WO2018121789A1 - 一种纤维织物复合材料结构件及其制备的汽车骨架和方法 - Google Patents

一种纤维织物复合材料结构件及其制备的汽车骨架和方法 Download PDF

Info

Publication number
WO2018121789A1
WO2018121789A1 PCT/CN2017/120419 CN2017120419W WO2018121789A1 WO 2018121789 A1 WO2018121789 A1 WO 2018121789A1 CN 2017120419 W CN2017120419 W CN 2017120419W WO 2018121789 A1 WO2018121789 A1 WO 2018121789A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
structural member
fiber fabric
composite
ring
Prior art date
Application number
PCT/CN2017/120419
Other languages
English (en)
French (fr)
Inventor
张春
Original Assignee
郑州吉田专利运营有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611268639.3A external-priority patent/CN108263496A/zh
Priority claimed from CN201611268638.9A external-priority patent/CN108262983A/zh
Priority claimed from CN201611268669.4A external-priority patent/CN108263497A/zh
Priority claimed from CN201710104737.1A external-priority patent/CN108262984A/zh
Priority claimed from CN201710332513.6A external-priority patent/CN108860333A/zh
Application filed by 郑州吉田专利运营有限公司 filed Critical 郑州吉田专利运营有限公司
Priority to JP2019536154A priority Critical patent/JP7378782B2/ja
Publication of WO2018121789A1 publication Critical patent/WO2018121789A1/zh
Priority to JP2022089970A priority patent/JP7364274B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof

Definitions

  • the invention relates to the technical field of application of fiber fabric composite materials, in particular to a fiber fabric composite material structural member and an automobile skeleton and method thereof.
  • Carbon fiber has high strength, high temperature resistance, corrosion resistance, fatigue resistance, light weight, and can withstand large tensile forces, which are significantly higher than steel and aluminum. It is a typical high-performance fiber that has an overwhelming advantage over traditional metal materials.
  • carbon fiber is usually added as a reinforcing material to materials such as resin, metal, ceramics, concrete, etc. to form a carbon fiber composite material, and carbon fiber composite materials are used in many fields.
  • Carbon fiber is a fibrous carbon material with a carbon content of more than 90%. It has high strength and elastic modulus. Carbon fiber composites can be made through matrix, fiber selection, carbon fiber content and distribution optimization. A variety of high performance components that meet the requirements of many fields.
  • the structure of the automobile frame is generally a frame type frame and a carrier frame, and the frame type frame welds or rives the thick steel beam into a steel frame, and then installs an engine and a suspension on the steel frame.
  • the frame, the body and other components, the steel girders of the beam type frame are heavy in weight, the weight of the frame occupies a considerable part of the total weight of the whole vehicle; the load-bearing frame is made of steel (more advanced aluminum) by stamping and welding.
  • the requirements for design and production process are very high, the quality of the product is not easy to control, the production process is cumbersome, and the rigidity of the entire frame structure is insufficient.
  • the lightweight of the car can reduce the quality of the car's maintenance, not only can save raw materials, reduce the cost of car production, but also reduce fuel consumption, energy saving and environmental protection. Therefore, people began to try to replace the material of the previous frame parts with a lighter and stronger composite material.
  • carbon fiber in carbon fiber composite material can withstand a large pulling force.
  • the resin is under pressure.
  • the existing material is not supported by the tubular inner part. If the plate shape is too small, the thickness is too small, the torque is small, and the carbon fiber can not be fully utilized.
  • the advantage of a large tensile force it is necessary to study how to fully utilize the advantages of the carbon fiber to withstand the tensile force. For this reason, it is a great problem to make a carbon fiber composite material into a lightweight structural member to withstand a large pulling force.
  • carbon fiber composites are not suitable for rapid production and are an important reason for hindering the development of carbon fiber composites.
  • the present invention has been made to solve the above problems, and provides a carbon fiber textile composite structural member and an automobile skeleton and method thereof.
  • a fiber fabric composite structural member is formed into a tubular shape, and the tubular structural member is a fiber fabric composite honeycomb tube supported by a fiber woven composite material; wherein the fiber woven composite material has a straight weave and a twill weave.
  • honeycomb cells of the composite honeycomb tube are filled with a sandwich structural material or a fiber composite tube or a hollow support.
  • the honeycomb-filled sandwich structure material of the composite honeycomb tube is a core material filled with a sandwich structure material in the honeycomb hole of the composite honeycomb tube.
  • the fiber fabric composite honeycomb tube is characterized in that at least two single spirally wound members are closely attached to form a bundle of spirally wound members, and the single spirally wound member is a core material surface of the sandwich structure material spirally wound with a fiber fabric composite material strip, and the rear wound fiber
  • the fabric composite material has a fiber-woven composite material tape wound with a compression portion, and the spirally wound fiber fabric composite material tape constitutes a spirally wound fiber fabric composite honeycomb tube.
  • the fiber woven composite honeycomb tube supported by the fiber woven composite material refers to a laminated fiber woven composite material which is stitched by a suture, and is supported radially by a suture as a support shaft to form a star-shaped support structure.
  • a fibrous fabric composite honeycomb tube is formed between the star-supported fiber fabric composites.
  • the fiber fabric composite material support refers to a laminated fiber fabric composite material which is stitched by a suture, and a part of the laminated fiber fabric composite material is wrapped into a wrap tube to form a wrapped tube support which is radially connected by a suture as a support shaft.
  • the other part of the laminated fiber fabric composite material stitched by the suture is radially supported by the suture as a support axis, and constitutes a composite support of the radiation and the wrapping tube.
  • the fiber fabric composite honeycomb tube supported by the fiber fabric composite material refers to a laminated fiber fabric composite material which is stitched by a suture, which is respectively wrapped into a wrapping tube, and constitutes a wrapping tube which is radially connected by a suture as a supporting shaft. support.
  • the fiber fabric composite honeycomb tube supported by the fiber fabric composite refers to a laminated fiber fabric composite material which is stitched by a suture, and each N layer is a set of layers, wherein N ⁇ 2, each group of layers is radially extended. After a period of time, the stacks of each group are separately extended in N directions to form N branches, and each branch is overlapped with the branches of the other groups, and then protruded to form a honeycomb support having a radial edge; Or suturing a wrap tube in the honeycomb support honeycomb hole, the fiber fabric composite supported fiber fabric composite honeycomb tube, referred to as a laminated fiber fabric composite material sewn by a suture, each N layer being a stack Layer, wherein N ⁇ 2, part of the stack of each group is wrapped into a wrap tube, and the remaining layers are radially extended and separated, and a plurality of branches are extended to form a plurality of branches, and each branch is respectively stacked with other groups.
  • the branches of the layers are stacked two by two and
  • the outer surface of the spirally wound fiber fabric composite honeycomb tube is spirally wound around the fiber fabric composite material strip, and the rear wound fiber fabric composite material is provided with a fiber-woven composite material strip wound in front of the pressed portion.
  • the outer surface of the spirally wound fiber fabric composite honeycomb tube is spirally wound around the fiber fabric composite material strip, and the rear wound fiber fabric composite material is provided with a fiber-woven composite material strip wound in front of the pressed portion.
  • the cross section of the honeycomb tube is centered on the axis, and the outer layer is a multi-layer honeycomb hole, and the outermost layer is a tube wall.
  • the fiber fabric composite material is bent from the support shaft to the outside of the pipe wall, and then bent along the pipe wall to form a part of the pipe wall, so that the complete pipe wall and the supporting material inside thereof pass through the fiber bent along the pipe wall.
  • the fabric composite is integrally joined.
  • the fiber fabric composite material is supported by the support shaft to the outside of the pipe wall, and then bent along the pipe wall to be combined with the pipe wall.
  • the pipe wall is a spirally wound fiber fabric composite material band, which is combined with the pipe wall and bent along the pipe wall.
  • the fiber fabric composite is adhered to the spirally wound fiber fabric composite tape.
  • the pipe wall is continuously extended as a component of the structural member to be externally connected, so that the force of the external connecting member can be transmitted to the supporting material.
  • the fiber fabric composite material is supported from the support shaft to the outside of the pipe wall and then bent along the pipe wall to form a part of the pipe wall. When bent to extend to the support material of the pipe wall, the fiber material is extended together with the support material. The force of the external connecting member can be transmitted to the pipe wall and the supporting material therein.
  • the number of support shafts in the pipe wall is at least two, and the support shafts are supported by the fiber composite material.
  • the outer contour shapes of the cross sections of the structural members at different portions along the axis of the tube are different, or the outer contour shapes are the same but different in size.
  • the tubular structural member has a branch shape, a "Y” letter branch shape, a "T” letter branch shape or a "ten” word branch shape, and the tubular structure member main pipe is connected not only to the pipe wall but also to the support shaft in the pipe. Also connected.
  • the structural member constitutes an integral three-dimensional frame structure.
  • the integral three-dimensional frame structure is a single spiral wound member or a ring-shaped sandwich structure material or an annular fiber composite material tube or an annular hollow support member in a honeycomb hole of a star-shaped support in a honeycomb tube, and the fiber fabric is a carbon fiber fabric. Forming the overall skeleton of the carbon fiber fabric composite.
  • the carbon fiber woven fabric composite skeleton has at least two support shafts in the same cross section, and the support shafts are supported by the fiber woven composite material.
  • the carbon fiber fabric composite material frame is an automobile skeleton, an aircraft skeleton, a train skeleton and a container skeleton.
  • a drive shaft or support column prepared from the fiber fabric composite structural member.
  • a method for preparing a fiber fabric composite structural member comprising the steps of:
  • the core mold is corresponding to the honeycomb hole, and the core mold is a sandwich structural material or a fiber composite material tube or a hollow support member;
  • the tube wall needs to be extended as a connecting member, the prepreg sheet is left uncovered on the outer side of the core mold column, and the rest is wrapped on the outer side of the core mold column.
  • the tube wall prepreg which is required as a connector, overlaps with the supporting prepreg extending out of the tube wall to extend out of the tube wall.
  • the superposed prepregs that together extend out of the wall are stitched together and inserted into the cooperating outer molds to continue the other steps.
  • the core mold in the step 2) is prepared by foam molding of a foam in a mold.
  • a method for preparing an overall three-dimensional frame structure of a carbon fiber fabric composite structural member comprising: the following steps:
  • a single-ring annular rigid foam inner core frame is separately formed according to the shape of each single-ring annular frame, and a single-ring rigid foam inner core frame is included as needed, and a solid multi-ring hard is also produced as needed.
  • the inner core frame of the foamed inner core frame comprises a single-ring rigid foam inner core frame
  • the hollow multi-ring rigid foam inner core frame comprises a single-ring rigid foam inner core frame
  • the frame contains a single-ring rigid foam core frame;
  • each annular rigid foam core frame with a continuous carbon fiber fabric prepreg to form a single-ring carbon fiber fabric prepreg composite structural member; including a solid multi-ring carbon fiber fabric composite structure as needed Single-ring carbon fiber fabric prepreg composite structural member, hollow multi-ring carbon fiber fabric composite structural member comprising single-ring carbon fiber fabric prepreg composite structural member and partial hollow multi-ring carbon fiber textile composite structural member Single-ring carbon fiber fabric prepreg composite structural member;
  • the stitched laminated prepreg is shaken, and the honeycomb hole formed by the prepreg is corresponding to the single ring annular frame of the mandrel according to the three-dimensional figure, and the single ring annular frame is inserted into the corresponding honeycomb hole, and the outer side is inserted into the corresponding honeycomb hole.
  • the prepreg is coated on the outside of the core mold column;
  • a carbon fiber woven fabric composite structural member wherein the carbon fiber woven fabric composite structural member has a ring shape, the inner core is an annular rigid foam material, and the outer surface of the annular rigid foam material is wound with a carbon fiber woven fabric composite material to form a single ring.
  • Carbon fiber fabric composite structural parts wherein the carbon fiber woven fabric composite structural member has a ring shape, the inner core is an annular rigid foam material, and the outer surface of the annular rigid foam material is wound with a carbon fiber woven fabric composite material to form a single ring.
  • the carbon fiber woven fabric composite structural member, the single-ring carbon fiber woven fabric composite structural member is bundle-shaped, and the number of single-ring carbon fiber woven fabric composite structural members in the bundle is at least two, and a bundle of single-ring carbon fiber woven fabric composite structure
  • the outer surface of the piece is wound with a carbon fiber fabric composite material to form a multi-ring carbon fiber fabric composite structural member.
  • the carbon fiber woven fabric composite material of the outer surface of the multi-ring carbon fiber woven fabric composite structural member is filled with a single-ring carbon fiber woven fabric composite structural member, and constitutes a solid multi-ring carbon fiber woven fabric composite structural member.
  • the carbon fiber woven fabric composite structural member, the multi-ring carbon fiber woven fabric composite structural member is composed of a carbon fiber woven composite material, a single-ring carbon fiber woven fabric composite structural member and a cavity which are externally wound from the outside to the inside, and constitute a hollow multi-layer. Ring carbon fiber fabric composite structural member.
  • the multi-ring carbon fiber woven fabric composite structural member is a cavity along an axial portion, and constitutes a partial hollow multi-ring carbon fiber woven fabric composite structural member.
  • the multi-ring carbon fiber woven fabric composite structural member is collectively referred to as a carbon fiber woven fabric composite structural member ring, and the carbon fiber woven fabric composite structural member ring is combined into a frame, and the carbon fiber woven fabric composite structural member ring adjacent to the bundle portion is adjacently contacted in the frame
  • the outer surface is wrapped with a carbon fiber fabric composite.
  • the carbon fiber fabric composite frame, the carbon fiber fabric composite frame is an unclosed structure.
  • a method for preparing a frame of a carbon fiber fabric composite structural member comprising the steps of:
  • a single-ring annular rigid foam inner core frame is separately formed according to the shape of each single-ring annular frame, and a single-ring rigid foam inner core frame is included as needed, and a solid multi-ring hard is also produced as needed.
  • the inner core frame of the foamed inner core frame comprises a single-ring rigid foam inner core frame
  • the hollow multi-ring rigid foam inner core frame comprises a single-ring rigid foam inner core frame
  • the frame contains a single-ring rigid foam core frame;
  • each annular rigid foam core frame with a continuous carbon fiber fabric prepreg to form a single-ring carbon fiber fabric prepreg composite structural member; including a solid multi-ring carbon fiber fabric composite structure as needed Single-ring carbon fiber fabric prepreg composite structural member, hollow multi-ring carbon fiber fabric composite structural member comprising single-ring carbon fiber fabric prepreg composite structural member and partial hollow multi-ring carbon fiber textile composite structural member Single-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the solid multi-ring carbon fiber fabric composite structural member is combined into a bare solid multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare solid multi-ring carbon fiber fabric is pre-impregnated
  • the outer surface of the composite material structural member is wound with a continuous carbon fiber fabric prepreg to form a solid multi-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the hollow multi-ring carbon fiber fabric composite structural member is combined into a bare hollow multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare hollow multi-ring carbon fiber fabric is pre-impregnated
