WO2018123394A1 - 固定式等速自在継手 - Google Patents

固定式等速自在継手 Download PDF

Info

Publication number
WO2018123394A1
WO2018123394A1 PCT/JP2017/042521 JP2017042521W WO2018123394A1 WO 2018123394 A1 WO2018123394 A1 WO 2018123394A1 JP 2017042521 W JP2017042521 W JP 2017042521W WO 2018123394 A1 WO2018123394 A1 WO 2018123394A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
track groove
angle
joint member
plane
Prior art date
Application number
PCT/JP2017/042521
Other languages
English (en)
French (fr)
Inventor
雅司 船橋
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018123394A1 publication Critical patent/WO2018123394A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • F16D3/2245Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre

Definitions

  • This invention relates to a fixed type constant velocity universal joint.
  • the constant velocity universal joint that constitutes the power transmission system of automobiles and various industrial machines connects the two shafts on the drive side and the driven side so that torque can be transmitted, and transmits rotational torque at a constant speed even if the two shafts have an operating angle. can do.
  • Constant velocity universal joints are broadly classified into fixed constant velocity universal joints that allow only angular displacement and sliding constant velocity universal joints that allow both angular displacement and axial displacement.
  • a sliding type constant velocity universal joint is used on the differential side (inboard side), and a fixed type constant velocity universal joint is used on the drive wheel side (outboard side).
  • Patent Document 1 In order to achieve a higher load capacity than the above-described fixed type constant velocity universal joint, a fixed type constant velocity universal joint in which two track grooves adjacent to each other are formed on a plane parallel to each other has been proposed ( Patent Document 1).
  • an object of the present invention is to provide a lightweight and compact fixed type constant velocity universal joint capable of securing a large load capacity from a normal angle range to a high angle range.
  • the inventor has arranged the track groove portion on the plane including the axis of the joint, and the high angle region is parallel to each other at intervals.
  • a new idea of arranging adjacent track groove portions in pairs on a plane and smoothly connecting both track groove portions has been made, and the present invention has been achieved.
  • the present invention provides an outer joint member having a plurality of track grooves extending in the longitudinal direction on a spherical inner peripheral surface and having an opening side and a back side that are separated in the axial direction.
  • the track groove of the outer joint member (2) (7) is composed of a first two pairs of track grooves (7A 1 , 7B 1 , 7A 3 , 7B 3 ) and a second two pairs of track grooves (7A 2 , 7B 2 , 7A 4 , 7B 4 ).
  • the first two pairs of tracks (7A 1, 7B 1, 7A 3, 7B 3) are respectively spaced on opposite sides of the first plane (PT1) including joint axis line (N-N), and the first The second two pairs of track grooves (7A 2 , 7B 2 , 7A 4 , 7B 4 ) are formed symmetrically with respect to the plane (PT1), and the axis (NN) of the joint respectively Including the second plane (PT2) perpendicular to the first plane (PT1) and spaced from each other, and symmetrically formed with respect to the second plane (PT2), the track
  • Each of the grooves (7) includes a normal angle track groove (7f), a high angle track groove (7h), and a transition track groove (7t) that smoothly connects the two track grooves (7f, 7h).
  • the first two pairs of the track grooves (7A 1, 7B 1, A 3, 7B 3 wherein the high angle region track groove) (plane including the track center line (Xh) of 7h) (B1, B1 ') are each formed parallel to the first plane (PT1)
  • the plane (B2, B2 ′) including the orbit center line (Xh) of the high-angle track groove portion (7h) of the second two pairs of track grooves (7A 2 , 7B 2 , 7A 4 , 7B 4 ) Is formed in parallel to the second plane (PT2), and the common angular region track groove portion (7f) of the first two pairs of track grooves (7A 1 , 7B 1 , 7A 3 , 7B 3 ).
  • the planes (A1, A1 ′) including the orbit center line (Xf) are formed at an angle with respect to the first plane (PT1) about the joint axis (NN). 2 of the pair of track grooves (7A 2 , 7B 2 , 7A 4 , 7B 4 )
  • the plane (A2, A2 ′) including the track center line (Xf) of the hook groove (7f) is formed at an angle with respect to the second plane (PT2) about the axis (NN) of the joint.
  • at least the normal angular track groove (7f) of the outer joint member has a curved orbit center line (Xf), and the center of curvature (O1) is axial with respect to the joint center (O).
  • the track center line (Y) of the track groove (9) of the inner joint member (3) includes the joint center (O) at an operating angle of 0 °, and the joint axis (NN) And a plane center (X) of the track groove (7) as a pair of the outer joint member (2) with respect to a plane (P) orthogonal to the center of the track (P).
  • the track center line of the track groove means a locus of the center of the torque transmission ball when the torque transmission ball moves along the track groove.
  • the high-angle region track groove (7h) of the outer joint member (7) also has a curved track center line (Xh), and the center of curvature (O3) is relative to the joint center (O). It is preferably offset in the axial direction.
  • each track center line of the normal angle track groove (7f), the high angle track groove (7h), and the transition track groove (7t) has a smooth shape, which is advantageous in terms of machining.
  • Each of them is preferably offset to the back side of the outer joint member with respect to the joint center (O).
  • the amount of offset in the axial direction of the center of curvature (O1) of the track center line (Xf) of the track angle groove (7f) in the normal angle range and the center of curvature of the track center line (Xh) of the track groove line (7h) in the high angle range (7f) is equal.
  • the track centerlines of the normal angle track groove (7f), the high angle track groove (7h), and the transition track groove (7t) have a smoother shape, which is more advantageous in terms of machining.
  • the angle ( ⁇ 1) between the centers of the pair of track grooves (7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 ) is such that the pair of track grooves (7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 , 7A 1 ), so that the two balls can be accommodated in the cage pocket by making it smaller than the angle ( ⁇ 2) between the centers. Therefore, it becomes a suitable configuration.
  • the cage (5) accommodates two balls incorporated in a pair of track grooves (7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 ).
  • retainer can be increased and intensity
  • FIG. 3 shows a fixed type constant velocity universal joint according to an embodiment of the present invention, and is a longitudinal sectional view taken along line A1-A1 of FIG. 2a.
  • FIG. 2 is a cross-sectional view taken along line B1-B1 of FIG. 2A, showing a fixed type constant velocity universal joint according to an embodiment of the present invention.
  • 1b is a right side view of FIG. It is the cross-sectional view which looked at the CC line of FIG. 1a.
  • 1b is an exploded perspective view of the outer joint member, cage and inner joint member of FIG. 1a.
  • FIG. 4b is a longitudinal sectional view taken along line A1-N in FIG. 4a.
  • FIG. 4b is a cross-sectional view taken along line B1-N ′ of FIG. 4a.
  • FIG. 4B is a front view including a cross section of the outer joint member taken along line B1-N′-B1 of FIG. 4A. It is a right view of the inner joint member of FIG.
  • FIG. 6b is a longitudinal sectional view taken along line A1-N in FIG. 6a.
  • FIG. 6b is a cross-sectional view taken along line B1-N ′ of FIG. 6a.
  • 6b is a front view of the inner joint member of FIG. 6a.
  • FIG. FIG. 6b is a cross-sectional view taken along the line DD in FIG. 6b.
  • FIG. 6c is a cross-sectional view taken along the line EE of FIG. 6c.
  • FIGS. 1a shows a fixed type constant velocity universal joint according to the present embodiment, and is a longitudinal sectional view taken along line A1-A1 in FIG. 2a.
  • FIG. 1b is a sectional view taken along line B1-B1 in FIG. 2a. is there. 2a is a right side view of FIG. 1a, and FIG. 2b is a cross-sectional view taken along the line CC in FIG. 1a, with the torque transmitting ball removed.
  • the fixed type constant velocity universal joint 1 of the present embodiment mainly includes an outer joint member 2, an inner joint member 3, a torque transmission ball (also simply referred to as a ball) 4, and a cage 5.
  • the spherical inner circumferential surface 6 of the outer joint member 2 has four pairs of track grooves 7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4. Are formed in the longitudinal direction.
  • the spherical outer peripheral surface 8 of the inner joint member 3 has four pairs of track grooves opposed to the track grooves 7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 of the outer joint member 2.
  • 9A 1 , 9B 1 , 9A 2 , 9B 2 , 9A 3 , 9B 3 , 9A 4 , 9B 4 are formed in the longitudinal direction.
  • Eight balls 4 for transmitting torque are incorporated one by one between the track groove 7 of the outer joint member 2 and the track groove 9 of the inner joint member 3.
  • the reference numeral 7 is used to collectively refer to the track grooves 7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 of the outer joint member 2.
  • reference numeral 9 is used.
  • reference numerals 7A and 7B are used.
  • the same procedure applies to the inner joint member 3.
  • the same is applied to the reference numerals of a normal angle track groove, a high angle track groove, and a transition track groove, which will be described later.
  • a cage 5 that holds the ball 4 is disposed between the spherical inner peripheral surface 6 of the outer joint member 2 and the spherical outer peripheral surface 8 of the inner joint member 3.
  • the ball 4 is accommodated in the pocket 5 a of the cage 5.
  • the spherical outer peripheral surface 12 of the cage 5 is slidably fitted to the spherical inner peripheral surface 6 of the outer joint member 2, and the spherical inner peripheral surface 13 of the cage 5 slides on the spherical outer peripheral surface 8 of the inner joint member 3. Fit and guide freely.
  • the four pairs of track grooves 7A 1 , 7B 1 , 7A 2 , 7B 2 , 7A 3 , 7B 3 , 7A 4 , 7B 4 of the outer joint member 2 are the first two pairs.
  • the four pairs of track grooves 9A 1 , 9B 1 , 9A 2 , 9B 2 , 9A 3 , 9B 3 , 9A 4 , 9B 4 of the inner joint member 3 are the first two pairs of track grooves 9A 1 , 9B. 1 , 9A 3 , 9B 3 and a second pair of track grooves 9A 2 , 9B 2 , 9A 4 , 9B 4 .
