇ is less than the second threshold ⁇ d (step ST6). This is for determining whether or not the first pulse signal Pa generated later than the intended timing is based on noise.
  • the second signal generation unit 35 When it is determined that the rotation angle ⁇ is less than the second threshold ⁇ d (YES in step ST6), the second signal generation unit 35 resets the rotation angle ⁇ to zero without generating the second pulse signal Pb ( Step ST11). This is because it can be determined that the first pulse signal Pa generated later than the expected timing is not based on noise. That is, it can be determined that the first pulse signal Pa generated later than the expected timing corresponds to the second pulse signal Pb generated immediately before. This corresponds to the case where the first pulse signals Pa3 and Pa6 are generated at times t4 and t8 in the example of FIG. That is, the second signal generation unit 35 can determine that the first pulse signals Pa3 and Pa6 correspond to the second pulse signals Pb3 and Pb5.
  • the second signal generation unit 35 determines that the first pulse signal Pa is based on noise. In this case, the second signal generator 35 does not generate the second pulse signal Pb and does not reset the rotation angle ⁇ . Then, the rotation information calculation unit 36 calculates the rotation amount of the electric motor 10 based on the output of the second signal generation unit 35 that does not generate the second pulse signal Pb. This corresponds to the case where the first pulse signal Pa5 is generated at time t6 in the example of FIG. That is, the second signal generation unit 35 determines that the first pulse signal Pa5 is based on noise.
  • the device 100 calculates the rotation amount of the electric motor 10 (step ST7).
  • the rotation information calculation unit 36 of the device 100 starts rotation of the electric motor 10 by multiplying the number of second pulse signals Pb generated after the rotation of the electric motor 10 is multiplied by the inter-slit angle ⁇ c. After that, the amount of rotation is calculated.
  • FIG. 6 is a diagram showing transitions of the composite pulse signal and the hall pulse signal.
  • the synthesized pulse signal is a signal obtained by synthesizing a plurality of pulses of the second pulse signal Pb into one pulse.
  • the slit-to-slit angle ⁇ c is 90 degrees.
  • the first pulse signal Pa and the second pulse signal Pb are basically generated every time the rotating shaft of the electric motor 10 rotates 90 degrees.
  • the synthesized pulse signal is generated by synthesizing two pulses of the second pulse signal Pb into one pulse. That is, the apparatus 100 is configured to generate one composite pulse signal each time the rotation shaft of the electric motor 10 rotates 180 degrees.
  • the hall pulse signal is a pulse signal output from the hall sensor.
  • the hall sensor detects a magnetic flux generated by a magnet attached to the rotating shaft of the electric motor 10 for comparison between the second pulse signal Pb and the hall pulse signal.
  • the apparatus 100 is configured to generate one Hall pulse signal each time the rotation shaft of the electric motor 10 rotates 180 degrees.
  • the apparatus 100 that acquires the rotation information of the electric motor 10 including the commutator 20 includes the rotation angle calculation unit 32 that calculates the rotation angle ⁇ based on the voltage V and the current Im, and the ripple included in the current Im.
  • a first signal generator 34 that generates a first pulse signal Pa based on the component Ir, and a second pulse signal Pb that indicates that the motor 10 has rotated by a predetermined angle based on the first pulse signal Pa and the rotation angle ⁇ .
  • a rotation sensor such as a Hall sensor can be omitted.
  • components necessary for using a rotation sensor such as a sensor interface circuit and a harness can be omitted. Therefore, the device 100 can realize weight reduction, cost reduction, size reduction, and the like.
  • the apparatus 100 desirably uses the first pulse signal Pa generated based on the ripple component Ir of the current Im and the second pulse signal using the rotation angle ⁇ calculated based on the voltage V and the current Im. It is configured to generate Pb. That is, the second pulse signal Pb is generated using the first pulse signal Pa and the rotation angle ⁇ , which are two parameters derived by different methods. Therefore, the apparatus 100 can compensate for the problem with the other parameter even when one parameter is not properly derived. As a result, the apparatus 100 can acquire the rotation information of the electric motor 10 with higher reliability.
  • the rotation angle calculation unit 32 is configured to calculate the rotation angle ⁇ by integrating the rotation angular velocity ⁇ of the electric motor 10 calculated based on the voltage V and the current Im, for example. Therefore, the rotation angle calculation unit 32 can stably and continuously calculate the rotation angle ⁇ over the entire period including the period immediately after the start of the electric motor 10 and the inertia rotation period.
  • the 2nd signal generation part 35 is constituted so that the 2nd pulse signal Pb may be generated immediately, for example, when rotation angle theta reaches a predetermined angle.
  • the second signal generation unit 35 represents that the first pulse signal Pa has been rotated by a predetermined angle based on the rotation angle ⁇ that is stably and continuously calculated even when generation failure of the first pulse signal Pa occurs.
  • the second pulse signal Pb can be generated in real time. Therefore, the apparatus 100 can calculate the rotation information of the electric motor 10 without delay.
  • the second signal generation unit 35 is configured to output a command to the rotation angle calculation unit 32 to reset the rotation angle ⁇ to zero when the rotation angle ⁇ reaches a predetermined angle, for example. Therefore, the apparatus 100 can avoid the maximum value of the cumulative error of the rotation angle ⁇ calculated by the rotation angle calculation unit 32 from increasing beyond a predetermined angle.
  • the predetermined angle is, for example, the central angle of the arc of the commutator piece 20a, that is, the slit-to-slit angle ⁇ c. Therefore, the apparatus 100 can set the maximum value of the accumulated error of the rotation angle ⁇ calculated by the rotation angle calculation unit 32 as the inter-slit angle ⁇ c.
  • the second signal generator 35 is configured to generate the second pulse signal Pb when the first pulse signal Pa is received and the rotation angle ⁇ is equal to or greater than the first threshold ⁇ u, for example.
  • the first threshold ⁇ u is set in advance as a value smaller than a predetermined angle (inter-slit angle ⁇ c), for example.
  • the second signal generator 35 is configured not to generate the second pulse signal Pb if the rotation angle ⁇ is less than the first threshold ⁇ u when the first pulse signal Pa is received, for example.
  • the second signal generation unit 35 can determine that the first pulse signal Pa generated at a timing deviated from the intended timing is based on noise. And it can prevent generating the 2nd pulse signal Pb corresponding to the 1st pulse signal Pa generated based on noise. Therefore, the influence on the calculation result of the rotation information by the first pulse signal Pa generated based on the noise can be eliminated early and reliably.
  • the rotation angle calculation unit 32 issues a command to reset the rotation angle ⁇ to zero. Configured to output.
  • the second threshold value ⁇ d is set in advance as a value smaller than the first threshold value ⁇ u, for example.
  • FIG. 7 is a schematic diagram of a part of another configuration example of the apparatus 100.
  • a portion common to the configuration of FIG. 1, that is, other functional elements other than the voltage filter unit 30 in the device 100 is omitted.
  • the switch SW1 to SW4 are, for example, semiconductor switching elements that constitute an H bridge circuit.
  • a MOSFET is employed.
  • the drive voltage of the electric motor 10 is PWM controlled. Therefore, the voltage detection unit 10a outputs either a high level (for example, 13 [V]) or a low level (for example, [0 V]) as the voltage V between the terminals of the electric motor 10.
  • a high level for example, 13 [V]
  • a low level for example, [0 V]
  • Rotational angular velocity calculation unit 31 (see FIG. 1) in the subsequent stage of voltage filter unit 30 substitutes voltage V and current Im into equation (1) to calculate rotational angular velocity ⁇ for each predetermined control period. Therefore, when the voltage filter unit 30 directly outputs the output of the voltage detection unit 10a to the rotation angular velocity calculation unit 31, the rotation angular velocity calculation unit 31 cannot accurately calculate the rotation angular velocity ⁇ of the electric motor 10.
  • the rotational angular velocity calculation unit 31 should calculate the rotational angular velocity ⁇ that changes according to the duty ratio of PWM control. However, when the low-level voltage V is sampled, the rotational angular velocity ⁇ is set as the value of the rotational angular velocity ⁇ regardless of the duty ratio. This is because zero is calculated. Further, when the high level voltage V is sampled, the maximum angular velocity is calculated as the value of the rotational angular velocity ⁇ regardless of the duty ratio.
  • the voltage filter unit 30 appropriately adjusts the voltage V output from the voltage detection unit 10a so that the rotation angular velocity calculation unit 31 can appropriately calculate the rotation angular velocity ⁇ that changes according to the duty ratio of the PWM control.