  • the outer surface of the composite material structural member is wound with a continuous carbon fiber fabric prepreg to form a hollow multi-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the partial hollow multi-ring carbon fiber fabric prepreg composite structural member is combined into a bare partial hollow multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare portion is hollow
  • the outer surface of the bundle of the multi-ring carbon fiber fabric prepreg composite material is wound with a continuous carbon fiber fabric prepreg to form a partially hollow multi-ring carbon fiber fabric prepreg composite structural member;
  • One or more combinations of four kinds of composite structural members are frames, and the outer surface of the adjacent contact forming the bundle portion is wound with a carbon fiber fabric prepreg to form a carbon fiber fabric prepreg composite material frame;
  • the carbon fiber fabric prepreg composite material frame is placed in a mold for heat curing and demoulding, that is, a carbon fiber fabric composite material frame.
  • the method for preparing a frame of the carbon fiber fabric composite structural member wherein the carbon fiber fabric composite material frame is an automobile skeleton, an aircraft skeleton, a train skeleton and a container skeleton.
  • a carbon fiber woven fabric composite automobile skeleton characterized in that: the chassis of the automobile skeleton is a laminated fiber woven composite material stitched by a suture, a radial support structure with a suture as a support shaft, and a fiber fabric supported by a star shape
  • a carbon fiber fabric composite honeycomb tube is formed between the composite materials; the carbon fiber fabric composite honeycomb tube is coated with a single spiral wound member, and the single spiral wound member is a core material surface spirally wound fiber fabric composite material strip of the sandwich structural material, and the rear wound fiber
  • the fabric composite material has a fiber-woven composite material tape wound in a pre-compressed portion;
  • the body skeleton is: the fiber-woven composite honeycomb tube, at least two single spiral-wound members are closely attached to form a spirally wound member bundle, and the spirally wound member bundle is
  • the spirally wound fiber fabric composite material belt constitutes a spirally wound carbon fiber fabric composite honeycomb tube;
  • the chassis is a chassis girder, the body frame is
  • the invention relates to the fibrous fabric composite material as a tubular structural member supported by a honeycomb, so that the force of the prepared structural member is distributed on the branches of the honeycomb when the force is applied, and is evenly distributed on the structural member.
  • the overall strength of the structural member is enhanced.
  • the ordinary carbon fiber composite material can withstand a very high pressure, but the ability to withstand pressure is poor.
  • the inner support of the structural member is supported by a honeycomb carbon fiber fabric composite material, so that the structural member can be made. To a certain extent, it is subjected to pressure, which increases the force range and force direction of the structural member.
  • the invention supports the structural member to support the honeycomb shape, reduces the material and weight compared with the solid structural member, saves the cost, and has stronger force bearing capability than the hollow structural member.
  • Carbon fiber can withstand a large pulling force and will not be deformed, but if it is solid, it will not only waste material, increase weight, but also improve performance. Therefore, the present invention fills the honeycomb rod with a rigid foam material to achieve optimum.
  • the carbon fiber is subjected to a large tensile force; the automobile and the like prepared by using the carbon fiber fabric wound structural member are light in weight and high in strength, and further, can be molded by a ring-wound packaging machine, and is suitable for mechanized production.
  • Figure 1 is a schematic view 1 of a radial support.
  • FIG. 2 is a schematic structural view 2 of a radial support.
  • Figure 3 is a schematic view 3 of the radial support.
  • FIG. 4 is a schematic structural view 4 of a radial support.
  • Figure 5 is a schematic view 1 of the composite support of the radiation and the wrapped tube.
  • Figure 6 is a schematic view 2 of the composite support of the radiation and the wrapped tube.
  • Figure 7 is a schematic view of the structure of the wrapped tubular support.
  • Fig. 8 is a schematic structural view 1 of a radial support with a mold.
  • Fig. 9 is a schematic structural view 2 of a radial support with a mold.
  • Figure 10 is a schematic view showing the structure of the composite support of the radiation and the wrapped tube with the mold.
  • Figure 11 is a schematic view showing the structure of a wrapped tubular support with a mold.
  • Figure 12 is a schematic structural view 1 of a body frame.
  • Figure 13 is a schematic structural view 2 of the body frame.
  • Figure 14 is a schematic view showing the structure of the annular skeleton support.
  • Fig. 15 is an enlarged schematic view showing a portion A of Fig. 13.
  • Figure 16 is a schematic view 1 of a fiber composite joint structure.
  • Figure 17 is a schematic view 2 of a fiber composite joint structure.
  • Figure 18 is a schematic structural view 3 of the body frame.
  • Figure 19 is a schematic structural view 1 of a hollow strip support block.
  • Figure 20 is a schematic structural view 2 of a hollow strip support block.
  • Figure 21 is a schematic view showing the structure of a honeycomb tube of a multilayer honeycomb hole.
  • Figure 22 is a schematic view showing the structure of two star-shaped honeycomb tubes.
  • Figure 23 is a schematic view showing the structure of three star-shaped honeycomb tubes.
  • Figure 24 is a schematic enlarged view of a portion B of Figure 12.
  • Figure 25 is a schematic view showing the structure of an automobile skeleton.
  • Figure 26 is a section of a single-ring carbon fiber fabric composite structural member.
  • Figure 27 is a section of a solid multi-ring carbon fiber fabric composite structural member.
  • Figure 28 is a section of a hollow multi-ring carbon fiber fabric composite structural member.
  • Figure 29 is a schematic view showing the appearance of an automobile skeleton.
  • Figure 30 is a partial cross-sectional structural view of a car skeleton.
  • Figure 31 is a cross-sectional structural view showing the thicker portion of the column of Figure 29B.
  • Figure 32 is a cross-sectional structural view showing a thinner portion of the column of Figure 29B.
  • a fiber woven composite structural member is formed into a tubular shape, and the tubular structural member is a fiber woven composite honeycomb tube supported by a fiber woven composite material; Materials include straight weave and twill weave, which are carbon or glass fibers.
  • the honeycomb cells of the composite honeycomb tube are filled with a sandwich structural material or a fiber composite tube or a hollow support.
  • the sandwich structural material is mainly a rigid foam material, which may be a rigid foam plastic, and the rigid structural foam material mainly includes PVC, PEI, PU, PET, PMI, AIREX, DIAB, 3A, STRUCELL, ROHACELL, etc., and also includes hard
  • the fiber composite material tube may be a carbon fiber braided composite material tube or a carbon fiber wound composite material tube;
  • the hollow support member may be a hollow plastic thin wall support member or a hollow metal thin wall support member, a hollow plastic
  • the thin wall support can be a blow molded part.
  • the fiber woven composite honeycomb tube supported by the fiber woven composite material refers to a laminated fiber woven composite material which is suture-stitched and supported by a suture as a support axis to form a star. a support structure, and then the outer layer of the star-shaped support structure is coated with a layer of fiber woven composite material as a pipe wall to form a honeycomb tube, and the hole formed by the star-shaped support structure is a honeycomb hole, and of course, the star-shaped support structure and the pipe wall A honeycomb hole is formed.
  • the fiber fabric composite material support refers to a laminated fiber fabric composite material which is stitched by a suture thread, and a part of the laminated fiber fabric composite material is wrapped into a wrap tube, which is supported by a suture.
  • the shaft is radially connected to the wrapped tube, and the other portion is a suture-stitched laminated fiber fabric composite material, which is supported radially by a suture thread to form a composite support of the radiation and the wrapping tube.
  • the radial support or the composite support of the radiation and the wrapping tube enables the structural member to transmit the force to the entire support through the radial laminated branch connected to the pipe wall when the force is applied, so that the force is evenly distributed on the structural member.
  • the distribution avoids the deformation or breakage of the structural parts due to the unbalanced force; the support is made into a radial shape and has stronger endurance strength than the hollow tube, and the material is saved compared with the solid tube, thereby saving cost.
  • the fiber fabric composite honeycomb tube supported by the fiber fabric composite material refers to a laminated fiber fabric composite material which is stitched by a suture, which is respectively wrapped into a wrapping tube, and is formed by using a suture as a support axis.
  • the radially connected wrap tube support 107 is then coated with a layer of fiber woven composite material as the tube wall 207 on the outer layer of the star-shaped support structure to form a honeycomb tube; the tube supported by the wrap tube is used as a drive shaft or a support column, To a large extent, the strength of the transmission shaft or the support column is increased, making it difficult to bend or break.
  • the fiber fabric composite honeycomb tube supported by the fiber fabric composite refers to a laminated fiber fabric composite material which is stitched by a suture, and each N layer is a set of layers, wherein N ⁇ 2, each After the stack of the stack is radially extended, the stack of each group is separately extended in N directions to form N branches, and each branch is overlapped with the branches of the other groups and protruded to form an edge.
  • each The N layer is a set of laminations, wherein N ⁇ 2, part of the lamination of each group is wrapped into a wrap tube, and the remaining layers are radially extended and separated, and extended to form a plurality of branches, each branch The roads are respectively stacked on the branches of the other groups and protruded to form a honeycomb support which is radially curved. As shown in Fig.
  • the cross section of the honeycomb tube is centered on the axis, and the multilayer honeycomb hole 16 is formed outward, and the outermost layer is the pipe wall 15.
  • the honeycomb tube including the multi-layer honeycomb hole 16 can be applied as a transmission shaft or a support column, which not only has the advantage of light weight, but also can transmit the force through the radial branch of the edge when the tube wall 15 is stressed. The force is evenly distributed throughout the support.
  • This honeycomb support can reduce the force on the pipe wall.
  • the carbon fiber fabric composite with radial edges is under the same force.
  • the wall of the honeycomb support is not easily bent and deformed, which prolongs the service life of the drive shaft or the support column.
  • the fiber woven composite material is bent from the support shaft to the pipe wall 201 and then along the pipe wall 201, and is combined with the pipe wall to form a part of the pipe wall, so that the entire pipe wall and its internal support material 101 pass.
  • the fiber fabric composite that is bent along the tube wall is integrally joined.
  • the fiber fabric composite material is extended to the pipe wall and bent along the pipe wall, and the force applied to the pipe wall can be transmitted to the fiber fabric composite material support member in the pipe, thereby enhancing the force capacity of the pipe material.
  • the pipe wall continues to protrude from the pipe wall as a component for external connection of the structural member, so that the force of the external connecting component can be transmitted to the supporting material, so that the supporting material is generally stressed and improved.
  • the mechanical strength of the structural member As shown in Fig. 2, the inner support shaft 102 is radially supported, and the inner support shaft 102 has two ends projecting from the wall 202 to form two externally connected members 302. As shown in Fig. 6, the inner support shaft 106 is a radiation-package.
  • the rolled tube composite support, the inner support shaft 106 has two ends extending from the pipe wall 206 to form two externally connected members 306; as shown in FIG.
  • one end of the inner support shaft 103 extends out of the pipe wall 203, and the structural member comprises An externally connected member 303, as shown in Fig. 5, is provided with a radiation-wrap tube composite support, and one end of the inner support shaft 105 extends out of the tube wall 205 to form an externally connected member 305.
  • the fibrous web composite extends from the support shaft 104 to the tube wall 204 and is then bent along the tube wall 204 to form a portion of the tube wall which, when bent to extend beyond the support material of the tube wall,
  • the supporting material re-extends the wall of the pipe to form a member 304 which is externally connected to the structural member, so that the force of the external connecting member can be transmitted to the pipe wall and the supporting material therein, so that the overall force is uniform, thereby enhancing the receiving of the pipe.
  • Strength is
  • the number of support shafts in the pipe wall is at least two, and the support shafts are supported by the fiber composite material.
  • the plurality of support shafts can better ensure the uniformity of the force and improve the strength of the structural members.
  • the fiber-woven composite structural member may have two star-shaped supports, which constitute a honeycomb tube; as shown in FIG. 23, the fiber-woven composite structural member may have three star-shaped supports.
  • a honeycomb tube composed of two star-shaped supports 17 is formed by extending and bending the star-shaped support 17 .
  • a honeycomb tube structural member composed of three shape supports 19 the tube wall 20 is formed by bending three star-shaped supports 19.
  • the structural members may be designed such that the outer contour shapes of the cross sections at different portions along the axis of the tube are different, or the outer contour shapes are the same but different in size.
  • the honeycomb fiber hole of the fiber woven composite honeycomb tube 801 is disposed in a cross section of the support hole 802 in the direction of the support axis, and the support on the cross section can strengthen the axial force, so that the structural member is along The axial direction is not easily deformed or bent.
  • the tubular structural member can be designed as a branch shape, which is a "Y" letter branch shape, a "T" letter branch shape or a "ten” word branch shape, and the tubular structure member main pipe and the branch pipe are not only branched.
  • the pipe wall is connected, and the support shafts in the pipe are also connected, which means that the support shaft or the pipe wall fiber fabric is uninterrupted or the fiber fabric is stitched together; if the sandwich structure material or the fiber composite pipe is provided, the sandwich structure material is integrally formed.
  • the fiber composite tube is a fiber fabric that is uninterrupted.
  • the pipe wall and the star-shaped support of the main pipe and the branch pipe are respectively connected to each other, which can ensure that the main pipe and the branch pipe wall and the star-shaped support are integral structures, so that the internal and external force are consistent, and the internal and external force of the structural member is prevented from being inconsistent and misaligned, thereby causing deformation or damage.
  • the structural member constitutes an overall three-dimensional frame structure, which means that the structural member is branched by a "Y" letter, a "T” letter branch or a "ten” branch is connected to form an overall three-dimensional frame structure, for example, an off-road skeleton, a sedan. Skeleton, bus skeleton, helicopter skeleton, or passenger aircraft skeleton.
  • the integral three-dimensional frame structure is looped to assemble the required vehicle skeleton.
  • the ring-shaped vehicle skeleton 7 and the star-shaped supports in the annular support used in the ringing process can be combined, and the combined support shafts of the star-shaped supports are connected by a carbon fiber fabric composite material.
  • the wall of the combined star-shaped support is also an integral pipe wall; the ring-shaped vehicle skeleton 7 can be separated from the star-shaped support in the annular support used in the ringing process, as shown in FIG.
  • the support shafts of the star-shaped supports in the annular support are separated from each other to form a "Y" letter branch shape, a "T” letter branch shape or a "ten” word branch shape, which is also suitable for the overall three-dimensional frame structure;
  • the T" letter is branched or "ten” branched, and may be a shape in which the planar shape is curved to form a solid shape.
  • FIG. 12 is a complete vehicle skeleton 7 obtained by looping, and the annular support 9 used in the ringing process is shown in FIG. 14 , and the annular support 9 is a wound pipe made by heating and solidifying the fiber fabric composite material. Or a braided tube;
  • FIG. 13 is a vehicle skeleton 8 prepared by inserting, as shown in FIG. 15, a structural member 801 used on the entire vehicle frame 8 is provided with a supporting member 802 in the axial direction, and a support member is disposed on the structural member. Further enhance the mechanical strength of the vehicle.
  • a drive shaft or support column prepared from the above-mentioned fiber fabric composite structural member.
  • a method for preparing a fiber fabric composite structural member comprising the steps of:
  • the core mold is corresponding to the honeycomb hole, and the core mold is a sandwich structural material or a fiber composite material tube or a hollow support member;
  • the tube wall needs to be extended as a connecting member, the prepreg sheet is left uncovered on the outer side of the core mold column, and the rest is wrapped on the outer side of the core mold column.
  • the tube wall prepreg which is required as a connector, overlaps with the supporting prepreg extending out of the tube wall to extend out of the tube wall.
  • the superposed prepreg sheets that together extend out of the tube wall are sewn together and inserted into the cooperating outer molds to continue the other steps.
  • the core mold of the step 2) is prepared by foam molding a foam in a mold.
  • FIG. 8 to FIG. 11 are schematic views showing a structural part partially including a core mold and an outer mold during the preparation process of the pipe wall supporting structural member of the present invention.
  • the laminated prepreg 101 as a support is inserted into the mandrel 501, and then the laminate which protrudes from the mandrel is bent, and the fiber-woven composite material is coated as the pipe wall 201 in the outer layer, and then coated.
  • the fiber fabric composite of the core mold is inserted into the outer mold 601 and then heated and solidified; as shown in Fig. 9, the laminated prepreg 102 as a support is inserted into the core mold 502, and then partially protruded from the core mold 502.
  • the laminate is folded, and the laminate of the partially extended tube wall 202 protrudes together with the tube wall as a connecting member 302, and the outer layer is covered with the fiber woven composite material as the tube wall 202, and then the fiber woven composite material covering the core mold is covered.
  • the outer mold 602 is then heated and solidified; as shown in Fig. 10, the laminated prepreg 105 as a support is inserted into the core mold 505, and then the laminate which partially protrudes from the core mold 505 is wrapped into a wrapping tube.
  • the laminate extending partially from the wall 205 projects with the tube wall as a connecting member 305, and the outer layer is covered with the fiber woven composite material as the tube wall 205, and then the fiber woven composite material covering the core mold is placed over the outer mold 605.
  • the layer prepreg 107 is inserted into the core mold 507, and then the laminate which protrudes from the core mold 507 is wound into a wrap tube, and the outer layer is covered with the fiber woven composite material as the tube wall 207, and then the fiber covering the core mold 507 is coated.
  • the fabric composite is inserted into the outer mold 607 of the corresponding structure, which is then heated and solidified.
  • the whole vehicle skeleton is assembled by inserting a fiber woven composite structural member and a fiber woven composite joint; as shown in FIGS. 16 and 17, the carbon fiber composite joint 10 is provided with a plug connector. 11, the plug connector 11 is provided with a carbon fiber sticky hook 12, and the carbon fiber sticky hook 12 is reversely inclined in the plugging direction; the plug connector shown in Fig. 16 is a plurality of round tubes having the same outer diameter, in Fig. 17 The plug connector shown is a honeycomb tube with a plurality of radial support plates inside.
  • the plug connector is provided with a carbon fiber sticky hook, and the carbon fiber sticky hook is inclined in the opposite direction of the plugging direction, and the plug connector can be smoothly inserted into the insertion tube with soft fiber sticky hair inside, and when the reverse direction is pulled out, the carbon fiber is sticky.
  • the hook can hook the soft fiber sticky hair, thereby preventing the plug tube from falling off the plug connector, and the connection is firm, and the plug connector and the plug tube are not damaged.
  • the support between the plug connectors assembled into the skeleton of the whole vehicle is a hollow strip support
  • the carbon fiber hollow strip support block of FIG. 19 is used for the support of the straight portion
  • the carbon fiber hollow strip support block is used for the transition support of the curved portion
  • the carbon fiber hollow strip support block has a closed structure at both ends, and the center is a hollow structure
  • the hollow strip support is prepared from a carbon fiber fabric composite material. Under the premise of ensuring the structural strength, the material and weight are saved, and the cost is saved.
  • the whole vehicle skeleton is formed by an annular skeleton support loop prepared by a fiber fabric composite material, and the structural member supported by the annular skeleton is a fiber fabric composite structural member supported in a tube as a star-shaped support structure.
  • the annular frame is connected to the whole vehicle skeleton, and each ring is composed of a honeycomb structural member having a plurality of supporting structures therein to ensure the mechanical strength of the entire vehicle skeleton.
  • the preparation method of the complete vehicle skeleton prepared by the loop includes the following steps:
  • the wall prepreg is further coated with the skeleton support to form a pipe wall;
  • the honeycomb hole corresponding to the skeleton support in the step 8) refers to placing the shaken laminated prepreg into the skeleton support according to the cavity position in the three-dimensional structure, and then pre-impregnating the coated laminate.
  • the web is stitched at the intersection, and the skeleton is supported in the cavity to support the laminated prepreg.
  • the preparation method of the carbon fiber composite joint provided with the carbon fiber sticky hook is:
  • the organic fiber is subjected to thermal oxygen stabilization treatment to become a flame-resistant fiber, so that the fiber does not melt and burn under high-temperature carbonization, and the fiber state is maintained, and then the carbonization is performed at an elevated temperature in an inert atmosphere to lose the organic fiber.
  • Carbon and other non-carbon atoms form carbon fibers with carbon as the main component;
  • a cylindrical cavity is formed between the core mold and the foam plastic model, and a light alloy is cast into the cylindrical cavity, and the foam model is pyrolyzed and vaporized under the action of the liquid metal;
  • the honeycomb cells of all of the above composite honeycomb tubes are filled with a sandwich structural material or a fiber composite tube or a hollow support.
  • the sandwich structural material is mainly a rigid foam material, which may be a rigid foam plastic, and the rigid structural foam material mainly includes PVC, PEI, PU, PET, PMI, AIREX, DIAB, 3A, STRUCELL, ROHACELL, etc., and also includes hard
  • the fiber composite material tube may be a carbon fiber braided composite material tube or a carbon fiber wound composite material tube;
  • the hollow support member may be a hollow plastic thin wall support member or a hollow metal thin wall support member, a hollow plastic
  • the thin wall support can be a blow molded part.
  • the above rigid foam material may be expanded by foaming into the honeycomb hole to support the honeycomb cell wall.
  • a carbon fiber textile composite structural member as shown in FIGS. 25-28, the automobile skeleton of the frame 100 shown in FIG. 25 is composed of a carbon fiber textile composite structural member ring 110, and the carbon fiber textile composite structural member ring 110 may be a single-ring carbon fiber.
  • the fabric composite structural member 111 is as shown in Fig. 26.
  • the inner core of the single-ring carbon fiber woven composite structural member 111 is an annular rigid foam material 112, and the outer surface of the annular rigid foam material 112 is wound around the carbon fiber woven composite material 113.
  • the carbon fiber fabric composite material 113 is wrapped around the outer surface of the rigid foam material 112 like a ring wound wrapping machine; the carbon fiber fabric composite material 113 is a composite material of a carbon fiber fabric and a resin, a metal, etc., and a ring-shaped hard material;
  • the foam material 112 may be an integrally formed structure or a segmented spliced structure; the rigid foam material 112 may be a rigid foam such as polymethacrylimide (PMI), a rigid metal foam such as aluminum foam or the like.
  • PMI polymethacrylimide
  • the carbon fiber woven fabric composite structural member, the single-ring carbon fiber woven fabric composite structural member has a bundle shape as shown in FIG. 3, and the bundle of single-ring carbon fiber woven fabric composite structural members 111 has at least two, one bundle of single-ring carbon fibers.
  • the outer surface of the fabric composite 27 material structure is wound with a carbon fiber fabric composite material 113 (not shown in the figure for expressing the bundle structure) to constitute a multi-ring carbon fiber fabric composite structural member.
  • the outer-wound carbon fiber woven fabric composite material of the multi-ring carbon fiber woven fabric composite structural member is filled with a single-ring carbon fiber woven fabric composite structural member 111 to form a solid multi-ring carbon fiber woven composite structural member 120 as shown in FIG.
  • the multi-ring carbon fiber woven fabric composite structural member shown in Fig. 28 is a carbon fiber woven composite material 113 which is externally wound from the outside to the outside (for the purpose of expressing a bundle structure, not shown), a single-ring carbon fiber woven composite structural member 111
  • the cavity 131 constitutes a hollow multi-ring carbon fiber fabric composite structural member 130. The position of the cavity may be located at the axis of the hollow multi-ring carbon fiber fabric composite structural member or may be located at an axis offset from the hollow multi-ring carbon fiber fabric composite structural member.
  • the multi-ring carbon fiber woven fabric composite structural member is a cavity along an axial portion, and constitutes a partial hollow multi-ring carbon fiber woven fabric composite structural member. Part of the hollow multi-ring carbon fiber fabric composite structural part leaves the cavity to accommodate some parts.
  • the carbon fiber textile composite material frame prepared by the carbon fiber textile composite structural member, the single-ring carbon fiber textile composite structural member 111, the solid multi-ring carbon fiber textile composite structural member 120, and the hollow multi-ring carbon fiber textile composite structural member 130 And a partially hollow multi-ring carbon fiber fabric composite structural member, collectively referred to as a carbon fiber woven composite structural member ring 110, the carbon fiber woven composite structural member ring 110 is combined into a frame, and the carbon fiber woven fabric composited adjacent to the bundle portion in the frame
  • the outer surface of the material structural member ring is wound with a carbon fiber woven composite material (not shown in the figure for the purpose of expressing the bundle structure).
  • the single-ring carbon fiber fabric composite structural member, the solid multi-ring carbon fiber fabric composite structural member, the hollow multi-ring carbon fiber fabric composite structural member and the partial hollow multi-ring carbon fiber fabric composite structural member constituting the carbon fiber fabric composite material frame at least It is a kind, or it can be a mixed combination of different kinds.
  • the carbon fiber fabric composite frame, the carbon fiber fabric composite frame is an unsealed structure 140.
  • a cantilever structure may be generated at this time.
  • a method for preparing a frame of a carbon fiber fabric composite structural member comprising the steps of:
  • a single-ring annular rigid foam inner core frame is separately formed according to the shape of each single-ring annular frame, and a single-ring rigid foam inner core frame is included as needed, and a solid multi-ring hard is also produced as needed.
  • the inner core frame of the foamed inner core frame comprises a single-ring rigid foam inner core frame
  • the hollow multi-ring rigid foam inner core frame comprises a single-ring rigid foam inner core frame
  • the frame contains a single-ring rigid foam core frame;
  • each annular rigid foam core frame with a continuous carbon fiber fabric prepreg to form a single-ring carbon fiber fabric prepreg composite structural member; including a solid multi-ring carbon fiber fabric composite structure as needed Single-ring carbon fiber fabric prepreg composite structural member, hollow multi-ring carbon fiber fabric composite structural member comprising single-ring carbon fiber fabric prepreg composite structural member and partial hollow multi-ring carbon fiber textile composite structural member Single-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the solid multi-ring carbon fiber fabric composite structural member is combined into a bare solid multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare solid multi-ring carbon fiber fabric is pre-impregnated
  • the outer surface of the composite material structural member is wound with a continuous carbon fiber fabric prepreg to form a solid multi-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the hollow multi-ring carbon fiber fabric composite structural member is combined into a bare hollow multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare hollow multi-ring carbon fiber fabric is pre-impregnated
  • the outer surface of the composite material structural member is wound with a continuous carbon fiber fabric prepreg to form a hollow multi-ring carbon fiber fabric prepreg composite structural member;
  • the single-ring carbon fiber fabric prepreg composite structural member included in the partial hollow multi-ring carbon fiber fabric prepreg composite structural member is combined into a bare partial hollow multi-ring carbon fiber fabric prepreg composite structural member bundle, and the bare portion is hollow
  • the outer surface of the bundle of the multi-ring carbon fiber fabric prepreg composite material is wound with a continuous carbon fiber fabric prepreg to form a partially hollow multi-ring carbon fiber fabric prepreg composite structural member;
  • One or more combinations of four kinds of composite structural members are frames, and the outer surface of the adjacent contact forming the bundle portion is wound with a carbon fiber fabric prepreg to form a carbon fiber fabric prepreg composite material frame;
  • the carbon fiber fabric prepreg composite material frame is placed in a mold for heat curing and demoulding, that is, a carbon fiber fabric composite material frame.
  • the method for preparing a frame of the carbon fiber fabric composite structural member wherein the carbon fiber fabric composite material frame is an automobile skeleton, an aircraft skeleton, a train skeleton and a container skeleton.
  • a carbon fiber fabric composite automobile skeleton, as shown in FIG. 29 and FIG. 30, the bottom of the automobile skeleton, 1001 is a laminated fiber fabric composite material which is suture-stitched, and has a radial support structure with a suture as a support axis, and a star a carbon fiber fabric composite honeycomb tube is formed between the fiber fabric composite materials supported by the support;
  • the carbon fiber fabric composite honeycomb tube is coated with a single spiral wound member, and the single spiral wound member is a core material surface spiral wound fiber fabric composite material strip of the sandwich structural material a rear-wound fiber fabric composite material with a crimped portion of the front-wound fiber-woven composite material strip;
  • the body frame 1002 is: the fiber-woven composite honeycomb tube, at least two single spiral-wound members are closely attached to form a spiral wound member bundle
  • the spirally wound fiber fabric composite material bundle in the spirally wound member bundle constitutes a spirally wound carbon fiber fabric composite honeycomb tube;
  • the chassis is a chassis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Laminated Bodies (AREA)

Abstract

一种纤维织物复合材料结构件,该结构件的外形成管状,所述管状结构件为纤维织物复合材料支撑的纤维织物复合材料蜂窝管。将纤维织物复合材料制成蜂窝状支撑的管状结构件,可以使所制备的结构件在受力时,将所承受的力分布于蜂窝状的各个支路,均匀分布于结构件上,增强了结构件整体的受力程度,普通的碳纤维复合材料能够承受很强的压力,但是承受压力的能力较差,将结构件的管内支撑采用蜂窝状的碳纤维织物复合材料支撑,可以使结构件在一定程度上承受压力,增大了结构件的受力范围和受力方向。本发明将结构件支撑蜂窝状,较实心结构件减少了材料和重量,节约了成本,同时相较于空心结构件具有更强的受力能力。

Description

一种纤维织物复合材料结构件及其制备的汽车骨架和方法 技术领域
本发明涉及纤维织物复合材料应用技术领域,具体涉及一种纤维织物复合材料结构件及其制备的汽车骨架和方法。
背景技术
随着现代技术的迅猛发展,对材料提出了较高的要求,碳纤维具有高强度、耐高温、耐腐蚀、耐疲劳、质量轻、能够承受很大拉力等显著高于钢、铝等的特性,属于典型的高性能纤维,相对于传统的金属材料具有压倒性的优势。碳纤维除单独使用作为绝热保温材料外,通常作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成碳纤维复合材料,碳纤维复合材料在很多领域开始进行使用。
在全球节能减排的大环境下,汽车轻量化日渐成为趋势,塑料、复合材料等在汽车上的应用越来越广泛,采用纤维复合材料替代现有的金属结构,是实现减少汽车尾气污染并达到节能的有效途径。碳纤维是一种含碳量超过百分之九十的纤维状碳材料,具有很高的强度和弹性模量,碳纤维复合材料可以通过基体、纤维的选择、碳纤维含量和分布的优化设计,做成能够满足多种领域要求的各种高性能构件。
在传统汽车上,只有百分之一的汽油用于运送乘客,其余都用于汽车本身运动,用纤维复合材料取代钢铁,能使汽车重量减轻一半以上,减重效果比金属材料轻百分之五十,比铝材轻百分之三十,此外,纤维复合材料作为汽车部件具有轻质高强、可设计性好、零部件一体化、耐冲击性好、耐腐蚀性能好、易成型等优点。目前纤维复合材料在汽车刹车片、轮毂等零部件上得到了实际应用,在汽车整体骨架上的应用还较少出现。汽车、客车的车架都为立体框架,车架的作用是承受载荷,包括汽车自身零部件的重量和行驶时所受的冲击、扭曲、惯性力等。现有技术中,汽车车架结构一般为大梁式车架和承载式车架,大梁式车架将粗壮的钢梁焊接或铆合起来成为一个钢架,然后在这个钢架上安装引擎、悬架、车身等部件,大梁式车架的钢制大梁质量沉重,车架重量占去全车总重的相当部分;承载式车架由钢(较先进的是铝)经冲压、焊接而成,对设计和生产工艺的要求都很高,产品质量不易控制,生产工序繁琐,且整个车架结构刚性强度不足。
随着节能、环保逐渐成为汽车行业关注的重要课题,人们开始考虑汽车的轻量化发展。汽车的轻量化能够降低汽车的整备质量,不仅能够节约原材料,降低汽车生产成本,而且还能降低燃油油耗,节能环保。因此,人们开始尝试用更轻质、强度更好的复合材料代替以往车架构件的材料。
发明内容
碳纤维复合材料中碳纤维最大特点是能够承受很大的拉力,树脂承受压力,现有材料制成管状内部没有支撑,制成板状的话,由于板厚太小,产生力矩小,没有充分利用碳纤维能够承受很大拉力的优点,所以需要研究怎样充分发挥碳纤维承受拉力这一优点的方法。为此需要将碳纤维复合材料制成密度轻的结构件来承受很大拉力便成为了很大的难题。再者,碳纤维复合材料不太适合快速生产,也是阻碍碳纤维复合材料发展的重要原因。
本发明就是为了解决上述问题,提供一种碳纤维织物复合材料结构件及其制备的汽车骨架和方法。
本发明采用如下技术方案:
一种纤维织物复合材料结构件,该结构件的外形成管状,所述管状结构件为纤维织物复合材料支撑的纤维织物复合材料蜂窝管;其中的纤维织物复合材料有直纹编织和斜纹编织。
所述复合材料蜂窝管的蜂窝孔内填充夹层结构材料或者纤维复合材料管或者空心支撑件。复合材料蜂窝管的蜂窝孔内填充夹层结构材料就是复合材料蜂窝管的蜂窝孔内填充夹层结构材料的芯料。
所述纤维织物复合材料蜂窝管为,至少两个单个螺旋缠绕构件贴紧构成螺旋缠绕构件束,单个螺旋缠绕构件为,夹层结构材料的芯料表面螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带,螺旋缠绕纤维织物复合材料带构成螺旋缠绕纤维织物复合材料蜂窝管。
所述纤维织物复合材料支撑的纤维编织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑,形成星状支撑结构。星状支撑的纤维织物复合材料之间形成纤维织物复合材料蜂窝管。
所述纤维织物复合材料支撑,指由缝合线缝合的叠层纤维织物复合材料,部分叠层纤维织物复合材料包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑,另一部分由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑,构成放射与包卷管复合支撑。
所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,分别包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑。
所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每一组叠层呈放射状伸出一段后,每组的叠层分开向N个方向伸出形成N个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑;或者在所述蜂窝支撑的蜂窝孔内缝合包卷管,所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每组的叠层中部分分层包卷成包卷管,其余分层呈放射状伸出一段后分开,伸出形成多个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑。
所述螺旋缠绕纤维织物复合材料蜂窝管外表面,再螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带。
所述螺旋缠绕纤维织物复合材料蜂窝管外表面,再螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带。
所述蜂窝管的截面以轴心为中心,向外构成多层蜂窝孔,最外层为管壁。
所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,与管壁结合构成管壁的一部分,使完整管壁与其内部的支撑材料通过顺着管壁折弯的纤维织物复合材料整体连接。
所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,与管壁结合,管壁为螺旋缠绕纤维织物复合材料带,与管壁结合,顺着管壁折弯的纤维织物复合材料与螺旋缠绕纤维织物复合材料带粘贴一起。
所述纤维织物复合材料由支撑轴至管壁处后,继续伸出管壁,作为结构件对外连接的部件,使对外连接部件的受力能够传递至支撑材料。
所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,构成管壁的一部分,当折弯至伸出管壁的支撑材料后与该支撑材料共同再伸出管壁,使对外连接部件的受力能够传递至管壁和其内的支撑材料。
所述管壁内支撑轴的数量至少为2个,支撑轴之间由纤维织物复合材料连接支撑。
所述结构件沿管的轴线的不同部位的横截面的外轮廓形状不同,或者外轮廓形状相同但大小不同。
所述管状结构件为分支状,为“Y”字母分支状,“T”字母分支状或“十”字分支状,所述管状结构件主管与分支管不但管壁连接,而且管内的支撑轴也连接。
所述结构件构成整体立体框架结构。
所述整体立体框架结构,为蜂窝管内的星状支撑的蜂窝孔内为单个螺旋缠绕构件或者环状夹层结构材料或者环状纤维复合材料管或者环状空心支撑件,所述纤维织物为碳纤维织物,构成碳纤维织物复 合材料整体骨架。
所述碳纤维织物复合材料整体骨架,当同一横截面内支撑轴的数量至少为2个,支撑轴之间由纤维织物复合材料连接支撑。
所述碳纤维织物复合材料框架为汽车骨架、飞机骨架、火车骨架及集装箱骨架。
一种由所述纤维织物复合材料结构件制备的传动轴或者支撑柱。
一种纤维织物复合材料结构件的制备方法,包括以下步骤:
1)绘制所需结构件的三维图;
2)根据三维图制作结构件芯模的模具图并制作结构件芯模,该芯模对应蜂窝孔设芯模柱,所述芯模,为夹层结构材料或者纤维复合材料管或者空心支撑件;
3)根据三维图制作结构件外模的模具图并制作结构件外模;
4)根据三维图结构件中每个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
5)根据步骤4)的平面形状,裁剪纤维织物复合材料预浸料,同样,根据步骤4)和5)确定并裁剪管壁预浸料;
6)根据三维图确定预浸料的缝合线;
7)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
8)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
9)将缝合的叠层预浸料片抖开,按照三维图使预浸料片形成的蜂窝孔对应芯模的芯模柱,将芯模柱插入对应蜂窝孔中,外侧预浸料包覆在芯模柱外侧;
10)将管壁预浸料再将芯模包覆形成管壁;
11)将包覆管壁预浸料的芯模塞入外模;
12)将芯模加热、固化或者将外模加热、固化,或者同时将芯模和外模加热、固化,之后取出芯模、外模,即得所需结构件。
所述步骤9)中外侧预浸料片中需要伸出管壁作为连接件,预浸料片保留不包覆芯模柱外侧,其余包覆在芯模柱外侧。
所述需要作为连接件的管壁预浸料片与伸出管壁的支撑预浸料片叠合共同伸出管壁。
共同伸出管壁的叠合的预浸料片缝合在一起,塞入相互配合的外模中,继续其它步骤。
所述步骤2)中的芯模,由泡沫在模具中发泡成型制备而成。
一种碳纤维织物复合材料结构件制备整体立体框架结构的方法,其特征在于:包括以下步骤:
(1)绘制整体立体框架结构的三维制图;
(2)根据三维制图的框架分解环状框架,包括:单环框架,根据需要,还要继续分解实心多环框架包含的单环框架、空心多环框架包含的单环框架、部分空心多环框架包含的单环框架,统称为单环环状框架;
(3)根据每个单环环状框架的形状分别制作单环环状硬质泡沫材料内芯框架,根据需要,包括单环硬质泡沫材料内芯框架,根据需要,还制作实心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、空心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、部分空心硬质泡沫材料内芯多环框架包含的单环硬质泡沫材料内芯框架;
(4)将每个环状硬质泡沫材料内芯框架外表面缠绕连续碳纤维织物预浸料,构成单环碳纤维织物预浸料复合材料结构件;根据需要,包括实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件及部分空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件;
(5)根据三维图制作整体立体框架结构外模的模具图并制作外模;
(6)根据三维图结构件中各个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
(7)根据步骤4)的平面形状,裁剪纤维织物复合材料预浸料,同样,根据步骤4)和5)确定并裁剪管壁预浸料;
(8)根据三维图确定预浸料的缝合线;
(9)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
(10)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
(11)将缝合的叠层预浸料片抖开,按照三维图使预浸料片形成的蜂窝孔对应芯模的单环环状框架,将单环环状框架插入对应蜂窝孔中,外侧预浸料包覆在芯模柱外侧;
(12)将管壁预浸料再将芯模包覆形成管壁;
(13)将包覆管壁预浸料的芯模塞入外模;
(14)将芯模加热、固化或者将外模加热、固化,或者同时将芯模和外模加热、固化,之后取出芯模、外模,即得所需结构件。
一种碳纤维织物复合材料结构件,所述碳纤维织物复合材料结构件的形状是环状,内芯是环状硬质泡沫材料,环状硬质泡沫材料外表面缠绕碳纤维织物复合材料,构成单环碳纤维织物复合材料结构件。
所述的碳纤维织物复合材料结构件,所述单环碳纤维织物复合材料结构件为束状,束中单环碳纤维织物复合材料结构件的数量至少为两个,一束单环碳纤维织物复合材料结构件外表面缠绕碳纤维织物复合材料,构成多环碳纤维织物复合材料结构件。
所述的碳纤维织物复合材料结构件,所述多环碳纤维织物复合材料结构件的外表缠绕的碳纤维织物复合材料内部充实单环碳纤维织物复合材料结构件,构成实心多环碳纤维织物复合材料结构件。
所述的碳纤维织物复合材料结构件,所述多环碳纤维织物复合材料结构件由外至内以此为外表缠绕的碳纤维织物复合材料、单环碳纤维织物复合材料结构件、空腔,构成空心多环碳纤维织物复合材料结构件。
所述的碳纤维织物复合材料结构件,所述多环碳纤维织物复合材料结构件沿轴线部分为空腔,构成部分空心多环碳纤维织物复合材料结构件。
所述的碳纤维织物复合材料结构件制备的碳纤维织物复合材料框架,所述单环碳纤维织物复合材料结构件、实心多环碳纤维织物复合材料结构件、空心多环碳纤维织物复合材料结构件及部分空心多环碳纤维织物复合材料结构件,统称为碳纤维织物复合材料结构件环,所述碳纤维织物复合材料结构件环组合为框架,框架中相邻接触构成束状部分的碳纤维织物复合材料结构件环的外表面缠绕碳纤维织物复合材料。
所述的碳纤维织物复合材料框架,所述碳纤维织物复合材料框架是未封闭的结构。
一种碳纤维织物复合材料结构件制备框架的方法,包括以下步骤:
(1)绘制框架的三维制图;
(2)根据三维制图的框架分解环状框架,包括:单环框架,根据需要,还要继续分解实心多环框架包含的单环框架、空心多环框架包含的单环框架、部分空心多环框架包含的单环框架,统称为单环环状框架;
(3)根据每个单环环状框架的形状分别制作单环环状硬质泡沫材料内芯框架,根据需要,包括单环硬质泡沫材料内芯框架,根据需要,还制作实心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、空心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、部分空心硬质泡沫材料内芯多环框架包含的单环硬质泡沫材料内芯框架;
(4)将每个环状硬质泡沫材料内芯框架外表面缠绕连续碳纤维织物预浸料,构成单环碳纤维织物预浸料 复合材料结构件;根据需要,包括实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件及部分空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件;
(5)根据需要,
将实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸实心多环碳纤维织物预浸料复合材料结构件束,并将裸实心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成实心多环碳纤维织物预浸料复合材料结构件;
将空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸空心多环碳纤维织物预浸料复合材料结构件束,并将裸空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成空心多环碳纤维织物预浸料复合材料结构件;
将部分空心多环碳纤维织物预浸料复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸部分空心多环碳纤维织物预浸料复合材料结构件束,并将裸部分空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成部分空心多环碳纤维织物预浸料复合材料结构件;
(6)将单环碳纤维织物预浸料复合材料结构件、实心多环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物预浸料复合材料结构件、部分空心多环碳纤维织物预浸料复合材料结构件四种之一种或者多种组合为框架,框架中相邻接触构成束状部分的外表面缠绕碳纤维织物预浸料,构成碳纤维织物预浸料复合材料框架;
(7)将碳纤维织物预浸料复合材料框架置于模具加热固化,脱模,即为碳纤维织物复合材料框架。
所述的碳纤维织物复合材料结构件制备框架的方法,所述碳纤维织物复合材料框架为汽车骨架、飞机骨架、火车骨架及集装箱骨架。
一种碳纤维织物复合材料汽车骨架,其特征在于:所述汽车骨架的底盘为;由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑结构,星状支撑的纤维织物复合材料之间形成碳纤维织物复合材料蜂窝管;碳纤维织物复合材料蜂窝管包覆单个螺旋缠绕构件,单个螺旋缠绕构件为,夹层结构材料的芯料表面螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带;车身骨架为:所述纤维织物复合材料蜂窝管为,至少两个单个螺旋缠绕构件贴紧构成螺旋缠绕构件束,螺旋缠绕构件束中螺旋缠绕纤维织物复合材料带构成螺旋缠绕碳纤维织物复合材料蜂窝管;所述底盘为底盘大梁架,车身骨架置于底盘大梁架上,由弹性元件连接,构成碳纤维织物复合材料非承载式车身;所述底盘车身骨架成为一个单体结构碳纤维织物复合材料承载式车身。说明书加:前述权利要求的技术特征,需要的话,都适用于本技术方案。
本发明将纤维织物复合材料制成蜂窝状支撑的管状结构件,可以使所制备的结构件在受力时,将所承受的力分布于蜂窝状的各个支路,均匀分布于结构件上,增强了结构件整体的受力程度,普通的碳纤维复合材料能够承受很强的压力,但是承受压力的能力较差,将结构件的管内支撑采用蜂窝状的碳纤维织物复合材料支撑,可以使结构件在一定程度上承受压力,增大了结构件的受力范围和受力方向。本发明将结构件支撑蜂窝状,较实心结构件减少了材料和重量,节约了成本,同时相较于空心结构件具有更强的受力能力。碳纤维能够承受很大拉力,且不会变形,但是做成实心的话,不仅会浪费材料,增加重量,而且性能提高也不大,因此本发明将蜂窝杆内填充硬质泡沫材料,从而达到最优发挥碳纤维承受很大拉力这一性能;采用碳纤维织物缠绕结构件制备的汽车等骨架质量轻、强度高,再者,能够用环体缠绕包装机成型,适合机械化生产。
附图说明
图1为放射状支撑的结构示意图1。
图2为放射状支撑的结构示意图2。
图3为放射状支撑的结构示意图3。
图4为放射状支撑的结构示意图4。
图5为放射与包卷管复合支撑的结构示意图1。
图6为放射与包卷管复合支撑的结构示意图2。
图7为包卷管状支撑的结构示意图。
图8为带模具的放射状支撑的结构示意图1。
图9为带模具的放射状支撑的结构示意图2。
图10为带模具的放射与包卷管复合支撑的结构示意图。
图11为带模具的包卷管状支撑的结构示意图。
图12为车身骨架的结构示意图1。
图13为车身骨架的结构示意图2。
图14为环状骨架支撑的结构示意图。
图15为图13中A部位的放大示意图。
图16为纤维复合材料接头结构示意图1。
图17为纤维复合材料接头结构示意图2。
图18为车身骨架的结构示意图3。
图19为空心条状体支撑块的结构示意图1。
图20为空心条状体支撑块的结构示意图2。
图21为多层蜂窝孔的蜂窝管的结构示意图。
图22为两个星状支撑的蜂窝管的结构示意图。
图23为三个星状支撑的蜂窝管的结构示意图。
图24为图12中B部分的放大结构示意图。
图25是汽车骨架的结构示意图。
图26是一段单环碳纤维织物复合材料结构件。
图27是一段实心多环碳纤维织物复合材料结构件。
图28是一段空心多环碳纤维织物复合材料结构件。
图29是汽车骨架外观结构示意图。
图30是汽车骨架局部剖视结构示意图。
图31是图29B柱较粗部位的剖视结构示意图。
图32是图29B柱较细部位的剖视结构示意图。
具体实施方式
为使本领域的技术人员对本发明更好地理解,下面结合具体实施方式对本发明做进一步说明:
如图1至图7所示,一种纤维织物复合材料结构件,该结构件的外形成管状,所述管状结构件为纤维织物复合材料支撑的纤维织物复合材料蜂窝管;其中的纤维织物复合材料包括直纹编织和斜纹编织,所述纤维织物复合材料为碳纤维或者玻璃纤维。
所述复合材料蜂窝管的蜂窝孔内填充夹层结构材料或者纤维复合材料管或者空心支撑件。所述夹层结构材料主要是硬质泡沫材料,可以为硬质泡沫塑料,硬质结构泡沫材料主要有PVC、PEI、PU、PET、PMI、AIREX、DIAB、3A、STRUCELL、ROHACELL等,也包括硬质泡沫金属材料;所述纤维复合材料管,可以为碳纤维编织复合材料管或者碳纤维缠绕复合材料管;所述空心支撑件,可以为空心塑料薄壁支撑件或者空心金属薄壁支撑件,空心塑料薄壁支撑件可以为吹塑件。
如图1至图4所示,所述纤维织物复合材料支撑的纤维编织物复合材料蜂窝管,指由缝合线缝合 的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑,形成星状支撑结构,然后再星状支撑结构外层包覆一层纤维织物复合材料作为管壁,构成蜂窝管,星状支撑结构形成的孔即为蜂窝孔,当然也可以星状支撑结构与管壁形成蜂窝孔。
如图5和图6所示,所述纤维织物复合材料支撑,指由缝合线缝合的叠层纤维织物复合材料,部分叠层纤维织物复合材料包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑,另一部分由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑,构成放射与包卷管复合支撑。放射状支撑或者放射与包卷管复合支撑可以使结构件在受力时,将所受的力通过与管壁连接的放射状叠层支路传递至整个支撑上,可以使受力在结构件上均匀分布,避免了结构件因受力不平衡导致变形或折断;将支撑制作成放射状较空心管材具有更强的耐力强度,同时较实心管材节省材料,节约成本。
如图7所示,所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,分别包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑107,然后在星状支撑结构外层包覆一层纤维织物复合材料作为管壁207,构成蜂窝管;将包卷管支撑的管材用作为传动轴或者支撑柱,可以较大程度的增强传动轴或者支撑柱的受力强度,使其不易弯曲变形或折断。
如图21所示,所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每一组叠层呈放射状伸出一段后,每组的叠层分开向N个方向伸出形成N个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑;或者在所述蜂窝支撑的蜂窝孔内缝合包卷管,所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每组的叠层中部分分层包卷成包卷管,其余分层呈放射状伸出一段后分开,伸出形成多个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑。如图21所示,所述蜂窝管的截面以轴心为中心,向外构成多层蜂窝孔16,最外层为管壁15。包括多层蜂窝孔16的蜂窝管可以作为传动轴或者支撑柱应用,不仅具有质量轻的优点,而且,在管壁15受力时,可以将所受力通过边缘的放射状支路传递,使受力均匀的分布于整个支撑,这种蜂窝状的支撑可以相应的减少管壁受力,与传统结构的传动轴或者支撑柱相比,在相同受力情况下,边缘为放射状的碳纤维织物复合材料蜂窝支撑的管壁不易弯曲变形,延长了传动轴或者支撑柱的使用寿命。
如图1所示,所述纤维织物复合材料由支撑轴至管壁201,然后顺着管壁201折弯,与管壁结合构成管壁的一部分,使完整管壁与其内部的支撑材料101通过顺着管壁折弯的纤维织物复合材料整体连接。将纤维织物复合材料伸至管壁并顺着管壁折弯,可以将管壁所受力传至管内的纤维织物复合材料支撑件上,从而增强管材的受力能力。
所述纤维织物复合材料由支撑轴至管壁处后,继续伸出管壁,作为结构件对外连接的部件,使对外连接部件的受力能够传递至支撑材料,使支撑材料整体受力,提高了结构件的机械强度。如图2所示,管内支撑轴102为放射状支撑,管内支撑轴102有两端伸出管壁202,构成两个对外连接的部件302,图6中所示,管内支撑轴106为放射-包卷管复合状支撑,管内支撑轴106有两端伸出管壁206,构成两个对外连接的部件306;如图3所示,管内支撑轴103一端伸出管壁203,构成的结构件包含一个对外连接的部件303,图5中所示,管内支撑轴105为放射-包卷管复合状支撑,管内支撑轴105一端伸出管壁205,构成一个对外连接的部件305。
如图4所示,所述纤维织物复合材料由支撑轴104伸至管壁204,然后顺着管壁204折弯,构成管壁的一部分,当折弯至伸出管壁的支撑材料后与该支撑材料共同再伸出管壁,构成结构件对外连接的部件304,可使对外连接部件的受力能够传递至管壁和其内的支撑材料,使整体受力均匀,从而增强管材的受力强度。
所述管壁内支撑轴的数量至少为2个,支撑轴之间由纤维织物复合材料连接支撑,多个支撑轴可 以更好的保证受力的均匀性,提高结构件的受力强度。
如图22所示,所述纤维织物复合材料结构件的星状支撑可以为2个,构成蜂窝管;如图23所示,所述纤维织物复合材料结构件的星状支撑可以为3个,构成蜂窝管。图22中两个星状支撑17构成的蜂窝管,管壁18为星状支撑17延伸并折弯后形成。图23中三个形状支撑19构成的蜂窝管结构件,管壁20由三个星状支撑19折弯而成。
根据需要,所述结构件可设计为沿管的轴线的不同部位的横截面的外轮廓形状不同,或者外轮廓形状相同但大小不同。
如图15所示,所述纤维织物复合材料蜂窝管801的蜂窝孔内沿支撑轴方向分隔在横截面设置支撑802,横截面上的支撑可以加强在轴向的受力强度,使结构件沿轴向不易变形或折弯。
根据连接部件的需要,所述管状结构件可设计为分支状,分别为“Y”字母分支状,“T”字母分支状或“十”字分支状,所述管状结构件主管与分支管不但管壁连接,而且管内的支撑轴也连接,指支撑轴或者管壁纤维织物为不间断的整体或者纤维织物缝合在一起;若设置夹层结构材料或者纤维复合材料管,则夹层结构材料为整体成型或者纤维复合材料管是纤维织物为不间断连接。主管和分支管的管壁和星状支撑分别相互连接,可以保证主管和分支管管壁和星状支撑为整体结构,使内外受力一致,避免结构件内外受力不一致而错位进而导致变形或损坏。
所述结构件构成整体立体框架结构,是指结构件通过“Y”字母分支状,“T”字母分支状或“十”字分支状连接,构成整体立体框架结构,例如构成越野车骨架、轿车骨架、客车骨架、直升机骨架、或者客机骨架。
尤其将所述整体立体框架结构件经过环接,进而组装所需要的整车骨架。如图12所示,所述环接的整车骨架7,环接过程中使用的环状支撑内的星状支撑可合并,合并后的星状支撑的支撑轴通过碳纤维织物复合材料连接在一起,合并后的星状支撑的管壁也为一整体管壁;所述环接的整车骨架7,环接过程中使用的环状支撑内的星状支撑可分开,如图12中环接的整车骨架的拐角处B部分,即图24中所示,环状支撑内的星状支撑的支撑轴之间呈分开状态,从而形成“Y”字母分支状,“T”字母分支状或“十”字分支状。
所述环状支撑内的星状支撑的支撑轴之间呈分开状态,从而形成“Y”字母分支状,“T”字母分支状或“十”字分支状,也适合整体立体框架结构;所以所述的“Y”字母分支状、“T”字母分支状或“十”字分支状,如图24中所示的分支或汇合部位,不仅仅是平面形状的“Y”字母分支状、“T”字母分支状或“十”字分支状,也可以是将平面形状弯曲形成立体的这些形状。
将所述结构件经过插接或者环接,可以构成整体立体框架结构,进而组装所需要的整体骨架。如图12和图13所示,为碳纤维织物复合材料组装而成的整车骨架。图12为环接制备所得的整车骨架7,环接过程中使用的环状支撑9如图14所示,所述环状支撑9为纤维织物复合材料经加热、固化后制成的缠绕管或者编织管;图13为插接制备的整车骨架8,如图15所示,整车骨架8上所使用的结构件801上沿轴向设有支撑部件802,在结构件上设置支撑可以进一步增强整车的机械强度。
一种由上述纤维织物复合材料结构件制备的传动轴或者支撑柱。
一种纤维织物复合材料结构件的制备方法,包括以下步骤:
1)绘制所需结构件的三维图;
2)根据三维图制作结构件芯模的模具图并制作结构件芯模,该芯模对应蜂窝孔设芯模柱,所述芯模,为夹层结构材料或者纤维复合材料管或者空心支撑件;
3)根据三维图制作结构件外模的模具图并制作结构件外模;
4)根据三维图结构件中每个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
5)根据步骤4)的平面形状,裁剪纤维织物复合材料预浸料,同样,根据步骤4)和5)确定并裁剪管壁 预浸料;
6)根据三维图确定预浸料的缝合线;
7)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
8)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
9)将缝合的叠层预浸料片抖开,按照三维图使预浸料片形成的蜂窝孔对应芯模的芯模柱,将芯模柱插入对应蜂窝孔中,外侧预浸料包覆在芯模柱外侧;
10)将管壁预浸料再将芯模包覆形成管壁;
11)将包覆管壁预浸料的芯模塞入外模;
12)将芯模加热、固化或者将外模加热、固化,或者同时将芯模和外模加热、固化。
所述步骤9)中外侧预浸料片中需要伸出管壁作为连接件,预浸料片保留不包覆芯模柱外侧,其余包覆在芯模柱外侧。
所述需要作为连接件的管壁预浸料片与伸出管壁的支撑预浸料片叠合共同伸出管壁。
将共同伸出管壁的叠合的预浸料片缝合在一起,塞入相互配合的外模中,继续其它步骤。
所述步骤2)中芯模,由泡沫在模具中发泡成型而制备而成。
如图8至图11所示,为本发明的管壁支撑结构件制备过程中,部分包含芯模和外模的结构件的示意图。图8所示,将作为支撑的叠层预浸料片101插入芯模501,然后将伸出芯模的叠层折弯,在外层包覆纤维织物复合材料作为管壁201,然后将包覆芯模的纤维织物复合材料套入外模601,然后将其加热、固化;图9所示,将作为支撑的叠层预浸料片102插入芯模502,然后将部分伸出芯模502的叠层折弯,部分伸出管壁202的叠层与管壁一起伸出作为连接部件302,在外层包覆纤维织物复合材料作为管壁202,然后将包覆芯模的纤维织物复合材料套入外模602,然后将其加热、固化;图10所示,将作为支撑的叠层预浸料片105插入芯模505,然后将部分伸出芯模505的叠层包卷成包卷管,部分伸出管壁205的叠层与管壁一起伸出作为连接部件305,在外层包覆纤维织物复合材料作为管壁205,然后将包覆芯模的纤维织物复合材料套入外模605,然后将其加热、固化;图11所示,将作为支撑的叠层预浸料片107插入芯模507,然后将伸出芯模507的叠层包卷成包卷管,在外层包覆纤维织物复合材料作为管壁207,然后将包覆芯模507的纤维织物复合材料套入相对应结构的外模607,然后将其加热、固化。
如图18所示,所述整车骨架由纤维织物复合材料结构件和纤维织物复合材料接头插接组装而成;如图16和17所示,所述碳纤维复合材料接头10上设有插接头11,插接头11通身设有碳纤维粘毛勾12,碳纤维粘毛勾12向插接方向的反向倾斜;图16中所示的插接头为多个外径相同的圆管,图17中所示的插接头为内部设有多个放射状支撑板的蜂窝状管。插接头通身设有碳纤维粘毛勾,碳纤维粘毛勾向插接方向的反向倾斜,插接头能够顺利插入内部设有软纤维粘毛的插接管,当反方向拔出时,碳纤维粘毛勾能够勾住软纤维粘毛,从而防止插接管从插接头里脱落,连接牢固,不会对插接头和插接管造成损害。
如图19和图20所示,所述插接组装成整车骨架的插接头之间的支撑为空心条状支撑,图19的碳纤维空心条状体支撑块用于直线部分的支撑,图20的碳纤维空心条状体支撑块用于弯曲部分的过渡支撑,碳纤维空心条状体支撑块两端为封闭结构,中心为空心结构;所述空心条状支撑由碳纤维织物复合材料制备而成。在保证结构强度的前提下,节省了材料和重量,节约了成本。
所述整车骨架由纤维织物复合材料制备的环状骨架支撑环接而成,所述环状骨架支撑的结构件为管内支撑为星状支撑结构的纤维织物复合材料结构件。所述环状支撑环接而成的整车骨架,每一个环均为内部设有多个支撑结构的蜂窝结构件构成,保证了整车骨架的机械强度。
环接制备而成的整车骨架的制备方法,包括以下步骤:
1)绘制所需结构件的三维图;
2)根据三维图绘制整车骨架的支撑结构图并制作骨架支撑,该支撑用于支撑纤维织物预浸料,该支撑为缠绕管或者编织管;
3)根据三维图结构件中每个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
4)根据步骤3)的平面形状,裁剪纤维织物复合材料预浸料;
5)根据三维图确定预浸料的缝合线;
6)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
7)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
8)将缝合的叠层预浸料片抖开,按照三维图在预浸料片形成的蜂窝孔对应骨架支撑,将预浸料片包裹对应蜂窝孔中,外侧预浸料包覆在骨架支撑外侧;
9)将管壁预浸料再将骨架支撑包覆形成管壁;
10)将上述包覆有管壁的骨架支撑缝合在一起,制成整车骨架;
11)将上述整车骨架加热、固化。
所述步骤8)中所述的将蜂窝孔对应骨架支撑,指将抖开的叠层预浸料片按照三维图结构中的空腔位置放入骨架支撑,然后将包覆的叠层预浸料片在相交处缝合,将骨架支撑包覆空腔内,起到支撑叠层预浸料的作用。
所述设有碳纤维粘毛勾的碳纤维复合材料接头的制备方法为:
(1)将有机纤维经过热氧稳定化处理变成耐焰纤维,使纤维在高温碳化下不熔不燃,继续保持纤维状态,然后在惰性气氛中于高温下进行焙烧碳化,使有机纤维失去部分碳和其他非碳原子,形成以碳为主要成分的纤维状物即碳纤维;
(2)取一个水溶性塑料管,在塑料管周身开设斜孔;
(3)通过植毛机将碳纤维植入到塑料管的斜孔内;
(4)在塑料管外套上外模;
(5)在外模和塑料管之间加入泡沫塑料模型;
(6)将水溶性塑料管加水溶解,再插入芯模;
(7)芯模与泡沫塑料模型之间形成圆柱空腔,向圆柱空腔内浇注轻质合金,在液体金属的热作用下,泡沫塑料模型发生热解气化;
(8)液体金属冷却固化后,取出芯模,形成带有碳纤维粘毛勾的插接头。
上述所有的复合材料蜂窝管的蜂窝孔内填充夹层结构材料或者纤维复合材料管或者空心支撑件。所述夹层结构材料主要是硬质泡沫材料,可以为硬质泡沫塑料,硬质结构泡沫材料主要有PVC、PEI、PU、PET、PMI、AIREX、DIAB、3A、STRUCELL、ROHACELL等,也包括硬质泡沫金属材料;所述纤维复合材料管,可以为碳纤维编织复合材料管或者碳纤维缠绕复合材料管;所述空心支撑件,可以为空心塑料薄壁支撑件或者空心金属薄壁支撑件,空心塑料薄壁支撑件可以为吹塑件。
上述的硬质泡沫材料可以为注射到蜂窝孔内通过发泡膨胀从而支撑蜂窝孔壁。
一种碳纤维织物复合材料结构件,如图25-28,图25所示框架100的汽车骨架由碳纤维织物复合材料结构件环110组合而成,碳纤维织物复合材料结构件环110可以是单环碳纤维织物复合材料结构件111如图26,单环碳纤维织物复合材料结构件111的内芯是环状硬质泡沫材料112,环状硬质泡沫材料112外表面缠绕碳纤维织物复合材料113。缠绕就像环体缠绕包装机一样将碳纤维织物复合材料113缠绕包装在硬质泡沫材料112外表面;碳纤维织物复合材料113就是碳纤维织物与树脂、金属等基体复合制成结构材料;环状硬质泡沫材料112可以是整体成型结构,也可以是分段拼接结构;硬质泡沫材料112可以是硬质泡沫塑料如聚甲基丙烯酰亚胺(PMI)、硬质泡沫金属如泡沫铝或者其它。
所述的碳纤维织物复合材料结构件,所述单环碳纤维织物复合材料结构件为束状如图3,束中单环 碳纤维织物复合材料结构件111的数量至少为两个,一束单环碳纤维织物复合27料结构件外表面缠绕碳纤维织物复合材料113(为了表达束状结构,图中没有示出),构成多环碳纤维织物复合材料结构件。所述多环碳纤维织物复合材料结构件的外表缠绕的碳纤维织物复合材料内部充实单环碳纤维织物复合材料结构件111,构成实心多环碳纤维织物复合材料结构件120如图27。充实就是内部单环碳纤维织物复合材料结构件之间尽可能不留或者少留间隙。图28所述多环碳纤维织物复合材料结构件由外至内以此为外表缠绕的碳纤维织物复合材料113(为了表达束状结构,图中没有示出)、单环碳纤维织物复合材料结构件111、空腔131,构成空心多环碳纤维织物复合材料结构件130。空腔的位置可以位于空心多环碳纤维织物复合材料结构件的轴心,也可以位于偏离空心多环碳纤维织物复合材料结构件的轴心。
所述的碳纤维织物复合材料结构件,所述多环碳纤维织物复合材料结构件沿轴线部分为空腔,构成部分空心多环碳纤维织物复合材料结构件。部分空心多环碳纤维织物复合材料结构件留出空腔部位是为了容纳一些零件。
所述的碳纤维织物复合材料结构件制备的碳纤维织物复合材料框架,所述单环碳纤维织物复合材料结构件111、实心多环碳纤维织物复合材料结构件120、空心多环碳纤维织物复合材料结构件130及部分空心多环碳纤维织物复合材料结构件,统称为碳纤维织物复合材料结构件环110,所述碳纤维织物复合材料结构件环110组合为框架,框架中相邻接触构成束状部分的碳纤维织物复合材料结构件环的外表面缠绕碳纤维织物复合材料(为了表达束状结构,图中没有示出)。构成碳纤维织物复合材料框架的所述单环碳纤维织物复合材料结构件、实心多环碳纤维织物复合材料结构件、空心多环碳纤维织物复合材料结构件及部分空心多环碳纤维织物复合材料结构件,至少是一种,也可以是不同种类混合组合。
所述的碳纤维织物复合材料框架,所述碳纤维织物复合材料框架是未封闭的结构140。此时可能产生悬臂结构。
一种碳纤维织物复合材料结构件制备框架的方法,包括以下步骤:
(1)绘制框架的三维制图;
(2)根据三维制图的框架分解环状框架,包括:单环框架,根据需要,还要继续分解实心多环框架包含的单环框架、空心多环框架包含的单环框架、部分空心多环框架包含的单环框架,统称为单环环状框架;
(3)根据每个单环环状框架的形状分别制作单环环状硬质泡沫材料内芯框架,根据需要,包括单环硬质泡沫材料内芯框架,根据需要,还制作实心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、空心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、部分空心硬质泡沫材料内芯多环框架包含的单环硬质泡沫材料内芯框架;
(4)将每个环状硬质泡沫材料内芯框架外表面缠绕连续碳纤维织物预浸料,构成单环碳纤维织物预浸料复合材料结构件;根据需要,包括实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件及部分空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件;
(5)根据需要,
将实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸实心多环碳纤维织物预浸料复合材料结构件束,并将裸实心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成实心多环碳纤维织物预浸料复合材料结构件;
将空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸空心多环碳纤维织物预浸料复合材料结构件束,并将裸空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成空心多环碳纤维织物预浸料复合材料结构件;
将部分空心多环碳纤维织物预浸料复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为 裸部分空心多环碳纤维织物预浸料复合材料结构件束,并将裸部分空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成部分空心多环碳纤维织物预浸料复合材料结构件;
(6)将单环碳纤维织物预浸料复合材料结构件、实心多环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物预浸料复合材料结构件、部分空心多环碳纤维织物预浸料复合材料结构件四种之一种或者多种组合为框架,框架中相邻接触构成束状部分的外表面缠绕碳纤维织物预浸料,构成碳纤维织物预浸料复合材料框架;
(7)将碳纤维织物预浸料复合材料框架置于模具加热固化,脱模,即为碳纤维织物复合材料框架。
所述的碳纤维织物复合材料结构件制备框架的方法,所述碳纤维织物复合材料框架为汽车骨架、飞机骨架、火车骨架及集装箱骨架。
一种碳纤维织物复合材料汽车骨架,如图29、图30,所述汽车骨架的底,1001为;由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑结构,星状支撑的纤维织物复合材料之间形成碳纤维织物复合材料蜂窝管;碳纤维织物复合材料蜂窝管包覆单个螺旋缠绕构件,单个螺旋缠绕构件为,夹层结构材料的芯料表面螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带;车身骨架1002为:所述纤维织物复合材料蜂窝管为,至少两个单个螺旋缠绕构件贴紧构成螺旋缠绕构件束,螺旋缠绕构件束中螺旋缠绕纤维织物复合材料带构成螺旋缠绕碳纤维织物复合材料蜂窝管;所述底盘为底盘大梁架,图中的形状不是底盘大梁架的形状,示意图的意思就是代表底盘大梁架的形状,车身骨架置于底盘大梁架上,由弹性元件连接,构成碳纤维织物复合材料非承载式车身;所述底盘车身骨架成为一个单体结构碳纤维织物复合材料承载式车身。说明书加:前述权利要求的技术特征,需要的话,都适用于本技术方案。

Claims (34)

  1. 一种纤维织物复合材料结构件,该结构件的外形成管状,其特征在于:所述管状结构件为纤维织物复合材料支撑的复合材料蜂窝管。
  2. 根据权利要求1所述的纤维织物复合材料结构件,其特征在于:所述复合材料蜂窝管的蜂窝孔内填充夹层结构材料或者纤维复合材料管或者空心支撑件。
  3. 根据权利要求1所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料蜂窝管为,至少两个单个螺旋缠绕构件贴紧构成螺旋缠绕构件束,单个螺旋缠绕构件为,夹层结构材料的芯料表面螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带,螺旋缠绕纤维织物复合材料带构成螺旋缠绕纤维织物复合材料蜂窝管。
  4. 根据权利要求1-3之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料支撑的纤维编织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑结构,形成星状支撑结构。
  5. 权利要求1-2之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料支撑,指由缝合线缝合的叠层纤维织物复合材料,部分叠层纤维织物复合材料包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑,另一部分由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑,构成星状支撑与包卷管复合支撑结构。
  6. 根据权利要求1-2之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,分别包卷成包卷管,构成以缝合线为支撑轴呈放射状连接的包卷管支撑。
  7. 根据权利要求4-6之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每一组叠层呈放射状伸出一段后,每组的叠层分开向N个方向伸出形成N个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑;或者在所述蜂窝支撑的蜂窝孔内缝合包卷管,所述纤维织物复合材料支撑的纤维织物复合材料蜂窝管,指由缝合线缝合的叠层纤维织物复合材料,每N层为一组叠层,其中N≥2,每组的叠层中部分分层包卷成包卷管,其余分层呈放射状伸出一段后分开,伸出形成多个支路,各个支路分别与其它组叠层的支路两两叠合后并伸出构成边缘为放射状的蜂窝支撑。
  8. 根据权利要求3所述的纤维织物复合材料结构件,其特征在于:所述螺旋缠绕纤维织物复合材料蜂窝管外表面,再螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带。
  9. 根据权利要求4-8之一所述的纤维织物复合材料结构件,其特征在于:所述蜂窝管的截面以轴心为中心,向外构成多层蜂窝孔,最外层为管壁。
  10. 根据权利要求4-8之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,与管壁结合构成管壁的一部分,使完整管壁与其内部的支撑材料通过顺着管壁折弯的纤维织物复合材料整体连接。
  11. 根据权利要求10所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,与管壁结合,管壁为螺旋缠绕纤维织物复合材料带,与管壁结合,顺着管壁折弯的纤维织物复合材料与螺旋缠绕纤维织物复合材料带粘贴一起。
  12. 根据权利要求4或者5之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料由支撑轴至管壁处后,继续伸出管壁,作为结构件对外连接的部件,使对外连接部件的受力能够传递至支撑材料。
  13. 根据权利要求4或者5之一所述的纤维织物复合材料结构件,其特征在于:所述纤维织物复合材料由支撑轴至管壁外,然后顺着管壁折弯,构成管壁的一部分,当折弯至伸出管壁的支撑材料后与该支撑材 料共同再伸出管壁,使对外连接部件的受力能够传递至管壁和其内的支撑材料。
  14. 根据权利要求10或者12-13之一所述的纤维织物复合材料结构件,其特征在于:所述管壁内支撑轴的数量至少为2个,支撑轴之间由纤维织物复合材料连接支撑。
  15. 根据权利要求14所述的纤维织物复合材料结构件,其特征在于:所述结构件沿管的轴线的不同部位的横截面的外轮廓形状不同,或者外轮廓形状相同但大小不同。
  16. 根据权利要求1-15之一所述的纤维织物复合材料结构件,其特征在于:所述管状结构件为分支状,为“Y”字母分支状,“T”字母分支状或“十”字分支状,所述管状结构件主管与分支管不但管壁连接,而且管内的支撑轴也连接。
  17. 根据权利要求16所述的纤维织物复合材料结构件,其特征在于:所述结构件构成整体立体框架结构。
  18. 根据权利要求17所述的纤维织物复合材料结构件,其特征在于:所述整体立体框架结构,为蜂窝管内的星状支撑的蜂窝孔内为单个螺旋缠绕构件或者环状夹层结构材料或者环状纤维复合材料管或者环状空心支撑件,所述纤维织物为碳纤维织物,构成碳纤维织物复合材料整体骨架。
  19. 根据权利要求18所述的纤维织物复合材料结构件,其特征在于:所述碳纤维织物复合材料整体骨架,当同一横截面内支撑轴的数量至少为2个,支撑轴之间由纤维织物复合材料连接支撑。
  20. 根据权利要求19所述的纤维织物复合材料结构件,其特征在于:所述碳纤维织物复合材料框架为汽车骨架、飞机骨架、火车骨架及集装箱骨架。
  21. 根据权利要求1-20任一项所述的纤维织物复合材料结构件的制备方法,其特征在于:包括以下步骤:
    1)绘制所需结构件的三维图;
    2)根据三维图制作结构件芯模的模具图并制作结构件芯模,该芯模对应蜂窝孔设芯模柱,所述芯模,为夹层结构材料或者纤维复合材料管或者空心支撑件;
    3)根据三维图制作结构件外模的模具图并制作结构件外模;
    4)根据三维图结构件中每个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
    5)根据步骤4)的平面形状,裁剪纤维织物复合材料预浸料,同样,根据步骤4)和5)确定并裁剪管壁预浸料;
    6)根据三维图确定预浸料的缝合线;
    7)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
    8)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
    9)将缝合的叠层预浸料片抖开,按照三维图使预浸料片形成的蜂窝孔对应芯模的芯模柱,将芯模柱插入对应蜂窝孔中,外侧预浸料包覆在芯模柱外侧;
    10)将管壁预浸料再将芯模包覆形成管壁;
    11)将包覆管壁预浸料的芯模塞入外模;
    12)将芯模加热、固化或者将外模加热、固化,或者同时将芯模和外模加热、固化,之后取出芯模、外模,即得所需结构件。
  22. 根据权利要求21所述的纤维织物复合材料结构件的制备方法,其特征在于:所述步骤9)中外侧预浸料片中需要伸出管壁作为连接件,预浸料片保留不包覆芯模柱外侧,其余包覆在芯模柱外侧。
  23. 根据权利要求21所述的纤维织物复合材料结构件的制备方法,其特征在于:所述需要作为连接件的管壁预浸料片与伸出管壁的支撑预浸料片叠合共同伸出管壁。
  24. 根据权利要求21所述的纤维织物复合材料结构件的制备方法,其特征在于:共同伸出2管壁的叠合的预浸料片缝合在一起,塞入相互配合的外模中,继续其它步骤。
  25. 一种碳纤维织物复合材料结构件制备整体立体框架结构的方法,其特征在于:包括以下步骤:
    (1)绘制整体立体框架结构的三维制图;
    (2)根据三维制图的框架分解环状框架,包括:单环框架,根据需要,还要继续分解实心多环框架包含的单环框架、空心多环框架包含的单环框架、部分空心多环框架包含的单环框架,统称为单环环状框架;
    (3)根据每个单环环状框架的形状分别制作单环环状硬质泡沫材料内芯框架,根据需要,包括单环硬质泡沫材料内芯框架,根据需要,还制作实心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、空心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、部分空心硬质泡沫材料内芯多环框架包含的单环硬质泡沫材料内芯框架;
    (4)将每个环状硬质泡沫材料内芯框架外表面缠绕连续碳纤维织物预浸料,构成单环碳纤维织物预浸料复合材料结构件;根据需要,包括实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件及部分空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件;
    (5)根据三维图制作整体立体框架结构外模的模具图并制作外模;
    (6)根据三维图结构件中各个用于支撑的纤维织物复合材料的空间形状,分别确定其平面形状;
    (7)根据步骤4)的平面形状,裁剪纤维织物复合材料预浸料,同样,根据步骤4)和5)确定并裁剪管壁预浸料;
    (8)根据三维图确定预浸料的缝合线;
    (9)将各个预浸料按照确定的缝合线的位置,将每个需要叠层的预浸料叠层;
    (10)将叠层的预浸料按照缝合线的位置缝合,可采用手工缝合或者缝纫机缝合;
    (11)将缝合的叠层预浸料片抖开,按照三维图使预浸料片形成的蜂窝孔对应芯模的单环环状框架,将单环环状框架插入对应蜂窝孔中,外侧预浸料包覆在芯模柱外侧;
    (12)将管壁预浸料再将芯模包覆形成管壁;
    (13)将包覆管壁预浸料的芯模塞入外模;
    (14)将芯模加热、固化或者将外模加热、固化,或者同时将芯模和外模加热、固化,之后取出芯模、外模,即得所需结构件。
  26. 一种碳纤维织物复合材料结构件,其特征在于:所述碳纤维织物复合材料结构件的形状是环状,内芯是环状硬质泡沫材料,环状硬质泡沫材料外表面缠绕碳纤维织物复合材料,构成单环碳纤维织物复合材料结构件。
  27. 根据权利要求1所述的碳纤维织物复合材料结构件,其特征在于:所述单环碳纤维织物复合材料结构件为束状,束中单环碳纤维织物复合材料结构件的数量至少为两个,一束单环碳纤维织物复合材料结构件外表面缠绕碳纤维织物复合材料,构成多环碳纤维织物复合材料结构件。
  28. 根据权利要求2所述的碳纤维织物复合材料结构件,其特征在于:所述多环碳纤维织物复合材料结构件的外表缠绕的碳纤维织物复合材料内部充实单环碳纤维织物复合材料结构件,构成实心多环碳纤维织物复合材料结构件。
  29. 根据权利要求2所述的碳纤维织物复合材料结构件,其特征在于:所述多环碳纤维织物复合材料结构件由外至内以此为外表缠绕的碳纤维织物复合材料、单环碳纤维织物复合材料结构件、空腔,构成空心多环碳纤维织物复合材料结构件。
  30. 根据权利要求2所述的碳纤维织物复合材料结构件,其特征在于:所述多环碳纤维织物复合材料结构件沿轴线部分为空腔,构成部分空心多环碳纤维织物复合材料结构件。
  31. 根据权利要求1-5所述的碳纤维织物复合材料结构件制备的碳纤维织物复合材料框架,所述单环碳纤维织物复合材料结构件、实心多环碳纤维织物复合材料结构件、空心多环碳纤维织物复合材料结构件及部分空心多环碳纤维织物复合材料结构件,统称为碳纤维织物复合材料结构件环,其特征在于:所述碳 纤维织物复合材料结构件环组合为框架,框架中相邻接触构成束状部分的碳纤维织物复合材料结构件环的外表面缠绕碳纤维织物复合材料。
  32. 根据权利要求6所述的碳纤维织物复合材料框架,其特征在于:所述碳纤维织物复合材料框架是未封闭的结构。
  33. 一种碳纤维织物复合材料结构件制备框架的方法,其特征在于:包括以下步骤:
    (1)绘制框架的三维制图;
    (2)根据三维制图的框架分解环状框架,包括:单环框架,根据需要,还要继续分解实心多环框架包含的单环框架、空心多环框架包含的单环框架、部分空心多环框架包含的单环框架,统称为单环环状框架;
    (3)根据每个单环环状框架的形状分别制作单环环状硬质泡沫材料内芯框架,根据需要,包括单环硬质泡沫材料内芯框架,根据需要,还制作实心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、空心多环硬质泡沫材料内芯框架包含的单环硬质泡沫材料内芯框架、部分空心硬质泡沫材料内芯多环框架包含的单环硬质泡沫材料内芯框架;
    (4)将每个环状硬质泡沫材料内芯框架外表面缠绕连续碳纤维织物预浸料,构成单环碳纤维织物预浸料复合材料结构件;根据需要,包括实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件及部分空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件;
    (5)根据需要,将实心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸实心多环碳纤维织物预浸料复合材料结构件束,并将裸实心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成实心多环碳纤维织物预浸料复合材料结构件;
    将空心多环碳纤维织物复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸空心多环碳纤维织物预浸料复合材料结构件束,并将裸空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成空心多环碳纤维织物预浸料复合材料结构件;
    将部分空心多环碳纤维织物预浸料复合材料结构件包含的单环碳纤维织物预浸料复合材料结构件组合为裸部分空心多环碳纤维织物预浸料复合材料结构件束,并将裸部分空心多环碳纤维织物预浸料复合材料结构件束外表面缠绕连续碳纤维织物预浸料,构成部分空心多环碳纤维织物预浸料复合材料结构件;
    (6)将单环碳纤维织物预浸料复合材料结构件、实心多环碳纤维织物预浸料复合材料结构件、空心多环碳纤维织物预浸料复合材料结构件、部分空心多环碳纤维织物预浸料复合材料结构件四种之一种或者多种组合为框架,框架中相邻接触构成束状部分的外表面缠绕碳纤维织物预浸料,构成碳纤维织物预浸料复合材料框架;
    (7)将碳纤维织物预浸料复合材料框架置于模具加热固化,脱模,即为碳纤维织物复合材料框架。
  34. 一种碳纤维织物复合材料汽车骨架,其特征在于:所述汽车骨架的底盘为;由缝合线缝合的叠层纤维织物复合材料,以缝合线为支撑轴呈放射状支撑结构,星状支撑的纤维织物复合材料之间形成碳纤维织物复合材料蜂窝管;碳纤维织物复合材料蜂窝管包覆单个螺旋缠绕构件,单个螺旋缠绕构件为,夹层结构材料的芯料表面螺旋缠绕纤维织物复合材料带,后缠绕的纤维织物复合材料带压紧部分前缠绕的纤维织物复合材料带;车身骨架为:所述纤维织物复合材料蜂窝管为,至少两个单个螺旋缠绕构件贴紧构成螺旋缠绕构件束,螺旋缠绕构件束中螺旋缠绕纤维织物复合材料带构成螺旋缠绕碳纤维织物复合材料蜂窝管;所述底盘为底盘大梁架,车身骨架置于底盘大梁架上,由弹性元件连接,构成碳纤维织物复合材料非承载式车身;所述底盘车身骨架成为一个单体结构碳纤维织物复合材料承载式车身。
PCT/CN2017/120419 2016-12-31 2017-12-31 一种纤维织物复合材料结构件及其制备的汽车骨架和方法 WO2018121789A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019536154A JP7378782B2 (ja) 2016-12-31 2017-12-31 繊維織物複合材料構造部材及びそれで製造された自動車骨格と製造方法
JP2022089970A JP7364274B2 (ja) 2016-12-31 2022-06-01 繊維織物複合材料構造部材及びそれで製造された自動車骨格と製造方法

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201611268669.4 2016-12-31
CN201611268639.3A CN108263496A (zh) 2016-12-31 2016-12-31 碳纤维织物复合材料整车骨架及其制备方法
CN201611268638.9A CN108262983A (zh) 2016-12-31 2016-12-31 碳纤维织物复合材料整车骨架及其制备方法
CN201611268709 2016-12-31
CN201611268709.5 2016-12-31
CN201611268638.9 2016-12-31
CN201611268639.3 2016-12-31
CN201611268669.4A CN108263497A (zh) 2016-12-31 2016-12-31 碳纤维织物复合材料整车骨架及其制备方法
CN201710104737.1 2017-02-24
CN201710104737.1A CN108262984A (zh) 2016-12-31 2017-02-24 一种纤维织物复合材料结构件及其制备方法
CN201710332513.6A CN108860333A (zh) 2017-05-12 2017-05-12 碳纤维织物复合材料结构件及其制备的汽车骨架和方法
CN201710332513.6 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018121789A1 true WO2018121789A1 (zh) 2018-07-05

Family

ID=62707863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120419 WO2018121789A1 (zh) 2016-12-31 2017-12-31 一种纤维织物复合材料结构件及其制备的汽车骨架和方法

Country Status (1)

Country Link
WO (1) WO2018121789A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109228375A (zh) * 2018-11-01 2019-01-18 成都纵横大鹏无人机科技有限公司 一种蒙皮、蒙皮制备模具、蒙皮成型方法
CN109910328A (zh) * 2019-03-21 2019-06-21 四川省新万兴碳纤维复合材料有限公司 一种碳纤维复合材料起落架支柱的成型工装及其成型工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059660A (en) * 1975-02-05 1977-11-22 Roth Freres, S.A. Method of molding a light-weight panel
CN102537644A (zh) * 2012-02-21 2012-07-04 湖南大学 多孔材料填充双层管
JP2013014168A (ja) * 2011-06-30 2013-01-24 Toyota Motor Corp 車体接合部構造及びこれを用いた車体フロア構造
CN103895717A (zh) * 2012-12-27 2014-07-02 现代自动车株式会社 纤维增强塑料车体结构及其制造方法
CN106184399A (zh) * 2016-08-23 2016-12-07 北京新能源汽车股份有限公司 车辆的顶盖、车辆和车辆的顶盖的制造方法
CN106239985A (zh) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 一种增强型复合材料棒材结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059660A (en) * 1975-02-05 1977-11-22 Roth Freres, S.A. Method of molding a light-weight panel
JP2013014168A (ja) * 2011-06-30 2013-01-24 Toyota Motor Corp 車体接合部構造及びこれを用いた車体フロア構造
CN102537644A (zh) * 2012-02-21 2012-07-04 湖南大学 多孔材料填充双层管
CN103895717A (zh) * 2012-12-27 2014-07-02 现代自动车株式会社 纤维增强塑料车体结构及其制造方法
CN106239985A (zh) * 2016-07-28 2016-12-21 无锡信大气象传感网科技有限公司 一种增强型复合材料棒材结构
CN106184399A (zh) * 2016-08-23 2016-12-07 北京新能源汽车股份有限公司 车辆的顶盖、车辆和车辆的顶盖的制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109228375A (zh) * 2018-11-01 2019-01-18 成都纵横大鹏无人机科技有限公司 一种蒙皮、蒙皮制备模具、蒙皮成型方法
CN109228375B (zh) * 2018-11-01 2023-08-18 成都纵横大鹏无人机科技有限公司 一种蒙皮成型方法
CN109910328A (zh) * 2019-03-21 2019-06-21 四川省新万兴碳纤维复合材料有限公司 一种碳纤维复合材料起落架支柱的成型工装及其成型工艺
CN109910328B (zh) * 2019-03-21 2024-04-30 四川省新万兴碳纤维复合材料有限公司 一种碳纤维复合材料起落架支柱的成型工装及其成型工艺

Similar Documents

Publication Publication Date Title
CN116968339A (zh) 一种纤维织物复合材料结构件及其制备方法
CN101828063B (zh) 复合物凸缘、包括凸缘的管和制造凸缘的方法
GB2112700A (en) Method of manufacturing continous fiber reinforced plastic rims
JP2011516294A (ja) 複合構造物のための多方向に補強された形の織られたプレフォーム
EP2610053B1 (en) Sandwich Core Material
US20140361469A1 (en) Composite sheet having a core having end walls and a mat with fibers
US20070264470A1 (en) Structural composite
CA2719717A1 (en) Method for manufacturing a core composite provided with cover layers on both sides
CN101932432A (zh) 以合成纤维材料制造飞机机身单元部的方法和装置
CN101758923B (zh) 一种复合材料盒形肋及其制作方法
WO2018121789A1 (zh) 一种纤维织物复合材料结构件及其制备的汽车骨架和方法
CN106542123A (zh) 具有蜂窝夹芯壁的运载火箭复合材料贮箱及其加工方法
US20050056117A1 (en) Composite strut and method of making same
CN116788371A (zh) 碳纤维织物复合材料整车骨架及其制备方法
CN113623467B (zh) 一种定向加强的管材及其制备方法
WO2021078347A1 (en) Improvements relating to the manufacture of wind turbine blades
CN115352131B (zh) 一种预埋件、加工工艺及复材夹层结构
JP3590346B2 (ja) Frp構造体
CN208438808U (zh) 复合材料及其芯材
JP7364274B2 (ja) 繊維織物複合材料構造部材及びそれで製造された自動車骨格と製造方法
CN116788370A (zh) 碳纤维织物复合材料整车骨架及其制备方法
JP2017202604A (ja) 強化繊維構造物及びその製造方法
JPH05106629A (ja) 繊維強化プラスチツク製荷重伝達軸
CN113043527B (zh) 一种轻量化复合材料推力杆制作方法
CN206145409U (zh) 一种轻质高强的纤维复材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889380

Country of ref document: EP

Kind code of ref document: A1