WO2018123348A1 - 太陽光利用システム - Google Patents

太陽光利用システム Download PDF

Info

Publication number
WO2018123348A1
WO2018123348A1 PCT/JP2017/041716 JP2017041716W WO2018123348A1 WO 2018123348 A1 WO2018123348 A1 WO 2018123348A1 JP 2017041716 W JP2017041716 W JP 2017041716W WO 2018123348 A1 WO2018123348 A1 WO 2018123348A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
energy
glass
heat medium
heat collector
Prior art date
Application number
PCT/JP2017/041716
Other languages
English (en)
French (fr)
Inventor
拓樹 中村
Original Assignee
矢崎エナジーシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎エナジーシステム株式会社 filed Critical 矢崎エナジーシステム株式会社
Priority to CN201780081233.0A priority Critical patent/CN110121623B/zh
Priority to BR112019013254A priority patent/BR112019013254A2/pt
Priority to RU2019119843A priority patent/RU2720126C1/ru
Publication of WO2018123348A1 publication Critical patent/WO2018123348A1/ja
Priority to US16/453,219 priority patent/US11085668B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/60Solar heat collectors using working fluids the working fluids trickling freely over absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/63Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of windows
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a sunlight utilization system.
  • Patent Documents 1 to 3 it is necessary to take in a large amount of solar energy in order to obtain a large amount of electric energy and thermal energy. Is preferred.
  • a glass having a high transmittance of natural light easily transmits far infrared rays from the room to the outside, and is inferior in terms of heat insulation in the room. For this reason, the room for improvement was left about energy-saving performance.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a solar light utilization system capable of improving the energy saving performance.
  • the solar light utilization system includes an energy receiver, an indoor transparent member, and an energy utilization device.
  • the energy receiver is provided on the inner side with respect to the transparent part of the building, and receives solar energy to obtain at least one of electric energy and thermal energy.
  • the indoor transparent member is provided on the indoor side of the building with respect to the energy receiver, and the energy utilization device uses energy from the energy receiver indoors. Further, the above-mentioned indoor-side transparent member is subjected to a far-infrared cut treatment in which the far-infrared absorption / emissivity and transmittance of at least a wavelength of 9 ⁇ m to 10 ⁇ m are both 20% or less.
  • the far-infrared cut member is provided with the indoor-side transparent member, it is difficult for far-infrared rays from the indoor side to be radiated outdoors without hindering the arrival of solar energy to the energy receiver. be able to. Therefore, it is possible to improve indoor heat insulation while securing the utility of solar energy, and to improve energy saving performance.
  • FIG. 1 is a configuration diagram showing a sunlight utilization system according to the first embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of the pressure absorbing unit shown in FIG.
  • FIG. 3 is a configuration diagram showing a solar light utilization system according to the second embodiment.
  • FIG. 1 is a configuration diagram showing a sunlight utilization system according to the first embodiment of the present invention.
  • FIG. 1 shows an example in which the solar system is used on the middle floor of a building such as a high-rise building, the solar system is not limited to being used on the middle floor of a building, It may be used, and it may be used for a low-rise building or a detached house.
  • the solar light utilization system 1 includes an outer glass (transparent part) 10, a solar heat collector (energy receiver) 20, an inner glass (indoor transparent member, energy utilization device) 30, 1st and 2nd piping R1, R2 and the pressure absorption part 40 are provided.
  • the outer glass 10 is a plate-like glass member installed in a building, and is preferably a transmissive glass having a transmittance for natural light of 80% or more.
  • the outer glass 10 is not limited to the transmissive glass, but may be a heat ray absorbing glass or a heat ray reflecting glass installed in an existing high-rise building.
  • the outer glass 10 constitutes a part of the building and withstands wind pressure and the like and satisfies the building standards.
  • the solar heat collector 20 obtains thermal energy using solar energy supplied to the indoor side through the outer glass 10, and a heat medium is obtained by the thermal energy obtained using the solar energy. (Antifreeze such as ethylene glycol) is heated.
  • the solar heat collector 20 has a horizontal blind type structure including a plurality of vacuum tubes 21 extending in the horizontal direction.
  • the vacuum tube 21 includes a transparent outer tube and an inner tube that has been subjected to selective absorption of sunlight, and heats the heat medium flowing through a U-shaped heat medium flow path that is inserted into the inner tube, for example. It has become.
  • the solar heat collector 20 is not limited to a vacuum tube type having a plurality of vacuum tubes 21, but may be of other types such as one having heat collecting fins.
  • the vacuum tube 21 and the heat collecting fins are not limited to being provided in the horizontal blind type, but may be provided in the vertical blind type or a semi-transmissive type.
  • the horizontal blind type has better thermal efficiency than the vertical blind type in windows that are not optimized with respect to the solar altitude, such as elevation and horizontal planes, and the number of vacuum tubes 21 and the like can be reduced. And also from the aspect of taking sunlight into the room.
  • a vacuum tube type having a plurality of vacuum tubes 21 is used, a stable heat collecting effect can be obtained by a circular inner tube even if there is a difference in solar altitude between summer and winter.
  • the inner glass 30 is a plate-like glass member provided on the indoor side of the building with respect to the solar heat collector 20.
  • the inner glass 30 has a two-layer structure in which a heat medium can be introduced into the inside through the first pipe R1, and a radiant heating panel that heats the room using the inner heat medium (energy utilization). Function as a device).
  • the first glass (transparent member) 31 on the solar heat collector 20 side of the inner glass 30 having a two-layer structure is coated with a predetermined metal film on the surface not in contact with the heat medium. Then, low radiation processing (far infrared cut processing) is performed. By this treatment, the first glass 31 has at least 20% or less of absorption / emissivity and transmittance of far infrared rays having a wavelength of 9 ⁇ m or more and 10 ⁇ m or less.
  • the second glass (transparent member) 32 on the indoor side of the inner glass 30 having the two-layer structure is not subjected to the low radiation treatment.
  • the absorption, emissivity, and transmittance of the second glass 32 are at least higher than the absorption, emissivity, and transmittance of the first glass 31, and specifically, the absorption, emissivity, and transmittance of far infrared rays.
  • the total is 80% or more. Therefore, the far infrared rays from the heat medium are cut by the first glass 31 and are not easily radiated to the outdoor side, but are easily radiated to the indoor side through the second glass 32.
  • the inner glass 30 functions as a radiant heating panel with less wasted radiation.
  • the 1st glass 31 plays the role which suppresses not only the far infrared rays from a heat medium but the far infrared rays from a room
  • the inner glass 30 is provided at the same height as the solar heat collector 20. Furthermore, the first pipe R1 connects the upper part of the solar heat collector 20 and the upper part of the inner glass 30, and the second pipe R2 connects the lower part of the solar heat collector 20 and the lower part of the inner glass 30. For this reason, the heat medium cooled by the inner glass 30 reaches the solar heat collector 20 through the second pipe R2, is heated by the solar heat collector 20, and is returned to the inner glass 30 through the first pipe R1. That is, natural circulation is possible.
  • the inner glass 30 may be at least partially included in the height range from the upper end to the lower end of the solar heat collector 20. .
  • the inner glass 30 may be at least partially included in the height range from the upper end to the lower end of the solar heat collector 20.
  • the pressure absorbing portion 40 is a so-called expansion vessel, and prevents a situation in which the internal pressure of the inner glass 30 increases and breaks due to heat expansion of the heat medium.
  • This pressure absorption part 40 is provided, for example, on the first pipe R1.
  • FIG. 2 is a detailed configuration diagram of the pressure absorbing unit 40 shown in FIG.
  • the pressure absorbing unit 40 includes an inlet 41 connected to the solar heat collector 20, an outlet 42 connected to the inner glass 30, and a heat medium reservoir 43 disposed therebetween.
  • the heat medium reservoir 43 is a container-like part whose inner volume is larger than that of the inlet 41 and the outlet 42, and the lower part is filled with the heat medium, but the upper part is in a state where the gas 43a exists. . For this reason, when the heat medium is thermally expanded, the gas 43a in the heat medium reservoir 43 is compressed, and an increase in the internal pressure of the inner glass 30 is suppressed.
  • the pressure absorbing unit 40 may be an open-type cistern, in which the gas 43a is opened to atmospheric pressure.
  • the solar light utilization system 1 can perform heating by using the inner glass 30 as a radiant heating panel. Further, the solar light utilization system 1 includes a valve V, third and fourth pipes R3 and R4, and an absorption chiller (energy utilization apparatus) 50 for cooling.