  • the first two pairs of track grooves 7A 1 , 7B 1 , 7A 3 , 7B 3 of the outer joint member 2 are disposed on both sides of the first plane PT1 including the joint axis NN, and are spaced apart from each other. They are formed symmetrically with respect to one plane PT1.
  • the second two pairs of track grooves 7A 2 , 7B 2 , 7A 4 , 7B 4 of the outer joint member 2 include both sides of the second plane PT2 including the joint axis NN and orthogonal to the first plane PT1. Are spaced apart from each other and formed symmetrically with respect to the second plane PT2.
  • first two pairs of track grooves 9A 1 , 9B 1 , 9A 3 , 9B 3 of the inner joint member 2 are arranged on both sides of the first plane PT1 including the joint axis NN. And are formed symmetrically with respect to the first plane PT1.
  • the second two pairs of track grooves 9A 2 , 9B 2 , 9A 4 , 9B 4 of the inner joint member 2 include both sides of the second plane PT2 including the joint axis NN and orthogonal to the first plane PT1. Are spaced apart from each other and formed symmetrically with respect to the second plane PT2.
  • a service angle zone track groove portion 7 f is formed in a service angle region near the axial direction of the joint center O of the track groove 7 of the outer joint member 2.
  • the normal angular track groove 7A 1 f has a curved track center line Xf, and the center of curvature O1 of the track center line Xf is offset from the joint center O in the axial direction by an amount of f1 from the back.
  • the plane A1 including the track center line Xf of the normal-angle track groove 7A 1 f is formed with an angle ⁇ 1 / 2 with respect to the first plane PT1 about the joint axis NN. ing.
  • the specific regular angular zone track groove portion 7A 1 f has been described as an example in order to make the consistency with the drawing accurate.
  • the track grooves 7A 1 and 7B 1 and the track grooves 7A 3 and 7B 3 are symmetric with respect to the first plane PT1, and the track grooves 7A 2 and 7B 2 and the track grooves with respect to the second plane PT2. 7A 4 and 7B 4 are symmetrical. Therefore, the track grooves 7A 1 , 7A 2 , 7A 3 , 7A 4 and the track grooves 7B 1 , 7B 2 , 7B 3 , 7B 4 are symmetrical with respect to the first plane PT1 or the second plane PT2. Except for this relationship, the shape of each track groove 7 is the same, and the regular angle region track groove portion 7f of each track groove 7 is also the same shape.
  • a service angle zone track groove 9A 1 f is formed in a service angle region near the axial direction of the joint center O of the track groove 9 of the inner joint member 3.
  • the normal angle track groove 9A 1 f has a curved track center line Yf, and the curvature center O2 of the track center line Yf is offset from the joint center O in the axial direction by f1 toward the opening side.
  • the center of curvature O2 of the track center line Yf of the service angle zone track groove 9A 1 f of the inner joint member 3 and the center of curvature O1 of the track center line Xf of the service angle track groove 7A 1 f of the outer joint member 2 are the joint center O.
  • the plane A1 including the track center line Yf of the common angular zone track groove 9f of the inner joint member 3 has an angle ⁇ 1 / 2 with respect to the first plane PT1 about the joint axis NN. It is formed with.
  • high angle region track groove portions 7 h are formed in the high angle regions on the opening side and the deep side of the joint of the track groove 7 of the outer joint member 2.
  • the high angle region track groove 7A 1 h has a curved orbit center line Xh.
  • the plane B1 including the track center line Xh of the high-angle area track groove 7A 1 h is formed in parallel to the first plane PT1.
  • the projection axis N′-N ′ and the projection center O ′ are obtained by projecting the joint axis NN and the joint center O on the first plane PT1 onto the plane B1 in the horizontal direction of the drawing.
  • the curvature center O3 of the curved orbit center line Xh of the high-angle track groove 7A 1 h is offset by f2 along the projection axis N′-N ′ in the axial direction with respect to the projection center O ′. ing.
  • a high angle area track groove portion 9 h is formed in the high angle area on the opening side and the back side of the track groove 9 of the inner joint member 3.
  • the high angle region track groove 9h has a curved orbit center line Yh.
  • the plane B1 shown in FIG. 2a also includes the track center line Yh of the high angle region track groove 9A 1 h of the inner joint member 3.
  • the curvature center O4 of the curved orbit center line Yh of the high angle track groove 9A 1 h is offset by f2 along the projection axis N′-N ′ to the axial opening side with respect to the projection center O ′. ing.
  • the center of curvature O4 of the track center line Yh of the high angle region track groove 9A 1 h of the inner joint member 3 and the center of curvature O3 of the track center line Xh of the high angle region track groove 7A 1 h of the outer joint member 2 are the projection center O. Is offset by an equal distance f2 on the opposite side in the axial direction along the projection axis N′-N ′.
  • a plane B1 including the track center line Yh of the high-angle region track groove 9A 1 h of the inner joint member 3 is formed in parallel to the first plane PT1.
  • the first two pairs of the track grooves 7A of the outer joint member 2 1, 7B 1, 7A 3 , 7B 3 and the second 2 pairs of the track grooves 7A 2, 7B 2, 7A 4 , 7B The angles between the four pairs of track grooves 7A 1 and 7B 1 , between the centers of 7A 3 and 7B 3 , between the centers of 7A 2 and 7B 2 , and between the centers of 7A 4 and 7B 4 are all ⁇ 1. Is set.
  • the angles between the centers of a pair of adjacent track grooves 7B 1 and 7A 2 , between the centers of 7B 2 and 7A 3 , between the centers of 7B 3 and 7A 4 , and between the centers of 7B 4 and 7A 1 are ⁇ 2 is set.
  • the angle ⁇ 1 between the centers of the paired track grooves is set smaller than the angle ⁇ 2 between the centers of the adjacent pair of track grooves. The same applies to the angular relationship between the centers of the track grooves 9 of the inner joint member 2.
  • the circumferential length of the pocket 5a of the cage 5 is suppressed, and the 2 is incorporated into the paired track grooves.
  • Individual balls 4 can be accommodated in one pocket 5a.
  • retainer 5 can be increased, and intensity
  • the orbital center lines Xh and Yh of the high angle region track grooves 7h and 9h of the outer joint member 2 and the inner joint member 3 are arranged on the planes B1, B1 ', B2, and B2', respectively.
  • the planes B1 and B1 ' are formed in parallel with the first plane PT1
  • the planes B2 and B2' are formed in parallel with the second plane PT2. That is, the track center lines Xh and Yh of the high angle region track grooves 7h and 9h are formed in parallel to the first plane PT1 or the second plane PT2.
  • FIG. 3 is an exploded perspective view of the fixed type constant velocity universal joint 1 of the present embodiment.
  • An overview is shown.
  • the alternate long and two short dashes line of each of the track grooves 7 and 9 indicates the groove bottom.
  • the retainer 5 is provided with four pockets 5a (not shown) for storing two balls 4 at regular intervals in the circumferential direction. Thereby, the width
  • FIGS. 4a is a right side view of the outer joint member of FIG. 1a
  • FIG. 4b is a longitudinal sectional view taken along line A1-N of FIG. 4a
  • FIG. 4c is taken along line B1-N ′ of FIG. 4a. It is sectional drawing.
  • FIG. 5 is a cross-sectional view taken along line B1-N′-B1 of FIG. 4A.
  • the track center line Xf conventional angular range track groove portion 7A 1 f of the outer joint member 2 track groove 7A 1 is formed in a curved shape, the center of curvature O1 on the far side from the joint center O f1 Is offset in the axial direction by a distance of. Then, the normal angle region track groove 7A 1 f is formed in the range of the angle ⁇ 1 from the joint center O to the opening side and the back side.
  • the common angle of the joint refers to an operating angle generated in a fixed type constant velocity universal joint of a front drive shaft when a vehicle is traveling straight on a horizontal and flat road surface when the steering is in a straight traveling state.
  • the service angle is usually selected and determined between 2 ° and 15 ° according to the design conditions for each vehicle type.
  • works continuously also becomes an operating angle with frequent use.
  • This frequently used operating angle is also determined according to the design conditions for each vehicle type, and the frequently used operating angle is set to a maximum of 20 °.
  • the normal angle range is used in the meaning including the above-mentioned frequently used operating angles.
  • the angle ⁇ 1 that defines the range of the normal angle track groove 7f (7A 1 f) is set to 3 ° to 10 °.
  • the angle ⁇ 1 is not limited to 3 ° to 10 °, and can be appropriately set according to the design conditions of the vehicle type. By setting the angle ⁇ 1 to 3 ° to 10 °, it can be widely used for various types of vehicles.
  • the track center line Xh of the high-angle track groove 7A 1 h is formed in a curved shape, and its curvature center O3 is offset in the axial direction by an amount of f2 from the projection center O ′ to the back side. ing.
  • the high-angle track groove 7A 1 h is formed in a range of an angle ⁇ 2 or more on the opening side and the back side with respect to the projection center O ′.
  • the projection axis N′-N ′ and the projection center O ′ are obtained by projecting the joint axis NN and the joint center O on the first plane PT1 onto the plane B1 in the horizontal direction of the drawing.
  • the high angle range of the joint refers to a high operating angle of 35 ° or more that occurs when a vehicle turns right or left at an intersection, or enters a garage, for example, and is selected and determined according to design conditions for each vehicle type.
  • the high angle region is used in the above meaning.
  • the angle ⁇ 2 that defines the range of the high angle region track groove 7A 1 h is set to 17.5 °.
  • the angle ⁇ 2 is not limited to 17.5 °, and can be appropriately set according to the design conditions of the vehicle type. By setting the angle ⁇ 2 to 17.5 °, it can be used for various types of vehicles.
  • the offset amount f2 of the center of curvature O3 of the orbit center line Xh is set to the same value.
  • the present invention is not limited to this, and the offset amounts f1 and f2 may be different values.
  • the transition track groove portion 7t that connects between the normal angle region track groove portion 7f and the high angle region track groove portion 7h of the track groove 7 of the outer joint member 2 will be described with reference to FIG.
