WO2018121642A1 - 一种提高光栅式三维显示呈现视图分辨率的系统和方法 - Google Patents

一种提高光栅式三维显示呈现视图分辨率的系统和方法 Download PDF

Info

Publication number
WO2018121642A1
WO2018121642A1 PCT/CN2017/119227 CN2017119227W WO2018121642A1 WO 2018121642 A1 WO2018121642 A1 WO 2018121642A1 CN 2017119227 W CN2017119227 W CN 2017119227W WO 2018121642 A1 WO2018121642 A1 WO 2018121642A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
array
sub
pixel
raster
Prior art date
Application number
PCT/CN2017/119227
Other languages
English (en)
French (fr)
Inventor
刘立林
滕东东
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2018121642A1 publication Critical patent/WO2018121642A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers

Definitions

  • the present invention relates to the field of three-dimensional image display technology, and more particularly to a system and method for improving the resolution of a raster-type three-dimensional display rendering view.
  • the two-dimensional display is difficult to clearly and accurately express the depth information of the third dimension, people have been working on a display technology capable of displaying a stereoscopic scene, a three-dimensional image display technology.
  • the raster type three-dimensional display technology is compatible with mainstream flat panel displays, it has been the most practical three-dimensional technology.
  • the traditional raster three-dimensional display technology guides the beams emitted by the equally spaced pixel arrays of the display screen to point to different viewing zones, so that different viewing zone points can receive optical information from different pixel arrays, and realize three-dimensional based on binocular parallax.
  • the rendering of the image However, the existence of multiple viewports reduces the resolution of the view received by a single viewport. In order to obtain a higher resolution view rendering and thus obtain a better 3D visual experience, the traditional raster 3D display system needs high or even super High resolution display.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a system for improving the resolution of a raster-type three-dimensional display rendering view, by introducing time multiplexing into a conventional raster-type three-dimensional display technology, using the same resolution display and rendering.
  • the resolution of the view of each viewpoint can be improved based on the visual retention effect.
  • a system for improving the resolution of a raster 3D display rendering view comprising:
  • a grating array having a light splitting function, the grating array being disposed in front of the pixel array along the outgoing light transmission direction of the pixel array, for sequentially guiding the exiting beams of the pixel array to a plurality of regions, the grating array comprising a plurality of sub-grating arrays Composition, each sub-grating array comprises two or more adjacent grating elements;
  • a strobe device having a timing strobe function for timing strobing different raster elements in each sub-grating array
  • a control unit is electrically connected to the pixel array and the gate device. At one time point, the control unit controls the gate device to gate one of the raster elements in each of the sub-grating arrays, and controls the pixel array to refresh and display corresponding information.
  • the gating device gates one of the grating elements in each sub-grating array of the grating array, and the light beam from the pixel array is modulated by the grating unit of the gated grating, and can be respectively seen in multiple viewing zones.
  • the control unit controls the pixel array to refresh and display the information content corresponding to the respective view zones; at adjacent time points, the different raster elements of each sub-grating array are sequentially strobed, and the pixel array synchronously refreshes and displays the corresponding information content, based on the visual retention effect. , to improve the resolution of the view view of each viewport.
  • the system further includes an array of light blocking plates for blocking a portion of the sub-grating array corresponding to the pixel out-of-beam of the sub-grating array.
  • the system further includes an adjustment unit disposed between the pixel array and the grating array for adjusting the optical path between the pixel array and the grating array. Further preferably, the adjustment unit adjusts the optical path between the pixel array and the grating array by displacement, mechanical deformation or refractive index change.
  • the grating array is a one-dimensional array of cylindrical lens arrays or a one-dimensionally arranged focal length, and a cylindrical lens array with controllable adjacent cylindrical lens spacing.
  • the grating array is a one-dimensional array of slits or a one-dimensional array of apertured aperture aperture sizes, and adjacent aperture spacing controllable aperture stop arrays.
  • the grating array is a two-dimensionally arranged lens array or a two-dimensionally arranged lens focal length and controllable lens array.
  • Another object of the present invention is to provide a method for improving the resolution of a raster-type three-dimensional display rendering view, comprising the following steps:
  • the one-dimensional grating array is divided into M sub-grating arrays, and each sub-grating array comprises L (L ⁇ 2) adjacent grating units;
  • the gating device gates each of the grating elements of the M sub-grating arrays in an equally spaced manner such that the aperture or part of the apertures are in a light-passing state while the other grating units are in a non-light-emitting state;
  • a plurality of pixel groups arranged periodically are selected as sub-pixel arrays corresponding to the gate grating unit along the longitudinal direction of each of the gate grating units, and each of the sub-pixel arrays has N phases with a pitch of p along the arrangement direction of the grating elements.
  • An adjacent pixel composition wherein when the spatial position of the corresponding pixel of each sub-pixel array exceeds the pixel array range, the pixel is vacant;
  • the control unit controls each pixel of the pixel array to load the optical information of the three-dimensional image to be displayed with respect to the respective corresponding viewpoints;
  • the pixel array and the grating array are arranged in two dimensional directions, and adjacent L (L ⁇ 2) grating units form a sub-grating array, and the grating array is divided into a plurality of sub-grating arrays;
  • Each light blocking plate of the light barrier array is inserted between adjacent sub-grating arrays, and a portion of the corresponding pixel of the sub-grating array is out of the linear range of the sub-grating array in a dimension or two dimensions;
  • the gating device gates one grating unit of each sub-grating array in an equidistant manner such that the aperture or part of the aperture is in a light-passing state, and at the same time, the other grating units are in a non-light-transmitting state, and each of the gating grating units respectively correspond to the adjacent a sub-pixel array composed of a plurality of pixels;
  • the virtual display is to display a three-dimensional image, and the projection information formed on each sub-pixel array of each gating grating unit via each gating grating unit is used as loading information of the sub-pixel array at time point t Ul , by the control unit Control each sub-pixel array to refresh and load;
  • the present invention has the beneficial effects that the present invention introduces time multiplexing into a conventional raster type three-dimensional display or integrated imaging technology, and improves the timing of the rendered view by controlling the timing of the grating unit by the control unit.
  • Rate overcome the low resolution problem of traditional multi-view technology or integrated imaging; for traditional raster 3D display technology, it can also improve the number of rendering viewpoints through specific parameter design while ensuring the resolution of rendering views.
  • the rendering effect of motion parallax even when the adjacent viewpoint spacing is set to be smaller than the pupil size, realizes super multi-view display, overcomes the visual discomfort caused by the convergence-focus conflict of the traditional grating type three-dimensional display technology, and presents a natural three-dimensional visual effect.
  • FIG. 1 is a schematic diagram of an optical path structure of a system for improving the resolution of a raster three-dimensional display presentation view using a cylindrical lens array as a grating array in the first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the arrangement of sub-pixels when the sub-pixel array has only one pixel along the length of the cylindrical lens in the case where the cylindrical lens array is used as the grating array in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an arrangement structure of sub-pixels when a sub-pixel array includes a plurality of pixels along a longitudinal direction of a cylindrical lens in a case where a cylindrical lens array is used as a grating array according to the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing the arrangement structure of sub-pixels when the pixel arrangement direction and the grating arrangement direction are inclined in the case where the cylindrical lens array is used as the grating array in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optical path structure of a system for improving the resolution of a raster-type three-dimensional display rendering view using a slit grating array as a grating array in the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the positional relationship between a grating unit and a pixel in the case where a lens array is used as a grating array in a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an optical path structure of a system for improving the resolution of a raster-type three-dimensional display rendering view using a lens array as a grating array according to a second embodiment of the present invention.
  • the drawings are for illustrative purposes only and are not to be construed as limiting the scope of the invention; some of the components of the drawings may be omitted, enlarged or reduced, and do not represent the dimensions of the actual product; It will be understood by those skilled in the art that certain known structures and their description may be omitted.
  • the invention improves the resolution of the view presented by the raster array-based three-dimensional display technology through the introduction of time multiplexing to obtain a better three-dimensional visual experience.
  • a cylindrical lens array is used as the grating array 10.
  • FIG. 1 A schematic diagram of an optical path structure of a system for improving the resolution of a raster three-dimensional display presentation view is shown in FIG. 1 .
  • the pixels are arranged at a minimum pitch p, and the cylindrical lenses are arranged at a pitch b.
  • H i or the like indicates the row in which the pixel is located, and V i or the like indicates the column in which the pixel is located.
  • the distance between the reference plane of each cylindrical lens optical core (the point at which the cylindrical lens exits the cylindrical lens through the point where the light does not change direction) is the distance D b from the pixel array surface of the pixel array 10, and the observation surface and the pixel array surface The distance is D e .
  • the gating device 30 is placed in close proximity to the grating array 20. 2 shows a spatial positional relationship of the grating array 20 and the pixel array 10, that is, the grating of the grating array 20 is arranged in the x direction toward the y-direction cylindrical lens, and the pixels of the pixel array 10 are two-dimensionally arranged in the x direction and the y direction.
  • the pixel arrangement period is the pixel pitch in the direction
  • the sub-pixel array takes one pixel in the direction; in the x direction, the sub-pixel array includes four adjacent pixels.
  • the sub-pixel arrays corresponding to the gate lens of the adjacent sub-grating array are adjacently arranged without pixels overlapping.
  • the pixels P ii , P ij , P ik , P il constitute a sub-pixel array with respect to the gate lens Gi1
  • the pixels P im , P in , P io , P ip are composed with respect to the gate lens.
  • a sub-pixel array of G j1 determines a sub-pixel array corresponding to each of the strobe cylinder lenses.
  • a plurality of sets of sub-pixel arrays are corresponding along the y-direction.
  • the gate lens Gi1 has corresponding sub-pixel arrays..., PA ii1 , PA ji1 , PA ki1 , .
  • the first subscript indicates the row in which the sub-pixel array is located, and the last two subscripts indicate the serial number of the gate lens corresponding to the sub-pixel array.
  • Each parameter in the design diagram 2 conforms to the following geometric relationship:
  • the pixels P ii , P ij , P ik , P il , P im , P in , P io , P ip , P iq , P ir , . . . correspond to the pixel P l in FIG. 1 . +1 , P l+2 , P l+3 , P l+4 , P l+5 , P l+6 , P l+7 , P l+8 , P l+9 ,...; grating unit G i1 , G i2 , G j1 , G j2 , ...
  • the light emitted from the center of the pixel ..., P ii , P im , P iq , ..., and the optical center of the corresponding strobe lens is concentrated at the V cp1 point, that is, along the x direction, they are simultaneously visible at V cp1
  • a common area centered on the point, the common area is named area S 11 , and a point of the area is taken as the viewpoint V 11 , and the control unit 40 controls the pixels..., P ii , P im , P iq , ... to load the three-dimensional image to be displayed.
  • the light information of the viewpoint V 11 the light emitted from the center of the pixel ..., P ij , P in , P ir , ..., and the light center of the corresponding strobe lens lens converge at the V cp2 point, that is, along the x direction, they are visible at V cp2
  • a common area centered on the point, the common area is named area S 12 , and a point of the area is taken as the viewpoint V 12 , and the control unit 40 controls the pixels..., P ij , P in , P ir , ... to load the three-dimensional image to be displayed.
  • the light information of the viewpoint V 12; the light emitted from the center of the pixel ..., P ik , P io , ..., and the light center of the corresponding strobe lens lens converge at the V cp3 point, that is, along the x direction, they are visible at the V cp3 point.
  • the common region is a region designated S 13, taken An area 40 controls the pixel as a viewpoint V 13, the control unit ..., P ik, P io, ... loaded to be displayed three-dimensional image of the optical information of the viewpoint V 13 on; pixels ..., P il, P ip, ...
  • the control unit 40 controls the pixels..., P il , P ip , . . . to load the light information of the three-dimensional image to be displayed with respect to the viewpoint V 14 .
  • each row of pixels is also loaded with display information according to the above principle.
  • the viewpoints corresponding to different rows can be coincident in the y direction in the above process.
  • the resolution reduction in the y direction remains at the resolution of the pixel array 10.
  • the selection of each viewpoint is along the x direction, close to the center of the corresponding region, or the center of the corresponding region is selected; along the y direction, the position of the viewpoint can be determined according to the range of the observer's binocular.
  • the pixels P ik , P il , P im , P in constitute a sub-pixel array with respect to the cylindrical lens G i2
  • the pixels P io , P ip , P iq , P ir are composed with respect to the gate lens G
  • a sub-pixel array of j2 and so on, determines a sub-pixel array corresponding to each of the strobe cylinder lenses.
  • each of the gate lens lenses along the y direction corresponds to a plurality of sets of sub-pixel arrays.
  • N and L can take other values. If the value of N/L is not an integer, the adjacent sub-pixel arrays in the same sub-grating array are spatially misaligned along the x-direction, and the nearest integer value is the closest to N/L.
  • the pixel pitch is the spatial offset value.
  • the pixels P ij , P il , P in , P ip , P ji , P jk , P jm , P Jo constitutes a sub-pixel array with respect to the gate lens G i1 .
  • Sub-pixel structures adjacent in the x-direction are composed of pixels P ir , P it , P iv , P ix , P jq , P js , P ju , P jw , and so on.
  • a plurality of sub-pixel arrays arranged periodically in the y direction correspond to each of the gate lens.
  • each sub-pixel array adjacent pixels in the x direction are at different positions in the y direction, such as P ji and P ij in FIG. 3 , and the pitch p in the x direction is the smallest pixel pitch in the direction.
  • Each parameter of the system satisfies the above formula (1).
  • the sub-pixel array corresponding to the adjacent raster elements sequentially gated in the same sub-grating array will also have an offset of N/L minimum pixel pitches in the x direction.
  • the cylindrical lens G i2 is gated, and a corresponding sub-pixel array thereof will be composed of the pixels P in , P ip , P ir , P it , P shown in FIG. 3 .
  • Jm , P jo , P jq , P js are composed.
  • An offset of N/L 4 minimum pixel pitch occurs along the x direction.
  • the adjacent sub-pixel arrays in the same sub-grating array are spatially misaligned along the x-direction, and the nearest integer value is the closest to N/L.
  • the pixel pitch is the spatial offset value.
  • the arrangement direction of the pixel array 10 and the grating array 20 is uniform.
  • 4 shows a case where the two are inclined to each other, in which the pixels of the pixel array 10 are arranged two-dimensionally along the x' direction and the y', and the y-direction cylindrical lens units of the grating array 20 are arranged in the x direction.
  • p x 'and p y ' are the pixel pitches along the x' direction and the y' direction, respectively, and b is the pitch of the x-direction cylindrical lens elements.
  • the pixels P ni , P nj , P nk , P mi , P mj , P mk , P li , P Lj , P lk constitute a sub-pixel array with respect to the gate lens G i1 .
  • the sub-pixel structures adjacent in the x direction are composed of pixels P ml , P mm , P mn , P ll , P lm , P ln , P kl , P km , P kn , and so on.
  • a plurality of sub-pixel arrays arranged periodically in the y direction correspond to each of the gate lens.
  • the parameters of the system are required to satisfy the above formula (1).
  • the sub-pixel array corresponding to the adjacent raster elements sequentially gated in the same sub-grating array is offset by d'/L along the x-direction, where d' is an x-direction adjacent sub-pixel array. spacing.
  • the lens G i2 is gated, and a corresponding sub-pixel array thereof will be composed of the pixels P lj , P lk , P ll , P kj , P kk shown in FIG. 4 . , P kl , P jj , P jk , P jl .
  • g' in the angle ⁇ expression atan(p x '/(g'*p y ')) of y' and y is a non-integer, it is also possible to take each sub-pixel array along the y' direction to include a positive number g Pixels containing h pixels along the x' direction.
  • the y-direction sub-pixel array corresponding to each of the gate grating units has a misalignment in the x direction.
  • the value of d'/L is not an integer multiple of the minimum pixel pitch p
  • the spatial displacement of the sub-pixel array corresponding to two adjacent grating elements in the same sub-grating array along the x-direction is the closest to d.
  • the integer pixel value of '/L is the value of the space misalignment.
  • the gate space portion may be the entire aperture of the corresponding grating unit or a part of the aperture of the corresponding grating unit.
  • the cylindrical lens as the grating unit can be replaced by a slit, as shown in FIG.
  • the slit grating is placed on the reference surface shown in Fig. 1.
  • the optical centers of the respective cylindrical lenses in Fig. 1 are set as the x-center points of the slits in Fig. 5.
  • the aperture size a of each aperture of the aperture grating along the x-direction is not greater than the adjacent aperture spacing b.
  • Other parameters and principles are the same as in the case of Figure 1.
  • the gating device 30 can be attached to the grating array 20 from either side of the grating array 20, and the functions of the grating array 20 and the gating device 30 can be implemented by a device such as a controllable liquid crystal light valve array.
  • a device such as a controllable liquid crystal light valve array.
  • the sub-pixel array structures shown in Figures 2, 3, and 4 can be used in Figure 1, and they can also be used in Figure 5.
  • the grating array 20 may be a one-dimensionally arranged pitch-controllable cylindrical lens array, such as a liquid crystal column lens array, to adjust the parameter b.
  • the grating array 20 may be a one-dimensional array of slits with controllable aperture and grating pitch to adjust the parameters a and b.
  • the thickness of the cylindrical lens unit in the z direction may also be small, and a gap exists between the pixel array 10 and the grating array 20.
  • the gating device 30 can also be placed between the pixel array 10 and the grating array 20 and placed close to the grating array 20 for aperture tracking of the grating elements.
  • the adjusting unit 60 may be disposed between the pixel array 10 and the grating array 20. As shown in FIG. 5, the adjusting unit 60 may adjust the distance between the pixel array 10 and the grating array 20 by displacement, mechanical deformation, or the like, that is, Adjust the parameter D b .
  • the focal length of the cylindrical lens unit can be set to image the pixel on the observation surface. If a cylindrical lens grating with a focal length of the cylindrical lens, such as a liquid crystal cylindrical lens grating, can be used, Adjust the position of the pixel image.
  • the focal length of the cylindrical lens unit can be set such that the pixel is just in the focal plane of the cylindrical lens, if a cylindrical lens grating with a focal length of the cylindrical lens, such as a liquid crystal column, is used.
  • the lens grating which requires the adjustment unit 60, adjusts the optical path between the pixel array 10 and the grating array 20 by means of refractive index change adjustment, displacement, mechanical deformation, etc., to keep the pixels in the focal plane of the cylindrical lens.
  • the plane distribution of pixels will be described as an example. Based on a plane, the pixels can also be distributed on the curved surface near the plane, and the projection of the pixel on the reference plane is designed as an effective pixel according to the above example. In this case, if the equivalent pixel pitch is not equal, the design is performed with the average of the equivalent pixel pitch along the arrangement direction of the grating elements.
  • the lens array is used as the grating array 20.
  • the positional relationship between the grating unit and the pixel is as shown in FIG. 6.
  • Both the grating unit and the pixels are arranged in the x-direction and the y-direction.
  • p x and p y are pixel pitches
  • b x and b y are grating cell pitches.
  • the x direction is a row and the y direction is a column.
  • FIG. 6 illustrates an example in which two sub-grating arrays correspond to two pixels along y.
  • the gating device 30 is placed in close proximity to the grating array 20.
  • the gate device 30 placed next to the grating array 20 simultaneously strobes the lens G jj1 of the sub-grating array G jj , the lens G jn1 , ... of the sub-grating array G jn .
  • Each of the gate grating units selects a plurality of adjacent pixels between the corresponding light blocking plates and the x-directions to form a sub-pixel array corresponding to the gate grating unit, and the adjacent sub-grating array simultaneously gates the corresponding sub-pixel array of the grating unit , no pixels overlap adjacent to each other.
  • the adjacent sub-grating array simultaneously gates the corresponding sub-pixel array of the grating unit , no pixels overlap adjacent to each other.
  • the pixels P ji , P ki , P jj , P kj , P jk , P kk , P jl , P kl constitute a sub-grating unit with respect to the gate grating G jj1 , P jm , P km , P jn , P kn , P jo , P ko , P jp , P kp constitute a sub-grating unit with respect to the gate grating G jn1 , and so on.
  • each sub-pixel array has the same spatial relative positional relationship with respect to its corresponding gated grating unit.
  • the periodic sub-grating array and the corresponding sub-pixel array are periodically distributed.
  • the gating grating elements of the same pair are required to be arranged at equal intervals.
  • the following is an example of the behavior of G jj , which applies to all rows. As shown in FIG.
  • the three-dimensional object to be displayed is imaginary, which is modulated by the strobe grating G jj1 , and corresponding information is generated in the corresponding sub-pixel array of G jj1 as the pixel P ji , P ki , P jj in the sub-pixel array at time t , P kj , P jk , P kk , P jl , P kl to load information, the control unit 40 controls their synchronous loading; the dummy three-dimensional object to be displayed is modulated by the strobe grating G jn1 , and the sub-pixel array corresponding to Gjn1 Each pixel generates corresponding information as the sub-pixel array pixels P jm , P km , P jn , P kn , P jo , P ko , P jp , P kp at time t to load information, and the control unit 40 controls them to be synchronously loaded.
  • each sub-pixel generates corresponding
  • the lens G jj2 of the sub-grating array G jj and the lens G of the sub-grating array G jn are simultaneously strobed Jn2 ,...
  • the virtual three-dimensional object to be displayed is strobed G jj2 modulation, and corresponding information is generated in the corresponding sub-pixel array of G jj2 , the information is loaded as information of each pixel of the sub-pixel array at time t+ ⁇ t, and the control unit 40 controls them to be synchronously loaded;
  • the three-dimensional object to be displayed is modulated by the strobe grating G jn2 , and corresponding information is generated in the corresponding sub-pixel array of G jn2 , the information is loaded as information of the sub-pixel array pixels at the time t+ ⁇ t, and the control unit 40 controls the synchronization thereof. Loading; based on the same method, each sub-pixel array simultaneously performs corresponding information loading at time t+ ⁇ t.
  • each sub-grating array is sequentially gated according to the above principle until t+(L-1)* ⁇ t.
  • the light barrier is inserted in one dimension.
  • the light-shielding plate can also be inserted simultaneously in the x-direction, the grating elements of any sub-grating array and their corresponding pixels do not affect each other, and each sub-grating array corresponds to a pixel distributed within the same range as the two-dimensional size thereof, as shown in FIG. 6
  • the neutron grating array G jj is taken as an example.
  • the corresponding pixels are P jj , P kj , P jk , P kk , P jl , P kl , P jm , P km , and these pixels are used as sub-raster columns.
  • a sub-pixel array corresponding to all raster elements included in G jj is determined in the same manner.
  • each raster unit of each sub-grating array is sequentially strobed, corresponding pixels of the sub-pixel array are synchronously loaded with corresponding information, and integrated imaging three-dimensional rendering is realized based on visual stagnation.
  • each sub-grating array may have two or more grating units along the y-direction.
  • the number of grating elements included in the x direction may be two or more.
  • the sub-grating array of the grating array 20 may be a pitch controllable lens, such as a liquid crystal lens array, to adjust the grating element spacing.
  • the sub-grating array of the grating array 20 may be a lens with adjustable focal length, such as a liquid crystal lens array, in order to adjust the imaging size and imaging quality of the three-dimensional object to be displayed on the pixel array 10.
  • the adjustment unit 60 may be disposed between the pixel array 10 and the grating array 20, and the adjustment unit 60 may adjust the distance between the pixel array 10 and the grating array 20 by displacement, refractive index change adjustment, mechanical deformation, or the like. In order to adjust the imaging size and imaging quality of the three-dimensional object to be displayed on the pixel array 10.
  • the pixel array 10 and the grating array 20 arranged in a plane are taken as an example for description. If the pixel array 10 and the grating array 20 are arranged in a curved surface, the above examples can be implemented in the same manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种提高光栅式三维显示呈现视图分辨率的系统和方法,该系统包括一个像素阵列(10)、一个光栅阵列(20)、一个可时序选通光栅阵列各光栅单元的选通器件(30)及一个控制单元(40);光栅阵列(20)分为多个子光栅阵列,各子光栅阵列由两个或多个光栅单元组成;在一个时间点,选通器件选通各子光栅阵列中的一个光栅单元,经选通光栅单元的分光调控,来自像素阵列(10)的光束形成多个视区,不同像素分别可见于对应视区;在各时间点,由选通器件(30)循环选通各子光栅阵列不同的光栅单元,控制单元控制各像素同步刷新显示对应信息内容。该系统和方法基于视觉滞留效应,可以提高各视区对应视图的分辨率。

Description

一种提高光栅式三维显示呈现视图分辨率的系统和方法 技术领域
本发明涉及三维图像显示技术领域,更具体地,涉及一种提高光栅式三维显示呈现视图分辨率的系统和方法。
背景技术
由于二维显示难以清楚准确地表达第三维的深度信息,人们一直在致力于研究可显示立体场景的显示技术——三维图像显示技术。由于光栅式三维显示技术兼容于主流的平板显示器,因此其一直是目前实用化最为广泛的三维技术。通过光栅的分光功能,传统光栅式三维显示技术引导显示屏等间隔像素阵列出射的光束分别指向不同的视区,使不同视区点可以接收来自不同像素阵列的光学信息,基于双目视差实现三维图像的呈现。但多个视区的存在,降低了单个视区接收到视图的分辨率,为了获得更高分辨率的视图呈现,从而获取更好的三维视觉体验,传统光栅式三维显示系统需要高、甚至超高分辨率的显示屏。
发明内容
本发明的目的在于克服现有技术的不足,提供一种提高光栅式三维显示呈现视图分辨率的系统,通过将时间复用引入传统的光栅式三维显示技术,在采用相同分辨率显示屏和呈现相同数目视点的情况下,基于视觉滞留效应,可以提高各视点接收视图的分辨率。
为达到上述目的,本发明采用的技术方案是:
提供一种提高光栅式三维显示呈现视图分辨率的系统,包括:
一个像素阵列,用于加载显示光学信息;
一个光栅阵列,具有分光功能,所述光栅阵列沿像素阵列出射光传输方向设置于像素阵列前,用于将所述像素阵列出射光束有序引导至若干区域,所述光栅阵列由若干子光栅阵列组成,各子光栅阵列包含两个或多个相邻光栅单元;
一个选通器件,具有时序选通功能,用于时序选通各子光栅阵列中的不同光栅单元;
一个控制单元,与像素阵列及选通器件电连接,在一个时间点,控制单元控制选通器件选通各子光栅阵列中的一个光栅单元,并控制所述像素阵列刷新显示相应信息。
上述方案中,在一个时间点,所述选通器件选通光栅阵列各子光栅阵列中的一个光栅单元,来自像素阵列的光束经选通的光栅单元的分光调控,分别可见于多个视区,同时,控制单元控制像素阵列刷新显示对应各自视区的信息内容;在相邻时间点,各子光栅阵列的 不同光栅单元依次循环选通,像素阵列同步刷新显示相应信息内容,基于视觉滞留效应,提高各视区接收视图的分辨率。
优选地,所述系统还包括一个挡光板阵列,所述挡光板阵列用于挡除各子光栅阵列对应像素出射光束超出本子光栅阵列线度范围的部分。
优选地,所述系统还包括一个调节单元,所述调节单元置于像素阵列和光栅阵列之间,用于调节像素阵列和光栅阵列之间的光程。进一步优选地,所述调节单元通过位移、机械变形或折射率改变等方式调节像素阵列和光栅阵列之间的光程。
优选地,光栅阵列为一维排列的柱透镜阵列或一维排列的焦距、相邻柱透镜间距可控的柱透镜阵列。作为另一替代方案,光栅阵列为一维排列的狭缝阵列或一维排列的狭缝通光孔径尺寸、相邻狭缝间距可控的孔径光阑阵列。
优选地,光栅阵列为二维排列的透镜阵列或二维排列的透镜焦距、分布间距可控的透镜阵列。
本发明的另一个目的是提供一种提高光栅式三维显示呈现视图分辨率的方法,包括以下步骤:
S1.一维光栅阵列分成M个子光栅阵列,各子光栅阵列包含L(L≧2)个相邻光栅单元;
S2.在时间点t Ul(t Ul=t+U*L*Δt+(l-1)*Δt,其中U=0,1,2,3,…,l=1,2,…,L),选通器件以等间距方式选通M个子光栅阵列的各一个光栅单元,使其孔径或部分孔径处于通光状态,同时使其它光栅单元处于非通光状态;
S3.沿各选通光栅单元长向方向,选择周期排列的多个像素组作为该选通光栅单元对应的子像素阵列,各子像素阵列由沿光栅单元排列方向上间距为p的N个相邻像素组成,其中各子像素阵列对应像素的空间位置超出像素阵列范围时,该像素空置;
S4.任意选通光栅单元G ml(下标m为子光栅阵列序号,m=1,2,…,M)对应子像素阵列的各像素经该光栅单元G ml,沿光栅单元排列方向上,分别可见于空间区域S ml1,S ml2,…,S mlN,其中空间区域S 1l1,S 2l1,…,S Ml1的重叠区域命名为区域S l1,空间区域S 1l2,S 2l2,…,S Ml2的重叠区域命名为区域S l2,同理命名区域S l3,…,S lN
S5.区域S ln(n=1,2,…,N)取点V ln,设定点V ln为分别可见于空间区域S 1ln,S 2ln,…,S Mln的像素对应的视点;
S6.控制单元控制像素阵列各像素加载待显示三维图像关于各自对应视点的光信息;
S7.在l=1,2,…,L的各时间点,依次按步骤S2-S6选通各子光栅单元的L个光栅单元,并同步加载相关信息;
S8.在U=0,1,2,3,…时,循环重复步骤S7。
作为本发明一种提高光栅式三维显示呈现视图分辨率的方法的另一种替代方式,包括以下步骤:
SS1.像素阵列和光栅阵列沿两个维向排列,相邻的L(L≧2)个光栅单元组成一个子光栅阵列,光栅阵列分成多个子光栅阵列;
SS2.挡光板阵列的各挡光板插入相邻子光栅阵列之间,沿一个维向或两个维向挡除各子光栅阵列对应像素出射光束超出该子光栅阵列线度范围的部分;
SS3.在时间点t Ul(t Ul=t+U*L*Δt+(l-1)*Δt,其中l=1,2,…,L,U=0,1,2,3,…),选通器件以等间距方式选通各子光栅阵列的一个光栅单元,使其孔径或部分孔径处于通光状态,同时使其它光栅单元处于非通光状态,各选通光栅单元分别对应由相邻多个像素组成的子像素阵列;
SS4.虚置待显示三维图像,其经各选通光栅单元,在各选通光栅单元对应子像素阵列上形成的投影信息,作为该子像素阵列在时间点t Ul的加载信息,由控制单元控制各子像素阵列刷新加载;
SS5.在l=1,2,…,L的各时间点,依次按步骤SS3-SS4选通光栅阵列中各子光栅阵列的L个光栅单元,并同步加载相关信息;
SS6.在U=0,1,2,3,…时,循环重复步骤SS5。
与现有技术相比,本发明的有益效果是:本发明将时间复用引入到传统的光栅式三维显示或集成成像技术中,通过控制单元对光栅单元的时序选通,提高呈现视图的分辨率,克服传统多视图技术或集成成像的的低分辨率问题;对于传统光栅式三维显示技术,也可以在保证呈现视图分辨率的情况下,通过具体的参数设计,提高呈现视点的数量,优化运动视差的呈现效果,甚至在相邻视点间距设置为小于瞳孔尺寸时,实现超多视图显示,克服传统光栅式三维显示技术辐辏-聚焦冲突带来的视觉不适,呈现自然的三维视觉效果。
附图说明
图1是本发明第一种实施例中采用柱透镜阵列作为光栅阵列的一种提高光栅式三维显示呈现视图分辨率的系统的光路结构示意图。
图2是本发明第一种实施例采用柱透镜阵列作为光栅阵列情况下,子像素阵列沿柱透镜长向只有一个像素时子像素的排列结构示意图。
图3是本发明第一种实施例采用柱透镜阵列作为光栅阵列情况下,子像素阵列沿柱透镜长向方向包含多个像素时子像素的排列结构示意图。
图4是本发明第一种实施例采用柱透镜阵列作为光栅阵列情况下,像素排列方向和光栅排列方向倾斜时子像素的排列结构示意图。
图5是本发明第一种实施例中采用狭缝光栅阵列作为光栅阵列的一种提高光栅式三维显示呈现视图分辨率的系统的光路结构示意图。
图6是本发明第二种实施例中采用透镜阵列作为光栅阵列情况下,光栅单元和像素间位置关系示意图。
图7是本发明第二种实施例采用透镜阵列作为光栅阵列的一种提高光栅式三维显示呈现视图分辨率的系统的光路结构示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。本发明通过时间复用的引入,提高基于光栅阵列的三维显示技术所呈现视图的分辨率,以获得更好的三维视觉体验。
实施例1
采用柱透镜阵列作为光栅阵列10,本发明一种提高光栅式三维显示呈现视图分辨率的系统的光路结构示意图如图1所示。图1和以下部分所述各光路结构图中,为了简单清晰,都只是画出了光栅阵列20和像素阵列10的部分。沿光栅阵列20的柱透镜排列方向(x向),像素以最小间距p排列,柱透镜以间距b排列。H i等表示像素所在的行,V i等表示像素所在列。各柱透镜光心(柱透镜横截面内经该点光线不改变方向地出射该柱透镜的点)所处参考面与像素阵列10所在像素阵列面的距离为D b,观察面与像素阵列面的距离为D e。选通器件30紧贴光栅阵列20放置。图2显示了光栅阵列20和像素阵列10的一种空间位置关系,即光栅阵列20的光栅为y向柱透镜沿x向排列,像素阵列10的像素沿x向和y向二维排列。这里以相邻L=2个光栅单元组成一个子光栅阵列为例进行说明,即柱透镜G i1和G i2组成子光栅阵列G i,柱透镜G j1和G j2组成子光栅阵列G j,依次类推,共M个子光栅阵列。沿y向,对一个光栅单元柱透镜来说,像素排列周期为该方向上的像素间距,子像素阵列在该方向上取一个像素;沿x向,以子像素阵列包含四个相邻像素为例进行说明,也即以一个子像素阵列含有N=1*4个像素为例进行说明。
设置整数U和l,其中整数U的取值范围为0,1,2,…,整数l的取值范围为1,2,…,L。在U=0和l=1的t+U*L*Δt+(l-1)*Δt=t时刻,紧靠光栅阵列20放置的选通器件30同时选通子光栅阵列G i的柱透镜G i1、子光栅阵列G j的柱透镜G j1、…。这些选通的、分属不同子光栅阵列的M个柱透镜,沿x向间距为L*b=2b。沿x向,相邻子光栅阵列的选通柱透镜所对应子像素阵列,无像素重叠地毗邻排列。具体到图2,像素P ii,P ij,P ik,P il组成相对于选通柱透镜Gi1的一个子像素阵列,像素P im,P in,P io,P ip组成相对于选通柱透镜G j1 的一个子像素阵列,依次类推确定x向各选通柱透镜对应的子像素阵列。对于任一选通的柱透镜,沿y向对应多组子像素阵列。具体到图2,选通柱透镜Gi1沿y向有对应的子像素阵列…、PA ii1、PA ji1、PA ki1、…。此处,第一个下标表示该子像素阵列所在的行,后两位下标表示该子像素阵列所对应选通柱透镜的序号。设计图2中各参数符合如下几何关系:
D b=(p*D e)/(e+p),(L*b)/(N*p)=(D e-D b)/D e(1)。
以子像素阵列PA ii1所在行为例,像素P ii、P ij、P ik、P il、P im、P in、P io、P ip、P iq、P ir、…对应图1中的像素P l+1、P l+2、P l+3、P l+4、P l+5、P l+6、P l+7、P l+8、P l+9、…;光栅单元G i1、G i2、G j1、G j2、…分别对应图1中的柱透镜k,k+1,k+2,k+3,…。根据公式(1)所述几何关系,本行间距为N*p=4p的各像素中心出射光线经各自对应选通柱透镜的光心,指向观察面上的同一点。就图2具体来说,像素…、P ii、P im、P iq、…中心出射、过对应选通柱透镜光心的光线会聚于V cp1点,即沿x向它们同时可见于以V cp1点为中心的一个公共区域,命名该公共区域为区域S 11,取该区域一个点为视点V 11,控制单元40控制像素…、P ii、P im、P iq、…加载待显示三维图像关于该视点V 11的光信息;像素…、P ij、P in、P ir、…中心出射、过对应选通柱透镜光心的光线会聚于V cp2点,即沿x向它们可见于以V cp2点为中心的一个公共区域,命名该公共区域为区域S 12,取该区域一个点为视点V 12,控制单元40控制像素…、P ij、P in、P ir、…加载待显示三维图像关于该视点V 12的光信息;像素…、P ik、P io、…中心出射、过对应选通柱透镜光心的光线会聚于V cp3点,即沿x向它们可见于以V cp3点为中心的一个公共区域,命名该公共区域为区域S 13,取该区域一个点为视点V 13,控制单元40控制像素…、P ik、P io、…加载待显示三维图像关于该视点V 13的光信息;像素…、P il、P ip、…中心出射、过对应选通柱透镜光心的光线会聚于V cp4点,即沿x向它们可见于以V cp4点为中心的一个公共区域,命名该公共区域为区域S 14,取该区域一个点为视点V 14,控制单元40控制像素…、P il、P ip、…加载待显示三维图像关于该视点V 14的光信息。沿y向,各行像素同样按上述原理进行显示信息加载。由于柱透镜沿y无位相调制功能,不同行对应的视点,在上述过程中沿y向可以取重合。沿x向,不同子像素阵列对应的N=4个视点,空间上可设置为重合。则t时刻在N=4个视点附近的区域,将分别观察到待显示三维图像的对应视图,各视图沿x向的分辨率降低为像素阵列10分辨率的1/L=1/4,沿y向的分辨率降低保持为像素阵列10的分辨率。各视点的选取,沿x向,以靠近各自所对应区域的中心,或就选取各自所对应区域的中心为优;沿y向,视点所在位置可以根据观察者双目所在范围来确定。
在U=0和l=2的t+U*L*Δt+(l-1)*Δt=t+Δt时刻,选通器件30同时选通子光栅阵列G i的柱透镜G i2、子光栅阵列G j的柱透镜G j2、…。类似于t时刻的情况,以N=4个x向相邻像素组成子像素阵列。但相对于l=1时刻情景,沿x向,各子像素阵列的像素总体上 发生了N/L=2个最小像素间距的偏移。具体到图2,像素P ik,P il,P im,P in组成相对于柱透镜G i2的一个子像素阵列,像素P io,P ip,P iq,P ir组成相对于选通柱透镜G j2的一个子像素阵列,依次类推确定x向各选通柱透镜对应的子像素阵列。同样,沿y向各选通柱透镜对应多组子像素阵列。在满足公式(1)所要求几何关系的前提下,同上段所述原理,则t+Δt时刻,沿x向在V cp1、V cp2、V cp3、V cp4点附件的区域,将分别观察到待显示三维图像的对应视图,各视图沿x向的分辨率也降低为像素阵列10分辨率的1/L=1/4,沿y向的分辨率降低保持为像素阵列10的分辨率。但l=1时刻和l=2时刻呈现的视图,其对应的像素沿x向是空间错位的。在U=0的情况下不同时刻,同理处理,直到l=L时刻。然后依次取U=1,2,…,在U取各离散值时,再循环重复U=0时对应的上述过程。
当Δt小到视觉滞留效应起作用时,各视点附件时序接收到的L个视图,将合成为一幅分辨率提高了L-1倍的视图。
上述过程是以L=2,N=4为例进行讲解的。在满足公式(1)的前提下,N和L可以取其它值。若当N/L的值不是整数时,相邻两个时刻,同一子光栅阵列相邻两个光栅单元对应的子像素阵列沿x向的空间错位,取最接近N/L的整数值个最小像素间距为该空间错位值。当像素阵列10的刷新频率足够高时,提高子光栅阵列所含光栅单元的数量L,可以进一步提高显示视图的分辨率。
在上述实例中,像素阵列10中像素排列沿y向以一个像素为最小周期分布的。另外一种可选结构为y向像素是以g个像素为最小周期分布的,此时各子光栅阵列包含N=g*h个像素,h为x向像素个数。图3以g=2,h=4为例进行说明。在U=0和l=1的t+U*L*Δt+(l-1)*Δt=t时刻,像素P ij,P il,P in,P ip,P ji,P jk,P jm,P jo组成一个相对于选通柱透镜G i1的子像素阵列。沿x向相邻的子像素结构由像素P ir,P it,P iv,P ix,P jq,P js,P ju,P jw组成,依此类推。沿y向,周期排列的多个子像素阵列对应每一个选通柱透镜。各子像素阵列中,沿x方向的相邻像素在y向上处于不同位置,如图3中的P ji和P ij,其沿x向的间距p为该方向上最小的像素间距。系统各参数满足上述公式(1)。在l取相邻值的时刻,同一子光栅阵列中依次选通的相邻光栅单元所对应的子像素阵列沿x向也将总体发生N/L个最小像素间距的偏移。以U=0和l=2的时刻为例,此时柱透镜G i2选通,其所对应的一个子像素阵列将由图3所示的像素P in,P ip,P ir,P it,P jm,P jo,P jq,P js组成。相对于U=0和l=1时刻选通柱透镜G i1所对应的一个由像素P ij,P il,P in,P ip,P ji,P jk,P jm,P jo组成的子像素阵列,沿x向发生了N/L=4个最小像素间距的偏移。若当N/L的值不是整数时,相邻两个时刻,同一子光栅阵列相邻两个光栅单元对应的子像素阵列沿x向的空间错位,取最接近N/L的整数值个最小像素间距为该空间错位值。当像素阵列10的刷新频率足够高时,提高子光栅阵列所含光栅单元的数量L,可以进 一步提高显示视图的分辨率。
上述实例中,像素阵列10和光栅阵列20的排列方向是一致的。图4所示为二者相互倾斜的情况,其中像素阵列10的像素沿x'向和y'向二维排列,光栅阵列20的y向柱透镜单元沿x向排列。p x'和p y'分别为沿x'向和y'向的像素间距,b为x向柱透镜单元的间距。y'和y的夹角为θ=arctan(p x'/(g*p y')),其中g为正整数。在该情境下,各子像素阵列包含N=g*h个像素,其中h为x'向像素个数,g为y'向像素个数。图4是以h=3,g=3为例进行说明。在U=0和l=1的t+U*L*Δt+(l-1)*Δt=t时刻,像素P ni,P nj,P nk,P mi,P mj,P mk,P li,P lj,P lk组成一个相对于选通柱透镜G i1的子像素阵列。沿x向相邻的子像素结构由像素P ml,P mm,P mn,P ll,P lm,P ln,P kl,P km,P kn组成,依此类推。沿y向,周期排列的多个子像素阵列对应每一个选通柱透镜。各子像素阵列中,沿x方向的相邻像素在y'向上处于不同位置,如图4中的P ni和P mi,其沿x向的间距p=p y'*sin(θ)为该方向上最小的像素间距。系统各参数要求满足上述公式(1)。在l取相邻值的时刻,同一子光栅阵列中依次选通的相邻光栅单元所对应的子像素阵列沿x向总体偏移d'/L,其中d'为x向相邻子像素阵列间距。以U=0和l=2的时刻为例,此时透镜G i2选通,其所对应的一个子像素阵列将由图4所示的像素P lj,P lk,P ll,P kj,P kk,P kl,P jj,P jk,P jl组成。相对于U=0和l=1时刻选通柱透镜G i1所对应的一个由像素P ni,P nj,P nk,P mi,P mj,P mk,P li,P lj,P lk组成的子像素阵列,沿x向发生了d'/L=5p的偏移。当y'和y的夹角θ表达式atan(p x'/(g'*p y'))中的g'为非整数时,也可以取各子像素阵列沿y'向包含正数g个像素,沿x'向包含h个像素。但此种情况下,各选通光栅单元对应的y向子像素阵列,在x向存在错位。反应到图1中,在规定x向为行的情况下,沿y向不同行的像素对应的汇聚点V cpk(k=1,2,…,N)存在x向错位。若当d'/L的值不是最小像素间距p的整数倍时,相邻两个时刻,同一子光栅阵列相邻两个光栅单元对应的子像素阵列沿x向的空间错位,取最接近d'/L的整数值个最小像素间距为该空间错位的值。当像素阵列10的刷新频率足够高时,提高子光栅阵列所含光栅单元的数量L,可以进一步提高显示视图的分辨率。
上述实例中,各光栅单元进行选通时,选通空间部分可以为对应光栅单元的整个孔径,也可以为对应光栅单元孔径的一部分。
上述实例中,作为光栅单元的柱透镜可以以狭缝代替,如图5。狭缝光栅置于图1所示参考面上,图1中各柱透镜的的光心在图5中设为各狭缝的x向中心点。孔径光栅各孔径沿x向的孔径尺寸a不大于相邻孔径间距b。其它参数、原理同理于图1情况。在此情况下,选通器件30可以从光栅阵列20的任意一边附着于光栅阵列20,且光栅阵列20和选通器件30的功能可以通过一个器件,比如可控液晶光阀阵列来实现。同理于图2、图3、和图4所示的子像素阵列结构可以使用于图1上,它们也可以使用于图5上。
上述采用柱透镜光栅的实例中,光栅阵列20可为一维排列的间距可控的柱透镜阵列,如液晶柱透镜阵列,以便调节参数b。
上述采用狭缝光栅的实例中,光栅阵列20可为一维排列的、通光孔径和光栅间距可控的狭缝阵列,以便调节参数a和b。
上述采用柱透镜光栅的实例中,柱透镜单元沿z向的厚度,也可以变小,像素阵列10和光栅阵列20间存在空隙。在这种情况下,选通器件30也可以置于像素阵列10与光栅阵列20之间,并靠近光栅阵列20放置,进行光栅单元的孔径选通。
上述实例中,可以在像素阵列10和光栅阵列20之间置调节单元60,如图5,该调节单元60可以通过位移、机械变形等方式调节像素阵列10和光栅阵列20之间的距离,即调节参数D b
上述采用柱透镜光栅的实例中,沿柱透镜的位相调制方向,柱透镜单元焦距的设置可以将像素成像于观察面,若采用柱透镜焦距可变的柱透镜光栅,如液晶柱透镜光栅,可以调整像素像的位置。
上述采用柱透镜光栅的实例中,沿柱透镜的位相调制方向,柱透镜单元焦距的设置可以令像素正好处于柱透镜的焦平面上,若采用柱透镜焦距可变的柱透镜光栅,如液晶柱透镜光栅,这需要调节单元60,通过折射率变化调节、位移、机械变形等方式调节像素阵列10和光栅阵列20之间光程,以保持像素处于柱透镜焦平面上。
上述实例中,以像素的平面分布为例进行说明。以一个平面为基准,像素也可以分布在该平面附近的曲面上,以像素在该基准平面上的投影作为有效像素按上述实例进行设计。在此情况下,若等效像素间距非等值,沿光栅单元排列方向,以等效像素间距的平均值进行设计。
实施例2
采用透镜阵列作为光栅阵列20,本发明一种提高光栅式三维显示呈现视图分辨率的系统中,光栅单元和像素相互位置关系如图6所示。为了简单清晰,图6及以后相关各图,只画出了光栅阵列20和像素阵列10的部分。光栅单元和像素均沿x向和y向排列。沿这两个方向p x、p y为像素间距,b x、b y为光栅单元间距。本实施例以下统一规定x向为行,y向为列。H i等表示像素所在的行,V i等表示像素所在列。图6以x向相邻两个、y向一个透镜,共L=2个光栅单元组成一个子光栅阵列为例进行说明。具体地,透镜G jj1和G jj2组成子光栅阵列G jj,透镜G jn1和G jn2组成子光栅阵列G nj,依次类推,共M个子光栅阵列按行、列分布。相邻行的子光栅阵列间,插入挡光板阵列50的挡光板,沿y向,挡除各子光栅阵列对应像素出射光束超出本子光栅阵列线度范围的部分。图6以沿y向一个子光栅阵列对应两个像素为例进 行说明。选通器件30紧贴光栅阵列20放置。
设置整数U和l,其中整数U的取值范围为0,1,2,…,整数l的取值范围为1,2,…,L。在U=0和l=1的t+U*L*Δt+(l-1)*Δt=t时刻,紧靠光栅阵列20放置的选通器件30同时选通子光栅阵列G jj的透镜G jj1、子光栅阵列G jn的透镜G jn1、…。各选通光栅单元选择其对应挡光板之间、沿x向的多个相邻像素组成该选通光栅单元对应的子像素阵列,相邻子光栅阵列同时选通的光栅单元所对应子像素阵列,无像素重叠地毗邻排列。具体到图6,像素P ji,P ki,P jj,P kj,P jk,P kk,P jl,P kl组成相对于选通光栅G jj1的子光栅单元,P jm,P km,P jn,P kn,P jo,P ko,P jp,P kp组成相对于选通光栅G jn1的子光栅单元,依次类推。沿x向,各子像素阵列相对于其对应的选通光栅单元,具有相同的空间相对位置关系。沿y向,周期性的子光栅阵列和对应的子像素阵列周期分布。同行的选通光栅单元,要求等间距排列。以下以G jj所在行为例讲解,该过程适用于所有行。如图7,虚置待显示三维物体,其经选通光栅G jj1调制,在G jj1对应子像素阵列生成相应信息,该信息作为t时刻该子像素阵列中像素P ji,P ki,P jj,P kj,P jk,P kk,P jl,P kl要加载信息,控制单元40控制它们同步加载;虚置的待显示三维物体,其经选通光栅G jn1调制,在Gjn1对应子像素阵列各像素生成相应信息,该信息作为t时刻该子像素阵列像素P jm,P km,P jn,P kn,P jo,P ko,P jp,P kp要加载信息,控制单元40控制它们同步加载;基于同样方法,各子像素阵列在t时刻同时进行对应信息加载。
在U=0和l=2的t+U*L*Δt+(l-1)*Δt=t+Δt时刻,同时选通子光栅阵列G jj的透镜G jj2、子光栅阵列G jn的透镜G jn2、…。虚置待显示三维物体经选通G jj2调制,在G jj2对应子像素阵列生成相应信息,该信息作为t+Δt时刻该子像素阵列各像素要加载信息,控制单元40控制它们同步加载;虚置的待显示三维物体,其经选通光栅G jn2调制,在G jn2对应子像素阵列生成相应信息,该信息作为t+Δt时刻该子像素阵列个像素要加载信息,控制单元40控制它们同步加载;基于同样方法,各子像素阵列在t+Δt时刻同时进行对应信息加载。
按上述原理依次选通各子光栅阵列的各光栅单元,直至t+(L-1)*Δt时刻。
在U=0,1,2,…时,分别重复上述l=1,2,…,L时的过程。
当Δt小到视觉滞留效应起作用时,实现基于集成成像技术的三维显示。
在上述实施例中,挡光板是沿一个维向插入的。也可以将挡光板沿x向y向同时插入,任意子光栅阵列的光栅单元及其所对应像素,互不影响,各子光栅阵列对应和自己二维尺寸等同范围内分布的像素,以图6中子光栅阵列G jj为例,在本情况下,其对应像素为P jj,P kj,P jk,P kk,P jl,P kl,P jm,P km,这几个像素作为子光栅列G jj所含所有光栅单元对应的子像素阵列。其它各光栅单元对应的子像素阵列同理确定。同理上述实例,在不同时刻,各子光栅阵列的各光栅单元依次选通,对应子像素阵列各像素同步加载对应信息,基于视觉滞留,实现集成 成像三维呈现。
上述实例是以y向各子光栅阵列只有一个光栅单元为例进行说明的,在像素阵列10刷新频率允许的情况下,各子光栅阵列沿y向含有的光栅单元可以为2个或多个,沿x向含有的光栅单元也可以为两个以上。
上述采用透镜光栅的实例中,光栅阵列20的子光栅阵列可为间距可控的透镜,如液晶透镜阵列,以便调节光栅单元间距。
上述采用透镜光栅的实例中,光栅阵列20的子光栅阵列可为焦距可调的透镜,如液晶透镜光列,以便调节光待显示三维物体在像素阵列10上的成像大小及成像质量。
上述实例中,可以在像素阵列10和光栅阵列20之间置调节单元60,该调节单元60可以通过位移、折射率变化调节、机械变形等方式调节像素阵列10和光栅阵列20之间的距离,以便调节待显示三维物体在像素阵列10上的成像大小及成像质量。
上述实例中,以平面排列的像素阵列10和光栅阵列20为例进行说明。若像素阵列10和光栅阵列20为曲面排列,上述实例可同理实施。

Claims (8)

  1. 一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,包括:
    一个像素阵列(10),用于加载显示光学信息;
    一个光栅阵列(20),具有分光功能,所述光栅阵列(20)沿像素阵列(10)出射光传输方向设置于像素阵列(10)前,用于将所述像素阵列(10)出射光束有序引导至若干区域,所述光栅阵列(20)由若干子光栅阵列组成,各子光栅阵列包含两个或多个相邻光栅单元;
    一个选通器件(30),具有时序选通功能,用于时序选通各子光栅阵列中的不同光栅单元;
    一个控制单元(40),与像素阵列(10)及选通器件(30)电连接,在一个时间点,控制单元(40)控制选通器件(30)选通各子光栅阵列中的一个光栅单元,并控制所述像素阵列(10)刷新显示相应信息。
  2. 根据权利要求1所述的一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,所述系统还包括一个挡光板阵列(50),所述挡光板阵列(50)用于挡除各子光栅阵列对应像素出射光束超出本子光栅阵列线度范围的部分。
  3. 根据权利要求1所述的一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,所述系统还包括一个调节单元(60),所述调节单元(60)置于像素阵列(10)和光栅阵列(20)之间,用于调节像素阵列(10)和光栅阵列(20)之间的光程。
  4. 根据权利要求1所述的一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,光栅阵列(20)为一维排列的柱透镜阵列或一维排列的焦距、相邻柱透镜间距可控的柱透镜阵列。
  5. 根据权利要求1所述的一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,光栅阵列(20)为一维排列的狭缝阵列或一维排列的狭缝通光孔径尺寸、相邻狭缝间距可控的孔径光阑阵列。
  6. 根据权利要求1所述的一种提高光栅式三维显示呈现视图分辨率的系统,其特征在于,光栅阵列(20)为二维排列的透镜阵列或二维排列的透镜焦距、分布间距可控的透镜阵列。
  7. 一种提高光栅式三维显示呈现视图分辨率的方法,其特征在于,包括以下步骤:
    S1.一维光栅阵列(20)分成M个子光栅阵列,各子光栅阵列包含L(L≧2)个相邻光栅单元;
    S2.在时间点t Ul(t Ul=t+U*L*Δt+(l-1)*Δt,其中U=0,1,2,3,…,l=1,2,…,L),选通器件(30)以等间距方式选通M个子光栅阵列的各一个光栅单元,使其孔径或部分孔径处于通光状态,同时使其它光栅单元处于非通光状态;
    S3.沿各选通光栅单元长向方向,选择周期排列的多个像素组作为该选通光栅单元对应的子像素阵列,各子像素阵列由沿光栅单元排列方向上间距为p的N个相邻像素组成,其中各子像素阵列对应像素的空间位置超出像素阵列(10)范围时,该像素空置;
    S4.任意选通光栅单元G ml(下标m为子光栅阵列序号,m=1,2,…,M)对应子像素阵列的各像素经该光栅单元G ml,沿光栅单元排列方向上,分别可见于空间区域S ml1,S ml2,…,S mlN,其中空间区域S 1l1,S 2l1,…,S Ml1的重叠区域命名为区域S l1,空间区域S 1l2,S 2l2,…,S Ml2的重叠区域命名为区域S l2,同理命名区域S l3,…,S lN
    S5.区域S ln(n=1,2,…,N)取点V ln,设定点V ln为分别可见于空间区域S 1ln,S 2ln,…,S Mln的像素对应的视点;
    S6.控制单元(40)控制像素阵列(10)各像素加载待显示三维图像关于各自对应视点的光信息;
    S7.在l=1,2,…,L的各时间点,依次按步骤S2-S6选通各子光栅单元的L个光栅单元,并同步加载相应信息;
    S8.在U=0,1,2,3,…时,循环重复步骤S7。
  8. 一种提高光栅式三维显示呈现视图分辨率的方法,其特征在于,包括以下步骤:
    SS1.像素阵列(10)和光栅阵列(20)沿两个维向排列,相邻的L(L≧2)个光栅单元组成一个子光栅阵列,光栅阵列(20)分成多个子光栅阵列;
    SS2.挡光板阵列(50)的各挡光板插入相邻子光栅阵列之间,沿一个维向或两个维向挡除各子光栅阵列对应像素出射光束超出该子光栅阵列线度范围的部分;
    SS3.在时间点t Ul(t Ul=t+U*L*Δt+(l-1)*Δt,其中l=1,2,…,L,U=0,1,2,3,…),选通器件(30)以等间距方式选通各子光栅阵列的一个光栅单元,使其孔径或部分孔径处于通光状态,同时使其它光栅单元处于非通光状态,各选通光栅单元分别对应由相邻多个像素组成的子像素阵列;
    SS4.虚置待显示三维图像,其经各选通光栅单元,在各选通光栅单元对应子像素阵列上形成的投影信息,作为该子像素阵列在时间点t Ul的加载信息,由控制单元(40)控制各子像素阵列刷新加载;
    SS5.在l=1,2,…,L的各时间点,依次按步骤SS3-SS4选通光栅阵列(20)中各子光栅阵列的L个光栅单元,并同步加载相关信息;
    SS6.在U=0,1,2,3,…时,循环重复步骤SS5。
PCT/CN2017/119227 2016-12-29 2017-12-28 一种提高光栅式三维显示呈现视图分辨率的系统和方法 WO2018121642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611247383.8 2016-12-29
CN201611247383.8A CN106873170A (zh) 2016-12-29 2016-12-29 一种提高光栅式三维显示呈现视图分辨率的系统和方法

Publications (1)

Publication Number Publication Date
WO2018121642A1 true WO2018121642A1 (zh) 2018-07-05

Family

ID=59164688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119227 WO2018121642A1 (zh) 2016-12-29 2017-12-28 一种提高光栅式三维显示呈现视图分辨率的系统和方法

Country Status (2)

Country Link
CN (1) CN106873170A (zh)
WO (1) WO2018121642A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748570A (zh) * 2019-10-30 2021-05-04 驻景(广州)科技有限公司 正交特性光栅-像素阵列对及基于其的近眼光场显示模组
CN112859362A (zh) * 2021-02-02 2021-05-28 中山大学 一种光栅单元子通光孔径时序选通复用的三维显示模组
CN113835235A (zh) * 2020-06-24 2021-12-24 中山大学 面对多用户的基于入瞳分割复用的三维显示系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873170A (zh) * 2016-12-29 2017-06-20 中山大学 一种提高光栅式三维显示呈现视图分辨率的系统和方法
CN109425993B (zh) * 2017-09-01 2020-09-04 中山大学 一种时空混合复用的三维显示系统及方法
CN107561724B (zh) * 2017-11-01 2020-08-07 京东方科技集团股份有限公司 立体显示装置和显示设备
CN108319030B (zh) * 2017-12-27 2020-05-05 北京邮电大学 一种自由立体显示系统
CN110221451A (zh) * 2018-03-02 2019-09-10 台达电子工业股份有限公司 显示装置及显示方法
CN112925098B (zh) * 2019-12-06 2022-09-27 驻景(广州)科技有限公司 基于光出射受限像素块-孔径对的近眼显示模组
CN113311581A (zh) * 2020-02-26 2021-08-27 中山大学 孔径时序选通复用的光波导显示模组
CN113359314A (zh) * 2020-03-06 2021-09-07 驻景(广州)科技有限公司 一种多背光光源的显示模组
CN113495365B (zh) * 2020-04-03 2022-09-30 驻景(广州)科技有限公司 以子像素为显示单元的单目多视图显示方法
CN112882248B (zh) * 2021-01-15 2022-05-17 驻景(广州)科技有限公司 一种光束发散角偏转孔径二次约束的显示模组
CN113835233B (zh) * 2021-08-26 2023-08-01 中山大学 一种出射动态指向光束的薄型显示结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546042A (zh) * 2008-03-26 2009-09-30 陈意辉 平面立体混合兼容型视差挡板平板与背投自由立体视频显示器
CN101655609A (zh) * 2009-08-10 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN101655608A (zh) * 2009-07-22 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN102914892A (zh) * 2012-11-19 2013-02-06 中航华东光电有限公司 一种液晶狭缝光栅的驱动方法
US20130120848A1 (en) * 2006-02-27 2013-05-16 Parellel Consulting Limited Liability Company Image enhancement for three-dimensional displays
CN105404010A (zh) * 2015-12-10 2016-03-16 中山大学 允许时间复用的光栅式三维显示系统和方法
CN105892069A (zh) * 2014-05-15 2016-08-24 北京康得新三维科技有限责任公司 动态电子光栅
CN106873170A (zh) * 2016-12-29 2017-06-20 中山大学 一种提高光栅式三维显示呈现视图分辨率的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681183B (zh) * 2012-05-25 2015-01-07 合肥鼎臣光电科技有限责任公司 基于透镜阵列的双向三维成像和裸眼三维显示系统
CN103533336B (zh) * 2012-07-06 2017-06-09 北京康得新三维科技有限责任公司 高分辨率自由立体显示器
CN102749717B (zh) * 2012-07-27 2017-12-08 深圳超多维光电子有限公司 一种裸眼式立体显示装置
CN105866963B (zh) * 2016-05-10 2019-07-16 中山大学 一种增加视点呈现数目的空间复用模组和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130120848A1 (en) * 2006-02-27 2013-05-16 Parellel Consulting Limited Liability Company Image enhancement for three-dimensional displays
CN101546042A (zh) * 2008-03-26 2009-09-30 陈意辉 平面立体混合兼容型视差挡板平板与背投自由立体视频显示器
CN101655608A (zh) * 2009-07-22 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN101655609A (zh) * 2009-08-10 2010-02-24 深圳超多维光电子有限公司 一种全分辨率立体显示装置
CN102914892A (zh) * 2012-11-19 2013-02-06 中航华东光电有限公司 一种液晶狭缝光栅的驱动方法
CN105892069A (zh) * 2014-05-15 2016-08-24 北京康得新三维科技有限责任公司 动态电子光栅
CN105404010A (zh) * 2015-12-10 2016-03-16 中山大学 允许时间复用的光栅式三维显示系统和方法
CN106873170A (zh) * 2016-12-29 2017-06-20 中山大学 一种提高光栅式三维显示呈现视图分辨率的系统和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748570A (zh) * 2019-10-30 2021-05-04 驻景(广州)科技有限公司 正交特性光栅-像素阵列对及基于其的近眼光场显示模组
CN112748570B (zh) * 2019-10-30 2023-11-10 驻景(广州)科技有限公司 正交特性光栅-像素阵列对及基于其的近眼光场显示模组
CN113835235A (zh) * 2020-06-24 2021-12-24 中山大学 面对多用户的基于入瞳分割复用的三维显示系统
CN113835235B (zh) * 2020-06-24 2023-12-15 中山大学 面对多用户的基于入瞳分割复用的三维显示系统
CN112859362A (zh) * 2021-02-02 2021-05-28 中山大学 一种光栅单元子通光孔径时序选通复用的三维显示模组
CN112859362B (zh) * 2021-02-02 2023-04-11 驻景(广州)科技有限公司 一种光栅单元子通光孔径时序选通复用的三维显示模组

Also Published As

Publication number Publication date
CN106873170A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2018121642A1 (zh) 一种提高光栅式三维显示呈现视图分辨率的系统和方法
WO2017096751A1 (zh) 允许时间复用的光栅式三维显示系统和方法
EP2380355B1 (en) Autostereoscopic display device
KR101648210B1 (ko) 무안경 입체 영상 디스플레이 디바이스
US10448005B2 (en) Stereoscopic display device and parallax image correcting method
KR101318024B1 (ko) 비 주요 조망구역에 대하여 증가된 선예도를 갖는자동입체영상 디스플레이
CN108008540B (zh) 一种三维显示系统
CN105828060B (zh) 立体显示装置及视差图像校正方法
WO2016123978A1 (zh) 像素阵列、显示装置以及显示方法
WO2017173994A1 (zh) 一种多视点三维显示系统和方法
WO2017020473A1 (zh) 三维显示装置及其显示方法
JP6411025B2 (ja) 時分割型パララックスバリア式裸眼立体映像表示装置
TWI674440B (zh) 自動立體顯示裝置
KR20050013875A (ko) 고해상도 3차원 영상 디스플레이
US10194143B2 (en) Autostereoscopic 3D image display apparatus having modified sub-pixel structure
US10310282B2 (en) Display device and method for controlling a grating thereof
JP2014045466A (ja) 立体映像表示システム、立体映像データの設定方法および観察位置の変更方法
JP2010537225A (ja) 高解像度の3次元画像表示装置および画像表示方法
US20140340402A1 (en) Three dimensional image display device and method of displaying three dimensional image
JP2010127973A (ja) 立体画像表示装置
KR102098286B1 (ko) 무안경식 3차원 영상표시장치
JP2004191570A (ja) 三次元画像表示装置
JP2006106608A (ja) 画像表示装置
JP2013068683A (ja) 立体表示装置
CN106950710A (zh) 3d显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889494

Country of ref document: EP

Kind code of ref document: A1