  • the valve V is a three-way valve provided on the downstream side of the pressure absorption unit 40 in the first pipe R1, and includes a route for supplying the heat medium from the solar heat collector 20 to the inner glass 30 side, and a third pipe.
  • the route supplied to the R3 side can be switched.
  • the route of the valve V may be switched by a controller based on a signal from a temperature sensor that detects a room temperature or a heat medium temperature, or the route may be switched manually.
  • the valve V may be a valve that automatically switches the flow path of the heat medium according to room temperature by a technique such as bimetal, volume change of liquid in the capillary tube, solid-liquid phase change, and shape memory alloy.
  • the absorption refrigerator 50 includes a heat exchanger 51 that functions as a regenerator.
  • the third pipe R3 is a pipe connecting the valve V and the upper part of the heat exchanger 51
  • the fourth pipe R4 is a lower part of the heat exchanger 51 and the second pipe R2 (location A in FIG. 1). It is the piping which connects and.
  • the heat exchanger 51 is provided at the same height as the solar heat collector 20, as with the inner glass 30.
  • the absorption chiller 50 includes a condenser function unit 52 that functions as a condenser and an evaporation absorber function unit 53 that functions as an evaporator and an absorber.
  • the heat exchanger 51 is provided with a flow pipe 51a through which the absorbing liquid and the refrigerant flow.
  • a dilute solution is introduced into the heat exchanger 51 serving as a regenerator and is heated by the heat medium from the solar heat collector 20. Thereby, the temperature of the heat medium from the solar heat collector 20 is lowered and returned to the solar heat collector 20 again.
  • the dilute solution is separated into a concentrated solution and a vapor refrigerant by heating, and the vapor refrigerant is introduced into the condenser function unit 52.
  • the condenser functional unit 52 has a two-layer glass structure, for example, like the inner glass 30. Furthermore, the condenser function part 52 is installed, for example so that it may face the outdoors. For this reason, the vapor refrigerant introduced into the condenser function unit 52 is cooled by the outside air and condensed to become a liquid refrigerant. The liquid refrigerant is introduced into the evaporation absorber function unit 53.
  • the concentrated solution obtained by heating in the heat exchanger 51 is introduced into the evaporation absorber function unit 53.
  • the evaporation absorber function unit 53 also has a double glass structure, and one glass 53a side functions as an evaporator, and the other glass 53b side functions as an absorber.
  • the liquid refrigerant is dropped along one glass 53a on the evaporator side, and the concentrated solution is dropped along the other glass 53b on the absorber side.
  • the evaporative absorber function unit 53 includes a plurality of U-shaped members 53c that are U-shaped in cross-sectional view.
  • the plurality of U-shaped members 53c are disposed between the two glasses 53a and 53b so as to have a substantially reverse U-shape, and prevent the evaporation absorber function unit 53 in a reduced pressure state from being damaged.
  • the U-shaped member 53c is disposed in the opposite direction, the liquid refrigerant or the concentrated solution dripped along the both glasses 53a and 53b is temporarily between the U-shaped member 53c and the glass surface. It is designed to be stored and plays the role of improving the wettability with respect to the glass surface.
  • the liquid refrigerant evaporates to become refrigerant vapor and is absorbed by the concentrated solution.
  • the dilute solution is discharged from the evaporation absorber function unit 53, and the dilute solution is supplied to the heat exchanger 51 that is a regenerator.
  • One glass 53a faces the room, and the room air is cooled by evaporation of the liquid refrigerant.
  • the other glass 53b faces the outside, and the absorption heat of the refrigerant vapor is removed by the outside air.
  • such an absorption refrigerator 50 is configured to be able to circulate naturally by adjusting the respective positions, but is not limited thereto, and may be provided with a pump, other members not illustrated, and the like May be additionally provided.
  • the heat exchanger 51 has a connecting pipe 51b that connects, for example, the rooftop of the building and the basement. For this reason, the heat medium in the heat exchanger 51 can exchange heat with cold water or hot water flowing in the connection pipe 51b.
  • a solar heat collector is installed on the roof of a building, and an absorption chiller / heater is installed in the basement. It has come to be.
  • the connection pipe 51b connects the rooftop solar heat collector and the underground absorption chiller / heater.
  • the connecting pipe 51b penetrates the heat exchanger 51 on each floor. For this reason, the heat medium which flows through the connection pipe 51b rises by the heating of the heat exchanger 51, and can be transferred to the solar heat collector on the roof. Therefore, the heat exchanger 51 also functions as a pump that transfers the heat medium from the underground absorption chiller / heater to the rooftop solar heat collector while raising the temperature of the heat medium.
  • the solar energy utilization system 1 which concerns on this embodiment may be provided with the floor heating apparatus (energy utilization apparatus).
  • a floor heating apparatus is provided in a floor surface, it is located below the solar-heat collector 20. FIG. For this reason, the floor heating apparatus cannot often be provided at the same height as the solar heat collector 20. Therefore, when natural circulation of the heat medium is performed, the inner glass 30 having a two-layer structure is further provided, and the heat medium discharged from the inner glass 30 having the two-layer structure is supplied to the floor heating device and discharged from the floor heating device. The returned heat medium may be returned to the lower end of the solar heat collector 20. This is because the floor heating device is added to the natural circulation process using the inner glass 30 having the two-layer structure, and the natural circulation can be used as it is.
  • the route in which the valve V transfers the heat medium to the inner glass 30 during heating is selected.
  • the solar heat collector 20 heats the heat medium using solar energy.
  • the heating medium rises by this heating and reaches the inner glass 30 through the first pipe R.
  • the heat medium radiates far infrared rays through the second glass 32 on the indoor side to heat the room.
  • the first glass 31 on the outdoor side is subjected to low radiation processing, the amount of far infrared radiation to the outdoor side is suppressed.
  • the heat medium cooled by the radiation of far infrared rays moves downward in the inner glass 30, is discharged through the second pipe R ⁇ b> 2, and returns to the solar heat collector 20.
  • the internal pressure of the inner glass 30 is increased by the heat medium expanded by the heating in the solar heat collector 20, and this increase in the internal pressure is largely absorbed by the compression of the gas 43a of the pressure absorbing portion 40. Become.
  • the solar light utilization system 1 which concerns on 1st Embodiment, since the inner glass 30 by which the low radiation process was performed is provided, arrival of solar energy with respect to the solar-heat collector 20 is not inhibited. It is possible to make it difficult to radiate far infrared rays from the indoor side to the outdoors. Therefore, it is possible to improve indoor heat insulation while securing the utility of solar energy, and to improve energy saving performance.
  • the existing single window glass generally has a heat transmissivity of about 6 W / (m 2 ⁇ K) and a wall portion of about 0.5 W / (m 2 ⁇ K) or less. Insulation performance is poor. For this reason, when the outer glass 10 is an existing single window glass, the window portion is far from 0.8 W / (m 2 ⁇ K), which is the world standard for passive houses, but this embodiment By adopting the configuration according to the above, it is possible to approach the heat transmissibility required for the passive house.
  • the inner glass 30 has a two-layer structure in which a heat medium can be introduced inside, and the far-infrared cut processing is performed on one glass 31 on the solar heat collector 20 side of the two layers of glass 31 and 32. Since the heat from the heat medium is radiated through the other glass 32, the inner glass 30 can be used as a radiant heating panel.
  • the inner glass 30 having a two-layer structure is installed so that at least part of the height is from the upper end to the lower end of the solar heat collector 20, the inner glass 30 and the solar heat collector 20 are combined. It will be the same height. As a result, it is possible to perform natural circulation using heat collection by the solar heat collector 20 and heat radiation by the inner glass 30, and even if a heat medium circulation pump is installed, a large output pump Is not necessary.
  • the installation work can be simplified by attaching the unit to the outer glass 10, for example.
  • the solar light utilization system according to the second embodiment is the same as that of the first embodiment, but a part of the configuration is different from that of the first embodiment.
  • differences from the first embodiment will be described.
  • FIG. 3 is a configuration diagram showing the solar light utilization system 2 according to the second embodiment.
  • the absorption refrigerator 50, the flow pipe 51a, and the connection pipe 51b are the same as those in the first embodiment, and thus the illustration thereof is omitted.
  • the solar light utilization system 2 according to the second embodiment includes the second valve V2, the fifth and sixth pipes R5 and R6, and the second pressure in addition to the first embodiment.
  • the absorption part 60 is provided.
  • the solar light utilization system 2 according to the second embodiment includes a hybrid solar panel PVT instead of the solar heat collector 20, and the configuration of the outer glass (outdoor transparent member) 10 is that of the first embodiment. Is different.
  • the hybrid solar panel PVT includes a solar power generation panel 22 that takes in solar energy and generates electric energy in addition to the solar heat collector 20 (a plurality of vacuum tubes 21) shown in the first embodiment.
  • the electrical energy generated by the solar power generation panel 22 is used for devices (energy utilization devices) such as home appliances (not shown).
  • the photovoltaic power generation panel 22 may be installed inside the vacuum tube 21.
  • the outer glass 10 has a two-layer structure in which a heat medium can be introduced into the inner side, like the inner glass 30.
  • the low radiation process is not given to both the 1st glass 11 of the outdoor side, and the 2nd glass 12 of the indoor side so that arrival of sunlight to the hybrid solar panel PVT may not be inhibited.
  • the second valve V2 is a three-way valve provided on the hybrid solar panel PVT side of the first pipe R1 relative to the pressure absorber 40, and supplies the heat medium from the hybrid solar panel PVT to the inner glass 30 side.
  • the route and the route supplied to the outer glass 10 side can be switched.
  • the route of the second valve V2 may be switched by a controller, or the route may be manually switched.
  • the second valve V2 may be automatically switched using bimetal or the like.
  • a hot water storage tank is provided in the second embodiment, it may be switched according to the temperature of the hot water in the hot water storage tank.
  • 5th piping R5 is piping which connects the 2nd valve
  • the second pressure absorption unit 60 is the same as the pressure absorption unit 40 and has a function of suppressing an increase in internal pressure.
  • the second valve V2 switches to a route for supplying the heat medium to the outer glass 10 side, for example, when the heat medium temperature becomes a predetermined temperature or higher (for example, 60 ° C. or higher).
  • a predetermined temperature or higher for example, 60 ° C. or higher.
  • the heat medium temperature can be lowered.
  • the heat medium in the outer glass 10 continues to be cooled by the outside air until the heat medium temperature reaches 60 ° C., and has a low temperature.
  • the heat medium temperature can be lowered to less than 60 ° C. relatively early.
  • failure of the photovoltaic power generation panel 22 having a heat-resistant temperature of about 70 ° C. and breakage of the vacuum tube 21 (heat collecting part) constituting the solar heat collector 20 can be prevented, and power generation by the photovoltaic power generation panel 22 is possible. This is because a decrease in efficiency can be suppressed.
  • the improvement of an energy-saving performance can be aimed at similarly to 1st Embodiment, and it can approximate to the heat transmissivity calculated
  • the inner glass 30 can be utilized as a radiation heating panel. Furthermore, natural circulation can be performed, and even if a heat medium circulation pump is installed, a high output pump is not necessary.
  • the heat medium becomes too hot.
  • the present invention has been described based on the embodiments, but the present invention is not limited to the above-described embodiments, and may be modified without departing from the spirit of the present invention, and may be appropriately changed within a possible range. These techniques may be combined. Furthermore, known or well-known techniques may be combined within a possible range.
  • the inner glass 30 has a two-layer structure and functions as a radiant heating panel that heats the room.
  • the heat medium from the heater 20 may be configured to be used in energy-using equipment such as the absorption chiller 50 and floor heating.
  • a heat medium is supplied to the inner glass 30 which functions as a radiation heating panel, or it supplies to the regenerator (heat exchanger 51) of the absorption refrigeration machine 50, it is not restricted to this.
  • the temperature of the hot water storage tank may be raised by supplying a heat medium to the hot water tank, or the water from the water pipe may be heated by the solar heat collector 20 and supplied to the hot water heater.
  • the amount of acquired heat exceeding the heating demand or the cooling demand may be supplied to a hot water storage tank, or may be heat exchanged with a building frame (the frame is a heat storage layer).
  • the inner glass 30 and the outer glass 10 of the second embodiment may be reinforced by ribs or partition walls as necessary to prevent water pressure.
  • it is not preferable to configure one inner glass 30 or the outer glass 10 according to the second embodiment in a plurality of levels in terms of water pressure it is preferable to form each level.
  • the rooftop solar heat collector and the underground absorption chiller / heater are related to the entire building, and the solar light utilization systems 1 and 2 according to the present embodiment are for each level. Therefore, the case where the solar light utilization systems 1 and 2 are the property of the tenant for every hierarchy is also considered, for example.
  • the amount of heat obtained by the solar heat collector 20 is given to cold water or hot water flowing through the connection pipe 51b via the heat exchanger 51. It is preferable to measure whether it has been supplied to cold water or hot water flowing in the connection pipe 51b. This is because it can be used for, for example, buying and selling heat.
  • the amount of heat is acquired from the connection pipe 51b to heat the heat medium, and the heated heat medium is supplied to the inner glass 30 for heating. Good. Further, the amount of heat may be acquired from the connection pipe 51b and used for the regeneration of the absorption refrigerator 50.
  • the inner glass 30 may be configured in a sliding window type (two sliding windows). As a result, the inner glass 30 can be moved in the horizontal direction in the same manner as the sliding window. By moving the two sliding windows so as to overlap each other, the surface subjected to the low radiation treatment is halved and the indoor heat is moved to the outside. This is because it can be released.
  • the solar energy utilization system 1 which concerns on 1st Embodiment is provided only with the solar-heat collector 20, it is not restricted to this, You may be comprised with the photovoltaic power generation panel 22, and the hybrid solar panel PVT It may be comprised. Furthermore, in 2nd Embodiment, although the hybrid solar panel PVT is provided, if it is the structure containing the solar-heat collector 20, it may not be a hybrid solar panel PVT.
  • a part of the inner tube of the vacuum tube 21 is constituted by a white high reflection plate, and when the temperature of the heat medium reaches 60 ° C. or more, the entire inner tube or the vacuum tube 21 rotates and the white high reflection plate. May be exposed to sunlight. This is because sunlight is reflected, and the rise of the heat medium temperature can be suppressed to prevent the solar power generation panel 22 from being broken, and the decrease in power generation efficiency can be suppressed.
  • the outer glass 10 is a part of the building.
  • the outer glass 10 is not limited to this, and the outer glass 10 is an existing single-layer glass in a high-rise building or the like.
  • the outer glass 10, the hybrid solar panel PVT and the inner glass 30 may be provided in this order from the inside with respect to the single-layer glass.
  • the inner glass 30 and the outer glass 10 are not restricted to the case where it is comprised by what is called a glass material, You may be comprised by the transparent member containing transparent resin like a polycarbonate.
  • An energy receiver solar heat collector 20 that is provided on the inner side with respect to the transparent part (outer glass 10) of the building and receives solar energy to obtain at least one of electric energy and thermal energy;
  • An indoor transparent member inner glass 30 provided on the indoor side of the building with respect to the energy receiver;
  • An energy utilization device absorption refrigeration machine 50 that uses energy from the energy receiver on the indoor side,
  • the indoor-side transparent member is subjected to a treatment in which at least the far-infrared absorption / emissivity and transmittance of wavelengths of 9 ⁇ m to 10 ⁇ m are both 20% or less.
  • the energy receiver is a solar heat collector (20) that obtains thermal energy by taking solar energy and heating the heat medium
  • the indoor side transparent member is a transparent member having a two-layer structure capable of introducing a heat medium from the solar heat collector into the inside, and the transparent member on the solar heat collector side of the two layers of the transparent member is
  • the solar light utilization system according to [1] wherein the solar light utilization system functions as the energy utilization device that radiates far infrared rays from the heat medium through the indoor transparent member of the two layers of the transparent member while being processed.
  • the indoor transparent member having the two-layer structure is installed so that at least a part thereof is included in the height from the upper end to the lower end of the solar heat collector. system.
  • the solar light utilization system according to [2] or [3], further including an outdoor transparent member (outer glass 10) having a structure.
  • the present invention there is an effect that it is possible to provide a solar light utilization system capable of improving indoor heat insulation while ensuring the utilization of solar energy.
  • the present invention that exhibits this effect is useful for a solar light utilization system capable of improving energy saving performance.

Abstract

太陽光利用システム(1)は、建物のガラス面に対して内側から取り付けられ、太陽光エネルギーを取り込んで得られた熱エネルギーにより熱媒を加熱する太陽熱集熱器(20)と、太陽熱集熱器(20)に対して建物の室内側に設けられ、太陽熱集熱器(20)からの熱媒を室内側にて利用する内ガラス(30)と、を備え、内ガラス(30)は、少なくとも波長9μm以上10μm以下の遠赤外線の吸収・放射率及び透過率が共に20%以下となる遠赤外線カット処理が施されている。

Description

太陽光利用システム
 本発明は、太陽光利用システムに関する。
 従来、太陽光エネルギーを取り込んで電気エネルギーを生成する太陽電池や、太陽光エネルギーを取り込んで得られる熱エネルギーにより熱媒を加熱する太陽熱集熱器を、2層構造のガラスの間に配置する技術が提案されている(特許文献1~3参照)。これらによれば、窓ガラスとして太陽光を室内に取り込みつつも、太陽光エネルギーを利用して電気エネルギーや熱エネルギーを得ることができ、省エネルギー化を図ることができる。
日本国特開昭58-197781号公報 日本国特開平6-147650号公報 日本国特開2010-144375号公報
 特許文献1~3に記載の技術において、電気エネルギーや熱エネルギーを多く得るためには太陽光エネルギーを多く取り込む必要があるため、2層構造のガラスには自然光の透過率が高いものを用いることが好ましい。しかしながら、自然光の透過率が高いガラスは、室内からの遠赤外線についても屋外に透過し易くなり、室内の断熱性の面で劣ることとなる。このため、省エネルギー性能に関し向上の余地を残すものであった。
 本発明は、このような問題を解決するためになされたものであり、その目的は、省エネルギー性能の向上を図ることが可能な太陽光利用システムを提供することにある。
 本発明に係る太陽光利用システムは、エネルギー受領器と、室内側透明部材と、エネルギー利用機器とを備えている。エネルギー受領器は、建物の透明部位に対して内側に設けられ、太陽光エネルギーを取り込んで電気エネルギー及び熱エネルギーの少なくとも一方を得るものである。室内側透明部材は、エネルギー受領器に対して建物の室内側に設けられており、エネルギー利用機器は、エネルギー受領器からのエネルギーを室内側にて利用するものである。さらに、上記の室内側透明部材は、少なくとも波長9μm以上10μm以下の遠赤外線の吸収・放射率及び透過率が共に20%以下となる遠赤外線カット処理が施されている。
 本発明によれば、遠赤外線カット処理が施された室内側透明部材を備えるため、エネルギー受領器に対する太陽光エネルギーの到達を阻害することなく、室内側からの遠赤外線が屋外に放射され難くすることができる。従って、太陽光エネルギーの利用性を確保しつつ室内断熱性の向上を図り、省エネルギー性能の向上を図ることができる。
図1は、本発明の第1実施形態に係る太陽光利用システムを示す構成図である。 図2は、図1に示した圧力吸収部の詳細構成図である。 図3は、第2実施形態に係る太陽光利用システムを示す構成図である。
 以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾点が発生しない範囲内において、適宜公知又は周知の技術が適用されていることはいうまでもない。
 図1は、本発明の第1実施形態に係る太陽光利用システムを示す構成図である。なお、図1では、太陽光利用システムが高層ビル等の建物の中層階において用いられる例を示すが、太陽光利用システムは建物の中層階において用いられる場合に限らず、上層階や下層階に用いられてもよいし、中低層ビルや一戸建てに用いられてもよい。
 図1に示すように、太陽光利用システム1は、外ガラス(透明部位)10と、太陽熱集熱器(エネルギー受領器)20と、内ガラス(室内側透明部材、エネルギー利用機器)30と、第1及び第2配管R1,R2と、圧力吸収部40とを備えている。
 外ガラス10は、建物に設置される板状のガラス部材であって、好ましくは自然光に対する透過率が80%以上の透過型ガラスである。なお、外ガラス10は、透過型ガラスに限らず、既存の高層ビルにおいて設置されている熱線吸収ガラスや熱線反射ガラスであってもよい。なお、外ガラス10は、建築の一部をなし、風圧等に耐え建築基準を満たすものである。
 太陽熱集熱器20は、外ガラス10を介して室内側に供給される太陽光エネルギーを利用して熱エネルギーを得るものであって、太陽光エネルギーを利用して得られた熱エネルギーにより熱媒(エチレングリコール等の不凍液)を加熱するものである。この太陽熱集熱器20は、水平方向に延びる複数の真空管21を備えた横ブラインド型の構造となっている。真空管21は、透明色の外管と、太陽光の選択吸収処理が施された内管とを備え、例えば内管内に挿通されるU字状の熱媒流路を流れる熱媒を加熱する構成となっている。
 なお、太陽熱集熱器20は複数の真空管21を備える真空管式ものに限らず、集熱フィンを備えるものなど、他のタイプのものであってもよい。また、真空管21や集熱フィンは、横ブラインド型に設けられる場合に限らず、縦ブラインド型に設けられていてもよいし、半透過型のものが採用されてもよい。なお、立面や水平面等、太陽高度に対して最適化されていない角度の窓においては横ブラインド型である方が縦ブラインド型よりも熱効率が良く、真空管21等の数を少なくでき、コスト面や太陽光を室内に取り込む面などからも好ましい。また、複数の真空管21を持つ真空管式のものであれば、夏季と冬季との太陽高度に差が出たとしても円形の内管により安定した集熱効果を得ることができる。
 内ガラス30は、太陽熱集熱器20に対して建物の室内側に設けられた板状のガラス部材である。特に、本実施形態において内ガラス30は、第1配管R1を通じて内側に熱媒を導入可能な2層構造となっており、内側の熱媒を利用して室内を暖房する輻射暖房パネル(エネルギー利用機器)として機能する。
 詳細に説明すると、2層構造の内ガラス30のうち太陽熱集熱器20側の第1ガラス(透明部材)31は、熱媒と接しない側の面に、所定の金属の膜をコーティングするなどして低放射処理(遠赤外線カット処理)が施されている。この処理により、第1ガラス31は、少なくとも波長9μm以上10μm以下の遠赤外線の吸収・放射率及び透過率が共に20%以下となる。
 これに対して、2層構造の内ガラス30のうち室内側の第2ガラス(透明部材)32は、低放射処理が施されていない。このため、第2ガラス32の吸収・放射率及び透過率は少なくとも第1ガラス31の吸収・放射率及び透過率より高くなっており、具体的には遠赤外線への吸収・放射率と透過率との合計が80%以上となっている。よって、熱媒からの遠赤外線は、第1ガラス31によってカットされて屋外側には放射され難くなるが、第2ガラス32を介して室内側には放射され易くなる。この結果、内ガラス30は、無駄な放射が少ない輻射暖房パネルとして機能する。なお、第1ガラス31は、熱媒からの遠赤外線に限らず、室内からの遠赤外線が屋外へ放射されてしまうこと、すなわち室内温度の低下についても抑える役割を果たす。
 ここで、内ガラス30は、太陽熱集熱器20と同程度の高さに設けられている。さらに、第1配管R1は太陽熱集熱器20の上部と内ガラス30の上部とを接続し、第2配管R2は太陽熱集熱器20の下部と内ガラス30の下部とを接続している。このため、内ガラス30にて冷却された熱媒は、第2配管R2を通じて太陽熱集熱器20に至り太陽熱集熱器20にて加熱され、第1配管R1を通じて内ガラス30に戻される。すなわち、自然循環が可能となっている。
 なお、ここでいう同程度の高さに設置されるとは、内ガラス30が太陽熱集熱器20の上端から下端までの高さ範囲に少なくとも一部が含まれるように設置されることである。これにより、内ガラス30のうち大半が太陽熱集熱器20の上端から下端までの高さに位置する場合には自然循環を行うことができ、仮に内ガラス30がそのような位置に無く自然循環ができない場合であっても熱媒循環用のポンプを大出力にする必要がない。
 圧力吸収部40は、いわゆるエキスパンジョンベッセルであって、熱媒が加熱膨張することにより内ガラス30の内圧が上昇して破損してしまう事態を防止するものである。この圧力吸収部40は、例えば第1配管R1上に設けられている。
 図2は、図1に示した圧力吸収部40の詳細構成図である。図2に示すように、圧力吸収部40は、太陽熱集熱器20につながる入口部41と、内ガラス30につながる出口部42と、これらの間に配置される熱媒溜め部43とを備えている。熱媒溜め部43は、入口部41及び出口部42よりも内容積が大きくされた容器状の部位であり、下部は熱媒で満たされるが、上部は気体43aが存在する状態となっている。このため、熱媒が熱膨張した場合には、熱媒溜め部43の気体43aが圧縮されることとなり、内ガラス30の内圧上昇を抑えることとなる。圧力吸収部40は、開放型シスターンと呼ばれる、気体43aが大気圧に開放されているものであってもよい。
 再度図1を参照する。上記の如く太陽光利用システム1は、内ガラス30を輻射暖房パネルとして利用することにより暖房を行うことができる。さらに、太陽光利用システム1は、冷房を行うべく、バルブVと、第3及び第4配管R3,R4と、吸収式冷凍器(エネルギー利用機器)50とを備えている。
 バルブVは、第1配管R1のうち圧力吸収部40の下流側に設けられる三方弁であって、太陽熱集熱器20からの熱媒を、内ガラス30側に供給するルートと、第3配管R3側に供給するルートとを切替可能となっている。このバルブVは、室温や熱媒温度を検出する温度センサからの信号に基づいて制御器によってルートが切り替えられてもよいし、手動によってルートが切替られてもよい。さらに、バルブVは、バイメタル、キャピラリーチューブ内の液体の体積変化、固液相変化、形状記憶合金等の技術により室温に応じて熱媒の流路を自動的に切り替えるものであってもよい。
 吸収式冷凍機50は、再生器として機能する熱交換器51を備えている。第3配管R3は、バルブVと熱交換器51の上部とを接続する配管であり、第4配管R4は、熱交換器51の下部と第2配管R2(図1に示す符号Aの箇所)とを接続する配管である。この熱交換器51は、内ガラス30と同様に、太陽熱集熱器20と同程度の高さに設けられている。さらに、吸収式冷凍機50は、凝縮器として機能する凝縮器機能部52と、蒸発器及び吸収器として機能する蒸発吸収器機能部53とを備えている。
 以下、吸収式冷凍機50を詳細に説明する。熱交換器51には吸収液と冷媒とが流通する流通管51aが設けられている。再生器となる熱交換器51には希溶液が導入され、太陽熱集熱器20からの熱媒によって加熱される。これにより、太陽熱集熱器20からの熱媒は降温し、再度太陽熱集熱器20に戻される。
 一方、希溶液は加熱によって濃溶液と蒸気冷媒とに分離され、蒸気冷媒は凝縮器機能部52に導入される。ここで、凝縮器機能部52は、例えば内ガラス30と同様に2層ガラス構造となっている。さらに、凝縮器機能部52は例えば屋外に面するように設置されている。このため、凝縮器機能部52に導入された蒸気冷媒は外気によって冷やされて凝縮し液冷媒となる。液冷媒は蒸発吸収器機能部53に導入される。
 また、熱交換器51における加熱によって得られた濃溶液は、蒸発吸収器機能部53に導入される。蒸発吸収器機能部53についても二重ガラス構造となっており、一方のガラス53a側が蒸発器として機能し、他方のガラス53b側が吸収器として機能する。液冷媒は蒸発器側となる一方のガラス53aに沿うように滴下され、濃溶液は吸収器側となる他方のガラス53bに沿うように滴下される。
 また、蒸発吸収器機能部53は、断面視してU字状となる複数のU字部材53cを備えている。複数のU字部材53cは、略逆向きU字となるように2枚のガラス53a,53bの間に配置され、減圧状態にある蒸発吸収器機能部53の破損を防止するようになっている。また、U字部材53cが逆向きに配置されていることから、双方のガラス53a,53bに沿うように滴下される液冷媒や濃溶液がU字部材53cとガラス面との間で一時的に貯留させるようになっており、ガラス面に対する濡れ性を向上させる役割を果たしている。
 この蒸発吸収器機能部53において液冷媒は蒸発気化して冷媒蒸気となり濃溶液によって吸収される。この結果、蒸発吸収器機能部53からは、希溶液が排出されることとなり、希溶液は再生器である熱交換器51に供給される。また、一方のガラス53aは室内に面しており、液冷媒の蒸発によって室内空気が冷却される。なお、他方のガラス53bは屋外に面しており、冷媒蒸気の吸収熱が外気によって取り除かれる。
 なお、このような吸収式冷凍機50は、それぞれの位置を調整して自然循環可能に構成することが好ましいが、特にこれに限らずポンプを備えていてもよいし、図示しない他の部材等を追加で備えていてもよい。
 加えて、熱交換器51には、例えば建物の屋上と地下とを接続する接続管51bが貫通している。このため、熱交換器51内の熱媒は接続管51b内を流れる冷水や温水等と熱交換可能となっている。ここで、本実施形態においては、例えば建物の屋上に太陽熱集熱器が設置され、地下に吸収式冷温水機が設置されており、これらを利用して建物の廊下や共用部分の冷暖房が行われるようになっている。接続管51bは、屋上の太陽熱集熱器と地下の吸収式冷温水機とを接続している。さらに、接続管51bは各階における熱交換器51を貫通している。このため、接続管51bを流れる熱媒は、熱交換器51の加熱によって上昇して屋上の太陽熱集熱器まで移送可能となっている。よって、熱交換器51は、熱媒を昇温させつつ、地下の吸収式冷温水器から屋上の太陽熱集熱器まで熱媒を移送するポンプとしても機能する。
 なお、第1実施形態において図示を省略するが、本実施形態に係る太陽光利用システム1は、床暖房機器(エネルギー利用機器)を備えていてもよい。なお、床暖房機器は床面に設けられるため、太陽熱集熱器20よりも下方に位置する。このため、床暖房機器は太陽熱集熱器20と同程度の高さに設けることができないことが多い。よって、熱媒の自然循環を行う場合には、2層構造の内ガラス30を更に備え、2層構造の内ガラス30から排出される熱媒を床暖房機器に供給し、床暖房機器から排出された熱媒を太陽熱集熱器20の下端に戻すようにすればよい。これにより、2層構造の内ガラス30を利用した自然循環の過程に床暖房機器を追加することとなり、自然循環をそのまま利用可能となるからである。
 次に、本実施形態に係る太陽光利用システム1の動作及び作用を説明する。
 まず、暖房時においてはバルブVが内ガラス30に熱媒を移送するルートを選択している。太陽光が太陽熱集熱器20に入射すると、太陽熱集熱器20は、太陽光エネルギーを利用して熱媒を加熱する。この加熱により熱媒は上昇し第1配管Rを通じて内ガラス30に至る。内ガラス30では、熱媒が室内側の第2ガラス32を通じて遠赤外線を放射し、室内を暖房する。一方、屋外側の第1ガラス31には低放射処理が施されているため、屋外側への遠赤外線の放射量は抑えられることとなる。
 遠赤外線の放射により降温した熱媒は内ガラス30内を下方に移動し第2配管R2を通じて排出され太陽熱集熱器20に戻る。ここで、太陽熱集熱器20における加熱によって膨張した熱媒により内ガラス30の内圧が上昇するが、この内圧の上昇は圧力吸収部40の気体43aが圧縮されることで大凡吸収されることとなる。
 このようにして、第1実施形態に係る太陽光利用システム1によれば、低放射処理が施された内ガラス30を備えるため、太陽熱集熱器20に対する太陽光エネルギーの到達を阻害することなく、室内側からの遠赤外線が屋外に放射され難くすることができる。したがって、太陽光エネルギーの利用性を確保しつつ室内断熱性の向上を図り、省エネルギー性能の向上を図ることができる。
 特に、既存の1枚の窓ガラスは、熱貫流率が一般に6W/(m・K)程度であり、壁部が0.5W/(m・K)程度以下であることと比べて著しく断熱性能が悪い。このため、外ガラス10が既存の1枚の窓ガラスである場合には、窓部でパッシブハウスの世界標準とされる0.8W/(m・K)にもほど遠くなるが、本実施形態に係る構成を採用することで、パッシブハウスで求められる熱貫流率に近づけることができる。
 また、内ガラス30は、熱媒を内側に導入可能な2層構造であり、2層のガラス31,32のうち太陽熱集熱器20側である一方のガラス31に遠赤外線カット処理が施されると共に、他方のガラス32を通じて熱媒からの熱を放射するため、内ガラス30を輻射暖房パネルとして利用することができる。
 また、2層構造の内ガラス30は、太陽熱集熱器20の上端から下端までの高さに少なくとも一部が含まれるように設置されているため、内ガラス30と太陽熱集熱器20とを同程度の高さとすることとなる。これにより、太陽熱集熱器20での集熱と、内ガラス30での放熱とを利用した自然循環を行うことが可能となり、仮に熱媒循環用のポンプを設置するにしても大出力のポンプは必要ない。
 さらに、第1実施形態では、太陽熱集熱器20及び内ガラス30などをユニット化しておけば、例えば外ガラス10に対してユニットを取り付けることで取り付け工事の簡略化を行うことができる。
 次に、本発明の第2実施形態を説明する。第2実施形態に係る太陽光利用システムは、第1実施形態のものと同様であるが、一部構成が第1実施形態のものと異なっている。以下、第1実施形態との相違点を説明する。
 図3は、第2実施形態に係る太陽光利用システム2を示す構成図である。なお、図3において、吸収式冷凍機50、流通管51a、及び接続管51bについては第1実施形態と同じであるため、図示を省略するものとする。
 図3に示すように、第2実施形態に係る太陽光利用システム2は、第1実施形態のものに加えて、第2バルブV2と、第5及び第6配管R5,R6と、第2圧力吸収部60とを備えている。さらに、第2実施形態に係る太陽光利用システム2は、太陽熱集熱器20に代えて、ハイブリッドソーラーパネルPVTを備えると共に、外ガラス(屋外側透明部材)10の構成が第1実施形態のものと異なっている。
 ハイブリッドソーラーパネルPVTは、第1実施形態に示した太陽熱集熱器20(複数の真空管21)に加えて、太陽光エネルギーを取り込んで電気エネルギーを生成する太陽光発電パネル22を備えている。この太陽光発電パネル22により生成された電気エネルギーは、不図示の家電などの機器(エネルギー利用機器)に利用される。太陽光発電パネル22は、真空管21の内部に設置されてもよい。
 また、第2実施形態において外ガラス10は、内ガラス30と同様に、内側に熱媒を導入可能な2層構造となっている。なお、外ガラス10は、ハイブリッドソーラーパネルPVTへの太陽光の到達を阻害しないように、屋外側の第1ガラス11及び室内側の第2ガラス12の双方に低放射処理が施されていない。
 第2バルブV2は、第1配管R1のうち圧力吸収部40よりもハイブリッドソーラーパネルPVT側に設けられた三方弁であって、ハイブリッドソーラーパネルPVTからの熱媒を、内ガラス30側に供給するルートと、外ガラス10側に供給するルートとを切替可能となっている。この第2バルブV2は、バルブVと同様に、制御器によってルートが切り替えられてもよいし、手動によってルートが切替られてもよい。さらに、第2バルブV2は、バイメタル等を利用して自動的に切り替えられるものであってもよい。加えて、第2実施形態において貯湯槽を備える場合には、貯湯槽内の湯水の温度に応じて切り替えられるようになっていてもよい。
 第5配管R5は、第2バルブV2と外ガラス10の上部とを接続する配管であり、第6配管R6は、外ガラス10の下部と第2配管R2(図3に示す符号Bの箇所)とを接続する配管である。第2圧力吸収部60は、圧力吸収部40と同様のものであり、内圧上昇を抑える機能を有する。
 このような太陽光利用システム2において第2バルブV2は、例えば熱媒温度が所定温度以上(例えば60℃以上)になると熱媒を外ガラス10側に供給するルートに切り替える。これにより、熱媒は、ハイブリッドソーラーパネルPVTから第5配管R5を通じて外ガラス10に至り、外ガラス10において外気冷却される。外気冷却された熱媒は第6配管R6を通じて再度ハイブリッドソーラーパネルPVTに戻る。
 このようにハイブリッドソーラーパネルPVTと外ガラス10とで熱媒を循環させることで、熱媒温度を低下させることができる。特に、外ガラス10内の熱媒は、熱媒温度が60℃に達するまでは外気によって冷却され続けており低い温度となっている。このため、ハイブリッドソーラーパネルPVTと外ガラス10とで熱媒を循環させることで、比較的早期に熱媒温度を60℃未満まで低下させることができる。以上により、耐熱温度が70℃程度の太陽光発電パネル22の故障や太陽熱集熱器20を構成する真空管21(集熱部)の破損を防止することができると共に、太陽光発電パネル22による発電効率の低下を抑えることができるからである。
 このようにして、第2実施形態に係る太陽光利用システム2によれば、第1実施形態と同様に、省エネルギー性能の向上を図ることができ、パッシブハウスで求められる熱貫流率に近づけることができる。また、内ガラス30を輻射暖房パネルとして利用することができる。さらに、自然循環を行うことが可能となり、仮に熱媒循環用のポンプを設置するにしても大出力のポンプは必要ない。
 加えて、第2実施形態によれば、熱媒の温度が所定温度以上となる場合に熱媒を内側に導入する2層構造となった外ガラス10を備えるため、熱媒が熱くなりすぎて、太陽熱集熱器20の真空管21や太陽熱集熱器20と共に設置される太陽光発電パネル22を故障させてしまう事態を防止することができると共に、太陽光発電パネル22による発電効率の低下も抑えることができる。
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、可能な範囲で適宜他の技術を組み合わせてもよい。さらに、可能な範囲で公知又は周知の技術を組み合わせてもよい。
 例えば、上記実施形態において内ガラス30は2層構造であって室内を暖房する輻射暖房パネルとして機能するが、これに限らず、低放射処理された1層構造のガラス部材であって、太陽熱集熱器20からの熱媒が吸収式冷凍機50や床暖房等のエネルギー利用機器に用いられる構成であってもよい。
 また、上記実施形態においては、熱媒を輻射暖房パネルとして機能する内ガラス30に供給したり、吸収式冷凍機50の再生器(熱交換器51)に供給したりするが、これに限らず、例えば熱媒を貯湯槽に供給して貯湯槽の昇温を行ってもよいし、水道管からの水を太陽熱集熱器20で加熱して給湯器に供給してもよい。特に、暖房需要や冷房需要を上回る取得熱量については貯湯槽に供給したり、建物の躯体(躯体を蓄熱層とする)と熱交換するようにしたりしてもよい。
 さらに、内ガラス30や第2実施形態の外ガラス10は、水圧対策として必要に応じてリブや隔壁により補強されていてもよい。なお、水圧の関係上、複数の階層で1つの内ガラス30や第2実施形態に係る外ガラス10を構成することは好ましいとは言えないため、階層毎に形成することが好ましい。
 加えて、屋上の太陽熱集熱器と地下の吸収式冷温水機は建物全体に関わるものであり、本実施形態に係る太陽光利用システム1,2は階層毎のものである。よって、太陽光利用システム1,2が例えば階層毎のテナントの所有物である場合も考えられる。この場合、太陽熱集熱器20にて得られた熱量が熱交換器51を介して接続管51b内を流れる冷水や温水等に与えられることから、適宜熱量計を設置し、どの程度の熱量が接続管51b内を流れる冷水や温水等に与えられたかを計測することが好ましい。これにより、例えば熱量の売買などに活用することができるためである。
 また、上記実施形態において太陽光エネルギーが充分でない場合に、接続管51bから熱量を取得して熱媒を加熱し、加熱された熱媒を内ガラス30に供給して暖房を行うようにしてもよい。さらに、接続管51bから熱量を取得して吸収式冷凍機50の再生に利用してもよい。
 また、内ガラス30を引き窓形式(2枚の引き窓)に構成するようにしてもよい。これにより、引き窓と同様に内ガラス30を水平方向に動かすことができ、2枚の引き窓を重ね合わせるように動かすことで、低放射処理が施された面を半減させて室内の熱を屋外に放出することもできるからである。
 また、第1実施形態に係る太陽光利用システム1は、太陽熱集熱器20のみを備えているが、これに限らず、太陽光発電パネル22で構成されていてもよいし、ハイブリッドソーラーパネルPVTで構成されていてもよい。さらに、第2実施形態においては、ハイブリッドソーラーパネルPVTを備えているが、太陽熱集熱器20を含む構成であればハイブリッドソーラーパネルPVTでなくともよい。
 さらに、第2実施形態においては真空管21の内管のうち一部を白色高反射板で構成し、熱媒温度が60℃以上となると内管又は真空管21の全体が回転して白色高反射板が太陽光に曝されるようになっていてもよい。これにより、太陽光を反射することとなり、熱媒温度の上昇を抑えて太陽光発電パネル22の故障を防止できると共に、発電効率の低下を抑えることができるからである。
 加えて、第2実施形態に係る太陽光利用システム2は、外ガラス10が建築の一部となっているが、これに限らず、外ガラス10は高層ビル等に既設の単層ガラスであり、この単層ガラスに対して内側から更なる外ガラス10と、ハイブリッドソーラーパネルPVTと内ガラス30とがこの順に設けられて構成されてもよい。
 また、上記実施形態において内ガラス30及び外ガラス10は、いわゆるガラス材によって構成される場合に限らず、ポリカーボネートのような透明樹脂を含む透明部材によって構成されてもよい。
 ここで、上述した本発明に係る太陽光利用システムの実施形態の特徴をそれぞれ以下[1]~[4]に簡潔に纏めて列記する。
[1] 建物の透明部位(外ガラス10)に対して内側に設けられ、太陽光エネルギーを取り込んで電気エネルギー及び熱エネルギーの少なくとも一方を得るエネルギー受領器(太陽熱集熱器20)と、
 前記エネルギー受領器に対して建物の室内側に設けられた室内側透明部材(内ガラス30)と、
 前記エネルギー受領器からのエネルギーを前記室内側にて利用するエネルギー利用機器(吸収式冷凍機50)と、を備え、
 前記室内側透明部材は、少なくとも波長9μm以上10μm以下の遠赤外線の吸収・放射率及び透過率が共に20%以下となる処理が施されている
 太陽光利用システム。
[2] 前記エネルギー受領器は、太陽光エネルギーを取り込んで熱媒を加熱することにより熱エネルギーを得る太陽熱集熱器(20)であって、
 前記室内側透明部材は、前記太陽熱集熱器からの熱媒を内側に導入可能な2層構造の透明部材であり、2層の前記透明部材のうち前記太陽熱集熱器側の透明部材に前記処理が施されると共に、2層の前記透明部材のうち前記室内側の透明部材を通じて熱媒からの遠赤外線を放射する前記エネルギー利用機器として機能する
 上記[1]に記載の太陽光利用システム。
[3] 前記2層構造の室内側透明部材は、前記太陽熱集熱器の上端から下端までの高さに少なくとも一部が含まれるように設置されている
 上記[2]に記載の太陽光利用システム。
[4] 前記太陽熱集熱器よりも外側に設けられ、前記太陽熱集熱器からの熱媒の温度が所定温度以上となる場合に前記太陽熱集熱器からの熱媒を内側に導入する2層構造となった屋外側透明部材(外ガラス10)をさらに備える
 上記[2]又は[3]に記載の太陽光利用システム。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年12月27日出願の日本特許出願(特願2016-252457)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、太陽光エネルギーの利用性を確保しつつ室内断熱性の向上を図ることが可能な太陽光利用システムを提供できるという効果を奏する。この効果を奏する本発明は、省エネルギー性能の向上を図ることが可能な太陽光利用システムに関して有用である。
 1,2 太陽光利用システム
 10  外ガラス(透明部位、屋外側透明部材)
 11  第1ガラス
 12  第2ガラス
 20  太陽熱集熱器(エネルギー受領器)
 21  真空管
 22  太陽光発電パネル
 30  内ガラス(エネルギー利用機器、室内側透明部材)
 31  第1ガラス(透明部材)
 32  第2ガラス(透明部材)
 40  圧力吸収部
 41  入口部
 42  出口部
 43  熱媒溜め部
 43a 気体
 50  吸収式冷凍機(エネルギー利用機器)
 51  熱交換器
 51a 流通管
 51b 接続管
 52  凝縮器機能部
 53  蒸発吸収器機能部
 60  第2圧力吸収部
 PVT ハイブリッドソーラーパネル
 R1~R6 配管
 V   バルブ
 V2  第2バルブ

Claims (4)

  1.  建物の透明部位に対して内側に設けられ、太陽光エネルギーを取り込んで電気エネルギー及び熱エネルギーの少なくとも一方を得るエネルギー受領器と、
     前記エネルギー受領器に対して建物の室内側に設けられた室内側透明部材と、
     前記エネルギー受領器からのエネルギーを前記室内側にて利用するエネルギー利用機器と、を備え、
     前記室内側透明部材は、少なくとも波長9μm以上10μm以下の遠赤外線の吸収・放射率及び透過率が共に20%以下となる処理が施されている
     太陽光利用システム。
  2.  前記エネルギー受領器は、太陽光エネルギーを取り込んで熱媒を加熱することにより熱エネルギーを得る太陽熱集熱器であって、
     前記室内側透明部材は、前記太陽熱集熱器からの熱媒を内側に導入可能な2層構造の透明部材であり、2層の前記透明部材のうち前記太陽熱集熱器側の透明部材に前記処理が施されると共に、2層の前記透明部材のうち前記室内側の透明部材を通じて熱媒からの遠赤外線を放射する前記エネルギー利用機器として機能する
     請求項1に記載の太陽光利用システム。
  3.  前記2層構造の室内側透明部材は、前記太陽熱集熱器の上端から下端までの高さに少なくとも一部が含まれるように設置されている
     請求項2に記載の太陽光利用システム。
  4.  前記太陽熱集熱器よりも外側に設けられ、前記太陽熱集熱器からの熱媒の温度が所定温度以上となる場合に前記太陽熱集熱器からの熱媒を内側に導入する2層構造となった屋外側透明部材をさらに備える
     請求項2又は請求項3のいずれかに記載の太陽光利用システム。
PCT/JP2017/041716 2016-12-27 2017-11-20 太陽光利用システム WO2018123348A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780081233.0A CN110121623B (zh) 2016-12-27 2017-11-20 太阳能利用系统
BR112019013254A BR112019013254A2 (pt) 2016-12-27 2017-11-20 sistema de utilização de energia solar
RU2019119843A RU2720126C1 (ru) 2016-12-27 2017-11-20 Система утилизации солнечной энергии
US16/453,219 US11085668B2 (en) 2016-12-27 2019-06-26 Solar energy utilization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016252457A JP6556691B2 (ja) 2016-12-27 2016-12-27 太陽光利用システム
JP2016-252457 2016-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/453,219 Continuation US11085668B2 (en) 2016-12-27 2019-06-26 Solar energy utilization system

Publications (1)

Publication Number Publication Date
WO2018123348A1 true WO2018123348A1 (ja) 2018-07-05

Family

ID=62708233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041716 WO2018123348A1 (ja) 2016-12-27 2017-11-20 太陽光利用システム

Country Status (6)

Country Link
US (1) US11085668B2 (ja)
JP (1) JP6556691B2 (ja)
CN (1) CN110121623B (ja)
BR (1) BR112019013254A2 (ja)
RU (1) RU2720126C1 (ja)
WO (1) WO2018123348A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211071A (ja) 2018-05-31 2019-12-12 株式会社デンソー バルブ装置
JP2020173057A (ja) * 2019-04-10 2020-10-22 矢崎エナジーシステム株式会社 熱交換器
JP6932740B2 (ja) * 2019-05-28 2021-09-08 矢崎エナジーシステム株式会社 液体供給装置および熱交換器ユニット
JP7433717B2 (ja) * 2020-03-27 2024-02-20 矢崎エナジーシステム株式会社 コージェネレーションシステムの設備決定方法、設備決定装置、設備決定プログラム、及び、コンピュータ読取可能な記録媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527548A (en) * 1984-02-09 1985-07-09 Gustafson Gary R Window blind type solar collector
GB2273151A (en) * 1992-12-02 1994-06-08 Frederick Brian Mckee "Solar energy transfer structual elements."
EP0978620A2 (de) * 1998-07-02 2000-02-09 Heinz Dr. Kunert Isolierglaselement für die Gebäudeverglasung
US20120279147A1 (en) * 2009-09-18 2012-11-08 Solarpath, Inc. Solar window apparatus and method
WO2015017879A1 (en) * 2013-08-06 2015-02-12 Michael John Urch A power generating window assembly
US20150083195A1 (en) * 2012-03-22 2015-03-26 Sunpartner Transparent solar energy collector
US20150167298A1 (en) * 2012-08-31 2015-06-18 Odilo Reutter Building module and method for utilizing thermal energy

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990635A (en) * 1975-03-17 1976-11-09 Restle Joseph W Window mounted solar heating unit
US4014313A (en) * 1975-06-09 1977-03-29 David William Pedersen Apparatus and method for collecting solar energy at an upright surface
US4062347A (en) * 1976-08-24 1977-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar heating system
SU953842A1 (ru) * 1981-02-27 1992-01-30 Предприятие П/Я Г-4361 Скатное покрытие здани с солнечным обогревом
JPS58197781A (ja) 1982-05-12 1983-11-17 Nippon Sheet Glass Co Ltd 太陽電池を組み込んだ窓
US4615381A (en) * 1982-07-30 1986-10-07 One Design, Inc. Solar heating and cooling diode module
SU1477862A1 (ru) * 1987-07-28 1989-05-07 Институт высоких температур АН СССР Здание с солнечным обогревом
US5221363A (en) * 1991-02-28 1993-06-22 Lockheed Missiles & Space Company, Inc. Solar cell window fitting
US5524381A (en) * 1991-03-19 1996-06-11 Chahroudi; Day Solar heated building designs for cloudy winters
JP2816788B2 (ja) 1992-11-11 1998-10-27 矢崎総業株式会社 太陽集光器
RU2258946C2 (ru) * 2000-02-02 2005-08-20 Тривиум Текнолоджиз, Инк. Устройство, имеющее светопропускающие и отражающие свойства
JP5608973B2 (ja) 2008-12-17 2014-10-22 株式会社大林組 窓構造
KR20130034334A (ko) * 2011-09-28 2013-04-05 한국전자통신연구원 태양 전지를 포함하는 진공창 및 그 제조 방법
CN102607185A (zh) * 2012-02-27 2012-07-25 华中科技大学 一种空腔内水流式窗体节能系统及其控制方法
JP6443329B2 (ja) * 2013-04-10 2018-12-26 Agc株式会社 赤外線遮蔽フィルタおよび撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527548A (en) * 1984-02-09 1985-07-09 Gustafson Gary R Window blind type solar collector
GB2273151A (en) * 1992-12-02 1994-06-08 Frederick Brian Mckee "Solar energy transfer structual elements."
EP0978620A2 (de) * 1998-07-02 2000-02-09 Heinz Dr. Kunert Isolierglaselement für die Gebäudeverglasung
US20120279147A1 (en) * 2009-09-18 2012-11-08 Solarpath, Inc. Solar window apparatus and method
US20150083195A1 (en) * 2012-03-22 2015-03-26 Sunpartner Transparent solar energy collector
US20150167298A1 (en) * 2012-08-31 2015-06-18 Odilo Reutter Building module and method for utilizing thermal energy
WO2015017879A1 (en) * 2013-08-06 2015-02-12 Michael John Urch A power generating window assembly

Also Published As

Publication number Publication date
BR112019013254A2 (pt) 2019-12-24
CN110121623A (zh) 2019-08-13
US20190316811A1 (en) 2019-10-17
JP2018105551A (ja) 2018-07-05
RU2720126C1 (ru) 2020-04-24
CN110121623B (zh) 2020-12-01
JP6556691B2 (ja) 2019-08-07
US11085668B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2018123348A1 (ja) 太陽光利用システム
CN109237677B (zh) 一种集热-辐射装置及其制冷系统
Nkwetta et al. Experimental performance evaluation and comparative analyses of heat pipe and direct flow augmented solar collectors
DK2577176T3 (en) HEATING SYSTEM WITH INTEGRATED OUTDOOR HEAT PUMP WITH INTEGRATED SUNCATCHER AS EVAPORATOR
CN103097830A (zh) 密闭式太阳能集热器之温度限制系统与方法
US9377216B2 (en) Overheat protection mechanism for solar thermal collector
CN101074792A (zh) 与地源热及热泵结合的被动冷却技术
JP6683861B2 (ja) 熱交換装置
KR101888509B1 (ko) 밀봉구조의 투과체 일체형 흡수판을 적용한 복합열원 태양열 집열기
CN209197182U (zh) 一种太阳能异聚态自循环系统
CN205261802U (zh) 空气太阳复合源驱动向上风幕多联式热泵空调
JPS58136946A (ja) 建物内温度平衡装置
JP3052990B2 (ja) 空気熱源ヒートポンプ用屋外ユニット
Henkel New solar thermal energy applications for commercial, industrial, and government facilities
AU2021201659B2 (en) Heat exchanging device
Ayompe Solar thermal systems
Buker Building integrated solar thermal collectors for heating & cooling applications
Saif et al. Design of an evacuated at plate collector driven double e ect solar absorption chiller for Automobile Lab of IUT, Gazipur, Bangladesh.
Concina et al. Solar Assisted Desiccant Cooling Simulation for Different Climate Zones
KR20230075680A (ko) 차광효과를 위한 상하좌우 평면 개폐형 무창기공형 집열기
WO2007032723A1 (en) A device for saving energy at cool keeping of a building
Pereira Experimental assessment of a solar air conditioning system in the Caribbean
JP2013145071A (ja) 太陽熱集熱システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013254

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019119843

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112019013254

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190626

122 Ep: pct application non-entry in european phase

Ref document number: 17887600

Country of ref document: EP

Kind code of ref document: A1