  • track grooves 7 ⁇ / b > A 2 and 7 ⁇ / b > B 2 are illustrated in front of the spherical inner peripheral surface 6 of the outer joint member 2.
  • the track groove 7A 2 will be described as an example.
  • the two-dot chain line illustrated in the track grooves 7A 2 shows regular angle range track groove portion 7A 2 f, each groove bottom of the high-angle region track groove portion 7A 2 h and transition track groove portion 7A 2 t.
  • a plane A1 (see FIGS. 4a and 4b) including the track center line Xf of the normal angle track groove 7A 2 f is formed with an angle ⁇ 1 / 2 with respect to the first plane PT1 with the joint axis NN as the center. Therefore, in FIG. 5, the groove bottom of the regular angle region track groove portion 7A 2 f is illustrated in a state of being biased upward in the groove width.
  • the normal angle track groove 7A 2 f is located in the axial range Lfo.
  • the axial range Lfo corresponds to the range of the angle ⁇ 1 described above with reference to FIG.
  • the plane B1 (see FIGS. 4a and 4c) including the track center line Xh of the high-angle region track groove 7A 2 h is formed in parallel to the first plane PT1, in FIG.
  • the groove bottom of the angular area track groove 7A 2 h is illustrated at the center position of the groove width.
  • the high angle region track groove 7A 2 h is located in the axial range Lho.
  • the axial range Lho corresponds to the range of the angle ⁇ 2 or more described above with reference to FIG.
  • the transition track groove portion 7A 2 t has a track center line (not shown) that is smoothly connected.
  • the trajectory center line of the transition track groove 7A 2 t is formed by a three-dimensionally curved curve.
  • the transition track groove portion 7A 2 t forms a wedge-shaped track that faces a transition track groove portion of the inner joint member 3 to be described later and expands toward the back side of the outer joint member 2.
  • the transition track groove 7A 2 t is located in the axial range Lto.
  • FIGS. 6a is a right side view of the inner joint member of FIG. 1a
  • FIG. 6b is a longitudinal sectional view taken along line A1-N of FIG. 6a
  • FIG. 6c is taken along line B1-N ′ of FIG. It is sectional drawing.
  • FIG. 7 is a front view of the inner joint member viewed from the upper side of FIG. 6a.
  • 8a is a cross-sectional view taken along the line DD in FIG. 6b
  • FIG. 8b is a cross-sectional view taken along the line EE in FIG. 6c.
  • the track center line Y of the track groove 9 of the inner joint member 3 has the track groove 7 which forms a pair of the outer joint member 2 on the basis of a plane P which includes the joint center O and is orthogonal to the joint axis when the operating angle is 0 °. It is formed mirror-symmetric with the orbit center line X.
  • the track center line Yf conventional angular range track groove portion 9A 1 f of the track grooves 9A 1 of the inner joint member 3 is formed in a curved shape
  • the center of curvature O2 is the joint center O Is offset in the axial direction by an amount of f1 from the opening to the opening side.
  • the normal angle region track groove 9A 1 f is formed in the range of the angle ⁇ 1 from the joint center O to the opening side and the back side.
  • the definition of the angle ⁇ 1 that defines the range of the service angle zone track groove 9f (9A 1 f) of the inner joint member 3 and the service angle region is the same as that described above for the outer joint member 2.
  • the track center line Yh of the high-angle track groove 9A 1 h is formed in a curved shape, and its center of curvature O4 is offset in the axial direction by an amount of f2 from the projection center O ′ to the opening side. ing.
  • the high-angle area track groove 9A 1 h is formed in the range of the angle ⁇ 2 or more on the opening side and the back side with respect to the projection center O ′.
  • the projection axis N′-N ′ and the projection center O ′ are obtained by projecting the joint axis NN and the joint center O on the first plane PT1 onto the plane B1 in the horizontal direction of the drawing.
  • the definition of the angle ⁇ 2 and the high angle region that define the range of the high angle region track groove 9h (9A 1 h) of the inner joint member 3 is the same as that described above for the outer joint member 2.
  • the offset amount f1 of the curvature center O2 of the curved track center line Yf of the normal angle track groove 9A 1 f and the curved track center of the high angle track groove 9A 1 h is set to the same value.
  • the present invention is not limited to this, and the offset amounts f1 and f2 may be different values.
  • a transition track groove portion 9t that connects between the normal angle region track groove portion 9f and the high angle region track groove portion 9h of the track groove 9 of the inner joint member 3 will be described with reference to FIG.
  • track grooves 9 ⁇ / b> A 1 and 9 ⁇ / b> B 1 are illustrated at the front position of the spherical outer peripheral surface 8 of the inner joint member 3.
  • the track groove 9A 1 will be described as an example.
  • two-dot chain line illustrated in the track grooves 9A 1 shows common angular range track groove portion 9A 1 f, each groove bottom of the high-angle region track groove portion 9A 1 h and transition track groove portion 9A 1 t.
  • a plane A1 (see FIGS. 6a and 6b) including the track center line Xf of the normal angle track groove 9A 1 f is formed with an angle ⁇ 1 / 2 with respect to the first plane PT1 with the joint axis NN as the center. Therefore, in FIG. 7, the groove bottom of the normal angle track groove 9 ⁇ / b> A 1 f is illustrated in a state of being biased above the groove width.
  • the normal angle track groove 9A 1 f is located in the axial range Lfi.
  • the axial range Lfi corresponds to the range of the angle ⁇ 1 described above with reference to FIG.
  • the plane B1 (see FIGS. 6a and 6c) including the track center line Yh of the high-angle region track groove 9A 1 h is formed in parallel to the first plane PT1, so in FIG.
  • the groove bottom of the angular area track groove 9A 1 h is illustrated at the center position of the groove width.
  • the high angle region track groove 9A 1 h is located in the axial range Lhi.
  • the axial range Lhi corresponds to the range of the angle ⁇ 2 or more described above with reference to FIG.
  • the transition track groove 9A 1 t has a track center line that smoothly connects.
  • the track center line of the transition track groove 9A 1 t is formed by a three-dimensionally curved curve.
  • the transition track groove 9A 1 t is located in the axial range Lti.
  • the track center line Y of the track groove 9 of the inner joint member 3 is the same as the pair of the outer joint members 2 on the basis of the plane P that includes the joint center O and is orthogonal to the joint axis in the state where the operating angle is 0 °.
  • the track groove 7 is formed in a mirror image symmetry with respect to the track center line X.
  • FIG. 8a shows a state in which the ball 4 is positioned in the normal angle region track groove portion 9f
  • FIG. 8b shows a state in which the ball 4 is positioned in the high angle region track groove portion 9h.
  • the ball 4 and the service angle track groove 9f have contact angles with respect to the planes A1, A1 ′ including the joint axis NN, as shown in the service angle track groove 9B 1 f.
  • Contact with ⁇ Therefore, in the normal angle range, the balls on both sides of the pair of normal angle range track grooves 9A 1 f and 9B 1 f can transmit torque. That is, since all of the eight balls can transmit the torque, the contact surface pressure between the ball 4 and the regular angle region track groove portion 9f is reduced, and the durability is improved.
  • the contact state between the track groove portion 7f of the normal angle area of the outer joint member 2 and the ball 4 is the same as described above, and the fixed constant velocity universal joint 1 of the present embodiment has a load capacity in the normal angle area. , Durability can be ensured.
  • the ball 4 and the high-angle track groove 9h have contact angles with respect to the planes B1 and B1 ′ parallel to the first plane PT1 as shown in the high-angle track groove 9B 1 h.
  • Contact with ⁇ Therefore, in the high angle region, the ball on one side of the pair of high angle region track grooves 9A 1 h, 9B 1 h transmits most of the torque.
  • the ball 4 ′ of the high angle track groove 9B 1 h among the pair of high angle track grooves 9A 1 h and 9B 1 h transmits most of the torque, and the ball 4 ′ of the high angle track groove 9A 1 h. Will hardly transmit torque.
  • one of the pair of high angle region track grooves 9A 1 h and 9B 1 h (half of the eight balls) transmits most of the torque.
  • torque can be transmitted only with about half of the balls, so the contact surface pressure between the balls and the track grooves is disadvantageous.
  • the thickness of the rib portion 3a (see FIG. 2a) between the track grooves 9A and 9B at the end of the inner joint member 3 that is particularly related to securing the strength at high angles does not occur, and the track groove 9 and the inner peripheral hole The minimum wall thickness increases, and load capacity can be secured.
  • the fixed type constant velocity universal joint 1 of the present embodiment includes the outer joint member 2 and the inner joint member 3 having four pairs of track grooves 7 and 9, respectively.
  • 9 are normal angular track grooves 7f, 9f in which the track center lines Xf, Yf are arranged on the planes A1, A1 ′, A2, A2 ′ centered on the joint axis NN, and the joint axis NN
  • High-angle track groove portions 7h, 9h in which the track center lines Xh, Yh are arranged on the planes B1, B1 ′, B2, B2 ′ parallel to the planes PT1, PT2, and the track groove portions 7f, 7h, 9f, 9h. Since the transition track groove portions 7t and 9t are connected smoothly, the lightweight and compact fixed type constant velocity universal joint 1 capable of securing a large load capacity from the normal angle range to the high angle range can be realized.
  • the curvature centers O3 and O4 of the curved track center lines Xh and Yh of the high-angle track groove portions 7h and 9h are arranged on the projection axis N′-N ′.
  • the one offset in the radial direction from the projection axis N′-N ′ and the center of curvature of the curved orbital center line of the high angle track groove portions 7h, 9h are arranged on the outer side in the radial direction of the outer joint member 2,
  • the curved track center lines of the high-angle track groove portions 7h and 9h may be formed in an S shape.
  • the track center lines of the high-angle area track grooves 7h, 9h can be linearly parallel to the projection axis N'-N '.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

球状内周面6に長手方向に延びる複数のトラック溝7が形成され、軸方向に離間する開口側と奥側を有する外側継手部材2と、球状外周面8に長手方向に延びる複数のトラック溝9が外側継手部材2のトラック溝7に対向して形成された内側継手部材3と、対向する各トラック溝7、9間に組込まれたトルク伝達ボール4と、このトルク伝達ボール4を保持し、外側継手部材2の球状外周面6と内側継手部材3の球状外周面8に案内される保持器5とからなる固定式等速自在継手1において、外側継手部材2と内側継手部材3がそれぞれ4対のトラック溝7、9を有し、各トラック溝7、9が継手の軸線N-Nを中心とする平面A1、A1'、A2、A2'上に軌道中心線Xf、Yfを配置した常用角度域トラック溝部7f、9fと、継手の軸線N-Nを含む平面PT1、PT2に平行な平面B1、B1'、B2、B2'に軌道中心線Xh、Yhを配置した高角度域トラック溝部7h、9hと、両トラック溝部7f、7h、9f、9hを滑らかに接続する遷移トラック溝部7t、9tとから構成されている。

Description

固定式等速自在継手
 この発明は、固定式等速自在継手に関する。
 自動車や各種産業機械の動力伝達系を構成する等速自在継手は、駆動側と従動側の二軸をトルク伝達可能に連結すると共に、前記二軸が作動角をとっても等速で回転トルクを伝達することができる。等速自在継手は、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手とに大別され、例えば、自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトにおいては、デフ側(インボード側)に摺動式等速自在継手が使用され、駆動車輪側(アウトボード側)には固定式等速自在継手が使用される。
 固定式等速自在継手として、ツェッパ型等速自在継手やアンダーカットフリー型等速自在継手が知られている。近年、軽量・コンパクトを兼ね備えた8個ボールタイプのツェッパ型等速自在継手もあり、目的に応じて様々な固定式等速自在継手を使い分けている。
 前述した固定式等速自在継手よりも高負荷容量化を図るべく、隣り合った対になる2つトラック溝が互いに平行な平面上に形成された固定式等速自在継手が提案されている(特許文献1)。
特許第4969758号公報
 固定式等速自在継手の軽量、コンパクト化を図るためには、各構成部品の強度確保、その中でも特に、内側継手部材、保持器の強度確保が必要である。ツェッパ型等速自在継手やアンダーカットフリー型等速自在継手では、組立ての際、ボールをトラック溝に挿入するために使用領域以上に角度(組込み角)をとり、その角度でボールと保持器のポケット間で干渉しないように保持器のポケットの周方向長さを設定する必要がある。コンパクト化しても保持器のポケットの周方向長さは変わらないため、保持器の柱部が細くなり、保持器の強度確保が困難となる。また、コンパクト化を図るとボールとトラック溝との接触面圧を一定以下に抑えるために、ボールのピッチ円直径PCDを小さく、ボール径を大きく設定する必要があり、その結果、内側継手部材の球状外周面の端部の肉厚が薄くなり、内側継手部材の強度の確保が困難となる。
 その解決手段として、特許文献1の等速自在継手では、対になった隣り合う2つのトラック溝が互いに平行な平面状に形成することによって、隣り合う2個のボールを保持器の1つのポケットに配置することで保持器の柱部を太くでき、内側継手部材の球状外周面の端部の肉厚を確保することにより、強度の向上を図っている。
 しかし、特許文献1の等速自在継手のような対になった隣り合う2つのトラック溝が互いに平行な平面上に形成する形状では、常用角度域では、対になった片側のボール(ボール個数の半分)でしかトルクを伝達できないため、ボールとトラック溝との接触面圧が大きくなり、耐久性が低下する。この問題に着目したのが本発明である。
 上記のような問題に鑑み、本発明は、常用角度域から高角度域まで大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を提供することを目的とする。
 本発明者は、上記の目的を達成するために種々検討した結果、常用角度域は、継手の軸線を含む平面上にトラック溝部を配置すると共に、高角度域は、間隔をもった互いに平行な平面上に対になった隣り合うトラック溝部を配置し、両トラック溝部を滑らかに接続するという新たな着想を行い、本発明に至った。
 前述の目的を達成するための技術的手段として、本発明は、球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面と前記内側継手部材の球状外周面に案内される保持器とからなる固定式等速自在継手において、前記外側継手部材(2)のトラック溝(7)は、第1の2対のトラック溝(7A1、7B1、7A3、7B3)と第2の2対のトラック溝(7A2、7B2、7A4、7B4)から構成され、前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)は、それぞれ、継手の軸線(N-N)を含む第1の平面(PT1)の両側に間隔をおいて配置され、かつ、この第1の平面(PT1)を基準して互いに対称に形成され、前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)は、それぞれ、前記継手の軸線(N-N)を含み、前記第1の平面(PT1)に直交する第2の平面(PT2)の両側に間隔をおいて配置され、この第2の平面(PT2)を基準にして互いに対称に形成され、前記トラック溝(7)は、それぞれ、常用角度域トラック溝部(7f)と、高角度域トラック溝部(7h)と、これら両トラック溝部(7f、7h)間を滑らかに繋ぐ遷移トラック溝部(7t)とからなり、前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)の前記高角度域トラック溝部(7h)の軌道中心線(Xh)を含む平面(B1、B1’)は、それぞれ、前記第1の平面(PT1)に対して平行に形成され、前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)の前記高角度域トラック溝部(7h)の軌道中心線(Xh)を含む平面(B2、B2’)は、前記第2の平面(PT2)に対して平行に形成され、前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)の前記常用角度域トラック溝部(7f)の軌道中心線(Xf)を含む平面(A1、A1’)は、前記継手の軸線(N-N)を中心として前記第1の平面(PT1)に対して角度をもって形成されており、前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)の前記常用角度域トラック溝部(7f)の軌道中心線(Xf)を含む平面(A2、A2’)は、前記継手の軸線(N-N)を中心として前記第2の平面(PT2)に対して角度をもって形成されており、前記外側継手部材の少なくとも前記常用角度域トラック溝部(7f)は曲線状の軌道中心線(Xf)を有し、その曲率中心(O1)が継手中心(O)に対して軸方向にオフセットされており、前記内側継手部材(3)のトラック溝(9)の軌道中心線(Y)は、作動角0°の状態で継手中心(O)を含み継手の軸線(N-N)に直交する平面(P)を基準として、前記外側継手部材(2)の対となるトラック溝(7)の軌道中心線(X)と鏡像対称に形成されていることを特徴とする。ここで、本明細書および請求の範囲において、トラック溝の軌道中心線とは、トラック溝に沿ってトルク伝達ボールが移動するときのトルク伝達ボールの中心の軌跡を意味する。
 上記の構成により、常用角度域から高角度域まで大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を実現することができる。
 具体的には、上記の外側継手部材(7)の高角度域トラック溝部(7h)も曲線状の軌道中心線(Xh)を有し、その曲率中心(O3)が継手中心(O)に対して軸方向にオフセットされていることが好ましい。これにより、常用角度域トラック溝部(7f)、高角度域トラック溝部(7h)、遷移トラック溝部(7t)の各軌道中心線が滑らかな形状となり、加工面で有利である。
 上記の外側継手部材の常用角度域トラック溝部(7f)の軌道中心線(Xf)の曲率中心(O1)と高角度域トラック溝部(7h)の軌道中心線(Xh)の曲率中心(O3)が、それぞれ、継手中心(O)に対して外側継手部材の奥側にオフセットされていることが好ましい。これにより、トラック溝間のくさび角によるボールの軸方向力が外側継手部材の基部となる奥側に作用するので、強度面で安定する。
 上記の常用角度域トラック溝部(7f)の軌道中心線(Xf)の曲率中心(O1)の軸方向のオフセット量と、高角度域トラック溝部(7h)の軌道中心線(Xh)の曲率中心(O3)の軸方向のオフセット量が等しいことが好ましい。この場合は、常用角度域トラック溝部(7f)、高角度域トラック溝部(7h)、遷移トラック溝部(7t)の各軌道中心線がさらに滑らかな形状となり、加工面で一層有利である。
 上記対になるトラック溝(7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4)の中心間の角度(β1)が、互いに隣接した対のトラック溝(7B1、7A2、7B2、7A3、7B3、7A4、7B4、7A1)の中心間の角度(β2)よりも小さくしたことにより、2個のボールを保持器のポケットに収容するために好適な構成となる。
 上記の保持器(5)が、対になるトラック溝(7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4)に組込まれた2個のボールを収容するポケットを有することにより、保持器の柱部の幅を増加させて、強度を向上させることができる。
 本発明によれば、常用角度域から高角度域まで大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手を実現することができる。
本発明の一実施形態に係る固定式等速自在継手を示すもので、図2aのA1-A1線に沿った縦断面図である。 本発明の一実施形態に係る固定式等速自在継手を示すもので、図2aのB1-B1線に沿った断面図である。 図1aの右側面図である。 図1aのC-C線で矢視した横断面図である。 図1aの外側継手部材、保持器および内側継手部材の分解斜視図である。 図1aの外側継手部材の右側面図である。 図4aのA1-N線に沿った縦断面図である。 図4aのB1-N’線に沿った断面図である。 図4aのB1-N’-B1線に沿った外側継手部材の断面を含む正面図である。 図1aの内側継手部材の右側面図である。 図6aのA1-N線に沿った縦断面図である。 図6aのB1-N’線に沿った断面図である。 図6aの内側継手部材の正面図である。 図6bのD-D線で矢視した断面図である。 図6cのE-E線で矢視した断面図である。
 本発明の一実施形態に係る固定式等速自在継手を図1~図8に基づいて説明する。図1aは、本実施形態に係る固定式等速自在継手を示し、図2aのA1-A1線に沿った縦断面図で、図1bは、図2aのB1-B1線に沿った断面図である。図2aは、図1aの右側面図で、図2bは、図1aのC-C線で矢視した横断面図で、トルク伝達ボールを除いた状態で図示している。
 本実施形態の固定式等速自在継手1は、外側継手部材2、内側継手部材3、トルク伝達ボール(単に、ボールともいう)4および保持器5を主な構成とする。図2a、図2bに示すように、外側継手部材2の球状内周面6には4対のトラック溝7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4が長手方向に形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4と対向する4対のトラック溝9A1、9B1、9A2、9B2、9A3、9B3、9A4、9B4が長手方向に形成されている。外側継手部材2のトラック溝7と内側継手部材3のトラック溝9との間にトルクを伝達する8個のボール4が1個ずつ組み込まれている。
 ここで、本明細書および請求の範囲において、外側継手部材2のトラック溝7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4を総称する場合は符号7を用い、内側継手部材3のトラック溝9A1、9B1、9A2、9B2、9A3、9B3、9A4、9B4を総称する場合は符号9を用いる。また、トラック溝7A1、7A2、7A3、7A4および7B1、7B2、7B3、7B4を総称する場合は、符号7A、7Bを用いる。内側継手部材3の場合も同じ要領とする。また、後述する常用角度域トラック溝部、高角度域トラック溝部、遷移トラック溝部の符号についても同じ要領とする。
 外側継手部材2の球状内周面6と内側継手部材3の球状外周面8の間に、ボール4を保持する保持器5が配置されている。ボール4は保持器5のポケット5aに収容されている。保持器5の球状外周面12は外側継手部材2の球状内周面6に摺動自在に嵌合し、保持器5の球状内周面13は内側継手部材3の球状外周面8に摺動自在に嵌合し、案内される。
 図2a、図2bに示すように、外側継手部材2の4対のトラック溝7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4は、第1の2対のトラック溝7A1、7B1、7A3、7B3と第2の2対のトラック溝7A2、7B2、7A4、7B4とから構成されている。同様に、内側継手部材3の4対のトラック溝9A1、9B1、9A2、9B2、9A3、9B3、9A4、9B4は、第1の2対のトラック溝9A1、9B1、9A3、9B3と第2の2対のトラック溝9A2、9B2、9A4、9B4とから構成されている。
 外側継手部材2の第1の2対のトラック溝7A1、7B1、7A3、7B3は、継手の軸線N-Nを含む第1の平面PT1の両側に間隔をおいて配置され、第1の平面PT1を基準にして互いに対称に形成されている。外側継手部材2の第2の2対のトラック溝7A2、7B2、7A4、7B4は、継手の軸線N-Nを含み、第1の平面PT1に直交する第2の平面PT2の両側に間隔をおいて配置され、第2の平面PT2を基準にして互いに対称に形成されている。
 同様に、内側継手部材2の第1の2対のトラック溝9A1、9B1、9A3、9B3は、継手の軸線N-Nを含む第1の平面PT1の両側に間隔をおいて配置され、第1の平面PT1を基準にして互いに対称に形成されている。内側継手部材2の第2の2対のトラック溝9A2、9B2、9A4、9B4は、継手の軸線N-Nを含み、第1の平面PT1に直交する第2の平面PT2の両側に間隔をおいて配置され、第2の平面PT2を基準にして互いに対称に形成されている。
 図1aに示すように、外側継手部材2のトラック溝7の継手中心Oの軸方向近傍の常用角度域に常用角度域トラック溝部7fが形成されている。図示の常用角度域トラック溝部7fは、具体的には、トラック溝7A1の常用角度トラック溝であるので、正確には常用角度域トラック溝部7A1fである。常用角度域トラック溝部7A1fは曲線状の軌道中心線Xfを有し、軌道中心線Xfの曲率中心O1は継手中心Oから奥側にf1の量で軸方向にオフセットしている。図2aに示すように、常用角度域トラック溝部7A1fの軌道中心線Xfを含む平面A1は、継手の軸線N-Nを中心として第1の平面PT1に対して角度β1/2をもって形成されている。
 ここで、外側継手部材2の常用角度域トラック溝部7fの説明において、図面との整合性を正確にするため、特定の常用角度域トラック溝部7A1fを例にして説明したが、その内容は、他の常用角度域トラック溝部7fにおいても同様である。すなわち、外側継手部材2の4対のトラック溝7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4のうち、トラック溝7A1、7A2、7A3、7A4は互いに同一形状であり、トラック溝7B1、7B2、7B3、7B4は互いに同一形状である。そして、第1の平面PT1を基準にしてトラック溝7A1、7B1およびトラック溝7A3、7B3が対称であり、第2の平面PT2を基準にしてトラック溝7A2、7B2およびトラック溝7A4、7B4が対称である。したがって、トラック溝7A1、7A2、7A3、7A4とトラック溝7B1、7B2、7B3、7B4とは、第1の平面PT1あるいは第2の平面PT2を基準にして対称であるという関係を除けば、各トラック溝7の形状は同一形状であり、各トラック溝7の常用角度域トラック溝部7fも同一形状である。このため、上述した特定の常用角度域トラック溝部7A1fについての説明内容は、他の常用角度域トラック溝部7fにおいても同様に適用することができる。上記のトラック溝や常用角度域トラック溝部の形状の関係は内側継手部材2についても同じである。また、後述する高角度域トラック溝部及び遷移トラック溝部の形状の関係についても同じである。したがって、以降の説明は、同じ要領とする。
 図1aに示すように、内側継手部材3のトラック溝9の継手中心Oの軸方向近傍の常用角度域に常用角度域トラック溝部9A1fが形成されている。常用角度域トラック溝部9A1fは曲線状の軌道中心線Yfを有し、軌道中心線Yfの曲率中心O2は継手中心Oから開口側にf1だけ軸方向にオフセットしている。内側継手部材3の常用角度域トラック溝部9A1fの軌道中心線Yfの曲率中心O2と外側継手部材2の常用角度域トラック溝部7A1fの軌道中心線Xfの曲率中心O1は、継手中心Oに対して軸方向の反対側に等距離f1の量でオフセットしている。図2aに示すように、内側継手部材3の常用角度域トラック溝部9fの軌道中心線Yfを含む平面A1は、継手の軸線N-Nを中心として第1の平面PT1に対して角度β1/2をもって形成されている。
 図1bに示すように、外側継手部材2のトラック溝7の継手の開口側および奥側の高角度域に高角度域トラック溝部7hが形成されている。高角度域トラック溝部7A1hは曲線状の軌道中心線Xhを有する。図2aに示すように、高角度域トラック溝部7A1hの軌道中心線Xhを含む平面B1は、第1の平面PT1に対して平行に形成されている。第1の平面PT1上の継手軸線N-Nおよび継手中心Oを図面の水平方向に平面B1に投影したのが、投影軸線N’-N’および投影中心O’である。高角度域トラック溝部7A1hの曲線状の軌道中心線Xhの曲率中心O3は、投影中心O’に対して、投影軸線N’-N’に沿って軸方向の奥側にf2だけオフセットされている。
 同様に、内側継手部材3のトラック溝9の開口側および奥側の高角度域に高角度域トラック溝部9hが形成されている。高角度域トラック溝部9hは曲線状の軌道中心線Yhを有する。図2aに示す平面B1は、内側継手部材3の高角度域トラック溝部9A1hの軌道中心線Yhも含んでいる。高角度域トラック溝部9A1hの曲線状の軌道中心線Yhの曲率中心O4は、投影中心O’に対して、投影軸線N’-N’に沿って軸方向の開口側にf2だけオフセットされている。内側継手部材3の高角度域トラック溝部9A1hの軌道中心線Yhの曲率中心O4と外側継手部材2の高角度域トラック溝部7A1hの軌道中心線Xhの曲率中心O3は、投影中心O’に対して投影軸線N’-N’に沿って軸方向の反対側に等距離f2でオフセットしている。内側継手部材3の高角度域トラック溝部9A1hの軌道中心線Yhを含む平面B1は、第1の平面PT1に対して平行に形成されている。
 図2aに示すように、外側継手部材2の第1の2対のトラック溝7A1、7B1、7A3、7B3および第2の2対のトラック溝7A2、7B2、7A4、7B4の対になるトラック溝7A1、7B1の中心間、7A3、7B3の中心間、7A2、7B2の中心間、7A4、7B4の中心間の角度は、いずれもβ1に設定されている。これに対して、互いに隣接した対のトラック溝7B1、7A2の中心間、7B2、7A3の中心間、7B3、7A4の中心間、7B4、7A1の中心間の角度はβ2に設定されている。本実施形態の外側継手部材2では、対になるトラック溝の中心間の角度β1を隣接した対のトラック溝の中心間の角度β2よりも小さく設定している。内側継手部材2のトラック溝9の中心間の角度関係についても同じである。
 対になるトラック溝の中心間の角度β1を小さくすることにより、図2bに示すように、保持器5のポケット5aの周方向長さを抑制しつつ、対になるトラック溝に組込まれた2個のボール4を1つのポケット5aに収容することができる。これにより、保持器5の柱部5bの幅を増加させて、強度を向上させることができる。
 ここで、対になるトラック溝の中心間の角度β1を小さくできる理由を説明する。前述したように、外側継手部材2および内側継手部材3の高角度域トラック溝部7h、9hの軌道中心線Xh、Yhは、それぞれ平面B1、B1’、B2、B2’上に配置されている。平面B1、B1’は第1の平面PT1に平行に形成され、平面B2、B2’は第2の平面PT2に平行に形成されている。すなわち、高角度域トラック溝部7h、9hの軌道中心線Xh、Yhは、第1の平面PT1あるいは第2の平面PT2に平行に形成されている。このため、高角時の強度確保に特に関係する内側継手部材3の端部のトラック溝9A、9B間のリブ部3a(図2a参照)の肉厚減少が生じなく、かつ、トラック溝9と内周孔(中間シャフトとの連結孔)との最小肉厚が増加する。このため、対になるトラック溝の中心間の角度β1を小さくすることができる。
 図1a、図1bに示す外側継手部材2および内側継手部材3のトラック溝7、9の常用角度域トラック溝部7f、9fと高角度域トラック溝部7h、9hとの間は遷移トラック溝部7t、9t(図3参照)により滑らかに接続される。
 図3は本実施形態の固定式等速自在継手1を分解した斜視図である。外側継手部材2および内側継手部材3のトラック溝7、9の常用角度域トラック溝部7f、9f、高角度域トラック溝部7h、9h、およびこれらの間を滑らかに接続する遷移トラック溝部7t、9tの概要が図示されている。図3において、各トラック溝7、9の二点鎖線は溝底を示す。保持器5には、ボール4を2個ずつ収容する(図示省略)ポケット5aが周方向に等間隔で4個設けられている。これにより、保持器5の柱部5bの幅を増加させて、強度を向上させている。
 次に、外側継手部材2のトラック溝7の詳細を図4、図5に基づいて説明する。図4aは、図1aの外側継手部材の右側面図で、図4bは、図4aのA1-N線に沿った縦断面図で、図4cは、図4aのB1-N’線に沿った断面図である。図5は、図4aのB1-N’-B1線に沿った断面図である。
 図4bに示すように、外側継手部材2のトラック溝7A1の常用角度域トラック溝部7A1fの軌道中心線Xfは曲線状に形成され、その曲率中心O1は継手中心Oから奥側にf1の距離で軸方向にオフセットされている。そして、常用角度域トラック溝部7A1fは、継手中心Oを中心にして開口側および奥側へ角度θ1の範囲で形成されている。
 ここで、常用角度域トラック溝部7f(7A1f)の範囲を規定する角度θ1について説明する。作動角θ(図示省略)を取ったとき、外側継手部材2および内側継手部材3の継手中心Oを含み、継手軸線N-Nに垂直な平面Pに対して、ボール4がθ/2だけ移動する。ここで、常用角度域について定義する。継手の常用角とは、水平で平坦な路面上で1名乗車時の自動車において、ステアリングを直進状態にした時にフロント用ドライブシャフトの固定式等速自在継手で生じる作動角をいう。常用角は、通常、2°~15°の間で車種ごとの設計条件に応じて選択・決定される。そして、上記の自動車が、連続走行する曲線道路などで固定式等速自在継手に生じる作動角も使用頻度の多い作動角となる。この使用頻度の多い作動角も車種ごとの設計条件に応じて決定されが、使用頻度の多い作動角は最大20°を目処とする。本明細書および請求の範囲において、常用角度域とは、上記の使用頻度の多い作動角を含む意味で用いる。実用性を考慮して、常用角度域トラック溝部7f(7A1f)の範囲を規定する角度θ1は3°~10°に設定する。ただし、角度θ1は3°~10°に限定されるものではなく、車種の設計条件に応じて適宜設定することができる。角度θ1を3°~10°に設定することで種々の車種に汎用することができる。
 図4cに示すように、高角度域トラック溝部7A1hの軌道中心線Xhは曲線状に形成され、その曲率中心O3は、投影中心O’から奥側にf2の量で軸方向にオフセットされている。そして、高角度域トラック溝部7A1hは、投影中心O’を中心にして開口側および奥側において角度θ2以上の範囲で形成されている。前述したように、投影軸線N’-N’および投影中心O’は、第1の平面PT1上の継手軸線N-Nおよび継手中心Oを図面の水平方向に平面B1に投影したものである。
 ここで、高角度域トラック溝部7h(7A1h)の範囲を規定する角度θ2について説明する。継手の高角度域とは、自動車が、例えば、交差点の右折・左折時、車庫入れ時などに生じる35°以上の高作動角をいい、車種ごとの設計条件に応じて選択・決定される。本明細書および請求の範囲において、高角度域とは上記の意味で用いる。実用性を考慮して、高角度域トラック溝部7A1hの範囲を規定する角度θ2は17.5°に設定する。ただし、角度θ2は17.5°に限定されるものではなく、車種の設計条件に応じて適宜設定することができる。角度θ2を17.5°に設定することで種々の車種に汎用することができる。
 本実施形態における外側継手部材2のトラック溝7では、常用角度域トラック溝部7A1fの曲線状の軌道中心線Xfの曲率中心O1のオフセット量f1と高角度域トラック溝部7A1hの曲線状の軌道中心線Xhの曲率中心O3のオフセット量f2を同じ値に設定している。ただし、これに限られず、オフセット量f1とf2を異なる値にしてもよい。
 外側継手部材2のトラック溝7の常用角度域トラック溝部7fと高角度域トラック溝部7hの間を接続する遷移トラック溝部7tを図5に基づいて説明する。図5では、外側継手部材2の球状内周面6の正面位置にトラック溝7A2、7B2が図示されている。ここでは、トラック溝7A2を例にとって説明する。トラック溝7A2に図示された二点鎖線は、常用角度域トラック溝部7A2f、高角度域トラック溝部7A2hおよび遷移トラック溝部7A2tの各溝底を示す。
 常用角度域トラック溝部7A2fの軌道中心線Xfを含む平面A1(図4a、図4b参照)は、継手軸線N-Nを中心として第1の平面PT1に対して角度β1/2をもって形成されているので、図5では、常用角度域トラック溝部7A2fの溝底は、溝幅の上方に偏った状態で図示される。常用角度域トラック溝部7A2fは軸方向の範囲Lfoに位置する。軸方向の範囲Lfoは、図4bで前述した角度θ1の範囲に対応している。
 一方、高角度域トラック溝部7A2hの軌道中心線Xhを含む平面B1(図4a、図4c参照)は、第1の平面PT1に対して平行に形成されているので、図5では、高角度域トラック溝部7A2hの溝底は、溝幅の中央位置に図示される。高角度域トラック溝部7A2hは軸方向の範囲Lhoに位置する。軸方向の範囲Lhoは、図4cで前述した角度θ2以上の範囲に対応している。
 上記のような配置関係であるので、常用角度域トラック溝部7A2fの軌道中心線Xfの端部と、対向する高角度域トラック溝部7A2hの軌道中心線Xhの端部は、互いに捩じれた状態になっている。
 上記のような互いに捩じれた状態になっている常用角度域トラック溝部7A2fの軌道中心線Xfの端部と、高角度域トラック溝部7A2hの軌道中心線Xhの端部との間を滑らかに接続する軌道中心線(図示省略)を有するのが遷移トラック溝部7A2tである。遷移トラック溝部7A2tの軌道中心線は3次元的に湾曲した曲線で形成されている。遷移トラック溝部7A2tは、後述する内側継手部材3の遷移トラック溝部と対向して外側継手部材2の奥側に向かって広がるくさび状トラックを形成する。遷移トラック溝部7A2tは軸方向の範囲Ltoに位置する。
 次に、内側継手部材3のトラック溝9の詳細を図6~図8に基づいて説明する。図6aは、図1aの内側継手部材の右側面図で、図6bは、図6aのA1-N線に沿った縦断面図で、図6cは、図6aのB1-N’線に沿った断面図である。図7は、図6aの上側から見た内側継手部材の正面図である。図8aは、図6bのD-D線で矢視した断面図で、図8bは、図6cのE-E線で矢視した断面図である。
 内側継手部材3のトラック溝9の軌道中心線Yは、作動角0°の状態で継手中心Oを含み継手軸線に直交する平面Pを基準として、外側継手部材2の対となるトラック溝7の軌道中心線Xと鏡像対称に形成されている。具体的には、図6bに示すように、内側継手部材3のトラック溝9A1の常用角度域トラック溝部9A1fの軌道中心線Yfは曲線状に形成され、その曲率中心O2は継手中心Oから開口側にf1の量で軸方向にオフセットされている。そして、常用角度域トラック溝部9A1fは、継手中心Oを中心にして開口側および奥側へ角度θ1の範囲で形成されている。内側継手部材3の常用角度域トラック溝部9f(9A1f)の範囲を規定する角度θ1および常用角度域の定義については、外側継手部材2おいて前述した内容と同じである。
 図6cに示すように、高角度域トラック溝部9A1hの軌道中心線Yhは曲線状に形成され、その曲率中心O4は、投影中心O’から開口側にf2の量で軸方向にオフセットされている。そして、高角度域トラック溝部9A1hは、投影中心O’を中心にして開口側および奥側において角度θ2以上の範囲で形成されている。前述したように、投影軸線N’-N’および投影中心O’は、第1の平面PT1上の継手軸線N-Nおよび継手中心Oを図面の水平方向に平面B1に投影したものである。内側継手部材3の高角度域トラック溝部9h(9A1h)の範囲を規定する角度θ2および高角度域の定義については、外側継手部材2おいて前述した内容と同じである。
 内側継手部材3のトラック溝9においても、常用角度域トラック溝部9A1fの曲線状の軌道中心線Yfの曲率中心O2のオフセット量f1と高角度域トラック溝部9A1hの曲線状の軌道中心線Yhの曲率中心O4のオフセット量f2を同じ値に設定している。ただし、これに限られず、オフセット量f1とf2を異なる値にしてもよい。
 内側継手部材3のトラック溝9の常用角度域トラック溝部9fと高角度域トラック溝部9hの間を接続する遷移トラック溝部9tを図7に基づいて説明する。図7では、内側継手部材3の球状外周面8の正面位置にトラック溝9A1、9B1が図示されている。ここでは、トラック溝9A1を例にとって説明する。図7においても、トラック溝9A1に図示された二点鎖線は、常用角度域トラック溝部9A1f、高角度域トラック溝部9A1hおよび遷移トラック溝部9A1tの各溝底を示す。
 常用角度域トラック溝部9A1fの軌道中心線Xfを含む平面A1(図6a、図6b参照)は、継手軸線N-Nを中心として第1の平面PT1に対して角度β1/2をもって形成されているので、図7では、常用角度域トラック溝部9A1fの溝底は、溝幅の上方に偏った状態で図示される。常用角度域トラック溝部9A1fは軸方向の範囲Lfiに位置する。軸方向の範囲Lfiは、図6bで前述した角度θ1の範囲に対応している。
 一方、高角度域トラック溝部9A1hの軌道中心線Yhを含む平面B1(図6a、図6c参照)は、第1の平面PT1に対して平行に形成されているので、図7では、高角度域トラック溝部9A1hの溝底は、溝幅の中央位置に図示される。高角度域トラック溝部9A1hは軸方向の範囲Lhiに位置する。軸方向の範囲Lhiは、図6cで前述した角度θ2以上の範囲に対応している。
 上記のような配置関係であるので、常用角度域トラック溝部9A1fの軌道中心線Yfの端部と、対向する高角度域トラック溝部9A1hの軌道中心線Yhの端部は、互いに捩じれた状態になっている。
 上記のような互いに捩じれた状態になっている常用角度域トラック溝部9A1fの軌道中心線Yfの端部と、高角度域トラック溝部9A1hの軌道中心線Yhの端部との間を滑らかに接続する軌道中心線を有するのが遷移トラック溝部9A1tである。遷移トラック溝部9A1tの軌道中心線は3次元的に湾曲した曲線で形成されている。遷移トラック溝部9A1tは軸方向の範囲Ltiに位置する。
 以上のように、内側継手部材3のトラック溝9の軌道中心線Yは、作動角0°の状態で継手中心Oを含み継手軸線に直交する平面Pを基準として、外側継手部材2の対となるトラック溝7の軌道中心線Xと鏡像対称に形成されている。
 常用角度域トラック溝部9fと高角度域トラック溝部9hにおけるボール4とトラック溝との接触状態を図8に基づいて説明する。図8aは、ボール4が常用角度域トラック溝部9fに位置する状態を示し、図8bは、ボール4が高角度域トラック溝部9hに位置する状態を示す。
 図8aに示すように、ボール4と常用角度域トラック溝部9fは、常用角度域トラック溝部9B1fに図示のように、継手の軸線N-Nを含む平面A1、A1’に対して接触角αをもって接触している。そのため、常用角度域では、対の常用角度域トラック溝部9A1f、9B1fの両側のボールがトルク伝達することができる。すなわち、8個のボールの全てがトルク伝達できるので、ボール4と常用角度域トラック溝部9fとの接触面圧が小さくなり、耐久性が向上する。図示は省略するが、外側継手部材2の常用角度域トラック溝部7fとボール4との接触状態も上記と同様であり、本実施形態の固定式等速自在継手1は、常用角度域の負荷容量、耐久性を確保することができる。
 図8bに示すように、ボール4と高角度域トラック溝部9hは、高角度域トラック溝部9B1hに図示のように、第1の平面PT1に平行な平面B1、B1’に対して接触角αをもって接触している。そのため、高角度域では、対の高角度域トラック溝部9A1h、9B1hのうちの片側のボールがほとんどのトルクを伝達する。
 具体的には、図8bにおいて、高角度域トラック溝部9B1hでは、内側継手部材3を白抜き矢印の方向に回転させトルクを負荷した場合、平面B1’上のボール4’に発生するトルク伝達方向ベクトルf’とボール4’と高角度域トラック溝部9B1hの接触方向ベクトルb’は大きな角度、すなわち直線に近い状態で交わるのに対し、平面B1上のボール4に発生するトルク伝達方向ベクトルfと高角度域トラック溝部9A1hの接触方向ベクトルbは小さな角度、すなわち屈曲した状態で交わる。そのため、対の高角度域トラック溝部9A1h、9B1hのうち、高角度域トラック溝部9B1hのボール4’がほとんどのトルクを伝達し、高角度域トラック溝部9A1hのボール4は、ほとんどトルク伝達できないことになる。このように、高角度域では、対の高角度域トラック溝部9A1h、9B1hのうちの片側のボール(8個のボールの半分)がほとんどのトルクを伝達することになる。しかし、高角度域では、従来のツェッパ型等速自在継手であっても、半分程度のボールでしかトルク伝達することができないことから、ボールとトラック溝との接触面圧が不利になることはなく、高角時に強度確保に特に関係する内側継手部材3の端部のトラック溝9A、9B間のリブ部3a(図2a参照)の肉厚減少が生じなく、かつ、トラック溝9と内周孔との最小肉厚が増加し、負荷容量を確保することができる。
 外側継手部材2の常用角度域トラック溝部7fとボール4との接触状態および高角度域トラック溝部7hとボール4との接触状態については図示を省略するが、上述した内側継手部材2の接触状態と同様である。
 以上説明したように、本実施形態の固定式等速自在継手1は、要約すると、外側継手部材2と内側継手部材3が、それぞれ4対のトラック溝7、9を有し、各トラック溝7、9が継手の軸線N-Nを中心とする平面A1、A1’、A2、A2’上に軌道中心線Xf、Yfを配置した常用角度域トラック溝部7f、9fと、継手の軸線N-Nを含む平面PT1、PT2に平行な平面B1、B1’、B2、B2’に軌道中心線Xh、Yhを配置した高角度域トラック溝部7h、9hと、両トラック溝部7f、7h、9f、9hを滑らかに接続する遷移トラック溝部7t、9tとから構成されているので、常用角度域から高角度域まで大きな負荷容量を確保できる軽量・コンパクトな固定式等速自在継手1を実現することができる。
 本実施形態では、高角度域トラック溝部7h、9hの曲線状の軌道中心線Xh、Yhの曲率中心O3、O4を投影軸線N’-N’上に配置したものを例示したが、これに限られず、投影軸線N’-N’から半径方向にオフセットさせたものや、高角度域トラック溝部7h、9hの曲線状の軌道中心線の曲率中心を外側継手部材2の半径方向外側に配置し、高角度域トラック溝部7h、9hの曲線状の軌道中心線をS字形状にしてもよい。さらに、高角度域トラック溝部7h、9hの軌道中心線を投影軸線N’-N’に平行な直線状にすることもできる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1     固定式等速自在継手
2     外側継手部材
3     内側継手部材
4     トルク伝達ボール
5     保持器
5a    ポケット
6     球状内周面
7     トラック溝
7f    常用角度域トラック溝部
7h    高角度域トラック溝部
7t    遷移トラック溝部
7A    トラック溝
7B    トラック溝
8     球状外周面
9     トラック溝
9f    常用角度域トラック溝部
9h    高角度域トラック溝部
9t    遷移トラック溝部
9A    トラック溝
9B    トラック溝
12    球状外周面
13    球状内周面
A1    平面
A2    平面
B1    平面
B2    平面
N     継手の軸線
O     継手中心
P     平面
PT1   第1の平面
PT2   第2の平面
X     軌道中心線
Xf    軌道中心線
Xh    軌道中心線
Y     軌道中心線
β1    角度
β2    角度

Claims (6)

  1.  球状内周面に長手方向に延びる複数のトラック溝が形成され、軸方向に離間する開口側と奥側を有する外側継手部材と、球状外周面に長手方向に延びる複数のトラック溝が前記外側継手部材のトラック溝に対向して形成された内側継手部材と、対向する各トラック溝間に組込まれたトルク伝達ボールと、このトルク伝達ボールを保持し、前記外側継手部材の球状外周面と前記内側継手部材の球状外周面に案内される保持器とからなる固定式等速自在継手において、
     前記外側継手部材(2)のトラック溝(7)は、第1の2対のトラック溝(7A1、7B1、7A3、7B3)と第2の2対のトラック溝(7A2、7B2、7A4、7B4)から構成され、
     前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)は、それぞれ、継手の軸線(N-N)を含む第1の平面(PT1)の両側に間隔をおいて配置され、かつ、この第1の平面(PT1)を基準して互いに対称に形成され、
     前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)は、それぞれ、前記継手の軸線(N-N)を含み、前記第1の平面(PT1)に直交する第2の平面(PT2)の両側に間隔をおいて配置され、この第2の平面(PT2)を基準にして互いに対称に形成され、
     前記トラック溝(7)は、それぞれ、常用角度域トラック溝部(7f)と、高角度域トラック溝部(7h)と、これら両トラック溝部(7f、7h)間を滑らかに繋ぐ遷移トラック溝部(7t)とからなり、
     前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)の前記高角度域トラック溝部(7h)の軌道中心線(Xh)を含む平面(B1、B1’)は、それぞれ、前記第1の平面(PT1)に対して平行に形成され、
     前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)の前記高角度域トラック溝部(7h)の軌道中心線(Xh)を含む平面(B2、B2’)は、前記第2の平面(PT2)に対して平行に形成され、
     前記第1の2対のトラック溝(7A1、7B1、7A3、7B3)の前記常用角度域トラック溝部(7f)の軌道中心線(Xf)を含む平面(A1、A1’)は、前記継手の軸線(N-N)を中心として前記第1の平面(PT1)に対して角度をもって形成されており、
     前記第2の2対のトラック溝(7A2、7B2、7A4、7B4)の前記常用角度域トラック溝部(7f)の軌道中心線(Xf)を含む平面(A2、A2’)は、前記継手の軸線(N-N)を中心として前記第2の平面(PT2)に対して角度をもって形成されており、
     前記外側継手部材(2)の少なくとも前記常用角度域トラック溝部(7f)は曲線状の軌道中心線(Xf)を有し、その曲率中心(O1)が継手中心(O)に対して軸方向にオフセットされており、
     前記内側継手部材(3)のトラック溝(9)の軌道中心線(Y)は、作動角0°の状態で継手中心(O)を含み継手の軸線(N-N)に直交する平面(P)を基準として、前記外側継手部材(2)の対となるトラック溝(7)の軌道中心線(X)と鏡像対称に形成されていることを特徴とする固定式等速自在継手。
  2.  前記外側継手部材(2)の前記高角度域トラック溝部(7h)も曲線状の軌道中心線(Xh)を有し、その曲率中心(O3)が継手中心(O)に対して軸方向にオフセットされていることを特徴とする請求項1に記載の固定式等速自在継手。
  3.  前記外側継手部材(2)の前記常用角度域トラック溝部(7f)の軌道中心線(Xf)の曲率中心(O1)と前記高角度域トラック溝部(7h)の軌道中心線(Xh)の曲率中心(O3)が、それぞれ、継手中心(O)に対して前記外側継手部材(2)の奥側にオフセットされていることを特徴とする請求項1又は請求項2に記載の固定式等速自在継手。
  4.  前記常用角度域トラック溝部(7f)の軌道中心線(Xf)の曲率中心(O1)の軸方向のオフセット量と、前記高角度域トラック溝部(7h)の軌道中心線(Xh)の曲率中心(O3)の軸方向のオフセット量が等しいことを特徴とする請求項1~3のいずれか一項に記載の固定式等速自在継手。
  5.  前記対になるトラック溝(7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4)の中心間の角度(β1)が、互いに隣接した対のトラック溝(7B1、7A2、7B2、7A3、7B3、7A4、7B4、7A1)の中心間の角度(β2)よりも小さいこと特徴とする請求項1~4のいずれか一項に記載の固定式等速自在継手。
  6.  前記保持器(5)が、前記対になるトラック溝(7A1、7B1、7A2、7B2、7A3、7B3、7A4、7B4)に組込まれた2個のボールを収容するポケットを有することを特徴とする請求項1~5のいずれか一項に記載の固定式等速自在継手。
PCT/JP2017/042521 2016-12-28 2017-11-28 固定式等速自在継手 WO2018123394A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255328 2016-12-28
JP2016255328A JP6711747B2 (ja) 2016-12-28 2016-12-28 固定式等速自在継手

Publications (1)

Publication Number Publication Date
WO2018123394A1 true WO2018123394A1 (ja) 2018-07-05

Family

ID=62708160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042521 WO2018123394A1 (ja) 2016-12-28 2017-11-28 固定式等速自在継手

Country Status (2)

Country Link
JP (1) JP6711747B2 (ja)
WO (1) WO2018123394A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210374A (ja) * 1994-11-11 1996-08-20 Loehr & Bromkamp Gmbh 定速度ユニバーサルボール継ぎ手
JP2007503556A (ja) * 2003-08-22 2007-02-22 ゲー カー エヌ ドライブライン ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ねじれたトラック横断面を有する固定式ボールジョイント
JP2007270997A (ja) * 2006-03-31 2007-10-18 Ntn Corp 固定式等速自在継手
JP2013015214A (ja) * 2011-06-07 2013-01-24 Ntn Corp 固定式等速自在継手
JP2014074434A (ja) * 2012-10-03 2014-04-24 Ntn Corp 固定式等速自在継手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210374A (ja) * 1994-11-11 1996-08-20 Loehr & Bromkamp Gmbh 定速度ユニバーサルボール継ぎ手
JP2007503556A (ja) * 2003-08-22 2007-02-22 ゲー カー エヌ ドライブライン ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ねじれたトラック横断面を有する固定式ボールジョイント
JP2007270997A (ja) * 2006-03-31 2007-10-18 Ntn Corp 固定式等速自在継手
JP2013015214A (ja) * 2011-06-07 2013-01-24 Ntn Corp 固定式等速自在継手
JP2014074434A (ja) * 2012-10-03 2014-04-24 Ntn Corp 固定式等速自在継手

Also Published As

Publication number Publication date
JP6711747B2 (ja) 2020-06-17
JP2018105484A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2013069438A1 (ja) 固定式等速自在継手
US20140073441A1 (en) Fixed constant velocity universal joint
JP2013015214A (ja) 固定式等速自在継手
JP4223358B2 (ja) 固定式等速自在継手
JP5840463B2 (ja) 固定式等速自在継手
JP5955732B2 (ja) 固定式等速自在継手
JP6113459B2 (ja) 固定式等速自在継手
JP5955747B2 (ja) 固定式等速自在継手
JP5355876B2 (ja) 等速自在継手
JP4537304B2 (ja) 固定式等速自在継手
JP5882050B2 (ja) 固定式等速自在継手
WO2018123394A1 (ja) 固定式等速自在継手
EP1881218A1 (en) Fixed type constant velocity universal joint
WO2017163914A1 (ja) 固定式等速自在継手
JP2009079684A (ja) 固定式等速自在継手
JP6863785B2 (ja) 固定式等速自在継手
JP7154778B2 (ja) 後輪用ドライブシャフト
JP6173675B2 (ja) 固定式等速自在継手
JP2013011338A (ja) 固定式等速自在継手
JP2013011339A (ja) 固定式等速自在継手
JP7224107B2 (ja) 後輪用ドライブシャフト専用の摺動式等速自在継手
WO2020203221A1 (ja) 固定式等速自在継手
JP7292008B2 (ja) 後輪用ドライブシャフト専用の摺動式等速自在継手
WO2018168640A1 (ja) 後輪用ドライブシャフト
WO2010137481A1 (ja) 固定式等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888861

Country of ref document: EP

Kind code of ref document: A1