  • the voltage filter unit 30 brings the voltage V closer to the net voltage by attenuation, pulsation, smoothing, or the like of the voltage V output from the voltage detection unit 10a. This is because the rotational angular velocity calculation unit 31 can calculate the rotational angular velocity ⁇ based on the net voltage.
  • Net voltage means a voltage necessary to realize the same rotational angular velocity ⁇ as the rotational angular velocity ⁇ of the motor 10 to be PWM-controlled by the applied voltage control method.
  • the applied voltage control method is a method of changing the rotation angular velocity ⁇ of the electric motor 10 by changing the magnitude of the applied voltage. In this method, the rotational angular velocity ⁇ of the electric motor 10 increases as the applied voltage increases.
  • the voltage filter unit 30 attenuates the voltage V output from the voltage detection unit 10a, and outputs the voltage V ′ by pulsating or smoothing. Therefore, the voltage filter unit 30 mainly includes an attenuation unit 30a and a filter unit 30b.
  • the attenuating unit 30a is a functional element configured to attenuate the voltage V output from the voltage detecting unit 10a to a level suitable for use in another electronic device such as a microcomputer.
  • the attenuating unit 30a is an attenuator configured only by a resistor. However, the attenuation part 30a may be omitted.
  • the filter unit 30b is a functional element configured to pulsate or smooth the voltage signal output from the attenuation unit 30a.
  • the filter unit 30b includes, for example, one or a plurality of filter circuits.
  • the filter unit 30b may be configured by software.
  • the filter unit 30b is configured by a plurality of stages of filter circuits connected in series. In a plurality of filter circuits connected in series, the smoothing of the waveform of the voltage V proceeds as the number of filter circuits increases. That is, the variation in the value of the voltage V ′ sampled by the rotation angular velocity calculation unit 31 is reduced, and the value of the sampled voltage V ′ approaches the value of the net voltage.
  • the voltage filter unit 30 may calculate the net voltage by multiplying the voltage V by the duty ratio without using the attenuation unit 30a and the filter unit 30b, and output the net voltage as the voltage V ′.
  • the net voltage is calculated so as to increase as the duty ratio increases. For example, if the duty ratio is 80% and the voltage V between the terminals is 10 [V], the calculated net voltage is 8 [V].
  • the attenuation unit 30a and the filter unit 30b may be omitted.
  • the voltage filter unit 30 outputs the voltage V ′ obtained from the voltage V output from the voltage detection unit 10a as a net voltage, thereby rotating the rotation angular velocity ⁇ that changes according to the duty ratio of the PWM control.
  • the angular velocity calculation unit 31 can appropriately calculate.
  • FIG. 8 is a schematic diagram illustrating another configuration example of the voltage filter unit 30.
  • the voltage filter unit 30 of FIG. 8 is different from the voltage filter unit 30 of FIG. 7 mainly in that it includes a signal selection unit 30c, but is common in other points. Therefore, description of common parts is omitted, and different parts are described in detail.
  • the filter unit 30b is configured by a plurality of stages of filter circuits connected in series.
  • the waveform of the voltage output from each filter circuit is smoothed as the position of the filter circuit becomes downstream.
  • the output timing of each filter circuit becomes slower as the position of the filter circuit becomes downstream.
  • the rotational angular velocity calculation unit 31 can appropriately calculate the rotational angular velocity ⁇ that changes in accordance with the duty ratio of the PWM control as the smoothing of the waveform of the voltage V ′ progresses. This is because the sampled voltage V ′ approaches the net voltage. However, for example, when it is necessary to shorten the sampling interval of the voltage V ′, there is a possibility that the voltage V ′ cannot be appropriately sampled if the output timing of the filter circuit is late.
  • the signal selection unit 30c can select one of the voltages output from the attenuation unit 30a and the plurality of stages of filter circuits as the voltage V ′.
  • the signal selection unit 30c is a functional element configured to select and output one of a plurality of input signals.
  • the signal selection unit 30c may be configured by an electric circuit or software.
  • the signal selection unit 30c is an analog switch.
  • the output of the analog switch is connected to the AD input port of the rotation angular velocity calculation unit 31 configured by a microcomputer.
  • the signal selection unit 30c includes a voltage signal output from the attenuation unit 30a and a voltage signal output from each of the plurality of stages of filter circuits 30b1, 30b2, ..., 30bn connected in series. Is output as a voltage signal of voltage V ′.
  • the rotation angular velocity calculation unit 31 is configured to receive only the voltage signal of the voltage V ′ from the signal selection unit 30c.
  • the rotational angular velocity calculation unit 31 receives all of the voltage signal output from the attenuation unit 30a and the voltage signal output from each of the plurality of stages of filter circuits 30b1, 30b2, ..., 30bn connected in series. It may be configured to. In this case, the signal selection unit 30c may be omitted. This is because the rotation angular velocity calculation unit 31 can select one of the received plurality of voltage signals as the voltage signal of the voltage V ′.
  • FIG. 9 is a diagram showing waveforms of a plurality of voltage signals.
  • FIG. 9A shows the waveform of the voltage V output from the voltage detector 10a.
  • FIG. 9B shows the waveform of the voltage signal SG (0) output from the attenuation unit 30a.
  • FIG. 9C shows the waveform of the voltage signal SG (1) output from the first filter circuit 30b1.
  • FIG. 9D shows the waveform of the voltage signal SG (n) output from the nth filter circuit 30bn.
  • the signal selection unit 30c determines, for example, which voltage signal is selected as the voltage signal of the voltage V ′ according to the duty ratio of the PWM control. For example, the smaller the duty ratio, that is, the smaller the rotational angular velocity ⁇ of the electric motor 10, the more the voltage signal output from the downstream filter circuit is selected. Specifically, when the duty ratio is relatively large, that is, when the rotational angular velocity ⁇ of the electric motor 10 is relatively large, the signal selection unit 30c outputs, for example, the voltage signal SG (1) output from the first filter circuit 30b1. It is selected as a voltage signal of voltage V ′.
  • the signal selection unit 30c When the duty ratio is relatively small, that is, when the rotational angular velocity ⁇ of the electric motor 10 is relatively small, the signal selection unit 30c outputs, for example, the voltage signal SG (n) output from the nth filter circuit 30bn to the voltage V ′. Is selected as the voltage signal.
  • the voltage V ′ output from the voltage filter unit 30 is about 1.0 as shown in FIG. 9C. It fluctuates within the range of [V] to about 2.0 [V].
  • the voltage filter unit 30 can output the voltage V ′ with a shorter delay than when the voltage signal SG (n) output from the nth filter circuit 30bn is selected. Therefore, the rotational angular velocity calculation unit 31 can sample the output voltage without delay even when the sampling interval is short.
  • the rotation angular velocity calculation unit 31 can sample the output voltage close to the net voltage.
  • the voltage filter unit 30 may combine the calculation of the voltage V ′ based on the duty ratio and the selection of the voltage signal by the signal selection unit 30c. For example, the voltage filter unit 30 outputs a voltage signal of a voltage V ′ calculated by multiplying the voltage V by the duty ratio when the duty ratio is greater than or equal to a predetermined value, and the signal selection unit 30c when the duty ratio is less than the predetermined value. May be output as a voltage signal of the voltage V ′.
  • the rotational angular velocity calculation unit 31 can appropriately sample the voltage V ′ even when the rotational angular velocity ⁇ of the electric motor 10 is large and the sampling interval needs to be shortened. That is, the voltage V ′ close to the net voltage can be sampled without delay.
  • the voltage V ′ substantially equal to the net voltage can be sampled without delay.
  • the voltage filter unit 30 detects the temperature, internal resistance, and the like of the electric motor 10 with various sensors, calculates the voltage V ′ based on the duty ratio based on the temperature, internal resistance, and the like of the electric motor 10, and the signal selection unit 30c. The selection of the voltage signal may be switched.
  • the signal selection unit 30c may determine which voltage signal of the plurality of input voltage signals is output as the voltage signal of the voltage V ′ based on the temperature, internal resistance, and the like of the electric motor 10.
  • the apparatus 100 can appropriately calculate the rotation information of the electric motor 10 using the calculation unit even when the drive voltage of the electric motor 10 is PWM-controlled. Specifically, the rotational angular velocity is calculated based on the voltage V ′ as the net voltage obtained from the voltage V and the current Im by the rotational angular velocity calculator 31, the rotational angle calculator 32, the rotation information calculator 36, and the like as the calculator. ⁇ , rotation angle ⁇ , rotation amount, and the like can be calculated.
  • the signal waveform of the voltage V is pulsated or smoothed through the filter unit 30b including one or a plurality of filters, for example. Then, the calculation unit calculates the rotation information of the electric motor 10 based on the voltage V ′ as the net voltage having a pulsating or smoothed signal waveform and the current Im. With this configuration, the calculation unit can sample the voltage V ′ as the net voltage with little variation, and can calculate the rotation information of the electric motor 10 with high accuracy.
  • the calculation unit may calculate rotation information of the electric motor 10 based on the voltage V ′ as the net voltage having one signal waveform selected from the signal waveforms output from each of the plurality of filters and the current Im. Good.
  • the calculation unit can sample the voltage V ′ as the net voltage without delay with as little variation as possible. For example, when the sampling interval is small, the signal waveform output by the relatively upstream filter is selected as the signal waveform of the voltage V ′, thereby obtaining an inappropriate voltage V ′ due to the delay in signal generation. Can be prevented.
  • the signal waveform output from the filter located relatively downstream is selected as the signal waveform of the voltage V ′, so that variation (voltage signal that is not sufficiently pulsated or smoothed) is obtained. It is possible to prevent the acquisition of an inappropriate voltage V ′ due to this.
  • the calculation unit may calculate the rotation information of the electric motor 10 based on the net voltage calculated by multiplying the voltage V by the duty ratio and the current Im. With this configuration, the calculation unit can sample the net voltage without delay. In addition, acquisition of an inappropriate net voltage due to a delay in signal generation by the filter can be prevented.
  • the calculation unit calculates the net voltage having a signal waveform generated by pulsating or smoothing the signal waveform of the voltage V through one or a plurality of filters, and the voltage V by multiplying by the duty ratio.
  • One of the net voltages may be selected, and the rotation information of the electric motor 10 may be calculated based on the selected net voltage and current Im.
  • the calculation unit can selectively use a net voltage having a signal waveform generated using a filter and a net voltage calculated by multiplying the voltage V by the duty ratio as necessary.
  • SYMBOLS 10 Electric motor 10a ... Voltage detection part 10b ... Current detection part 20 ... Commutator 20a ... Commutator piece 20s ... Slit 30 ... Voltage filter part 30a ... Attenuation part 30b ... filter unit 30b1 ... first filter circuit 30b2 ... second filter circuit 30bn ... n-th filter circuit 30c ... signal selection unit 31 ... rotational angular velocity calculation unit 32 ... rotation Angle calculation unit 33 ... current filter unit 34 ... first signal generation unit 35 ... second signal generation unit 36 ... rotation information calculation unit 100 ... device SW1 to SW4 ... switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

整流子を備えた電動機(10)の回転に関する情報を取得する装置(100)は、駆動電圧がPWM制御される電動機(10)の端子間の電圧Vから得られる正味電圧と電動機(10)を流れる電流(Im)とに基づいて電動機(10)の回転角速度(ω)を算出する回転角速度算出部(31)を含む。正味電圧の信号波形は、電圧(V)の信号波形を脈流化し或いは平滑化することで生成される。正味電圧は、電圧(V)にデューティ比を乗じて算出されてもよい。

Description

直流整流子電動機の回転に関する情報を取得する装置及び方法
 本開示は、直流整流子電動機の回転に関する情報を取得する装置及び方法に関する。
 従来、駆動電圧がPWM制御される電動機の回転数計測装置が知られている(特許文献1参照。)。この装置は、PWM制御されている駆動電圧がオン状態のときに周波数カウンタが所期の回転パルスを計測できるようにPWM周期を設定する。この構成によって、電動機の駆動電圧をPWM制御しながら電動機の回転数を正確に計測できるようにしている。
特開2005-204441号公報
 しかしながら、特許文献1に記載の装置は周波数カウンタを必要とする。そのため、周波数カウンタを用いずに、駆動電圧がPWM制御される電動機の端子間電圧に基づいてその回転量を取得することはできない。
 上述の点に鑑み、駆動電圧がPWM制御される直流整流子電動機の端子間電圧に基づいてその回転に関する情報を取得できる装置を提供することが望まれる。
 本発明の実施例に従った装置は、整流子を備えた電動機の回転に関する情報を取得する装置であって、駆動電圧がPWM制御される前記電動機の端子間の電圧から得られる正味電圧と前記電動機を流れる電流とに基づいて前記電動機の回転に関する情報を算出する算出部を含む。
 上述の手段により、駆動電圧がPWM制御される直流整流子電動機の端子間電圧に基づいてその回転に関する情報を取得できる装置を提供できる。
本発明の実施例に係る装置の構成例を示す概略図である。 整流子の概略図である。 第1信号生成部が第1パルス信号を生成するタイミングの一例を示す図である。 第2信号生成部が第2パルス信号を生成するタイミングの一例を示す図である。 回転量算出処理のフローチャートである。 合成パルス信号及びホールパルス信号のそれぞれの推移を示す図である。 本発明の実施例に係る装置の別の構成例の一部を示す概略図である。 電圧フィルタ部の構成例を示す概略図である。 複数の電圧信号の波形を示す図である。
 以下、図を参照し、本発明の実施例に係る装置100について説明する。図1は、本発明の実施例に係る装置100の構成例を示す概略図である。
 装置100は、電動機10の回転に関する情報(以下、「回転情報」とする。)を取得する装置である。図1の例では、装置100は、電動機10の端子間の電圧Vと電動機10を流れる電流Imとに基づいて電動機10の回転情報を取得する。装置100は、例えば、ホールセンサ等の回転センサを用いずに、取得した回転情報に基づいて電動機10の回転軸の回転位置を制御してもよい。
 電動機10は、例えば、整流子を備えた直流整流子電動機である。電動機10は、例えば、自動車のウィンドウの昇降、ドアミラーの角度の調整、空調装置における送風量の調整、ヘッドライトの光軸の調整等で使用される。
 図2は整流子20の一例の概略図である。図2に示すように、整流子20は、スリット20sによって互いに隔てられた8つの整流子片20aで構成されている。各整流子片20aの円弧の中心角であるスリット間角度θcは約45度である。
 図1の例では、電動機10は、4つのスイッチSW1~SW4を介して電源に接続されている。そして、スイッチSW1とスイッチSW3とが閉状態(導通状態)となったときに時計回りに順回転し、スイッチSW2とスイッチSW4とが閉状態(導通状態)となったときに反時計回りに逆回転するように構成されている。電源に接続されている図1の例では、順回転する電動機10を流れる電流が正値を有し、逆回転する電動機10を流れる電流が負値を有する。惰性回転中は、スイッチSW2とスイッチSW3とが閉状態(導通状態)となり、順回転する電動機10を流れる電流は負値を有し、逆回転する電動機10を流れる電流は正値を有する。
 電圧検出部10aは、電動機10の端子間の電圧Vを検出するように構成されている。電流検出部10bは、電動機10を流れる電流Imを検出するように構成されている。
 装置100は、主に、電圧フィルタ部30、回転角速度算出部31、回転角度算出部32、電流フィルタ部33、第1信号生成部34、第2信号生成部35、回転情報算出部36等の機能要素を含む。各機能要素は、電気回路で構成されていてもよく、ソフトウェアで構成されていてもよい。
 電圧フィルタ部30は、電圧検出部10aが出力する電圧Vを調整するように構成されている機能要素である。電圧フィルタ部30は、例えば、回転角速度算出部31が電動機10の回転角速度を適切に算出できるように電圧Vを調整する。図1の例では、電圧フィルタ部30は、ローパスフィルタであり、電圧検出部10aが出力する電圧Vの波形のうちの高周波成分をノイズとして除去するように構成されている。
 回転角速度算出部31は、電動機10の端子間の電圧Vと電動機10を流れる電流Imとに基づいて電動機10の回転角速度を算出するように構成されている機能要素である。図1の例では、回転角速度算出部31は、式(1)に基づいて回転角速度ωを算出する。
Figure JPOXMLDOC01-appb-M000001
 Keは逆起電圧定数であり、Rmは電動機10の内部抵抗であり、Lmは電動機10のインダクタンスであり、dIm/dtは電流Imの一回微分である。電流Imの一回微分は、例えば、前回の電流Imの値と今回の電流Imの値との差である。
 回転角速度算出部31は、例えば、所定の制御周期毎に電動機10の回転角速度ωを算出し、算出した回転角速度ωを回転角度算出部32に対して出力するように構成されていてもよい。
 回転角度算出部32は、電動機10の回転角度θを算出するように構成されている機能要素である。図1の例では、回転角度算出部32は、式(2)に基づいて回転角度θを算出する。
Figure JPOXMLDOC01-appb-M000002
 回転角度算出部32は、例えば、回転角速度算出部31が所定の制御周期毎に出力する回転角速度ωを積算して回転角度θを算出し、算出した回転角度θを第2信号生成部35に対して出力するように構成されていてもよい。
 また、回転角度算出部32は、第2信号生成部35からの同期指令に応じて回転角度θをゼロにリセットするように構成されていてもよい。
 電流フィルタ部33は、電流検出部10bが出力する電流Imを調整するように構成されている機能要素である。電流フィルタ部33は、例えば、第1信号生成部34が電流Imのリップル成分Irを適切に検出できるように電流Imを調整する。図1の例では、電流フィルタ部33は、バンドパスフィルタであり、電流検出部10bが出力する電流Imの波形のうちのリップル成分Ir以外の成分を除去するように構成されている。リップル成分Irは、電流Imに含まれる周期的な成分であり、主に、整流子片20aとブラシとの接触・分離に起因して生成される。そのため、典型的には、リップル成分Irの1周期の間に電動機10が回転する角度はスリット間角度θcに等しい。
 第1信号生成部34は、電動機10が所定角度だけ回転したことを表す信号を生成するように構成されている機能要素である。第1信号生成部34は、例えば、電流フィルタ部33が出力するリップル成分Irの波形に基づいてリップル検出信号(第1パルス信号Pa)を生成する。
 図3は、第1信号生成部34が第1パルス信号Paを生成するタイミングの一例を示す図である。第1信号生成部34は、例えば、リップル成分Irが基準電流値Ibを超える度に第1パルス信号Paを生成する。図3の例では、時刻t1、t2、t3、・・・、tn等で第1パルス信号Paを生成している。T1、T2、T3、・・・、Tn等は、リップル成分の周期を示し、θ1、θ2、θ3、・・・、θn等は、第1信号生成部34が第1パルス信号を生成したときの回転角度θを示す。回転角度θは、回転角度算出部32が算出した値である。このように、第1信号生成部34は、典型的には、回転角度θの大きさが所定角度(例えばスリット間角度θc)にほぼ等しくなったときに第1パルス信号Paを生成する。
 但し、第1信号生成部34は、例えば、電動機10の電源オフ後の惰性回転期間において電流Im及びそのリップル成分Irが小さくなった場合、リップル成分Irの波形に基づいて第1パルス信号Paを生成できないことがある。また、第1信号生成部34は、例えば、電動機10の電源オン直後に突入電流が発生した場合、その突入電流に応じて第1パルス信号Paを誤って生成してしまうことがある。このような第1パルス信号Paの生成漏れ又は誤生成は、装置100が出力する電動機10の回転情報の信頼性を低下させてしまう。
 そこで、装置100は、第2信号生成部35により、電動機10が所定角度だけ回転したことを表す信号をより高精度に生成できるようにしている。
 第2信号生成部35は、電動機10が所定角度だけ回転したことを表す信号を生成するように構成されている機能要素である。第2信号生成部35は、例えば、回転角度算出部32が出力する回転角度θと第1信号生成部34が出力する第1パルス信号Paとに基づいて疑似リップル信号(第2パルス信号Pb)を生成するように構成されていてもよい。
 図4は、第2信号生成部35が第2パルス信号Pbを生成するタイミングの一例を示す図である。
 第2信号生成部35は、例えば、回転角度θの大きさが所定角度に達したときに第2パルス信号Pbを生成する。所定角度は、例えば、スリット間角度θcである。図4の例では、時刻t3、t7、t9において回転角度θ3、θ7、θ9の絶対値がスリット間角度θcに達したときに第2パルス信号Pb3、Pb5、Pb6を生成している。第2パルス信号Pbを生成すると、第2信号生成部35は、回転角度算出部32に対して同期指令を出力する。回転角度算出部32は、同期指令を受けると回転角度θをゼロにリセットする。
 すなわち、第2信号生成部35は、例えば、時刻t2において、第2パルス信号Pb2を生成した後で第1パルス信号Paを受け取ることがない状態のまま、回転角度θ3の絶対値がスリット間角度θcに達したときに第2パルス信号Pb3を生成する。
 このように、第2信号生成部35は、何らかの理由で第1パルス信号Paが生成されなかった場合であっても、回転角度算出部32によって算出された回転角度θの絶対値がスリット間角度θcに達しさえすれば、第2パルス信号Pbを生成する。そのため、第1パルス信号Paの生成漏れを確実に防止できる。
 また、第2信号生成部35は、例えば、第1信号生成部34が第1パルス信号Paを生成したときの回転角度θが第1閾値θu以上で且つスリット間角度θc未満の場合に第2パルス信号Pbを生成する。第1閾値θuは、予め設定される値であってもよく、動的に設定される値であってもよい。図4の例では、第1信号生成部34が第1パルス信号Pa1、Pa2、Pa4を生成したときの回転角度θ1、θ2、θ5が第1閾値θu以上で且つスリット間角度θc未満である。すなわち、回転角度θ1、θ2、θ5のそれぞれがスリット間角度θcに達するまでの残りの角度が角度α未満である。この場合、第2信号生成部35は、時刻t1、t2、t5において第1信号生成部34が生成した第1パルス信号Pa1、Pa2、Pa5がノイズでないと判定できる。そのため、第2信号生成部35は、時刻t1、t2、t5において第2パルス信号Pb1、Pb2、Pb4を生成する。第2パルス信号Pbを生成すると、第2信号生成部35は、回転角度算出部32に対して同期指令を出力する。
 一方、第2信号生成部35は、例えば、第1信号生成部34が第1パルス信号Paを生成したときの回転角度θが第2閾値θd未満の場合、第2パルス信号Pbを生成しない。第2閾値θdは、予め設定される値であってもよく、動的に設定される値であってもよい。このような状況は、典型的には、回転角度θの大きさが所定角度に達したことで第2パルス信号Pbが生成された後に発生する。図4の例では、時刻t3で回転角度θ3の絶対値がスリット間角度θcに達したことで第2パルス信号Pb3が生成された後の時刻t4において、第1信号生成部34が第1パルス信号Pa3を生成している。このときの回転角度θ4は、第2閾値θd未満である。すなわち、時刻t3でリセットされた後に積算された回転角度θ4は未だ角度β未満である。この場合、第2信号生成部35は、時刻t4で第1信号生成部34が生成した第1パルス信号Pa3を、時刻t3で生成した第2パルス信号Pb3に統合可能と判定できる。具体的には、第2信号生成部35は、第1パルス信号Pa3が生成されたときに第2パルス信号Pb3を生成するはずであった。しかし、第1パルス信号Pa3が生成される前に回転角度θの絶対値がスリット間角度θcに達したために、パルス信号の生成漏れを確実に防止すべく、第1パルス信号Pa3が生成される前に第2パルス信号Pb3を生成した。そのため、第2信号生成部35は、第2パルス信号Pb3を生成した直後に生成された第1パルス信号Pa3を、第2パルス信号Pb3と同時に生成されるはずであった第1パルス信号Paと見なすことができる。この場合、第2信号生成部35は、時刻t4では第2パルス信号Pbを生成せずに、回転角度算出部32に対して同期指令を出力する。図4の「×」に向かう破線矢印は、第1パルス信号Pa3に基づいて第2パルス信号Pbが生成されなかったことを表す。他の「×」に向かう破線矢印についても同様である。
 また、第2信号生成部35は、第1信号生成部34が第1パルス信号Paを生成したときの回転角度θが第2閾値θd以上で且つ第1閾値θu未満の場合、第2パルス信号Pbを生成することはなく、回転角度算出部32に対して同期指令を出力することもない。図4の例では、時刻t6において第1信号生成部34が第1パルス信号Pa5を生成したときの回転角度θ6は、第2閾値θd以上で且つ第1閾値θu未満である。すなわち、回転角度θ6がスリット間角度θcに達するまでの残りの角度が角度αより大きく、時刻t5でリセットされた後に積算された回転角度θ6が角度β以上である。この場合、第2信号生成部35は、第1パルス信号Pa5がノイズに基づくものと判定できる。そのため、第2信号生成部35は、時刻t6では第2パルス信号Pbを生成することはなく、回転角度算出部32に対して同期指令を出力することもない。すなわち、ノイズに基づく第1パルス信号Pa5による影響を完全に排除できる。
 以上の構成により、第2信号生成部35は、例えば、電動機10の電源オフ後の惰性回転期間において電流Im及びそのリップル成分Irが小さくなり、第1信号生成部34がリップル成分Irの波形に基づいて第1パルス信号Paを生成できない場合であっても、第2パルス信号Pbを生成できる。
 また、第2信号生成部35は、例えば、電動機10の電源オン直後に突入電流が発生し、第1信号生成部34がその突入電流に応じて第1パルス信号Paを誤って生成してしまった場合であっても、その第1パルス信号Paに対応する第2パルス信号Pbを生成しない。すなわち、その第1パルス信号Paによる影響を完全に排除できる。
 そのため、装置100は、第1パルス信号Paではなく第2パルス信号Pbに基づいて電動機10の回転情報を算出することで、電動機10の回転情報の信頼性を向上させることができる。
 また、第2信号生成部35は、電動機10の回転方向を表す方向信号を出力するように構成されている。例えば、第2信号生成部35は、回転角度θが正値であれば順回転方向を表す信号を出力し、回転角度θが負値であれば逆回転方向を表す信号を出力するように構成されている。回転角度θは、電動機10を流れる電流が正値のときに正値を有し、電動機10を流れる電流が負値のときに負値を有する。但し、惰性回転中は、回転角度θは、電動機10を流れる電流が負値のときに正値を有し、電動機10を流れる電流が正値のときに負値を有する。
 回転情報算出部36は、電動機10の回転情報を算出するように構成されている機能要素である。電動機10の回転情報は、例えば、基準回転位置からの回転量(回転角度)、基準回転位置からの回転数等を含む。電動機10が自動車のウィンドウの昇降に使用される場合には、電動機10の回転情報は、基準位置に対するウィンドウの上縁の相対位置、ウィンドウの開き量等を含んでいてもよい。また、ある期間における回転角速度ωの平均値、最大値、最小値、中間値等の統計値を含んでいてもよい。図1の例では、回転情報算出部36は、第2信号生成部35の出力に基づいて電動機10の回転情報を算出する。例えば、電動機10の回転が開始した後に生成された第2パルス信号Pbの数にスリット間角度θcを乗ずることで、電動機10の回転が開始した後の回転量を算出する。その際、回転情報算出部36は、例えば、第2信号生成部35が第2パルス信号Pbと共に出力する方向信号に基づいて第2パルス信号Pbの数をインクリメントするかデクリメントするかを決定する。或いは、回転情報算出部36は、順回転方向を表す方向信号と共に受けた第2パルス信号Pbの数と、逆回転方向を表す方向信号と共に受けた第2パルス信号Pbの数とを別々に計数し、それらの差に基づいて電動機10の回転量を算出してもよい。
 次に、図5を参照し、装置100が電動機10の回転量を算出する処理(以下、「回転量算出処理」とする。)の流れについて説明する。図5は、回転量算出処理のフローチャートである。装置100は、例えば、電動機10の駆動中にこの回転量算出処理を実行する。
 最初に、装置100は、電圧V及び電流Imを取得する(ステップST1)。図1の例では、装置100は、電圧検出部10aが出力する電圧V、及び、電流検出部10bが出力する電流Imを所定の制御周期毎に取得する。
 その後、装置100は、回転角速度ω及び回転角度θを算出する(ステップST2)。図1の例では、装置100の回転角速度算出部31は、電圧Vと電流Imを式(1)に代入して回転角速度ωを所定の制御周期毎に算出する。そして、装置100の回転角度算出部32は、制御周期毎に算出される回転角速度ωを積算して回転角度θを算出する。
 その後、装置100は、回転角度θが所定角度未満であるか否かを判定する(ステップST3)。図1の例では、装置100の第2信号生成部35は、回転角度θがスリット間角度θc未満であるか否かを判定する。
 回転角度θがスリット間角度θc以上であると判定した場合(ステップST3のNO)、第2信号生成部35は、所期のタイミングで第1パルス信号Paが生成されなかったと判定する。そして、第2パルス信号Pbを生成し(ステップST10)、且つ、回転角度θをリセットする(ステップST11)。これは、第1パルス信号Paが生成される前に回転角度θがスリット間角度θcに達した場合であり、図4の例において時刻t3、t7、t9で回転角度θの絶対値が回転角度θ3、θ7、θ9に達した場合に対応する。
 一方、回転角度θがスリット間角度θc未満であると判定した場合(ステップST3のYES)、第2信号生成部35は、第1パルス信号Paが生成されたか否かを判定する(ステップST4)。図1の例では、第1信号生成部34によって第1パルス信号Paが生成されたか否かを判定する。
 回転角度θがスリット間角度θc未満の段階で第1パルス信号Paが未だ生成されていないと判定した場合(ステップST4のNO)、第2信号生成部35は、第2パルス信号Pbを生成することはなく、回転角度θをリセットすることもない。そして、回転情報算出部36は、第2信号生成部35の出力に基づいて電動機10の回転量を算出する。この場合、算出される回転量に変化はない。これは、図4の例において時刻t0で回転角度θが回転角度θ0になっている場合に対応する。
 第1パルス信号Paが生成されたと判定した場合(ステップST4のYES)、第2信号生成部35は、回転角度θが第1閾値θu未満であるか否かを判定する(ステップST5)。
所期のタイミングより早期に生成された第1パルス信号Paがノイズに基づくものであるか否かを判定するためである。
 回転角度θが第1閾値θu以上であると判定した場合(ステップST5のNO)、第2信号生成部35は、あたかも所期のタイミングで第1パルス信号Paが生成されたときと同様に動作する。すなわち、第2パルス信号Pbを生成し(ステップST10)、且つ、回転角度θをリセットする(ステップST11)。所期のタイミングより早期に生成された第1パルス信号Paがノイズに基づくものではないと判定できるためである。これは、図4の例において時刻t1、t2、t5で第1パルス信号Pa1、Pa2、Pa4が生成された場合に対応する。
 回転角度θが第1閾値θu未満であると判定した場合(ステップST5のYES)、第2信号生成部35は、現時点では、第1パルス信号Paがノイズに基づくものでないとは判定できない。この第1パルス信号Paは、所期のタイミングより早期に生成されたものではなく、所期のタイミングより遅れて生成されたものである可能性があるためである。そこで、第2信号生成部35は、回転角度θが第2閾値θd未満であるか否かを判定する(ステップST6)。所期のタイミングより遅れて生成された第1パルス信号Paがノイズに基づくものであるか否かを判定するためである。
 回転角度θが第2閾値θd未満であると判定した場合(ステップST6のYES)、第2信号生成部35は、第2パルス信号Pbを生成することなく、回転角度θをゼロにリセットする(ステップST11)。所期のタイミングより遅れて生成された第1パルス信号Paがノイズに基づくものではないと判定できるためである。すなわち、所期のタイミングより遅れて生成された第1パルス信号Paが、直前に生成した第2パルス信号Pbに対応すると判定できるためである。これは、図4の例において時刻t4、t8で第1パルス信号Pa3、Pa6が生成された場合に対応する。すなわち、第2信号生成部35は、第1パルス信号Pa3、Pa6が第2パルス信号Pb3、Pb5に対応すると判定できる。
 回転角度θが第2閾値θd以上であると判定した場合(ステップST6のNO)、第2信号生成部35は、その第1パルス信号Paがノイズに基づくものであると判定する。この場合、第2信号生成部35は、第2パルス信号Pbを生成することはなく、回転角度θをリセットすることもない。そして、回転情報算出部36は、第2パルス信号Pbを生成しない第2信号生成部35の出力に基づいて電動機10の回転量を算出する。これは、図4の例において時刻t6で第1パルス信号Pa5が生成されたときに対応する。すなわち、第2信号生成部35は、第1パルス信号Pa5をノイズに基づくものと判定している。
 その後、装置100は、電動機10の回転量を算出する(ステップST7)。図1の例では、装置100の回転情報算出部36は、電動機10の回転が開始した後に生成された第2パルス信号Pbの数にスリット間角度θcを乗ずることで、電動機10の回転が開始した後の回転量を算出する。
 次に、図6を参照し、装置100が算出した電動機10の回転量の信頼性に関する実験結果について説明する。図6は、合成パルス信号及びホールパルス信号のそれぞれの推移を示す図である。
 合成パルス信号は、第2パルス信号Pbの複数パルスを1パルスに合成することで得られる信号である。図6の例では、スリット間角度θcは90度である。第1パルス信号Pa及び第2パルス信号Pbは、基本的に、電動機10の回転軸が90度回転する度に生成されている。そして、合成パルス信号は、第2パルス信号Pbの2パルスを1パルスに合成して生成されている。すなわち、装置100は、電動機10の回転軸が180度回転する度に合成パルス信号を1つ生成するように構成されている。
 ホールパルス信号は、ホールセンサが出力したパルス信号である。ホールセンサは、第2パルス信号Pbとホールパルス信号との比較のために電動機10の回転軸に取り付けられた磁石が作る磁束を検出する。図6の例では、装置100は、電動機10の回転軸が180度回転する度にホールパルス信号を1つ生成するように構成されている。
 図6の「×」に向かう破線矢印は、第1パルス信号Paに基づいて第2パルス信号Pbが生成されなかったことを表す。すなわち、第1パルス信号Paがノイズとして無視されたことを表す。また、図6の8つの実線矢印は、第1パルス信号Paの生成漏れの際に第2パルス信号Pbが追加されたことを表す。
 図6の例では、電動機10の順回転を開始させてからその順回転を停止させるまでの期間に生成された合成パルス信号及びホールパルス信号のそれぞれの数が等しいことが確認された。すなわち、第2パルス信号Pbに基づいて算出される電動機10の回転量が、ホールセンサによって検出される電動機10の回転量に等しいことが確認された。
 上述の通り、整流子20を備えた電動機10の回転情報を取得する装置100は、電圧Vと電流Imとに基づいて回転角度θを算出する回転角度算出部32と、電流Imに含まれるリップル成分Irに基づいて第1パルス信号Paを生成する第1信号生成部34と、第1パルス信号Paと回転角度θとに基づいて電動機10が所定角度だけ回転したことを表す第2パルス信号Pbを生成する第2信号生成部35と、第2信号生成部35の出力に基づいて回転情報を算出する回転情報算出部36とを含む。そのため、装置100は、電動機10の回転情報を従来よりも高い信頼性で取得できる。また、ホールセンサ等の回転センサは、省略され得る。これは、センサインタフェース回路、ハーネス等の回転センサを利用するために必要な部品が省略され得ることを意味する。そのため、装置100は、軽量化、低コスト化、小型化等を実現できる。
 また、装置100は、望ましくは、電流Imのリップル成分Irに基づいて生成される第1パルス信号Paと、電圧V及び電流Imに基づいて算出される回転角度θとを用いて第2パルス信号Pbを生成するように構成されている。すなわち、別々の方法で導き出される2つのパラメータである第1パルス信号Paと回転角度θとを用いて第2パルス信号Pbを生成するように構成されている。そのため、装置100は、一方のパラメータが適切に導出されなかった場合であっても他方のパラメータでその不具合を補うことができる。その結果、装置100は、電動機10の回転情報をより高い信頼性で取得できる。
 回転角度算出部32は、例えば、電圧Vと電流Imとに基づいて算出される電動機10の回転角速度ωを積算して回転角度θを算出するように構成される。そのため、回転角度算出部32は、電動機10の起動直後の期間、惰性回転期間等を含めた全期間に亘って回転角度θを安定的且つ継続的に算出できる。そして、第2信号生成部35は、例えば、回転角度θが所定角度に達したときに、第2パルス信号Pbを即時に生成するように構成される。そのため、第2信号生成部35は、第1パルス信号Paの生成漏れが発生した場合であっても、安定的且つ継続的に算出される回転角度θに基づき、所定角度だけ回転したことを表す第2パルス信号Pbをリアルタイムに生成できる。そのため、装置100は、電動機10の回転情報を遅延なく算出できる。
 第2信号生成部35は、例えば、回転角度θが所定角度に達したときに、回転角度θをゼロにリセットする指令を回転角度算出部32に出力するように構成される。そのため、装置100は、回転角度算出部32が算出する回転角度θの累積誤差の最大値が所定角度を超えて増大してしまうのを回避できる。
 所定角度は、例えば、整流子片20aの円弧の中心角、すなわちスリット間角度θcである。そのため、装置100は、回転角度算出部32が算出する回転角度θの累積誤差の最大値をスリット間角度θcとすることができる。
 第2信号生成部35は、例えば、第1パルス信号Paを受けたときに、回転角度θが第1閾値θu以上であれば、第2パルス信号Pbを生成するように構成される。第1閾値θuは、例えば、所定角度(スリット間角度θc)より小さい値として予め設定されている。この構成により、第2信号生成部35は、所期のタイミングより早期に生成された第1パルス信号Paをノイズに基づくものではないと判定できる。そして、第1パルス信号Paの生成漏れの発生に先立って第2パルス信号Pbを生成できる。そのため、第1パルス信号Paの生成漏れによる回転情報の算出結果への影響を早期に且つ確実に排除できる。
 また、第2信号生成部35は、例えば、第1パルス信号Paを受けたときに、回転角度θが第1閾値θu未満であれば、第2パルス信号Pbを生成しないように構成される。この構成により、第2信号生成部35は、所期のタイミングからずれたタイミングで生成された第1パルス信号Paをノイズに基づくものであると判定できる。そして、ノイズに基づいて生成された第1パルス信号Paに対応する第2パルス信号Pbが生成されてしまうのを防止できる。そのため、ノイズに基づいて生成された第1パルス信号Paによる回転情報の算出結果への影響を早期に且つ確実に排除できる。
 また、第2信号生成部35は、例えば、第1パルス信号Paを受けたときに、回転角度θが第2閾値θdより小さければ、回転角度θをゼロにリセットする指令を回転角度算出部32に出力するように構成される。第2閾値θdは、例えば、第1閾値θuより小さい値として予め設定されている。この構成により、第2信号生成部35は、第1パルス信号Paの生成漏れの発生に先立って第2パルス信号Pbを生成した直後に第1パルス信号Paを受けた場合、その第1パルス信号Paをノイズに基づくものではないと判定できる。そして、その第1パルス信号Paを、直前に生成した第2パルス信号Pbに対応付けることができる。そのため、第1パルス信号Paの生成タイミングのずれによる回転情報の算出結果への影響を早期に且つ確実に排除できる。
 次に、図7を参照し、電圧フィルタ部30の詳細について説明する。図7は、装置100の別の構成例の一部の概略図である。図7は、図1の構成と共通する部分、すなわち、装置100における電圧フィルタ部30以外の他の機能要素の図示を省略している。
 図7の電動機10は、図1の電動機10と同様に、4つのスイッチSW1~SW4を介して電源に接続されている。スイッチSW1~SW4は、例えば、Hブリッジ回路を構成する半導体スイッチング素子である。図7の例では、MOSFETが採用されている。そして、スイッチSW1とスイッチSW3とが閉状態(導通状態)となったときに時計回りに順回転し、スイッチSW2とスイッチSW4とが閉状態(導通状態)となったときに反時計回りに逆回転するように構成されている。
 図7の例では、電動機10の駆動電圧はPWM制御される。そのため、電圧検出部10aは、電動機10の端子間の電圧Vとして、ハイレベル(例えば13[V])及びローレベル(例えば[0V])の何れかを出力する。
 電圧フィルタ部30の後段にある回転角速度算出部31(図1参照。)は、電圧Vと電流Imを式(1)に代入して回転角速度ωを所定の制御周期毎に算出する。そのため、電圧フィルタ部30が電圧検出部10aの出力をそのまま回転角速度算出部31に出力した場合、回転角速度算出部31は、電動機10の回転角速度ωを正確に算出できない。
 回転角速度算出部31は、PWM制御のデューティ比に応じて変化する回転角速度ωを算出すべきであるが、ローレベルの電圧Vをサンプリングした場合、デューティ比にかかわらず、回転角速度ωの値としてゼロを算出してしまうためである。また、ハイレベルの電圧Vをサンプリングした場合、デューティ比にかかわらず、回転角速度ωの値として最大角速度を算出してしまうためである。
 そこで、電圧フィルタ部30は、電圧検出部10aが出力する電圧Vを適切に調整することで、PWM制御のデューティ比に応じて変化する回転角速度ωを回転角速度算出部31が適切に算出できるようにする。
 例えば、電圧フィルタ部30は、電圧検出部10aが出力する電圧Vの減衰、脈流化、平滑化等によって電圧Vを正味電圧に近づける。回転角速度算出部31が正味電圧に基づいて回転角速度ωを算出できるようにするためである。
 「正味電圧」は、PWM制御される電動機10の回転角速度ωと同じ回転角速度ωを印加電圧制御方式で実現するために必要な電圧を意味する。印加電圧制御方式は、印加電圧の大きさを変化させて電動機10の回転角速度ωを変化させる方式である。この方式では、電動機10の回転角速度ωは、印加電圧が大きいほど大きくなる。
 図7の例では、電圧フィルタ部30は、電圧検出部10aが出力する電圧Vを減衰させ、且つ、脈流化或いは平滑化して電圧V'を出力する。そのため、電圧フィルタ部30は、主に、減衰部30a及びフィルタ部30bを有する。
 減衰部30aは、電圧検出部10aが出力する電圧Vをマイクロコンピュータ等の他の電子機器での利用に適したレベルに減衰させるように構成されている機能要素である。図7の例では、減衰部30aは、抵抗のみで構成された減衰器である。但し、減衰部30aは省略されてもよい。
 フィルタ部30bは、減衰部30aが出力する電圧信号を脈流化し或いは平滑化するように構成されている機能要素である。フィルタ部30bは、例えば、1又は複数のフィルタ回路で構成される。フィルタ部30bは、ソフトウェアで構成されていてもよい。図7の例では、フィルタ部30bは、直列に接続された複数段のフィルタ回路で構成されている。直列に接続された複数段のフィルタ回路では、フィルタ回路の段数が多いほど電圧Vの波形の平滑化が進む。すなわち、回転角速度算出部31によってサンプリングされる電圧V'の値のばらつきが小さくなり、サンプリングされる電圧V'の値は正味電圧の値に近づく。
 或いは、電圧フィルタ部30は、減衰部30a及びフィルタ部30bを用いずに、電圧Vにデューティ比を乗じて正味電圧を算出し、その正味電圧を電圧V'として出力してもよい。正味電圧は、デューティ比が大きいほど大きくなるように算出される。例えば、デューティ比が80%、端子間の電圧Vが10[V]であれば、算出される正味電圧は8[V]である。この場合、減衰部30a及びフィルタ部30bは省略されてもよい。
 以上の構成により、電圧フィルタ部30は、電圧検出部10aが出力する電圧Vから得られる電圧V'を正味電圧として出力することで、PWM制御のデューティ比に応じて変化する回転角速度ωを回転角速度算出部31が適切に算出できるようにする。
 次に、図8を参照し、電圧フィルタ部30の別の構成例について説明する。図8は、電圧フィルタ部30の別の構成例を示す概略図である。図8の電圧フィルタ部30は、主に、信号選択部30cを備える点で、図7の電圧フィルタ部30と相違するが、その他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。
 図7の例では、フィルタ部30bは、直列に接続された複数段のフィルタ回路で構成されている。直列に接続された複数段のフィルタ回路では、各フィルタ回路が出力する電圧の波形は、フィルタ回路の位置が下流になるほど平滑化が進む。しかしながら、各フィルタ回路の出力タイミングは、フィルタ回路の位置が下流になるほど遅くなる。
 これに対し、回転角速度算出部31は、電圧V'の波形の平滑化が進んでいるほど、PWM制御のデューティ比に応じて変化する回転角速度ωを適切に算出できる。サンプリングされる電圧V'が正味電圧に近づくためである。しかしながら、例えば電圧V'のサンプリング間隔を短くする必要がある場合には、フィルタ回路の出力タイミングが遅いと電圧V'を適切にサンプリングできないおそれがある。
 そこで、図8の電圧フィルタ部30は、信号選択部30cによって、減衰部30a及び複数段のフィルタ回路のそれぞれが出力する電圧のうちの1つを電圧V'として選択できるようにしている。
 信号選択部30cは、入力された複数の信号のうちの1つを選択して出力するように構成されている機能要素である。信号選択部30cは、電気回路で構成されていてもよく、ソフトウェアで構成されていてもよい。図8の例では、信号選択部30cはアナログスイッチである。アナログスイッチの出力は、マイクロコンピュータで構成される回転角速度算出部31のAD入力ポートに接続されている。そして、回転角速度算出部31からの選択信号に応じ、入力された複数の信号のうちの1つを選択して出力する。具体的には、信号選択部30cは、減衰部30aが出力する電圧信号、及び、直列に接続された複数段のフィルタ回路30b1、30b2、・・・、30bnのそれぞれが出力する電圧信号のうちの1つを電圧V'の電圧信号として出力する。回転角速度算出部31は、信号選択部30cから電圧V'の電圧信号のみを受信するように構成されている。
 但し、回転角速度算出部31は、減衰部30aが出力する電圧信号、及び、直列に接続された複数段のフィルタ回路30b1、30b2、・・・、30bnのそれぞれが出力する電圧信号の全てを受信するように構成されてもよい。この場合、信号選択部30cは省略されてもよい。回転角速度算出部31は、受信した複数の電圧信号のうちの1つを電圧V'の電圧信号として選択できるためである。
 図9は、複数の電圧信号の波形を示す図である。図9(A)は、電圧検出部10aが出力する電圧Vの波形を示す。図9(B)は、減衰部30aが出力する電圧信号SG(0)の波形を示す。図9(C)は、第1フィルタ回路30b1が出力する電圧信号SG(1)の波形を示す。図9(D)は、第nフィルタ回路30bnが出力する電圧信号SG(n)の波形を示す。
 図9の例では、電動機10の端子間の電圧Vのハイレベルである約13[V]が減衰部30aによって約3.4[V]まで減衰されている。そのため、回転角速度算出部31は、例えば、3.4[V]の値をサンプリングした場合、式(1)における電圧Vには3.4[V]ではなく13[V]を代入して回転角速度ωを算出する。
 信号選択部30cは、例えば、PWM制御のデューティ比に応じてどの電圧信号を電圧V'の電圧信号として選択するかを決定する。例えば、デューティ比が小さいほど、すなわち、電動機10の回転角速度ωが小さいほど、下流側にあるフィルタ回路が出力する電圧信号を選択する。具体的には、デューティ比が比較的大きい場合、すなわち、電動機10の回転角速度ωが比較的大きい場合、信号選択部30cは、例えば、第1フィルタ回路30b1が出力する電圧信号SG(1)を電圧V'の電圧信号として選択する。また、デューティ比が比較的小さい場合、すなわち、電動機10の回転角速度ωが比較的小さい場合、信号選択部30cは、例えば、第nフィルタ回路30bnが出力する電圧信号SG(n)を電圧V'の電圧信号として選択する。
 第1フィルタ回路30b1が出力する電圧信号SG(1)が信号選択部30cによって選択された場合、電圧フィルタ部30が出力する電圧V'は、図9(C)に示すように約1.0[V]~約2.0[V]の範囲内を変動する。しかしながら、電圧フィルタ部30は、第nフィルタ回路30bnが出力する電圧信号SG(n)を選択した場合よりも短い遅延で電圧V'を出力できる。そのため、回転角速度算出部31は、サンプリング間隔が短い場合であっても出力電圧を遅延なくサンプリングできる。
 一方、第nフィルタ回路30bnが出力する電圧信号SG(n)が信号選択部30cによって選択された場合、電圧フィルタ部30が出力する電圧V'は、図9(D)に示すように約1.5[V]でほとんど変動しない。そのため、回転角速度算出部31は、正味電圧に近い出力電圧をサンプリングできる。
 また、電圧フィルタ部30は、デューティ比に基づく電圧V'の算出と、信号選択部30cによる電圧信号の選択とを組み合わせてもよい。例えば、電圧フィルタ部30は、デューティ比が所定値以上の場合、電圧Vにデューティ比を乗じて算出した電圧V'の電圧信号を出力し、デューティ比が所定値未満の場合、信号選択部30cが選択した電圧信号を電圧V'の電圧信号として出力してもよい。この構成により、回転角速度算出部31は、電動機10の回転角速度ωが大きくサンプリング間隔を短くする必要がある場合であっても電圧V'を適切にサンプリングできる。すなわち、正味電圧に近い電圧V'を遅延なくサンプリングできる。また、電動機10の回転角速度ωが小さくサンプリング間隔を比較的大きくできる場合には正味電圧にほぼ等しい電圧V'を遅延なくサンプリングできる。
 また、電圧フィルタ部30は、電動機10の温度、内部抵抗等を各種センサで検出し、電動機10の温度、内部抵抗等に基づき、デューティ比に基づく電圧V'の算出と、信号選択部30cによる電圧信号の選択とを切り替えてもよい。また、信号選択部30cは、電動機10の温度、内部抵抗等に基づき、入力された複数の電圧信号のうちのどの電圧信号を電圧V'の電圧信号として出力するかを決定してもよい。
 上述の構成により、装置100は、電動機10の駆動電圧がPWM制御される場合であっても、算出部を用いて電動機10の回転情報を適切に算出できる。具体的には、算出部としての回転角速度算出部31、回転角度算出部32、回転情報算出部36等により、電圧Vから得られる正味電圧としての電圧V'と電流Imとに基づいて回転角速度ω、回転角度θ、回転量等を算出できる。
 電圧Vの信号波形は、例えば、1又は複数のフィルタで構成されるフィルタ部30bを通じて脈流化され或いは平滑化される。そして、算出部は、脈流化され或いは平滑化された信号波形を有する正味電圧としての電圧V'と電流Imとに基づいて電動機10の回転情報を算出する。この構成により、算出部は、バラツキが小さい状態で正味電圧としての電圧V'をサンプリングすることができ、電動機10の回転情報を高精度に算出できる。
 また、算出部は、複数のフィルタのそれぞれが出力する信号波形から選択される1つの信号波形を有する正味電圧としての電圧V'と電流Imとに基づいて電動機10の回転情報を算出してもよい。この構成により、算出部は、できるだけバラツキが小さい状態で正味電圧としての電圧V'を遅延なくサンプリングすることができる。例えば、サンプリング間隔が小さい場合には、比較的上流にあるフィルタが出力する信号波形を電圧V'の信号波形として選択することで、信号生成の遅延に起因する不適切な電圧V'の取得を防止できる。一方で、サンプリング間隔が大きい場合には、比較的下流にあるフィルタが出力する信号波形を電圧V'の信号波形として選択することで、バラツキ(脈流化或いは平滑化が十分でない電圧信号)に起因する不適切な電圧V'の取得を防止できる。
 また、算出部は、電圧Vにデューティ比を乗じて算出される正味電圧と電流Imとに基づいて電動機10の回転情報を算出してもよい。この構成により、算出部は、正味電圧を遅延なくサンプリングすることができる。また、フィルタによる信号生成の遅延に起因する不適切な正味電圧の取得を防止できる。
 また、算出部は、1又は複数のフィルタを通じて電圧Vの信号波形を脈流化し或いは平滑化することで生成される信号波形を有する正味電圧、及び、電圧Vにデューティ比を乗じて算出される正味電圧のうちの一方を選択し、選択した正味電圧と電流Imとに基づいて電動機10の回転情報を算出してもよい。この構成により、算出部は、フィルタを用いて生成される信号波形を有する正味電圧と、電圧Vにデューティ比を乗じて算出される正味電圧とを、必要に応じて使い分けることができる。
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形、置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
 本願は、2016年12月28日に出願した日本国特許出願2016-256130号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 10・・・電動機 10a・・・電圧検出部 10b・・・電流検出部 20・・・整流子 20a・・・整流子片 20s・・・スリット 30・・・電圧フィルタ部 30a・・・減衰部 30b・・・フィルタ部 30b1・・・第1フィルタ回路 30b2・・・第2フィルタ回路 30bn・・・第nフィルタ回路 30c・・・信号選択部 31・・・回転角速度算出部 32・・・回転角度算出部 33・・・電流フィルタ部 34・・・第1信号生成部 35・・・第2信号生成部 36・・・回転情報算出部 100・・・装置 SW1~SW4・・・スイッチ

Claims (6)

  1.  整流子を備えた電動機の回転に関する情報を取得する装置であって、
     駆動電圧がPWM制御される前記電動機の端子間の電圧から得られる正味電圧と前記電動機を流れる電流とに基づいて前記電動機の回転に関する情報を算出する算出部を含む、
     装置。
  2.  前記算出部は、1又は複数のフィルタを通じて前記電圧の信号波形を脈流化し或いは平滑化することで生成される信号波形を有する正味電圧と前記電流とに基づいて前記電動機の回転に関する情報を算出するように構成されている、
     請求項1に記載の装置。
  3.  前記算出部は、前記複数のフィルタのそれぞれが出力する信号波形から選択される1つの信号波形を有する正味電圧と前記電流とに基づいて前記電動機の回転に関する情報を算出するように構成されている、
     請求項2に記載の装置。
  4.  前記算出部は、前記電圧にデューティ比を乗じて算出される正味電圧と前記電流とに基づいて前記電動機の回転に関する情報を算出するように構成されている、
     請求項1に記載の装置。
  5.  前記算出部は、1又は複数のフィルタを通じて前記電圧の信号波形を脈流化し或いは平滑化することで生成される信号波形を有する正味電圧、及び、前記電圧にデューティ比を乗じて算出される正味電圧のうちの一方を選択し、選択した正味電圧と前記電流とに基づいて前記電動機の回転に関する情報を算出するように構成されている、
     請求項1に記載の装置。
  6.  整流子を備えた電動機の回転に関する情報を取得する方法であって、
     駆動電圧がPWM制御される前記電動機の端子間の電圧から正味電圧を取得する工程と、
     前記正味電圧と前記電動機を流れる電流とに基づいて前記電動機の回転に関する情報を算出する工程と、を含む、
     方法。
PCT/JP2017/043025 2016-12-28 2017-11-30 直流整流子電動機の回転に関する情報を取得する装置及び方法 WO2018123426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256130 2016-12-28
JP2016256130A JP2020031454A (ja) 2016-12-28 2016-12-28 直流整流子電動機の回転に関する情報を取得する装置及び方法

Publications (1)

Publication Number Publication Date
WO2018123426A1 true WO2018123426A1 (ja) 2018-07-05

Family

ID=62707300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043025 WO2018123426A1 (ja) 2016-12-28 2017-11-30 直流整流子電動機の回転に関する情報を取得する装置及び方法

Country Status (2)

Country Link
JP (1) JP2020031454A (ja)
WO (1) WO2018123426A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352192B2 (ja) * 2020-08-31 2023-09-28 三菱電機株式会社 送風装置および送風装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743736A1 (de) * 1995-05-13 1996-11-20 Robert Bosch Gmbh Verfahren zur Überwachung des Ladezustands einer wiederaufladbaren Batterie
JP2013154826A (ja) * 2012-01-31 2013-08-15 Showa Corp 電動パワーステアリング装置およびプログラム
WO2016121751A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 インバータ制御装置及びモータ駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743736A1 (de) * 1995-05-13 1996-11-20 Robert Bosch Gmbh Verfahren zur Überwachung des Ladezustands einer wiederaufladbaren Batterie
JP2013154826A (ja) * 2012-01-31 2013-08-15 Showa Corp 電動パワーステアリング装置およびプログラム
WO2016121751A1 (ja) * 2015-01-28 2016-08-04 株式会社 東芝 インバータ制御装置及びモータ駆動システム

Also Published As

Publication number Publication date
JP2020031454A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
US7668690B2 (en) System and method for determining position or speed of a commutated DC motor with error correction
CN107482960B (zh) 电动机控制装置
JP5917294B2 (ja) モータ駆動回路
WO2018123426A1 (ja) 直流整流子電動機の回転に関する情報を取得する装置及び方法
JP4434000B2 (ja) モータ回転情報検出方法及びモータ回転情報検出装置
WO2018123453A1 (ja) 直流整流子電動機の回転に関する情報を取得する装置及び方法
JP6714775B2 (ja) 回転角度検出器付き電動機、電動機の回転角度検出器、及び、整流子を備えた電動機の回転角度を検出する方法
JP6814284B2 (ja) 回転角度検出器付き電動機、電動機の回転角度検出器、及び、電動機の回転角度検出器の故障を検知する方法
US8836269B2 (en) Method for detecting blockages of electrically commutated electric motors
JP6705061B2 (ja) 開閉体制御装置及び開閉体制御方法
US11289987B2 (en) Motor module, rotation angle detector, and method for detecting rotation angle of motor
JP2006017725A (ja) 電動機の回転数を測定する方法
US20150256110A1 (en) Motor control device
CN115224985A (zh) 旋转角度检测方法、程序及旋转角度检测装置
JP2022094458A (ja) 移動体の位置検出装置、モータの回転量検出装置
JP2010222855A (ja) 車両用開閉体制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP