WO2018123148A1 - Silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device - Google Patents

Silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device Download PDF

Info

Publication number
WO2018123148A1
WO2018123148A1 PCT/JP2017/032220 JP2017032220W WO2018123148A1 WO 2018123148 A1 WO2018123148 A1 WO 2018123148A1 JP 2017032220 W JP2017032220 W JP 2017032220W WO 2018123148 A1 WO2018123148 A1 WO 2018123148A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
substrate
carbide epitaxial
main surface
layer
Prior art date
Application number
PCT/JP2017/032220
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 宮瀬
勉 堀
和田 圭司
洋典 伊東
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2018123148A1 publication Critical patent/WO2018123148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Definitions

  • the present disclosure relates to a silicon carbide epitaxial substrate and a method for manufacturing a silicon carbide semiconductor device.
  • This application claims priority based on Japanese Patent Application No. 2016-253646, which is a Japanese patent application filed on December 27, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses a method of epitaxially growing a silicon carbide layer on a silicon carbide single crystal substrate.
  • the silicon carbide epitaxial substrate according to the present disclosure includes a silicon carbide substrate and a silicon carbide epitaxial film.
  • the silicon carbide epitaxial film is on the silicon carbide substrate.
  • the polytype of the silicon carbide substrate and the silicon carbide epitaxial film is 4H.
  • the silicon carbide epitaxial film includes a first layer in contact with the silicon carbide substrate and a second layer on the first layer and constituting the main surface of the silicon carbide epitaxial film.
  • the silicon carbide substrate, the first layer, and the second layer contain n-type impurities.
  • the concentration of the n-type impurity included in the first layer is lower than the concentration of the n-type impurity included in the silicon carbide substrate and higher than the concentration of the n-type impurity included in the second layer.
  • FIG. 1 is a schematic plan view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 3 is a partial schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate manufacturing apparatus according to this embodiment.
  • FIG. 4 is a flowchart schematically showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a first step of the method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a second step of the method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 7 is a diagram showing a relationship between temperature and time in the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 8 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the present embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a first step of the method for manufacturing the silicon carbide semiconductor device according to this embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a second step of the method for manufacturing the silicon carbide semiconductor device according to this embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of the silicon carbide semiconductor device according to this embodiment.
  • a silicon carbide epitaxial substrate 100 includes a silicon carbide substrate 10 and a silicon carbide epitaxial film 20.
  • Silicon carbide epitaxial film 20 is on silicon carbide substrate 10.
  • Polytype of silicon carbide substrate 10 and silicon carbide epitaxial film 20 is 4H.
  • Silicon carbide epitaxial film 20 includes a first layer 21 in contact with silicon carbide substrate 10 and a second layer 22 on first layer 21 and constituting main surface 14 of silicon carbide epitaxial film 20.
  • Silicon carbide substrate 10, first layer 21, and second layer 22 contain n-type impurities.
  • the concentration of n-type impurities included in first layer 21 is lower than the concentration of n-type impurities included in silicon carbide substrate 10 and higher than the concentration of n-type impurities included in second layer 22.
  • Main surface 12 of silicon carbide substrate 10 has basal plane dislocations 1 having a first surface density.
  • Main surface 14 of silicon carbide epitaxial film 20 has basal plane dislocations 1 having a second surface density lower than the first surface density.
  • a value obtained by dividing the second surface density by the first surface density is 2/10000 or less.
  • maximum diameter 111 of main surface 14 of silicon carbide epitaxial film 20 may be 150 mm or more.
  • the value obtained by dividing the second surface density by the first surface density may be 1/10000 or less.
  • the second surface density may be 1 cm ⁇ 2 or less.
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the present disclosure includes the following steps. Silicon carbide epitaxial substrate 100 according to any one of (1) to (4) above is prepared. Silicon carbide epitaxial substrate 100 is processed.
  • silicon carbide epitaxial substrate 100 includes silicon carbide substrate 10 and silicon carbide epitaxial film 20. Silicon carbide epitaxial film 20 is on silicon carbide substrate 10. Silicon carbide substrate 10 has a first main surface 11 and a first main surface 12 opposite to first main surface 11. Silicon carbide epitaxial film 20 is in contact with first main surface 11. Silicon carbide epitaxial film 20 has a third main surface 13 in contact with first main surface 11 and a second main surface 14 opposite to third main surface 13. Polytype of silicon carbide substrate 10 and silicon carbide epitaxial film 20 is 4H. As shown in FIG. 1, the silicon carbide epitaxial substrate 100 may be provided with a first flat 16 extending in the first direction 101. Silicon carbide epitaxial substrate 100 may be provided with a second flat (not shown) extending in second direction 102.
  • the second direction 102 is, for example, the ⁇ 1-100> direction.
  • the first direction 101 is a direction parallel to the second main surface 14 and perpendicular to the second direction 102.
  • the first direction 101 is a direction including, for example, a ⁇ 11-20> direction component.
  • the maximum diameter 111 (diameter) of the second main surface 14 is, for example, 100 mm or more.
  • the maximum diameter 111 may be 150 mm or more, 200 mm or more, or 250 mm or more.
  • the upper limit of the maximum diameter 111 is not particularly limited.
  • the upper limit of the maximum diameter 111 may be 300 mm, for example.
  • Silicon carbide substrate 10 is made of, for example, a silicon carbide single crystal. Silicon carbide substrate 10 includes an n-type impurity such as nitrogen (N), for example. Silicon carbide substrate 10 has an n conductivity type, for example.
  • the first main surface 11 is a surface inclined by an angle of 8 ° or less from the ⁇ 0001 ⁇ plane. When the first main surface 11 is inclined from the ⁇ 0001 ⁇ plane, the inclination direction of the normal line of the first main surface 11 is, for example, the ⁇ 11-20> direction. Silicon carbide substrate 10 has a thickness of not less than 350 ⁇ m and not more than 500 ⁇ m, for example.
  • silicon carbide epitaxial film 20 is on first main surface 11 of silicon carbide substrate 10.
  • Silicon carbide epitaxial film 20 is an epitaxial layer. Silicon carbide epitaxial film 20 is in contact with first main surface 11.
  • Silicon carbide epitaxial film 20 includes an n-type impurity such as nitrogen.
  • the conductivity type of silicon carbide epitaxial film 20 is n-type, for example.
  • the second main surface 14 is a surface in which the ⁇ 0001 ⁇ plane is inclined in the off direction by an off angle ⁇ (°). Specifically, the second main surface 14 may be a surface in which the (0001) plane is inclined by 8 ° or less in the off direction.
  • the second main surface 14 may be a surface in which the (000-1) plane is inclined by 8 ° or less in the off direction.
  • the off direction is, for example, the ⁇ 11-20> direction. Note that the off direction is not limited to the ⁇ 11-20> direction.
  • the off direction may be, for example, a ⁇ 1-100> direction, or a direction having a ⁇ 1-100> direction component and a ⁇ 11-20> direction component.
  • the off angle ⁇ is an angle at which the second main surface 14 is inclined with respect to the ⁇ 0001 ⁇ plane.
  • the off-angle ⁇ is an angle at which the normal line of the second main surface 14 is inclined with respect to the ⁇ 0001> direction.
  • the off angle ⁇ is, for example, larger than 0 ° and not larger than 8 °.
  • the off angle ⁇ may be 1 ° or more, or 2 ° or more.
  • the off angle may be 7 ° or less, or 6 ° or less.
  • the surface indicated by a broken line is, for example, the ⁇ 0001 ⁇ surface.
  • the third direction 103 is a direction perpendicular to the ⁇ 0001 ⁇ plane.
  • the third direction 103 is, for example, the ⁇ 0001> direction.
  • the fourth direction 104 is a direction perpendicular to the third direction 103.
  • the fourth direction 104 is, for example, the ⁇ 11-20> direction.
  • the fourth direction 104 is an off direction.
  • the normal direction of the second main surface 14 is the fifth direction 105.
  • the fifth direction is a direction inclined by an off angle ⁇ in the off direction with respect to the ⁇ 0001> direction.
  • Silicon carbide epitaxial film 20 includes a first layer 21 and a second layer 22.
  • the first layer is, for example, the buffer layer 21.
  • the second layer 22 is, for example, the drift layer 22.
  • the buffer layer 21 is in contact with the first main surface 11.
  • the first layer 21 constitutes the third major surface 13.
  • the second layer 22 is on the first layer 21.
  • the second layer 22 constitutes the second main surface 14.
  • Silicon carbide substrate 10, first layer 21, and second layer 22 contain n-type impurities.
  • Buffer layer 21 contains an n-type impurity such as nitrogen, for example.
  • the concentration of the n-type impurity contained in the buffer layer 21 is, for example, 1 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the n-type impurity included in the buffer layer 21 may be, for example, 0.2 ⁇ 10 18 cm ⁇ 3 or more and 9 ⁇ 10 18 cm ⁇ 3 or less.
  • the concentration of the n-type impurity included in the drift layer is, for example, 8 ⁇ 10 15 cm ⁇ 3 .
  • the concentration of n-type impurities included in first layer 21 is lower than the concentration of n-type impurities included in silicon carbide substrate 10 and higher than the concentration of n-type impurities included in second layer 22.
  • the concentration of the n-type impurity is measured by, for example, a mercury probe type CV measuring device.
  • the area of the probe is, for example, 0.005 cm 2 .
  • Silicon carbide substrate 10 and silicon carbide epitaxial film 20 have basal plane dislocations 1.
  • Basal plane dislocation 1 is exposed on both first main surface 11 and first main surface 12 of silicon carbide substrate 10.
  • the basal plane dislocation 1 extends in a direction parallel to the ⁇ 0001 ⁇ plane.
  • the basal plane dislocation 1 has, for example, a first basal plane dislocation 25, a second basal plane dislocation 26, and a third basal plane dislocation 27.
  • Silicon carbide epitaxial film 20 has fourth basal plane dislocations 37 and threading edge dislocations 2.
  • the fourth basal plane dislocation 37 and the threading edge dislocation 2 are exposed on the second main surface 14.
  • the threading edge dislocation 2 has, for example, a first threading edge dislocation 35 and a second threading edge dislocation 36.
  • the first threading edge dislocation 35 is a dislocation formed by converting the first basal plane dislocation 25.
  • the second threading edge dislocation 36 is a dislocation formed by converting the second basal plane dislocation 26.
  • the threading edge dislocation 2 extends along a third direction 103 substantially perpendicular to ⁇ 0001 ⁇ .
  • the fourth basal plane dislocation 37 is a dislocation that inherits the third basal plane dislocation 27.
  • basal plane dislocation 1 exists in silicon carbide epitaxial substrate 100, for example, the reliability of the gate insulating film formed on silicon carbide epitaxial substrate 100 deteriorates.
  • the threading edge dislocation 2 exists in the silicon carbide epitaxial substrate, it hardly affects the reliability of the gate insulating film formed on the silicon carbide epitaxial substrate. Therefore, it is desirable to convert the basal plane dislocations 1 existing in the silicon carbide substrate 10 into threading edge dislocations 2 and reduce the number of basal plane dislocations 1 in the silicon carbide epitaxial film 20.
  • main surface 12 of silicon carbide substrate 10 has basal plane dislocations 1 having a first surface density.
  • Main surface 14 of silicon carbide epitaxial film 20 has basal plane dislocations 1 having a second surface density lower than the first surface density.
  • a value obtained by dividing the second surface density by the first surface density is 2/10000 or less. In other words, the ratio of conversion from the basal plane dislocation 1 to the threading edge dislocation 2 (conversion rate) is 99.98% or more.
  • a value obtained by dividing the second surface density by the first surface density may be, for example, 1/10000 or less. In other words, the ratio of conversion from the basal plane dislocation 1 to the threading edge dislocation 2 (conversion rate) is 99.99% or more.
  • the second surface density is, for example, 1 cm ⁇ 2 or less.
  • the second surface density may be, for example, 0.8 cm ⁇ 2 or less, or 0.5 cm ⁇ 2 or less.
  • the lower limit of the first surface density is limited, the first surface density may be for example 2000 cm -2 or more, or may be 2500 cm -2 or more.
  • the first surface density may be at 6000 cm -2 or less, may be 5500Cm -2 or less.
  • a photoluminescence imaging apparatus (model number: PLIS-100) manufactured by Photon Design Co., Ltd. is used.
  • PLIS-100 photoluminescence imaging apparatus
  • Excitation light from the light source passes through a 313 nm band-pass filter and is then applied to the measurement region.
  • the photoluminescence light reaches a light receiving element such as a camera after passing through a low pass filter of 750 nm, for example.
  • a photoluminescence image of the region to be measured is taken.
  • the measurement temperature is room temperature.
  • a photoluminescence image of the main surface is photographed while moving the silicon carbide epitaxial substrate in a direction parallel to the main surface (specifically, second main surface 14 or first main surface 12) of the silicon carbide epitaxial substrate. .
  • region of a main surface is mapped.
  • the basal plane dislocation is specified in the acquired photoluminescence image, and the total number of the basal plane dislocation is calculated. By dividing the total number of basal plane dislocations by the total measurement area, the surface density of the basal plane dislocations is calculated.
  • the calculation of the surface density of the basal plane dislocations on the main surface of the silicon carbide epitaxial substrate may be performed, for example, by counting pits generated using a potassium hydroxide (KOH) melt. Specifically, the main surface is etched using a KOH melt. The temperature of the KOH melt is, for example, about 500 ° C. or more and 550 ° C. or less. The etching time is, for example, about 5 to 10 minutes. After etching, the main surface is observed with a normalsky differential interference microscope. The basal plane dislocation is etched by the KOH melt to form pits. By dividing the total number of pits by the total measurement area, the surface density of the basal plane dislocation is calculated.
  • KOH potassium hydroxide
  • the threading edge dislocations also form pits in the same manner as the basal plane dislocations.
  • Pits derived from threading edge dislocations and pits derived from basal plane dislocations are distinguished as follows. Rounded hexagonal pits are derived from threading edge dislocations, and elliptical pits are derived from basal plane dislocations.
  • the basal plane dislocation penetrates the inside of the silicon carbide substrate and reaches each of the first main surface 12 and the first main surface 11. Therefore, it can be estimated that the surface density of the basal plane dislocations in the first main surface 12 is the same as the surface density of the basal plane dislocations in the first main surface 11.
  • the first main surface 12 is a (000-1) plane or a (000-1) plane inclined by 8 ° or less in the off direction
  • etch pits are formed on the first main surface 12 by the KOH melt. Hard to appear.
  • the surface density of basal plane dislocations on first main surface 11 of silicon carbide substrate 10 may be measured.
  • the (0001) plane or the (0001) plane is off the first main surface 11
  • the surface is inclined by 8 ° or less in the direction. Therefore, etch pits are likely to appear on the first main surface 11 as compared to the first main surface 12. It is estimated that the surface density of the basal plane dislocations in the first main surface 11 is the same as the surface density of the basal plane dislocations in the first main surface 12.
  • a silicon carbide epitaxial substrate 100 manufacturing apparatus 200 is, for example, a hot-wall lateral CVD (Chemical Vapor Deposition) apparatus.
  • the manufacturing apparatus 200 mainly includes a reaction chamber 201, a heating element 203, a quartz tube 204, a heat insulating material 205, and an induction heating coil 206.
  • the heating element 203 has a cylindrical shape, for example, and forms a reaction chamber 201 inside.
  • the heating element 203 is made of, for example, graphite.
  • the heat insulating material 205 surrounds the outer periphery of the heating element 203.
  • the heat insulating material 205 is provided inside the quartz tube 204 so as to contact the inner peripheral surface of the quartz tube 204.
  • the induction heating coil 206 is wound, for example, along the outer peripheral surface of the quartz tube 204.
  • the induction heating coil 206 is configured to be able to supply an alternating current by an external power source (not shown). Thereby, the heating element 203 is induction-heated. As a result, the reaction chamber 201 is heated by the heating element 203.
  • the reaction chamber 201 is a space formed by being surrounded by the heating element 203. Silicon carbide substrate 10 is arranged in reaction chamber 201. Reaction chamber 201 is configured to heat silicon carbide substrate 10. Reaction chamber 201 is provided with a susceptor 210 that holds silicon carbide substrate 10. The susceptor 210 is configured to be able to rotate around the rotation shaft 212.
  • the manufacturing apparatus 200 has a gas introduction port 207 and a gas exhaust port 208.
  • the gas exhaust port 208 is connected to an exhaust pump (not shown).
  • the arrows in FIG. 6 indicate the gas flow.
  • the gas is introduced into the reaction chamber 201 from the gas introduction port 207 and exhausted from the gas exhaust port 208.
  • the pressure in the reaction chamber 201 is adjusted by the balance between the gas supply amount and the gas exhaust amount.
  • the manufacturing apparatus 200 has a gas supply unit (not shown) configured to be able to supply, for example, a mixed gas containing silane, ammonia, hydrogen, and propane to the reaction chamber 201.
  • the gas supply unit includes a gas cylinder capable of supplying propane gas diluted with hydrogen, a gas cylinder capable of supplying hydrogen gas, a gas cylinder capable of supplying silane gas, and a gas cylinder capable of supplying ammonia gas. You may have.
  • propane gas diluted with hydrogen propane gas is 30% by volume and hydrogen gas is 70% by volume.
  • the winding density of the induction heating coil 206 may be changed.
  • the winding density [times / m] is the number of coil turns per unit length in the axial direction of the apparatus.
  • the winding density of the induction heating coil 206 on the upstream side may be higher than the winding density of the induction heating coil 206 on the downstream side.
  • a silicon carbide single crystal substrate preparation step (S11: FIG. 4) is performed.
  • a polytype 4H silicon carbide single crystal is manufactured by a sublimation method.
  • silicon carbide substrate 10 is prepared by slicing the silicon carbide single crystal with, for example, a wire saw.
  • Silicon carbide substrate 10 includes an n-type impurity such as nitrogen, for example.
  • Silicon carbide substrate 10 has an n conductivity type, for example.
  • silicon carbide substrate 10 has a first main surface 11 and a third main surface 13 on the opposite side of first main surface 11.
  • the first major surface 11 is, for example, a surface in which the ⁇ 0001 ⁇ plane is inclined in the off direction by the off angle ⁇ .
  • the off direction is, for example, the ⁇ 11-20> direction.
  • the maximum diameter of first main surface 11 of silicon carbide substrate 10 is, for example, 100 mm or more.
  • a plurality of basal plane dislocations 1 exist in silicon carbide substrate 10.
  • the basal plane dislocation 1 extends in a direction parallel to the ⁇ 0001 ⁇ plane.
  • the basal plane dislocation 1 has, for example, a first basal plane dislocation 25, a second basal plane dislocation 26, and a third basal plane dislocation 27.
  • Silicon carbide substrate 10 is arranged on susceptor 210 in reaction chamber 201 (see FIG. 3). For example, after the pressure in reaction chamber 201 is reduced from atmospheric pressure to about 1 ⁇ 10 ⁇ 6 Pa, the temperature rise of silicon carbide substrate 10 is started. As shown in FIG. 7, the temperature of silicon carbide substrate 10 increases from room temperature to first temperature A1 from time T0 to time T1. The first temperature A1 is 1605 ° C., for example.
  • a buffer layer forming step (S12: FIG. 4) is performed.
  • first temperature A1 source gas, dopant gas, and carrier gas are supplied to reaction chamber 201.
  • a mixed gas containing silane, propane, ammonia, and hydrogen is supplied to the reaction chamber 201.
  • silicon carbide substrate 10 is maintained at first temperature A1 from time T1 to time T2.
  • the time from time T1 to time T2 is, for example, not less than 3 minutes and not more than 60 minutes.
  • each gas is thermally decomposed, and buffer layer 21 is formed on silicon carbide substrate 10 (see FIG. 6).
  • the susceptor 210 rotates around the rotation shaft 212.
  • Silicon carbide substrate 10 revolves around rotating shaft 212 (see FIG. 3).
  • the flow rates of silane and propane are adjusted so that the C / Si ratio is, for example, 0.95.
  • the flow rate of the silane gas is adjusted to 57.6 sccm, for example.
  • the flow rate of the propane gas (30% by volume) diluted with hydrogen is adjusted to be, for example, 18.2 sccm.
  • the flow rate of hydrogen gas is adjusted to be 130 slm.
  • the concentration of the n-type impurity (N) doped in the buffer layer 21 is, for example, about 0.2 ⁇ 10 18 cm ⁇ 3 to 9 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the buffer layer 21 is, for example, 1 ⁇ m.
  • the pressure in the reaction chamber 201 is, for example, 5 kPa.
  • most of the plurality of basal plane dislocations 1 existing in the silicon carbide substrate 10 are converted into threading edge dislocations 2.
  • the first basal plane dislocation 25 is converted into the first threading edge dislocation 35.
  • the second basal plane dislocation 26 is converted into the second threading edge dislocation 36.
  • the third basal plane dislocations 27 are not converted into threading edge dislocations, but propagate in the buffer layer 21 as fourth basal plane dislocations 37.
  • the drift layer forming step (S13: FIG. 4) is performed.
  • the temperature rise of silicon carbide substrate 10 is started again. Specifically, the temperature of silicon carbide substrate 10 rises from first temperature A1 to second temperature A2 from time T2 to time T3.
  • the second temperature A2 is 1640 ° C., for example.
  • a mixed gas containing silane, propane, ammonia, and hydrogen is supplied to the reaction chamber 201 in a state where the temperature of the silicon carbide substrate 10 is maintained at the second temperature A2.
  • silicon carbide substrate 10 is maintained at second temperature A2.
  • the time from time T3 to time T4 is, for example, not less than 30 minutes and not more than 600 minutes.
  • each gas is thermally decomposed, and the drift layer 22 is formed on the buffer layer 21 (see FIGS. 2 and 5).
  • the susceptor 210 rotates around the rotation axis 212.
  • Silicon carbide substrate 10 revolves around rotating shaft 212 (see FIG. 3).
  • the flow rates of silane and propane are adjusted so that the C / Si ratio is about 1.35.
  • the flow rate of the silane gas is adjusted to 140 sccm, for example.
  • the flow rate of propane gas (30% by volume) diluted with hydrogen is adjusted to 63 sccm, for example.
  • the flow rate of hydrogen gas is adjusted to 134 slm.
  • the concentration of carriers doped in the drift layer 22 is, for example, about 8 ⁇ 10 15 cm ⁇ 3 .
  • the thickness of the drift layer 22 is, for example, about 10 ⁇ m to 30 ⁇ m.
  • the pressure in the reaction chamber 201 is, for example, 6 kPa.
  • the difference in thermal expansion between the buffer layer and the drift layer having different thermal expansion coefficients can be reduced. Since the absolute value becomes small and the strain can be kept small, the ratio of the basal plane dislocations to threading edge dislocations (conversion rate) can be improved.
  • a cooling process is performed. As shown in FIG. 7, from time T4 to time T5, the temperature of the silicon carbide substrate is reduced from second temperature A2 to room temperature. As described above, silicon carbide epitaxial substrate 100 is manufactured.
  • the method for manufacturing a silicon carbide semiconductor device mainly includes an epitaxial substrate preparation step (S10: FIG. 8) and a substrate processing step (S20: FIG. 8).
  • an epitaxial substrate preparation step (S10: FIG. 8) is performed. Specifically, silicon carbide epitaxial substrate 100 is prepared by the above-described method for manufacturing a silicon carbide epitaxial substrate (see FIG. 4).
  • a substrate processing step (S20: FIG. 8) is performed.
  • a silicon carbide semiconductor device is manufactured by processing a silicon carbide epitaxial substrate.
  • “Processing” includes, for example, various processes such as ion implantation, heat treatment, etching, oxide film formation, electrode formation, and dicing. That is, the substrate processing step may include at least one of ion implantation, heat treatment, etching, oxide film formation, electrode formation, and dicing.
  • the substrate processing step (S20: FIG. 8) includes, for example, an ion implantation step (S21: FIG. 8), an oxide film formation step (S22: FIG. 8), an electrode formation step (S23: FIG. 8), and a dicing step (S24: FIG. 8). )including.
  • an ion implantation step (S21: FIG. 8) is performed.
  • a p-type impurity such as aluminum (Al) is implanted into second main surface 14 on which a mask (not shown) having an opening is formed. Thereby, body region 132 having p-type conductivity is formed.
  • an n-type impurity such as phosphorus (P) is implanted into a predetermined position in body region 132. Thereby, a source region 133 having n-type conductivity is formed.
  • a p-type impurity such as aluminum is implanted into a predetermined position in the source region 133. As a result, a contact region 134 having a p-type conductivity is formed (see FIG. 9).
  • Source region 133 is separated from drift region 131 by body region 132.
  • Ion implantation may be performed by heating silicon carbide epitaxial substrate 100 to about 300 ° C. or more and 600 ° C. or less.
  • activation annealing is performed on silicon carbide epitaxial substrate 100.
  • the atmosphere of activation annealing is, for example, an argon (Ar) atmosphere.
  • the temperature of activation annealing is, for example, about 1800 ° C.
  • the activation annealing time is, for example, about 30 minutes.
  • oxide film forming step (S22: FIG. 8) is performed.
  • silicon carbide epitaxial substrate 100 is heated in an atmosphere containing oxygen, whereby oxide film 136 is formed on second main surface 14 (see FIG. 10).
  • Oxide film 136 is made of, for example, silicon dioxide.
  • the oxide film 136 functions as a gate insulating film.
  • the temperature of the thermal oxidation treatment is, for example, about 1300 ° C.
  • the time for the thermal oxidation treatment is, for example, about 30 minutes.
  • heat treatment may be performed in a nitrogen atmosphere.
  • the heat treatment is performed in an atmosphere of nitric oxide at about 1100 ° C. for about 1 hour.
  • heat treatment is performed in an argon atmosphere.
  • the heat treatment is performed in an argon atmosphere at about 1100 ° C. to 1500 ° C. for about 1 hour.
  • the first electrode 141 is formed on the oxide film 136.
  • the first electrode 141 functions as a gate electrode.
  • the first electrode 141 is formed by, for example, a CVD method.
  • the first electrode 141 is made of, for example, conductive polysilicon.
  • the first electrode 141 is formed at a position facing the source region 133 and the body region 132.
  • Interlayer insulating film 137 covering the first electrode 141 is formed.
  • Interlayer insulating film 137 is formed by, for example, a CVD method.
  • Interlayer insulating film 137 is made of, for example, silicon dioxide.
  • the interlayer insulating film 137 is formed so as to be in contact with the first electrode 141 and the oxide film 136.
  • the oxide film 136 and the interlayer insulating film 137 at predetermined positions are removed by etching. As a result, the source region 133 and the contact region 134 are exposed from the oxide film 136.
  • the second electrode 142 is formed on the exposed portion by, for example, a sputtering method.
  • the second electrode 142 functions as a source electrode.
  • Second electrode 142 is made of, for example, titanium, aluminum, silicon, or the like.
  • second electrode 142 and silicon carbide epitaxial substrate 100 are heated at a temperature of about 900 ° C. to 1100 ° C., for example. Thereby, second electrode 142 and silicon carbide epitaxial substrate 100 come into ohmic contact.
  • the wiring layer 138 is formed so as to be in contact with the second electrode 142.
  • the wiring layer 138 is made of a material containing aluminum, for example.
  • the third electrode 143 is formed on the third main surface 13.
  • the third electrode 143 functions as a drain electrode.
  • Third electrode 143 is made of, for example, an alloy containing nickel and silicon (eg, NiSi).
  • a dicing step (S24: FIG. 8) is performed.
  • silicon carbide epitaxial substrate 100 is diced along a dicing line, whereby silicon carbide epitaxial substrate 100 is divided into a plurality of semiconductor chips.
  • silicon carbide semiconductor device 300 is manufactured (see FIG. 11).
  • the method for manufacturing the silicon carbide semiconductor device according to the present disclosure has been described by exemplifying the MOSFET, but the manufacturing method according to the present disclosure is not limited to this.
  • the manufacturing method according to the present disclosure can be applied to silicon carbide semiconductor devices such as IGBT (Insulated Gate Bipolar Transistor), SBD (Schottky Barrier Diode), thyristor, GTO (Gate Turn Off thyristor), and PiN diode.
  • IGBT Insulated Gate Bipolar Transistor
  • SBD Schottky Barrier Diode
  • thyristor thyristor
  • GTO Gate Turn Off thyristor
  • PiN diode PiN diode
  • a silicon carbide substrate according to Sample 1-5 was prepared.
  • a silicon carbide epitaxial film was grown on the silicon carbide substrate according to Sample 1-5.
  • a silicon carbide epitaxial film was formed using the temperature profile shown by the solid line in FIG. 7 of the present embodiment. Specifically, the temperature of the step of forming the buffer layer (A1: see FIG. 7) was 1605 ° C., and the temperature of the step of forming the drift layer (A2: see FIG. 7) was 1640 ° C.
  • a silicon carbide epitaxial film was formed using the temperature profile shown by the one-dot chain line in FIG.
  • the temperature of the step of forming the buffer layer (A1: see FIG. 7) and the temperature of the step of forming the drift layer (A2: see FIG. 7) were both 1640 ° C.
  • the silicon carbide epitaxial substrate according to Sample 1-5 was manufactured.
  • the surface density of basal plane dislocations on the second main surface and main surface of the silicon carbide epitaxial substrate according to Sample 1-5 was measured.
  • the surface density of the basal plane dislocation was measured using the above-described measurement method.
  • Table 1 shows the surface density (first surface density) of basal plane dislocations on the main surface of the silicon carbide substrate, the surface density (second surface density) of basal plane dislocations on the main surface of the silicon carbide epitaxial film, and the second surface.
  • the value obtained by dividing the density by the first surface density and the conversion rate from the basal plane dislocation to the threading edge dislocation are shown.
  • the values obtained by dividing the second surface density by the first surface density are 0.000152, 0.000157, 0.000006, and 0, respectively. 0.00001 and 0.012032.
  • the conversion ratios obtained as values obtained by subtracting the second surface density from the first surface density by the first surface density were 99.9848%, 99.9843%, 99.99994%, 99.9989% and 98.7968%.

Abstract

This silicon carbide epitaxial substrate comprises a silicon carbide substrate and a silicon carbide epitaxial film. The silicon carbide epitaxial film is present on the silicon carbide substrate. The polytype of the silicon carbide substrate and the silicon carbide epitaxial film is 4H. The silicon carbide epitaxial film comprises a first layer that is in contact with the silicon carbide substrate and a second layer that is on the first layer and constitutes the main surface of the silicon carbide epitaxial film. The silicon carbide substrate, the first layer and the second layer contain an n-type impurity. The concentration of the n-type impurity contained in the first layer is lower than the concentration of the n-type impurity contained in the silicon carbide substrate, but is higher than the concentration of the n-type impurity contained in the second layer. The main surface of the silicon carbide substrate has a basal plane dislocation having a first area density. The main surface of the silicon carbide epitaxial film has a basal plane dislocation having a second area density that is lower than the first area density. The value obtained by dividing the second area density by the first area density is 2/10,000 or less.

Description

炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
 本開示は、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法に関する。本出願は、2016年12月27日に出願した日本特許出願である特願2016-253646号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a silicon carbide epitaxial substrate and a method for manufacturing a silicon carbide semiconductor device. This application claims priority based on Japanese Patent Application No. 2016-253646, which is a Japanese patent application filed on December 27, 2016. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 特開2014-170891号公報(特許文献1)には、炭化珪素単結晶基板上に炭化珪素層をエピタキシャル成長させる方法が開示されている。 Japanese Patent Laying-Open No. 2014-170891 (Patent Document 1) discloses a method of epitaxially growing a silicon carbide layer on a silicon carbide single crystal substrate.
特開2014-170891号公報JP 2014-170891 A
 本開示に係る炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル膜とを備えている。炭化珪素エピタキシャル膜は、炭化珪素基板上にある。炭化珪素基板および炭化珪素エピタキシャル膜のポリタイプは、4Hである。炭化珪素エピタキシャル膜は、炭化珪素基板に接する第1層と、第1層上にありかつ炭化珪素エピタキシャル膜の主表面を構成する第2層とを含む。炭化珪素基板と、第1層と、第2層とは、n型不純物を含む。第1層が含むn型不純物の濃度は、炭化珪素基板が含むn型不純物の濃度より低く、かつ第2層が含むn型不純物の濃度より高い。炭化珪素基板の主表面には、第1面密度を有する基底面転位がある。炭化珪素エピタキシャル膜の主表面には、第1面密度よりも低い第2面密度を有する基底面転位がある。第2面密度を、第1面密度で除した値は、2/10000以下である。 The silicon carbide epitaxial substrate according to the present disclosure includes a silicon carbide substrate and a silicon carbide epitaxial film. The silicon carbide epitaxial film is on the silicon carbide substrate. The polytype of the silicon carbide substrate and the silicon carbide epitaxial film is 4H. The silicon carbide epitaxial film includes a first layer in contact with the silicon carbide substrate and a second layer on the first layer and constituting the main surface of the silicon carbide epitaxial film. The silicon carbide substrate, the first layer, and the second layer contain n-type impurities. The concentration of the n-type impurity included in the first layer is lower than the concentration of the n-type impurity included in the silicon carbide substrate and higher than the concentration of the n-type impurity included in the second layer. There is a basal plane dislocation having a first surface density on the main surface of the silicon carbide substrate. There is a basal plane dislocation having a second surface density lower than the first surface density on the main surface of the silicon carbide epitaxial film. A value obtained by dividing the second surface density by the first surface density is 2/10000 or less.
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す平面模式図である。FIG. 1 is a schematic plan view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment. 図2は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment. 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造装置の構成を示す一部断面模式図である。FIG. 3 is a partial schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate manufacturing apparatus according to this embodiment. 図4は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフローチャートである。FIG. 4 is a flowchart schematically showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment. 図5は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法の第1工程を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a first step of the method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment. 図6は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法の第2工程を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a second step of the method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment. 図7は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法における温度と時間との関係を示す図である。FIG. 7 is a diagram showing a relationship between temperature and time in the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment. 図8は、本実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフローチャートである。FIG. 8 is a flowchart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the present embodiment. 図9は、本実施形態に係る炭化珪素半導体装置の製造方法の第1工程を示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing a first step of the method for manufacturing the silicon carbide semiconductor device according to this embodiment. 図10は、本実施形態に係る炭化珪素半導体装置の製造方法の第2工程を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a second step of the method for manufacturing the silicon carbide semiconductor device according to this embodiment. 図11は、本実施形態に係る炭化珪素半導体装置の構成を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing the configuration of the silicon carbide semiconductor device according to this embodiment.
 [本開示の実施形態の概要]
 まず本開示の実施形態の概要について説明する。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”-”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
[Outline of Embodiment of the Present Disclosure]
First, an outline of an embodiment of the present disclosure will be described. In the crystallographic description of the present specification, the individual orientation is indicated by [], the collective orientation is indicated by <>, the individual plane is indicated by (), and the collective plane is indicated by {}. A negative crystallographic index is usually expressed by adding a “-” (bar) above a number, but in this specification the crystallographic index is preceded by a negative sign. Represents the negative exponent above.
 (1)本開示に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル膜20とを備えている。炭化珪素エピタキシャル膜20は、炭化珪素基板10上にある。炭化珪素基板10および炭化珪素エピタキシャル膜20のポリタイプは、4Hである。炭化珪素エピタキシャル膜20は、炭化珪素基板10に接する第1層21と、第1層21上にありかつ炭化珪素エピタキシャル膜20の主表面14を構成する第2層22とを含む。炭化珪素基板10と、第1層21と、第2層22とは、n型不純物を含む。第1層21が含むn型不純物の濃度は、炭化珪素基板10が含むn型不純物の濃度より低く、かつ第2層22が含むn型不純物の濃度より高い。炭化珪素基板10の主表面12には、第1面密度を有する基底面転位1がある。炭化珪素エピタキシャル膜20の主表面14には、第1面密度よりも低い第2面密度を有する基底面転位1がある。第2面密度を、第1面密度で除した値は、2/10000以下である。これにより、炭化珪素エピタキシャル基板100を用いて製造される炭化珪素半導体装置の信頼性を向上することができる。 (1) A silicon carbide epitaxial substrate 100 according to the present disclosure includes a silicon carbide substrate 10 and a silicon carbide epitaxial film 20. Silicon carbide epitaxial film 20 is on silicon carbide substrate 10. Polytype of silicon carbide substrate 10 and silicon carbide epitaxial film 20 is 4H. Silicon carbide epitaxial film 20 includes a first layer 21 in contact with silicon carbide substrate 10 and a second layer 22 on first layer 21 and constituting main surface 14 of silicon carbide epitaxial film 20. Silicon carbide substrate 10, first layer 21, and second layer 22 contain n-type impurities. The concentration of n-type impurities included in first layer 21 is lower than the concentration of n-type impurities included in silicon carbide substrate 10 and higher than the concentration of n-type impurities included in second layer 22. Main surface 12 of silicon carbide substrate 10 has basal plane dislocations 1 having a first surface density. Main surface 14 of silicon carbide epitaxial film 20 has basal plane dislocations 1 having a second surface density lower than the first surface density. A value obtained by dividing the second surface density by the first surface density is 2/10000 or less. Thereby, the reliability of the silicon carbide semiconductor device manufactured using silicon carbide epitaxial substrate 100 can be improved.
 (2)上記(1)に係る炭化珪素エピタキシャル基板100において、炭化珪素エピタキシャル膜20の主表面14の最大径111は、150mm以上であってもよい。 (2) In silicon carbide epitaxial substrate 100 according to (1) above, maximum diameter 111 of main surface 14 of silicon carbide epitaxial film 20 may be 150 mm or more.
 (3)上記(1)または(2)に係る炭化珪素エピタキシャル基板100において、第2面密度を、第1面密度で除した値は、1/10000以下であってもよい。 (3) In silicon carbide epitaxial substrate 100 according to (1) or (2) above, the value obtained by dividing the second surface density by the first surface density may be 1/10000 or less.
 (4)上記(1)~(3)のいずれかに係る炭化珪素エピタキシャル基板100において、第2面密度は、1cm-2以下であってもよい。 (4) In silicon carbide epitaxial substrate 100 according to any one of (1) to (3), the second surface density may be 1 cm −2 or less.
 (5)本開示に係る炭化珪素半導体装置300の製造方法は以下の工程を備えている。上記(1)~(4)のいずれかに係る炭化珪素エピタキシャル基板100が準備される。炭化珪素エピタキシャル基板100が加工される。 (5) The method for manufacturing the silicon carbide semiconductor device 300 according to the present disclosure includes the following steps. Silicon carbide epitaxial substrate 100 according to any one of (1) to (4) above is prepared. Silicon carbide epitaxial substrate 100 is processed.
 [本開示の実施形態の詳細]
 以下、本開示の実施形態の詳細について説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
[Details of Embodiment of the Present Disclosure]
Hereinafter, details of the embodiment of the present disclosure will be described. In the following description, the same or corresponding elements are denoted by the same reference numerals, and the same description is not repeated.
 (炭化珪素エピタキシャル基板)
 図1および図2に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル膜20とを有している。炭化珪素エピタキシャル膜20は、炭化珪素基板10上にある。炭化珪素基板10は、第1主面11と、第1主面11と反対側の第1主表面12とを有する。炭化珪素エピタキシャル膜20は、第1主面11と接する。炭化珪素エピタキシャル膜20は、第1主面11と接する第3主面13と、第3主面13と反対側の第2主表面14とを有する。炭化珪素基板10および炭化珪素エピタキシャル膜20のポリタイプは、4Hである。図1に示されるように、炭化珪素エピタキシャル基板100には、第1方向101に延在する第1フラット16が設けられて入れてもよい。炭化珪素エピタキシャル基板100には、第2方向102に延在する第2フラット(図示せず)が設けられていてもよい。
(Silicon carbide epitaxial substrate)
As shown in FIGS. 1 and 2, silicon carbide epitaxial substrate 100 according to the present embodiment includes silicon carbide substrate 10 and silicon carbide epitaxial film 20. Silicon carbide epitaxial film 20 is on silicon carbide substrate 10. Silicon carbide substrate 10 has a first main surface 11 and a first main surface 12 opposite to first main surface 11. Silicon carbide epitaxial film 20 is in contact with first main surface 11. Silicon carbide epitaxial film 20 has a third main surface 13 in contact with first main surface 11 and a second main surface 14 opposite to third main surface 13. Polytype of silicon carbide substrate 10 and silicon carbide epitaxial film 20 is 4H. As shown in FIG. 1, the silicon carbide epitaxial substrate 100 may be provided with a first flat 16 extending in the first direction 101. Silicon carbide epitaxial substrate 100 may be provided with a second flat (not shown) extending in second direction 102.
 第2方向102は、たとえば<1-100>方向である。第1方向101は、第2主表面14に対して平行であり、かつ第2方向102に対して垂直な方向である。第1方向101は、たとえば<11-20>方向成分を含む方向である。図1に示されるように、第2主表面14の最大径111(直径)は、たとえば100mm以上である。最大径111は150mm以上でもよいし、200mm以上でもよいし、250mm以上でもよい。最大径111の上限は特に限定されない。最大径111の上限は、たとえば300mmであってもよい。 The second direction 102 is, for example, the <1-100> direction. The first direction 101 is a direction parallel to the second main surface 14 and perpendicular to the second direction 102. The first direction 101 is a direction including, for example, a <11-20> direction component. As shown in FIG. 1, the maximum diameter 111 (diameter) of the second main surface 14 is, for example, 100 mm or more. The maximum diameter 111 may be 150 mm or more, 200 mm or more, or 250 mm or more. The upper limit of the maximum diameter 111 is not particularly limited. The upper limit of the maximum diameter 111 may be 300 mm, for example.
 炭化珪素基板10は、たとえば炭化珪素単結晶から構成される。炭化珪素基板10は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素基板10の導電型は、たとえばn型である。第1主面11は、{0001}面から8°以下の角度だけ傾斜した面である。第1主面11が{0001}面から傾斜している場合、第1主面11の法線の傾斜方向は、たとえば<11-20>方向である。炭化珪素基板10の厚みは、たとえば350μm以上500μm以下である。 Silicon carbide substrate 10 is made of, for example, a silicon carbide single crystal. Silicon carbide substrate 10 includes an n-type impurity such as nitrogen (N), for example. Silicon carbide substrate 10 has an n conductivity type, for example. The first main surface 11 is a surface inclined by an angle of 8 ° or less from the {0001} plane. When the first main surface 11 is inclined from the {0001} plane, the inclination direction of the normal line of the first main surface 11 is, for example, the <11-20> direction. Silicon carbide substrate 10 has a thickness of not less than 350 μm and not more than 500 μm, for example.
 図2に示されるように、炭化珪素エピタキシャル膜20は、炭化珪素基板10の第1主面11上にある。炭化珪素エピタキシャル膜20は、エピタキシャル層である。炭化珪素エピタキシャル膜20は、第1主面11に接している。炭化珪素エピタキシャル膜20は、たとえば窒素などのn型不純物を含んでいる。炭化珪素エピタキシャル膜20の導電型は、たとえばn型である。第2主表面14は、{0001}面がオフ方向にオフ角θ(°)だけ傾斜した面である。具体的には、第2主表面14は、(0001)面がオフ方向に8°以下傾斜した面であってもよい。代替的に、第2主表面14は、(000-1)面がオフ方向に8°以下傾斜した面であってもよい。オフ方向は、たとえば<11-20>方向である。なお、オフ方向は、<11-20>方向に限定されない。オフ方向は、たとえば<1-100>方向であってもよいし、<1-100>方向成分と<11-20>方向成分とを有する方向であってもよい。 As shown in FIG. 2, silicon carbide epitaxial film 20 is on first main surface 11 of silicon carbide substrate 10. Silicon carbide epitaxial film 20 is an epitaxial layer. Silicon carbide epitaxial film 20 is in contact with first main surface 11. Silicon carbide epitaxial film 20 includes an n-type impurity such as nitrogen. The conductivity type of silicon carbide epitaxial film 20 is n-type, for example. The second main surface 14 is a surface in which the {0001} plane is inclined in the off direction by an off angle θ (°). Specifically, the second main surface 14 may be a surface in which the (0001) plane is inclined by 8 ° or less in the off direction. Alternatively, the second main surface 14 may be a surface in which the (000-1) plane is inclined by 8 ° or less in the off direction. The off direction is, for example, the <11-20> direction. Note that the off direction is not limited to the <11-20> direction. The off direction may be, for example, a <1-100> direction, or a direction having a <1-100> direction component and a <11-20> direction component.
 オフ角θは、第2主表面14が{0001}面に対して傾斜している角度である。言い換えれば、オフ角θは、第2主表面14の法線が<0001>方向に対して傾斜している角度である。オフ角θは、たとえば0°より大きく8°以下である。オフ角θは、1°以上であってもよいし、2°以上であってもよい。オフ角は、7°以下であってもよいし、6°以下であってもよい。 The off angle θ is an angle at which the second main surface 14 is inclined with respect to the {0001} plane. In other words, the off-angle θ is an angle at which the normal line of the second main surface 14 is inclined with respect to the <0001> direction. The off angle θ is, for example, larger than 0 ° and not larger than 8 °. The off angle θ may be 1 ° or more, or 2 ° or more. The off angle may be 7 ° or less, or 6 ° or less.
 図2において破線で記載された面は、たとえば{0001}面である。第3方向103は、{0001}面に対して垂直な方向である。第3方向103は、たとえば<0001>方向である。第4方向104は、第3方向103に対して垂直な方向である。第4方向104は、たとえば<11-20>方向である。第4方向104は、オフ方向である。第2主表面14の法線方向は、第5方向105である。第5方向は、<0001>方向に対してオフ方向にオフ角θだけ傾斜した方向である。 In FIG. 2, the surface indicated by a broken line is, for example, the {0001} surface. The third direction 103 is a direction perpendicular to the {0001} plane. The third direction 103 is, for example, the <0001> direction. The fourth direction 104 is a direction perpendicular to the third direction 103. The fourth direction 104 is, for example, the <11-20> direction. The fourth direction 104 is an off direction. The normal direction of the second main surface 14 is the fifth direction 105. The fifth direction is a direction inclined by an off angle θ in the off direction with respect to the <0001> direction.
 炭化珪素エピタキシャル膜20は、第1層21と、第2層22とを含む。第1層は、たとえばバッファ層21である。第2層22は、たとえばドリフト層22である。バッファ層21は、第1主面11に接している。第1層21は、第3主面13を構成する。第2層22は、第1層21上にある。第2層22は、第2主表面14を構成する。 Silicon carbide epitaxial film 20 includes a first layer 21 and a second layer 22. The first layer is, for example, the buffer layer 21. The second layer 22 is, for example, the drift layer 22. The buffer layer 21 is in contact with the first main surface 11. The first layer 21 constitutes the third major surface 13. The second layer 22 is on the first layer 21. The second layer 22 constitutes the second main surface 14.
 炭化珪素基板10と、第1層21と、第2層22とは、n型不純物を含む。バッファ層21は、たとえば窒素などのn型不純物を含んでいる。バッファ層21が含むn型不純物の濃度は、たとえば1×1018cm-3である。バッファ層21が含むn型不純物の濃度は、たとえば0.2×1018cm-3以上9×1018cm-3以下であってもよい。ドリフト層が含むn型不純物の濃度は、たとえば8×1015cm-3である。第1層21が含むn型不純物の濃度は、炭化珪素基板10が含むn型不純物の濃度より低く、かつ第2層22が含むn型不純物の濃度より高い。n型不純物の濃度は、たとえば水銀プローブ方式のC-V測定装置により測定される。プローブの面積は、たとえば0.005cm2である。 Silicon carbide substrate 10, first layer 21, and second layer 22 contain n-type impurities. Buffer layer 21 contains an n-type impurity such as nitrogen, for example. The concentration of the n-type impurity contained in the buffer layer 21 is, for example, 1 × 10 18 cm −3 . The concentration of the n-type impurity included in the buffer layer 21 may be, for example, 0.2 × 10 18 cm −3 or more and 9 × 10 18 cm −3 or less. The concentration of the n-type impurity included in the drift layer is, for example, 8 × 10 15 cm −3 . The concentration of n-type impurities included in first layer 21 is lower than the concentration of n-type impurities included in silicon carbide substrate 10 and higher than the concentration of n-type impurities included in second layer 22. The concentration of the n-type impurity is measured by, for example, a mercury probe type CV measuring device. The area of the probe is, for example, 0.005 cm 2 .
 炭化珪素基板10および炭化珪素エピタキシャル膜20は、基底面転位1を有している。基底面転位1は、炭化珪素基板10の第1主面11および第1主表面12の双方に露出している。基底面転位1は、{0001}面と平行な方向に延在している。基底面転位1は、たとえば第1基底面転位25と、第2基底面転位26と、第3基底面転位27とを有する。炭化珪素エピタキシャル膜20は、第4基底面転位37と、貫通刃状転位2とを有する。第4基底面転位37と、貫通刃状転位2とは、第2主表面14に露出している。貫通刃状転位2は、たとえば第1貫通刃状転位35と、第2貫通刃状転位36とを有する。第1貫通刃状転位35は、第1基底面転位25が転換して形成された転位である。同様に、第2貫通刃状転位36は、第2基底面転位26が転換して形成された転位である。貫通刃状転位2は、{0001}に対してほぼ垂直な第3方向103に沿って延在している。第4基底面転位37は、第3基底面転位27を引き継いだ転位である。 Silicon carbide substrate 10 and silicon carbide epitaxial film 20 have basal plane dislocations 1. Basal plane dislocation 1 is exposed on both first main surface 11 and first main surface 12 of silicon carbide substrate 10. The basal plane dislocation 1 extends in a direction parallel to the {0001} plane. The basal plane dislocation 1 has, for example, a first basal plane dislocation 25, a second basal plane dislocation 26, and a third basal plane dislocation 27. Silicon carbide epitaxial film 20 has fourth basal plane dislocations 37 and threading edge dislocations 2. The fourth basal plane dislocation 37 and the threading edge dislocation 2 are exposed on the second main surface 14. The threading edge dislocation 2 has, for example, a first threading edge dislocation 35 and a second threading edge dislocation 36. The first threading edge dislocation 35 is a dislocation formed by converting the first basal plane dislocation 25. Similarly, the second threading edge dislocation 36 is a dislocation formed by converting the second basal plane dislocation 26. The threading edge dislocation 2 extends along a third direction 103 substantially perpendicular to {0001}. The fourth basal plane dislocation 37 is a dislocation that inherits the third basal plane dislocation 27.
 基底面転位1が炭化珪素エピタキシャル基板100に存在すると、たとえば炭化珪素エピタキシャル基板100上に形成されるゲート絶縁膜の信頼性が劣化する。一方、貫通刃状転位2は、炭化珪素エピタキシャル基板に存在していても、炭化珪素エピタキシャル基板上に形成されるゲート絶縁膜の信頼性にはほとんど影響を与えない。そのため、炭化珪素基板10に存在する基底面転位1を貫通刃状転位2に転換し、炭化珪素エピタキシャル膜20における基底面転位1の数を低減することが望ましい。 If basal plane dislocation 1 exists in silicon carbide epitaxial substrate 100, for example, the reliability of the gate insulating film formed on silicon carbide epitaxial substrate 100 deteriorates. On the other hand, even though the threading edge dislocation 2 exists in the silicon carbide epitaxial substrate, it hardly affects the reliability of the gate insulating film formed on the silicon carbide epitaxial substrate. Therefore, it is desirable to convert the basal plane dislocations 1 existing in the silicon carbide substrate 10 into threading edge dislocations 2 and reduce the number of basal plane dislocations 1 in the silicon carbide epitaxial film 20.
 本実施形態に係る炭化珪素エピタキシャル基板100において、炭化珪素基板10の主表面12には、第1面密度を有する基底面転位1がある。炭化珪素エピタキシャル膜20の主表面14には、第1面密度よりも低い第2面密度を有する基底面転位1がある。第2面密度を、第1面密度で除した値は、2/10000以下である。言い換えれば、基底面転位1から貫通刃状転位2に転換した割合(転換率)は、99.98%以上である。第2面密度を、第1面密度で除した値は、たとえば1/10000以下であってもよい。言い換えれば、基底面転位1から貫通刃状転位2に転換した割合(転換率)は、99.99%以上である。 In silicon carbide epitaxial substrate 100 according to the present embodiment, main surface 12 of silicon carbide substrate 10 has basal plane dislocations 1 having a first surface density. Main surface 14 of silicon carbide epitaxial film 20 has basal plane dislocations 1 having a second surface density lower than the first surface density. A value obtained by dividing the second surface density by the first surface density is 2/10000 or less. In other words, the ratio of conversion from the basal plane dislocation 1 to the threading edge dislocation 2 (conversion rate) is 99.98% or more. A value obtained by dividing the second surface density by the first surface density may be, for example, 1/10000 or less. In other words, the ratio of conversion from the basal plane dislocation 1 to the threading edge dislocation 2 (conversion rate) is 99.99% or more.
 第2面密度は、たとえば1cm-2以下である。第2面密度は、たとえば0.8cm-2以下であってもよいし、0.5cm-2以下であってもよい。第1面密度の下限は特に限定されないが、第1面密度はたとえば2000cm-2以上であってもよいし、2500cm-2以上であってもよい。第1面密度の上限は特に限定されないが、第1面密度は6000cm-2以下であってもよいし、5500cm-2以下であってもよい。 The second surface density is, for example, 1 cm −2 or less. The second surface density may be, for example, 0.8 cm −2 or less, or 0.5 cm −2 or less. But the lower limit of the first surface density is limited, the first surface density may be for example 2000 cm -2 or more, or may be 2500 cm -2 or more. Although not limit the first surface density is limited, the first surface density may be at 6000 cm -2 or less, may be 5500Cm -2 or less.
 (基底面転位の面密度の測定方法)
 次に、基底面転位の面密度の測定方法について説明する。基底面転位の観察には、たとえば株式会社フォトンデザイン社製のフォトルミネッセンスイメージング装置(型番:PLIS-100)が用いられる。炭化珪素エピタキシャル基板の被測定領域に対して励起光が照射されると、被測定領域からフォトルミネッセンス光が観測される。励起光源としては、たとえば水銀キセノンランプが使用される。光源からの励起光は、313nmのバンドパスフィルターを通過した後、被測定領域に照射される。フォトルミネッセンス光は、たとえば750nmのローパスフィルタを通過した後、カメラ等の受光素子に到達する。以上のように、被測定領域のフォトルミネッセンス画像が撮影される。測定温度は、室温である。
(Measurement method of areal density of basal plane dislocation)
Next, a method for measuring the surface density of basal plane dislocations will be described. For observation of basal plane dislocation, for example, a photoluminescence imaging apparatus (model number: PLIS-100) manufactured by Photon Design Co., Ltd. is used. When excitation light is irradiated to the measurement region of the silicon carbide epitaxial substrate, photoluminescence light is observed from the measurement region. For example, a mercury xenon lamp is used as the excitation light source. Excitation light from the light source passes through a 313 nm band-pass filter and is then applied to the measurement region. The photoluminescence light reaches a light receiving element such as a camera after passing through a low pass filter of 750 nm, for example. As described above, a photoluminescence image of the region to be measured is taken. The measurement temperature is room temperature.
 たとえば炭化珪素エピタキシャル基板の主面(具体的には、第2主表面14または第1主表面12)と平行な方向に炭化珪素エピタキシャル基板を移動させながら、主面のフォトルミネッセンス画像が撮影される。これにより、主面の全領域におけるフォトルミネッセンス画像がマッピングされる。取得されたフォトルミネッセンス画像において基底面転位が特定され、当該基底面転位の合計数が計算される。基底面転位の合計数を全測定面積で除することにより、基底面転位の面密度が算出される。 For example, a photoluminescence image of the main surface is photographed while moving the silicon carbide epitaxial substrate in a direction parallel to the main surface (specifically, second main surface 14 or first main surface 12) of the silicon carbide epitaxial substrate. . Thereby, the photoluminescence image in the whole area | region of a main surface is mapped. The basal plane dislocation is specified in the acquired photoluminescence image, and the total number of the basal plane dislocation is calculated. By dividing the total number of basal plane dislocations by the total measurement area, the surface density of the basal plane dislocations is calculated.
 炭化珪素エピタキシャル基板の主面における基底面転位の面密度の算出は、たとえば水酸化カリウム(KOH)融液を用いて発生させたピットを数えることにより行われてもよい。具体的には、主面がKOH融液を用いてエッチングされる。KOH融液の温度は、たとえば500℃以上550℃以下程度とする。エッチング時間は、たとえば5以上10分以下程度とする。エッチング後、ノルマルスキー微分干渉顕微鏡によって主面が観察される。基底面転位はKOH融液によりエッチングされてピットを形成する。ピットの合計数を全測定面積で除することにより、基底面転位の面密度が算出される。なお、貫通刃状転位も基底面転位と同様にピットを形成する。貫通刃状転位に由来するピットと、基底面転位に由来するピットとは、以下のように区別する。丸みを帯びた六角形状のピットが貫通刃状転位に由来するものであり、楕円形状のピットが基底面転位に由来するものである。 The calculation of the surface density of the basal plane dislocations on the main surface of the silicon carbide epitaxial substrate may be performed, for example, by counting pits generated using a potassium hydroxide (KOH) melt. Specifically, the main surface is etched using a KOH melt. The temperature of the KOH melt is, for example, about 500 ° C. or more and 550 ° C. or less. The etching time is, for example, about 5 to 10 minutes. After etching, the main surface is observed with a normalsky differential interference microscope. The basal plane dislocation is etched by the KOH melt to form pits. By dividing the total number of pits by the total measurement area, the surface density of the basal plane dislocation is calculated. The threading edge dislocations also form pits in the same manner as the basal plane dislocations. Pits derived from threading edge dislocations and pits derived from basal plane dislocations are distinguished as follows. Rounded hexagonal pits are derived from threading edge dislocations, and elliptical pits are derived from basal plane dislocations.
 図2に示されるように、基底面転位は、炭化珪素基板の内部を貫通し、第1主表面12および第1主面11の各々に達している。そのため、第1主表面12における基底面転位の面密度は、第1主面11における基底面転位の面密度と同じであると推定することができる。特に、第1主表面12が(000-1)面または(000-1)面がオフ方向に8°以下傾斜した面である場合には、KOH融液によって第1主表面12にエッチピットが出現しづらい。この場合、炭化珪素基板10から炭化珪素エピタキシャル膜20を除去した後、炭化珪素基板10の第1主面11における基底面転位の面密度を測定してもよい。第1主表面12が(000-1)面または(000-1)面がオフ方向に8°以下傾斜した面である場合、第1主面11は(0001)面または(0001)面がオフ方向に8°以下傾斜した面である。そのため、第1主表面12と比較して、第1主面11にはエッチピットが出現しやすい。第1主面11における基底面転位の面密度が、第1主表面12における基底面転位の面密度と同じであると推定される。 As shown in FIG. 2, the basal plane dislocation penetrates the inside of the silicon carbide substrate and reaches each of the first main surface 12 and the first main surface 11. Therefore, it can be estimated that the surface density of the basal plane dislocations in the first main surface 12 is the same as the surface density of the basal plane dislocations in the first main surface 11. In particular, when the first main surface 12 is a (000-1) plane or a (000-1) plane inclined by 8 ° or less in the off direction, etch pits are formed on the first main surface 12 by the KOH melt. Hard to appear. In this case, after removing silicon carbide epitaxial film 20 from silicon carbide substrate 10, the surface density of basal plane dislocations on first main surface 11 of silicon carbide substrate 10 may be measured. When the first main surface 12 is a (000-1) plane or a (000-1) plane inclined by 8 ° or less in the off direction, the (0001) plane or the (0001) plane is off the first main surface 11 The surface is inclined by 8 ° or less in the direction. Therefore, etch pits are likely to appear on the first main surface 11 as compared to the first main surface 12. It is estimated that the surface density of the basal plane dislocations in the first main surface 11 is the same as the surface density of the basal plane dislocations in the first main surface 12.
 (炭化珪素エピタキシャル基板の製造装置)
 次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造装置200の構成について説明する。
(Silicon carbide epitaxial substrate manufacturing equipment)
Next, the configuration of manufacturing apparatus 200 for silicon carbide epitaxial substrate 100 according to the present embodiment will be described.
 図3に示されるように、炭化珪素エピタキシャル基板100の製造装置200は、たとえばホットウォール方式の横型CVD(Chemical Vapor Deposition)装置である。製造装置200は、反応室201と、発熱体203、石英管204、断熱材205、誘導加熱コイル206とを主に有している。 As shown in FIG. 3, a silicon carbide epitaxial substrate 100 manufacturing apparatus 200 is, for example, a hot-wall lateral CVD (Chemical Vapor Deposition) apparatus. The manufacturing apparatus 200 mainly includes a reaction chamber 201, a heating element 203, a quartz tube 204, a heat insulating material 205, and an induction heating coil 206.
 発熱体203は、たとえば筒状の形状を有しており、内部に反応室201を形成している。発熱体203は、たとえば黒鉛製である。断熱材205は、発熱体203の外周を取り囲んでいる。断熱材205は、石英管204の内周面に接するように石英管204の内部に設けられている。誘導加熱コイル206は、たとえば石英管204の外周面に沿って巻回されている。誘導加熱コイル206は、外部電源(図示せず)により、交流電流が供給可能に構成されている。これにより、発熱体203が誘導加熱される。結果として、反応室201が発熱体203により加熱される。 The heating element 203 has a cylindrical shape, for example, and forms a reaction chamber 201 inside. The heating element 203 is made of, for example, graphite. The heat insulating material 205 surrounds the outer periphery of the heating element 203. The heat insulating material 205 is provided inside the quartz tube 204 so as to contact the inner peripheral surface of the quartz tube 204. The induction heating coil 206 is wound, for example, along the outer peripheral surface of the quartz tube 204. The induction heating coil 206 is configured to be able to supply an alternating current by an external power source (not shown). Thereby, the heating element 203 is induction-heated. As a result, the reaction chamber 201 is heated by the heating element 203.
 反応室201は、発熱体203に取り囲まれて形成された空間である。反応室201内には、炭化珪素基板10が配置される。反応室201は、炭化珪素基板10を加熱可能に構成されている。反応室201には、炭化珪素基板10を保持するサセプタ210が設けられている。サセプタ210は、回転軸212の周りを自転可能に構成されている。 The reaction chamber 201 is a space formed by being surrounded by the heating element 203. Silicon carbide substrate 10 is arranged in reaction chamber 201. Reaction chamber 201 is configured to heat silicon carbide substrate 10. Reaction chamber 201 is provided with a susceptor 210 that holds silicon carbide substrate 10. The susceptor 210 is configured to be able to rotate around the rotation shaft 212.
 製造装置200は、ガス導入口207およびガス排気口208を有している。ガス排気口208は、排気ポンプ(図示せず)に接続されている。図6中の矢印は、ガスの流れを示している。ガスは、ガス導入口207から反応室201に導入され、ガス排気口208から排気される。反応室201内の圧力は、ガスの供給量と、ガスの排気量とのバランスによって調整される。 The manufacturing apparatus 200 has a gas introduction port 207 and a gas exhaust port 208. The gas exhaust port 208 is connected to an exhaust pump (not shown). The arrows in FIG. 6 indicate the gas flow. The gas is introduced into the reaction chamber 201 from the gas introduction port 207 and exhausted from the gas exhaust port 208. The pressure in the reaction chamber 201 is adjusted by the balance between the gas supply amount and the gas exhaust amount.
 製造装置200は、たとえば、シランと、アンモニアと、水素と、プロパンとを含む混合ガスを、反応室201に供給可能に構成されたガス供給部(図示せず)を有している。具体的には、ガス供給部は、水素で希釈されたプロパンガスを供給可能なガスボンベと、水素ガスを供給可能なガスボンベと、シランガスを供給可能なガスボンベと、アンモニアガスを供給可能なガスボンベとを有していてもよい。水素で希釈されたプロパンガスにおいて、プロパンガスは30体積%であり、水素ガスは70体積%である。水素で希釈されたプロパンガスを使用することにより、反応室201の上流側におけるプロパンガスの分解効率が向上する。 The manufacturing apparatus 200 has a gas supply unit (not shown) configured to be able to supply, for example, a mixed gas containing silane, ammonia, hydrogen, and propane to the reaction chamber 201. Specifically, the gas supply unit includes a gas cylinder capable of supplying propane gas diluted with hydrogen, a gas cylinder capable of supplying hydrogen gas, a gas cylinder capable of supplying silane gas, and a gas cylinder capable of supplying ammonia gas. You may have. In propane gas diluted with hydrogen, propane gas is 30% by volume and hydrogen gas is 70% by volume. By using propane gas diluted with hydrogen, the decomposition efficiency of propane gas on the upstream side of the reaction chamber 201 is improved.
 反応室201の軸方向において、誘導加熱コイル206の巻き密度を変化させてもよい。巻き密度[回/m]とは、装置の軸方向の単位長さあたりのコイルの周回数である。たとえば、上流側でアンモニアを効果的に熱分解させるために、上流側の誘導加熱コイル206の巻き密度は、下流側の誘導加熱コイル206の巻き密度よりも高くてもよい。 In the axial direction of the reaction chamber 201, the winding density of the induction heating coil 206 may be changed. The winding density [times / m] is the number of coil turns per unit length in the axial direction of the apparatus. For example, in order to effectively thermally decompose ammonia on the upstream side, the winding density of the induction heating coil 206 on the upstream side may be higher than the winding density of the induction heating coil 206 on the downstream side.
 (炭化珪素エピタキシャル基板の製造方法)
 次に、本実施形態に係る炭化珪素エピタキシャル基板の製造方法について説明する。
(Method for producing silicon carbide epitaxial substrate)
Next, a method for manufacturing the silicon carbide epitaxial substrate according to this embodiment will be described.
 まず、炭化珪素単結晶基板準備工程(S11:図4)が実施される。たとえば昇華法により、ポリタイプ4Hの炭化珪素単結晶が製造される。次に、たとえばワイヤーソーによって、炭化珪素単結晶をスライスすることにより、炭化珪素基板10が準備される。炭化珪素基板10は、たとえば窒素などのn型不純物を含んでいる。炭化珪素基板10の導電型は、たとえばn型である。 First, a silicon carbide single crystal substrate preparation step (S11: FIG. 4) is performed. For example, a polytype 4H silicon carbide single crystal is manufactured by a sublimation method. Next, silicon carbide substrate 10 is prepared by slicing the silicon carbide single crystal with, for example, a wire saw. Silicon carbide substrate 10 includes an n-type impurity such as nitrogen, for example. Silicon carbide substrate 10 has an n conductivity type, for example.
 図5に示されるように、炭化珪素基板10は、第1主面11と、第1主面11の反対側にある第3主面13とを有する。第1主面11は、たとえば{0001}面がオフ角θだけオフ方向に傾斜した面である。オフ方向は、たとえば<11-20>方向である。炭化珪素基板10の第1主面11の最大径は、たとえば100mm以上である。炭化珪素基板10には、たとえば複数の基底面転位1が存在する。基底面転位1は、{0001}面と平行な方向に延在している。基底面転位1は、たとえば第1基底面転位25と、第2基底面転位26と、第3基底面転位27とを有する。 As shown in FIG. 5, silicon carbide substrate 10 has a first main surface 11 and a third main surface 13 on the opposite side of first main surface 11. The first major surface 11 is, for example, a surface in which the {0001} plane is inclined in the off direction by the off angle θ. The off direction is, for example, the <11-20> direction. The maximum diameter of first main surface 11 of silicon carbide substrate 10 is, for example, 100 mm or more. For example, a plurality of basal plane dislocations 1 exist in silicon carbide substrate 10. The basal plane dislocation 1 extends in a direction parallel to the {0001} plane. The basal plane dislocation 1 has, for example, a first basal plane dislocation 25, a second basal plane dislocation 26, and a third basal plane dislocation 27.
 次に、昇温工程が実施される。炭化珪素基板10が反応室201内においてサセプタ210上に配置される(図3参照)。たとえば反応室201の圧力が大気圧から1×10-6Pa程度に低減された後、炭化珪素基板10の昇温が開始される。図7に示されるように、時点T0から時点T1にかけて、炭化珪素基板10の温度が室温から第1温度A1まで上昇する。第1温度A1は、たとえば1605℃である。 Next, a temperature raising step is performed. Silicon carbide substrate 10 is arranged on susceptor 210 in reaction chamber 201 (see FIG. 3). For example, after the pressure in reaction chamber 201 is reduced from atmospheric pressure to about 1 × 10 −6 Pa, the temperature rise of silicon carbide substrate 10 is started. As shown in FIG. 7, the temperature of silicon carbide substrate 10 increases from room temperature to first temperature A1 from time T0 to time T1. The first temperature A1 is 1605 ° C., for example.
 次に、バッファ層形成工程(S12:図4)が実施される。炭化珪素基板10の温度がたとえば第1温度A1になった後、反応室201に、原料ガス、ドーパントガスおよびキャリアガスが供給される。具体的には、反応室201に、シランとプロパンとアンモニアと水素とを含む混合ガスが供給される。図7に示されるように、時点T1から時点T2までの間、炭化珪素基板10は、第1温度A1で維持される。時点T1から時点T2までの時間は、たとえば3分以上60分以下である。反応室201において、それぞれのガスが熱分解され、炭化珪素基板10上にバッファ層21が形成される(図6参照)。バッファ層21を形成する工程において、サセプタ210は回転軸212の周りを自転する。炭化珪素基板10は回転軸212の周りを公転する(図3参照)。 Next, a buffer layer forming step (S12: FIG. 4) is performed. After the temperature of silicon carbide substrate 10 reaches, for example, first temperature A1, source gas, dopant gas, and carrier gas are supplied to reaction chamber 201. Specifically, a mixed gas containing silane, propane, ammonia, and hydrogen is supplied to the reaction chamber 201. As shown in FIG. 7, silicon carbide substrate 10 is maintained at first temperature A1 from time T1 to time T2. The time from time T1 to time T2 is, for example, not less than 3 minutes and not more than 60 minutes. In reaction chamber 201, each gas is thermally decomposed, and buffer layer 21 is formed on silicon carbide substrate 10 (see FIG. 6). In the step of forming the buffer layer 21, the susceptor 210 rotates around the rotation shaft 212. Silicon carbide substrate 10 revolves around rotating shaft 212 (see FIG. 3).
 バッファ層を形成する工程においては、C/Si比がたとえば0.95となるように、シランおよびプロパンの流量が調整される。具体的には、シランガスの流量がたとえば57.6sccmとなるように調整される。水素で希釈されたプロパンガス(30体積%)の流量がたとえば18.2sccmとなるように調整される。水素ガスの流量が130slmとなるように調整される。バッファ層21にドーピングされるn型不純物(N)の濃度は、たとえば0.2×1018cm-3以上9×1018cm-3以下程度である。バッファ層21の厚みは、たとえば1μmである。反応室201の圧力は、たとえば5kPaである。 In the step of forming the buffer layer, the flow rates of silane and propane are adjusted so that the C / Si ratio is, for example, 0.95. Specifically, the flow rate of the silane gas is adjusted to 57.6 sccm, for example. The flow rate of the propane gas (30% by volume) diluted with hydrogen is adjusted to be, for example, 18.2 sccm. The flow rate of hydrogen gas is adjusted to be 130 slm. The concentration of the n-type impurity (N) doped in the buffer layer 21 is, for example, about 0.2 × 10 18 cm −3 to 9 × 10 18 cm −3 . The thickness of the buffer layer 21 is, for example, 1 μm. The pressure in the reaction chamber 201 is, for example, 5 kPa.
 図6に示されるように、炭化珪素基板10に存在していた複数の基底面転位1の大部分が貫通刃状転位2に転換される。具体的には、第1基底面転位25は、第1貫通刃状転位35に転換される。第2基底面転位26は、第2貫通刃状転位36に転換される。第3基底面転位27は、貫通刃状転位に転換されず、第4基底面転位37としてバッファ層21内を伝搬する。 As shown in FIG. 6, most of the plurality of basal plane dislocations 1 existing in the silicon carbide substrate 10 are converted into threading edge dislocations 2. Specifically, the first basal plane dislocation 25 is converted into the first threading edge dislocation 35. The second basal plane dislocation 26 is converted into the second threading edge dislocation 36. The third basal plane dislocations 27 are not converted into threading edge dislocations, but propagate in the buffer layer 21 as fourth basal plane dislocations 37.
 次に、ドリフト層形成工程(S13:図4)が実施される。図7に示されるように、時点T2において、炭化珪素基板10の昇温が再度開始される。具体的には、時点T2から時点T3にかけて、炭化珪素基板10の温度が第1温度A1から第2温度A2まで上昇する。第2温度A2は、たとえば1640℃である。炭化珪素基板10の温度が第2温度A2に維持された状態で、反応室201に、シランとプロパンとアンモニアと水素とを含む混合ガスが供給される。時点T3から時点T4までの間、炭化珪素基板10は、第2温度A2で維持される。時点T3から時点T4までの時間は、たとえば30分以上600分以下である。反応室201において、それぞれのガスが熱分解され、バッファ層21上にドリフト層22が形成される(図2および図5参照)。ドリフト層22を形成する工程において、サセプタ210は回転軸212の周りを自転する。炭化珪素基板10は回転軸212の周りを公転する(図3参照)。 Next, the drift layer forming step (S13: FIG. 4) is performed. As shown in FIG. 7, at time T2, the temperature rise of silicon carbide substrate 10 is started again. Specifically, the temperature of silicon carbide substrate 10 rises from first temperature A1 to second temperature A2 from time T2 to time T3. The second temperature A2 is 1640 ° C., for example. A mixed gas containing silane, propane, ammonia, and hydrogen is supplied to the reaction chamber 201 in a state where the temperature of the silicon carbide substrate 10 is maintained at the second temperature A2. Between time T3 and time T4, silicon carbide substrate 10 is maintained at second temperature A2. The time from time T3 to time T4 is, for example, not less than 30 minutes and not more than 600 minutes. In the reaction chamber 201, each gas is thermally decomposed, and the drift layer 22 is formed on the buffer layer 21 (see FIGS. 2 and 5). In the step of forming the drift layer 22, the susceptor 210 rotates around the rotation axis 212. Silicon carbide substrate 10 revolves around rotating shaft 212 (see FIG. 3).
 ドリフト層を形成する工程においては、C/Si比が1.35程度となるように、シランおよびプロパンとの流量が調整される。具体的には、シランガスの流量がたとえば140sccmとなるように調整される。水素で希釈されたプロパンガス(30体積%)の流量がたとえば63sccmとなるように調整される。水素ガスの流量が134slmとなるように調整される。ドリフト層22にドーピングされるキャリアの濃度は、たとえば8×1015cm-3程度である。ドリフト層22の厚みは、たとえば10μm以上30μm以下程度である。反応室201の圧力は、たとえば6kPaである。 In the step of forming the drift layer, the flow rates of silane and propane are adjusted so that the C / Si ratio is about 1.35. Specifically, the flow rate of the silane gas is adjusted to 140 sccm, for example. The flow rate of propane gas (30% by volume) diluted with hydrogen is adjusted to 63 sccm, for example. The flow rate of hydrogen gas is adjusted to 134 slm. The concentration of carriers doped in the drift layer 22 is, for example, about 8 × 10 15 cm −3 . The thickness of the drift layer 22 is, for example, about 10 μm to 30 μm. The pressure in the reaction chamber 201 is, for example, 6 kPa.
 以上のように、炭化珪素エピタキシャル膜のバッファ層21の成長温度を、ドリフト層22の成長温度よりもある程度低く維持することにより、熱膨張率の異なるバッファ層とドリフト層の間の熱膨張差の絶対値が小さくなり、歪を小さく抑えることができるため、基底面転位が貫通刃状転位に転換する割合(転換率)を向上することができる。 As described above, by maintaining the growth temperature of the buffer layer 21 of the silicon carbide epitaxial film to be somewhat lower than the growth temperature of the drift layer 22, the difference in thermal expansion between the buffer layer and the drift layer having different thermal expansion coefficients can be reduced. Since the absolute value becomes small and the strain can be kept small, the ratio of the basal plane dislocations to threading edge dislocations (conversion rate) can be improved.
 次に、冷却工程が行われる。図7に示されるように、時点T4から時点T5にかけて、炭化珪素基板の温度が第2温度A2から室温まで低減される。以上のように、炭化珪素エピタキシャル基板100が製造される。 Next, a cooling process is performed. As shown in FIG. 7, from time T4 to time T5, the temperature of the silicon carbide substrate is reduced from second temperature A2 to room temperature. As described above, silicon carbide epitaxial substrate 100 is manufactured.
 (炭化珪素半導体装置の製造方法)
 次に、本実施形態に係る炭化珪素半導体装置300の製造方法について説明する。
(Method for manufacturing silicon carbide semiconductor device)
Next, a method for manufacturing the silicon carbide semiconductor device 300 according to this embodiment will be described.
 本実施形態に係る炭化珪素半導体装置の製造方法は、エピタキシャル基板準備工程(S10:図8)と、基板加工工程(S20:図8)とを主に有する。 The method for manufacturing a silicon carbide semiconductor device according to the present embodiment mainly includes an epitaxial substrate preparation step (S10: FIG. 8) and a substrate processing step (S20: FIG. 8).
 まず、エピタキシャル基板準備工程(S10:図8)が実施される。具体的には、前述した炭化珪素エピタキシャル基板の製造方法によって、炭化珪素エピタキシャル基板100が準備される(図4参照)。 First, an epitaxial substrate preparation step (S10: FIG. 8) is performed. Specifically, silicon carbide epitaxial substrate 100 is prepared by the above-described method for manufacturing a silicon carbide epitaxial substrate (see FIG. 4).
 次に、基板加工工程(S20:図8)が実施される。具体的には、炭化珪素エピタキシャル基板を加工することにより、炭化珪素半導体装置が製造される。「加工」には、たとえば、イオン注入、熱処理、エッチング、酸化膜形成、電極形成、ダイシング等の各種加工が含まれる。すなわち基板加工ステップは、イオン注入、熱処理、エッチング、酸化膜形成、電極形成およびダイシングのうち、少なくともいずれかの加工を含むものであってもよい。 Next, a substrate processing step (S20: FIG. 8) is performed. Specifically, a silicon carbide semiconductor device is manufactured by processing a silicon carbide epitaxial substrate. “Processing” includes, for example, various processes such as ion implantation, heat treatment, etching, oxide film formation, electrode formation, and dicing. That is, the substrate processing step may include at least one of ion implantation, heat treatment, etching, oxide film formation, electrode formation, and dicing.
 以下では、炭化珪素半導体装置の一例としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の製造方法を説明する。基板加工工程(S20:図8)は、たとえばイオン注入工程(S21:図8)、酸化膜形成工程(S22:図8)、電極形成工程(S23:図8)およびダイシング工程(S24:図8)を含む。 Hereinafter, a method for manufacturing a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) as an example of a silicon carbide semiconductor device will be described. The substrate processing step (S20: FIG. 8) includes, for example, an ion implantation step (S21: FIG. 8), an oxide film formation step (S22: FIG. 8), an electrode formation step (S23: FIG. 8), and a dicing step (S24: FIG. 8). )including.
 まず、イオン注入工程(S21:図8)が実施される。開口部を有するマスク(図示せず)が形成された第2主表面14に対して、たとえばアルミニウム(Al)等のp型不純物が注入される。これにより、p型の導電型を有するボディ領域132が形成される。次に、ボディ領域132内の所定位置に、たとえばリン(P)等のn型不純物が注入される。これにより、n型の導電型を有するソース領域133が形成される。次に、アルミニウム等のp型不純物がソース領域133内の所定位置に注入される。これにより、p型の導電型を有するコンタクト領域134が形成される(図9参照)。 First, an ion implantation step (S21: FIG. 8) is performed. A p-type impurity such as aluminum (Al) is implanted into second main surface 14 on which a mask (not shown) having an opening is formed. Thereby, body region 132 having p-type conductivity is formed. Next, an n-type impurity such as phosphorus (P) is implanted into a predetermined position in body region 132. Thereby, a source region 133 having n-type conductivity is formed. Next, a p-type impurity such as aluminum is implanted into a predetermined position in the source region 133. As a result, a contact region 134 having a p-type conductivity is formed (see FIG. 9).
 炭化珪素エピタキシャル膜20において、ボディ領域132、ソース領域133およびコンタクト領域134以外の部分は、ドリフト領域131となる。ソース領域133は、ボディ領域132によってドリフト領域131から隔てられている。イオン注入は、炭化珪素エピタキシャル基板100を300℃以上600℃以下程度に加熱して行われてもよい。イオン注入の後、炭化珪素エピタキシャル基板100に対して活性化アニールが行われる。活性化アニールにより、炭化珪素エピタキシャル膜20に注入された不純物が活性化し、各領域においてキャリアが生成される。活性化アニールの雰囲気は、たとえばアルゴン(Ar)雰囲気である。活性化アニールの温度は、たとえば1800℃程度である。活性化アニールの時間は、たとえば30分程度である。 In silicon carbide epitaxial film 20, portions other than body region 132, source region 133, and contact region 134 become drift region 131. Source region 133 is separated from drift region 131 by body region 132. Ion implantation may be performed by heating silicon carbide epitaxial substrate 100 to about 300 ° C. or more and 600 ° C. or less. After the ion implantation, activation annealing is performed on silicon carbide epitaxial substrate 100. By the activation annealing, the impurities implanted into the silicon carbide epitaxial film 20 are activated, and carriers are generated in each region. The atmosphere of activation annealing is, for example, an argon (Ar) atmosphere. The temperature of activation annealing is, for example, about 1800 ° C. The activation annealing time is, for example, about 30 minutes.
 次に、酸化膜形成工程(S22:図8)が実施される。たとえば炭化珪素エピタキシャル基板100が酸素を含む雰囲気中において加熱されることにより、第2主表面14上に酸化膜136が形成される(図10参照)。酸化膜136は、たとえば二酸化珪素等から構成される。酸化膜136は、ゲート絶縁膜として機能する。熱酸化処理の温度は、たとえば1300℃程度である。熱酸化処理の時間は、たとえば30分程度である。 Next, an oxide film forming step (S22: FIG. 8) is performed. For example, silicon carbide epitaxial substrate 100 is heated in an atmosphere containing oxygen, whereby oxide film 136 is formed on second main surface 14 (see FIG. 10). Oxide film 136 is made of, for example, silicon dioxide. The oxide film 136 functions as a gate insulating film. The temperature of the thermal oxidation treatment is, for example, about 1300 ° C. The time for the thermal oxidation treatment is, for example, about 30 minutes.
 酸化膜136が形成された後、さらに窒素雰囲気中で熱処理が行なわれてもよい。たとえば、一酸化窒素の雰囲気中、1100℃程度で1時間程度、熱処理が実施される。さらにその後、アルゴン雰囲気中で熱処理が行なわれる。たとえば、アルゴン雰囲気中、1100℃以上1500℃以下程度で、1時間程度、熱処理が行われる。 After the oxide film 136 is formed, heat treatment may be performed in a nitrogen atmosphere. For example, the heat treatment is performed in an atmosphere of nitric oxide at about 1100 ° C. for about 1 hour. Thereafter, heat treatment is performed in an argon atmosphere. For example, the heat treatment is performed in an argon atmosphere at about 1100 ° C. to 1500 ° C. for about 1 hour.
 次に、電極形成工程(S23:図8)が実施される。第1電極141は、酸化膜136上に形成される。第1電極141は、ゲート電極として機能する。第1電極141は、たとえばCVD法により形成される。第1電極141は、たとえば導電性を有するポリシリコン等から構成される。第1電極141は、ソース領域133およびボディ領域132に対面する位置に形成される。 Next, an electrode formation step (S23: FIG. 8) is performed. The first electrode 141 is formed on the oxide film 136. The first electrode 141 functions as a gate electrode. The first electrode 141 is formed by, for example, a CVD method. The first electrode 141 is made of, for example, conductive polysilicon. The first electrode 141 is formed at a position facing the source region 133 and the body region 132.
 次に、第1電極141を覆う層間絶縁膜137が形成される。層間絶縁膜137は、たとえばCVD法により形成される。層間絶縁膜137は、たとえば二酸化珪素等から構成される。層間絶縁膜137は、第1電極141と酸化膜136とに接するように形成される。次に、所定位置の酸化膜136および層間絶縁膜137がエッチングによって除去される。これにより、ソース領域133およびコンタクト領域134が、酸化膜136から露出する。 Next, an interlayer insulating film 137 covering the first electrode 141 is formed. Interlayer insulating film 137 is formed by, for example, a CVD method. Interlayer insulating film 137 is made of, for example, silicon dioxide. The interlayer insulating film 137 is formed so as to be in contact with the first electrode 141 and the oxide film 136. Next, the oxide film 136 and the interlayer insulating film 137 at predetermined positions are removed by etching. As a result, the source region 133 and the contact region 134 are exposed from the oxide film 136.
 次に、たとえばスパッタリング法により当該露出部に第2電極142が形成される。第2電極142はソース電極として機能する。第2電極142は、たとえばチタン、アルミニウムおよびシリコン等から構成される。第2電極142が形成された後、第2電極142と炭化珪素エピタキシャル基板100が、たとえば900℃以上1100℃以下程度の温度で加熱される。これにより、第2電極142と炭化珪素エピタキシャル基板100とがオーミック接触するようになる。次に、第2電極142に接するように、配線層138が形成される。配線層138は、たとえばアルミニウムを含む材料から構成される。 Next, the second electrode 142 is formed on the exposed portion by, for example, a sputtering method. The second electrode 142 functions as a source electrode. Second electrode 142 is made of, for example, titanium, aluminum, silicon, or the like. After second electrode 142 is formed, second electrode 142 and silicon carbide epitaxial substrate 100 are heated at a temperature of about 900 ° C. to 1100 ° C., for example. Thereby, second electrode 142 and silicon carbide epitaxial substrate 100 come into ohmic contact. Next, the wiring layer 138 is formed so as to be in contact with the second electrode 142. The wiring layer 138 is made of a material containing aluminum, for example.
 次に、第3主面13に第3電極143が形成される。第3電極143は、ドレイン電極として機能する。第3電極143は、たとえばニッケルおよびシリコンを含む合金(たとえばNiSi等)から構成される。 Next, the third electrode 143 is formed on the third main surface 13. The third electrode 143 functions as a drain electrode. Third electrode 143 is made of, for example, an alloy containing nickel and silicon (eg, NiSi).
 次に、ダイシング工程(S24:図8)が実施される。たとえば炭化珪素エピタキシャル基板100がダイシングラインに沿ってダイシングされることにより、炭化珪素エピタキシャル基板100が複数の半導体チップに分割される。以上より、炭化珪素半導体装置300が製造される(図11参照)。 Next, a dicing step (S24: FIG. 8) is performed. For example, silicon carbide epitaxial substrate 100 is diced along a dicing line, whereby silicon carbide epitaxial substrate 100 is divided into a plurality of semiconductor chips. Thus, silicon carbide semiconductor device 300 is manufactured (see FIG. 11).
 上記において、MOSFETを例示して、本開示に係る炭化珪素半導体装置の製造方法を説明したが、本開示に係る製造方法はこれに限定されない。本開示に係る製造方法は、たとえばIGBT(Insulated Gate Bipolar Transistor)、SBD(Schottky Barrier Diode)、サイリスタ、GTO(Gate Turn Off thyristor)、PiNダイオード等の炭化珪素半導体装置に適用可能である。 In the above, the method for manufacturing the silicon carbide semiconductor device according to the present disclosure has been described by exemplifying the MOSFET, but the manufacturing method according to the present disclosure is not limited to this. The manufacturing method according to the present disclosure can be applied to silicon carbide semiconductor devices such as IGBT (Insulated Gate Bipolar Transistor), SBD (Schottky Barrier Diode), thyristor, GTO (Gate Turn Off thyristor), and PiN diode.
 次に、実施例について説明する。まず、サンプル1-5に係る炭化珪素基板が準備された。次に、サンプル1-5に係る炭化珪素基板上に炭化珪素エピタキシャル膜を成長させた。サンプル1-4に係る炭化珪素基板に対しては、本実施形態の図7において実線で示した温度プロファイルを用いて、炭化珪素エピタキシャル膜を形成した。具体的には、バッファ層を形成する工程の温度(A1:図7参照)を1605℃とし、ドリフト層を形成する工程の温度(A2:図7参照)を1640℃とした。サンプル5に係る炭化珪素基板に対しては、図7において一点鎖線で示した温度プロファイルを用いて、炭化珪素エピタキシャル膜を形成した。具体的には、バッファ層を形成する工程の温度(A1:図7参照)およびドリフト層を形成する工程の温度(A2:図7参照)を共に1640℃とした。以上のように、サンプル1-5に係る炭化珪素エピタキシャル基板が製造された。次に、サンプル1-5に係る炭化珪素エピタキシャル基板の第2主面および主表面における基底面転位の面密度が測定された。基底面転位の面密度は、前述の測定方法を用いて測定された。 Next, examples will be described. First, a silicon carbide substrate according to Sample 1-5 was prepared. Next, a silicon carbide epitaxial film was grown on the silicon carbide substrate according to Sample 1-5. For the silicon carbide substrate according to Sample 1-4, a silicon carbide epitaxial film was formed using the temperature profile shown by the solid line in FIG. 7 of the present embodiment. Specifically, the temperature of the step of forming the buffer layer (A1: see FIG. 7) was 1605 ° C., and the temperature of the step of forming the drift layer (A2: see FIG. 7) was 1640 ° C. For the silicon carbide substrate according to sample 5, a silicon carbide epitaxial film was formed using the temperature profile shown by the one-dot chain line in FIG. Specifically, the temperature of the step of forming the buffer layer (A1: see FIG. 7) and the temperature of the step of forming the drift layer (A2: see FIG. 7) were both 1640 ° C. As described above, the silicon carbide epitaxial substrate according to Sample 1-5 was manufactured. Next, the surface density of basal plane dislocations on the second main surface and main surface of the silicon carbide epitaxial substrate according to Sample 1-5 was measured. The surface density of the basal plane dislocation was measured using the above-described measurement method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、炭化珪素基板の主表面の基底面転位の面密度(第1面密度)と、炭化珪素エピタキシャル膜の主表面の基底面転位の面密度(第2面密度)と、第2面密度を第1面密度で除した値と、基底面転位から貫通刃状転位への転換率とを示している。表1に示されるように、サンプル1-5に係る炭化珪素基板エピタキシャル基板において、第2面密度を第1面密度で除した値は、それぞれ0.000152、0.000157、0.000006、0.000011および0.012032であった。またサンプル1-5に係る炭化珪素基板エピタキシャル基板において、第1面密度から第2面密度を引いた値を第1面密度で除した値として求められる転換率は、それぞれ、99.9848%、99.9843%、99.9994%、99.9989%および98.7968%であった。 Table 1 shows the surface density (first surface density) of basal plane dislocations on the main surface of the silicon carbide substrate, the surface density (second surface density) of basal plane dislocations on the main surface of the silicon carbide epitaxial film, and the second surface. The value obtained by dividing the density by the first surface density and the conversion rate from the basal plane dislocation to the threading edge dislocation are shown. As shown in Table 1, in the silicon carbide substrate epitaxial substrate according to Sample 1-5, the values obtained by dividing the second surface density by the first surface density are 0.000152, 0.000157, 0.000006, and 0, respectively. 0.00001 and 0.012032. Further, in the silicon carbide substrate epitaxial substrate according to Sample 1-5, the conversion ratios obtained as values obtained by subtracting the second surface density from the first surface density by the first surface density were 99.9848%, 99.9843%, 99.99994%, 99.9989% and 98.7968%.
 以上の結果より、バッファ層を形成する工程の温度を1605℃とし、ドリフト層を形成する工程の温度を1640℃としたエピタキシャル成長条件(条件A)を用いて炭化珪素エピタキシャル基板を製造する場合は、バッファ層を形成する工程およびドリフト層を形成する工程の温度を共に1640℃としたエピタキシャル成長条件(条件B)を用いて炭化珪素エピタキシャル基板を製造する場合よりも、基底面転位を貫通刃状転位に転換する割合を高め、結果として、炭化珪素エピタキシャル膜における基底面転位の面密度を低減可能であることが確認された。 From the above results, when manufacturing a silicon carbide epitaxial substrate using epitaxial growth conditions (condition A) in which the temperature of the step of forming the buffer layer is 1605 ° C. and the temperature of the step of forming the drift layer is 1640 ° C., The basal plane dislocations are changed to threading edge dislocations, compared to the case of producing a silicon carbide epitaxial substrate using epitaxial growth conditions (condition B) in which the temperature of the buffer layer forming step and the drift layer forming step are both 1640 ° C. As a result, it was confirmed that the surface density of basal plane dislocations in the silicon carbide epitaxial film can be reduced.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
1 基底面転位、2 貫通刃状転位、10 炭化珪素基板、11 第1主面、12 第1主表面、13 第3主面、14 第2主表面、16 第1フラット、20 炭化珪素エピタキシャル膜、21 バッファ層(第1層)、22 ドリフト層(第2層)、25 第1基底面転位、26 第2基底面転位、27 第3基底面転位、35 第1貫通刃状転位、36 第2貫通刃状転位、37 第4基底面転位、100 炭化珪素エピタキシャル基板、101 第1方向、102 第2方向、103 第3方向、104 第4方向、105 第5方向、111 最大径、131 ドリフト領域、132 ボディ領域、133 ソース領域、134 コンタクト領域、136 酸化膜、137 層間絶縁膜、138 配線層、141 第1電極、142 第2電極、143 第3電極、200 製造装置、201 反応室、203 発熱体、204 石英管、205 断熱材、206 誘導加熱コイル、207 ガス導入口、208 ガス排気口、210 サセプタ、212 回転軸、300 炭化珪素半導体装置、A1 第1温度、A2 第2温度。 1 basal plane dislocation, 2 threading edge dislocation, 10 silicon carbide substrate, 11 first main surface, 12 first main surface, 13 third main surface, 14 second main surface, 16 first flat, 20 silicon carbide epitaxial film , 21 buffer layer (first layer), 22 drift layer (second layer), 25 first basal plane dislocation, 26 second basal plane dislocation, 27 third basal plane dislocation, 35 first threading edge dislocation, 36 th 2 threading edge dislocation, 37 4th basal plane dislocation, 100 silicon carbide epitaxial substrate, 101 first direction, 102 second direction, 103 third direction, 104 fourth direction, 105 fifth direction, 111 maximum diameter, 131 drift Region, 132 body region, 133 source region, 134 contact region, 136 oxide film, 137 interlayer insulating film, 138 wiring layer, 141 first electrode, 1 2 2nd electrode, 143 3rd electrode, 200 manufacturing equipment, 201 reaction chamber, 203 heating element, 204 quartz tube, 205 insulation, 206 induction heating coil, 207 gas inlet, 208 gas exhaust, 210 susceptor, 212 rotations Axis, 300 silicon carbide semiconductor device, A1 first temperature, A2 second temperature.

Claims (5)

  1.  炭化珪素基板と、
     前記炭化珪素基板上にある炭化珪素エピタキシャル膜とを備え、
     前記炭化珪素基板および前記炭化珪素エピタキシャル膜のポリタイプは、4Hであり、
     前記炭化珪素エピタキシャル膜は、前記炭化珪素基板と接する第1層と、前記第1層上にありかつ前記炭化珪素エピタキシャル膜の主表面を構成する第2層とを含み、
     前記炭化珪素基板と、前記第1層と、前記第2層とは、n型不純物を含み、
     前記第1層が含むn型不純物の濃度は、前記炭化珪素基板が含むn型不純物の濃度より低く、かつ前記第2層が含むn型不純物の濃度より高く、
     前記炭化珪素基板の主表面には、第1面密度を有する基底面転位があり、
     前記炭化珪素エピタキシャル膜の主表面には、前記第1面密度よりも低い第2面密度を有する基底面転位があり、
     前記第2面密度を、前記第1面密度で除した値は、2/10000以下である、炭化珪素エピタキシャル基板。
    A silicon carbide substrate;
    A silicon carbide epitaxial film on the silicon carbide substrate,
    The polytype of the silicon carbide substrate and the silicon carbide epitaxial film is 4H,
    The silicon carbide epitaxial film includes a first layer in contact with the silicon carbide substrate, and a second layer on the first layer and constituting a main surface of the silicon carbide epitaxial film,
    The silicon carbide substrate, the first layer, and the second layer include an n-type impurity,
    The concentration of the n-type impurity included in the first layer is lower than the concentration of the n-type impurity included in the silicon carbide substrate and higher than the concentration of the n-type impurity included in the second layer,
    The main surface of the silicon carbide substrate has a basal plane dislocation having a first surface density,
    The main surface of the silicon carbide epitaxial film has a basal plane dislocation having a second surface density lower than the first surface density,
    The silicon carbide epitaxial substrate, wherein a value obtained by dividing the second surface density by the first surface density is 2/10000 or less.
  2.  前記炭化珪素エピタキシャル膜の主表面の最大径は、150mm以上である、請求項1に記載の炭化珪素エピタキシャル基板。 The silicon carbide epitaxial substrate according to claim 1, wherein the maximum diameter of the main surface of the silicon carbide epitaxial film is 150 mm or more.
  3.  前記第2面密度を、前記第1面密度で除した値は、1/10000以下である、請求項1または請求項2に記載の炭化珪素エピタキシャル基板。 3. The silicon carbide epitaxial substrate according to claim 1, wherein a value obtained by dividing the second surface density by the first surface density is 1/10000 or less.
  4.  前記第2面密度は、1cm-2以下である、請求項1~請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板。 The silicon carbide epitaxial substrate according to any one of claims 1 to 3, wherein the second areal density is 1 cm -2 or less.
  5.  請求項1~請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板を準備する工程と、
     前記炭化珪素エピタキシャル基板を加工する工程と、を備える、炭化珪素半導体装置の製造方法。
    Preparing a silicon carbide epitaxial substrate according to any one of claims 1 to 4,
    And a step of processing the silicon carbide epitaxial substrate.
PCT/JP2017/032220 2016-12-27 2017-09-07 Silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device WO2018123148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253646 2016-12-27
JP2016-253646 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123148A1 true WO2018123148A1 (en) 2018-07-05

Family

ID=62707105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032220 WO2018123148A1 (en) 2016-12-27 2017-09-07 Silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device

Country Status (1)

Country Link
WO (1) WO2018123148A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190157395A1 (en) * 2017-11-17 2019-05-23 Infineon Technologies Ag Method for Forming a Semiconductor Device and a Semiconductor Device
JP2020068241A (en) * 2018-10-22 2020-04-30 株式会社東芝 Semiconductor device, substrate, and manufacturing method of semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004888A (en) * 2006-06-26 2008-01-10 Hitachi Metals Ltd Manufacturing method for silicon carbide semiconductor epitaxial substrate
JP2008074661A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate and method for producing the same
JP2009295728A (en) * 2008-06-04 2009-12-17 Hitachi Cable Ltd Silicon carbide semiconductor substrate and method of manufacturing the same
JP2011219299A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Process for manufacturing epitaxial single-crystal silicon carbide substrate
JP2013107788A (en) * 2011-11-18 2013-06-06 Central Research Institute Of Electric Power Industry Method for manufacturing silicon carbide wafer, silicon carbide wafer, silicon carbide semiconductor element, and power converting device
JP2014027028A (en) * 2012-07-25 2014-02-06 Mitsubishi Electric Corp SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE, METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
US20140054609A1 (en) * 2012-08-26 2014-02-27 Cree, Inc. Large high-quality epitaxial wafers
JP2015002207A (en) * 2013-06-13 2015-01-05 昭和電工株式会社 SiC EPITAXIAL WAFER AND MANUFACTURING METHOD THEREOF
JP2016166101A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Production of silicon carbide single crystal epitaxial wafer
WO2017018533A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Method for producing epitaxial silicon carbide single-crystal wafer
WO2017047350A1 (en) * 2015-09-16 2017-03-23 ローム株式会社 SiC EPITAXIAL WAFER, SiC EPITAXIAL WAFER PRODUCTION DEVICE, SiC EPITAXIAL WATER PRODUCTION METHOD, AND SEMICONDUCTOR DEVICE
WO2017094764A1 (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Silicon carbide epitaxial substrate and silicon carbide semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004888A (en) * 2006-06-26 2008-01-10 Hitachi Metals Ltd Manufacturing method for silicon carbide semiconductor epitaxial substrate
JP2008074661A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate and method for producing the same
JP2009295728A (en) * 2008-06-04 2009-12-17 Hitachi Cable Ltd Silicon carbide semiconductor substrate and method of manufacturing the same
JP2011219299A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Process for manufacturing epitaxial single-crystal silicon carbide substrate
JP2013107788A (en) * 2011-11-18 2013-06-06 Central Research Institute Of Electric Power Industry Method for manufacturing silicon carbide wafer, silicon carbide wafer, silicon carbide semiconductor element, and power converting device
JP2014027028A (en) * 2012-07-25 2014-02-06 Mitsubishi Electric Corp SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE, METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE
US20140054609A1 (en) * 2012-08-26 2014-02-27 Cree, Inc. Large high-quality epitaxial wafers
JP2015002207A (en) * 2013-06-13 2015-01-05 昭和電工株式会社 SiC EPITAXIAL WAFER AND MANUFACTURING METHOD THEREOF
JP2016166101A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Production of silicon carbide single crystal epitaxial wafer
WO2017018533A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Method for producing epitaxial silicon carbide single-crystal wafer
WO2017047350A1 (en) * 2015-09-16 2017-03-23 ローム株式会社 SiC EPITAXIAL WAFER, SiC EPITAXIAL WAFER PRODUCTION DEVICE, SiC EPITAXIAL WATER PRODUCTION METHOD, AND SEMICONDUCTOR DEVICE
WO2017094764A1 (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Silicon carbide epitaxial substrate and silicon carbide semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190157395A1 (en) * 2017-11-17 2019-05-23 Infineon Technologies Ag Method for Forming a Semiconductor Device and a Semiconductor Device
US11107893B2 (en) * 2017-11-17 2021-08-31 Infineon Technologies Ag Method for forming a semiconductor device and a semiconductor device
US20210359087A1 (en) * 2017-11-17 2021-11-18 Infineon Technologies Ag Method for Forming a Semiconductor Device and a Semiconductor Device
DE102017127169B4 (en) 2017-11-17 2022-01-27 Infineon Technologies Ag PROCESS FOR MANUFACTURING A SEMICONDUCTOR DEVICE
JP2020068241A (en) * 2018-10-22 2020-04-30 株式会社東芝 Semiconductor device, substrate, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP6798293B2 (en) Method for manufacturing silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP6856156B2 (en) Method for manufacturing silicon carbide epitaxial substrate and silicon carbide semiconductor device
WO2017056691A1 (en) Method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, and silicon carbide epitaxial substrate manufacturing device
WO2017138247A1 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US10811500B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
US10825903B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
WO2018123148A1 (en) Silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device
JP7415558B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6891758B2 (en) Method for manufacturing silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP6233555B1 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
CN112074928B (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
WO2020039684A1 (en) Manufacturing method of silicon carbide epitaxial substrate, and manufacturing method of silicon carbide semiconductor device
WO2020039745A1 (en) Manufacturing method of silicon carbide epitaxial substrate, and manufacturing method of silicon carbide semiconductor device
WO2020115951A1 (en) Silicon carbide epitaxial substrate and silicon carbide semiconductor device
JP6090552B1 (en) Method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and device for manufacturing silicon carbide epitaxial substrate
JP6590116B2 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6061060B1 (en) Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP2020009940A (en) Manufacturing method for silicon carbide epitaxial substrate and manufacturing method for silicon carbide semiconductor device
JP2020009941A (en) Manufacturing method for silicon carbide epitaxial substrate and manufacturing method for silicon carbide semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP