WO2018121599A1 - 数据传输方法、数据解调方法、装置及终端 - Google Patents

数据传输方法、数据解调方法、装置及终端 Download PDF

Info

Publication number
WO2018121599A1
WO2018121599A1 PCT/CN2017/118964 CN2017118964W WO2018121599A1 WO 2018121599 A1 WO2018121599 A1 WO 2018121599A1 CN 2017118964 W CN2017118964 W CN 2017118964W WO 2018121599 A1 WO2018121599 A1 WO 2018121599A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
transmission time
indication information
transmission
sequence
Prior art date
Application number
PCT/CN2017/118964
Other languages
English (en)
French (fr)
Inventor
袁志锋
李卫敏
鲁照华
唐红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018121599A1 publication Critical patent/WO2018121599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • the present disclosure relates to the field of communications, for example, to data transmission methods, data demodulation methods, devices, and terminals.
  • 5G rich application scenarios are divided into two categories through abstraction, one is mobile broadband access, and the other is the Internet of Things (IoT), which is connected with objects and objects.
  • IoT Internet of Things
  • IoT is divided into two categories.
  • mMTC massive machine-like communication
  • URLLC Ultra-Reliable Low Latency Communications
  • the unscheduled access can eliminate the entire access process and is an important technology for achieving ultra-low latency access.
  • SPS Semi-Persistent Scheduling
  • Semi-static periodic resource reservation can be regarded as an efficient dynamic-free scheduling and low-latency access. the way.
  • Periodic reserved resources that match the service occurrence period can ensure efficient resource utilization; while different users monopolize resources without inter-user interference, performance is relatively guaranteed.
  • the periodically reserved orthogonal resources are often not fully utilized: the longer the period of reserved orthogonal resources, the higher the reserved orthogonal resource utilization, but the terminal access The longer the average time that needs to wait, the more difficult it is to ensure ultra-low latency requirements.
  • the shorter the period of reserved orthogonal resources the shorter the average time that terminal access needs to wait, and the easier it is to ensure ultra-low latency requirements, but The vacancy rate of reserved orthogonal resources will be higher and the utilization rate will be lower.
  • the present disclosure provides a data transmission method, a data demodulation method, an apparatus, and a terminal, which are used to solve the problem of low reliability and large resource overhead of data transmission in a URLLC scenario in the related art.
  • the present disclosure provides a data transmission method, including:
  • the base station sends the configuration information to the terminal, where the configuration information includes: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource;
  • the indication information of the transmission time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource;
  • the indication information of the transmission signal generating method includes: indication information of the first transmission time-frequency resource and a transmission signal generation method on the second transmission time-frequency resource; demodulation on the transmission time-frequency resource
  • the indication information of the dedicated pilot includes: indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource.
  • the method further includes: causing the terminal to generate a transmission signal according to the received configuration information, inserting a demodulation dedicated pilot in the transmission signal, and inserting the transmission of the demodulation dedicated pilot
  • the signal is mapped to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource for data transmission.
  • the disclosure also provides a data transmission method, including:
  • the terminal receives the configuration information sent by the base station, where the configuration information includes at least: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource. ;
  • the indication information of the transmission time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource;
  • the indication information of the transmission signal generating method includes: indication information of the first transmission time-frequency resource and a method for generating a transmission signal on the second transmission time-frequency resource;
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource includes: indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource;
  • the present disclosure also provides a data demodulation method, including:
  • a symbol weighting factor on the first transmission time-frequency resource preset in the configuration information and a symbol weighting factor on the second transmission time-frequency resource, or according to the first transmission preset in the configuration information.
  • a sequence of symbol weighting factors of time-frequency resources and a sequence of symbol weighting factors of the second transmission time-frequency resource, for the first transmission time-frequency resource and the remaining undemodulated in the second transmission time-frequency resource The data is demodulated, wherein a preset symbol weighting factor is used to separate data transmitted by different terminals.
  • the disclosure also provides a data transmission device, including:
  • the sending module is configured to send configuration information to the terminal by using the base station, where the configuration information includes at least:
  • the indication information of the transmission time-frequency resource includes:
  • the indication information of the first transmission time-frequency resource and the indication information of the second transmission time-frequency resource are provided.
  • the indication information of the transmission signal generating method includes:
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource includes:
  • the sending module is further configured to: enable the terminal to generate a transmission signal according to the received configuration information, insert a demodulation dedicated pilot into the transmission signal, and insert the demodulation dedicated pilot
  • the transmission signal is mapped to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource for data transmission.
  • the disclosure also provides a data transmission device, including:
  • the receiving module is configured to receive configuration information sent by the base station by using the terminal, where the configuration information includes at least:
  • the indication information of the transmission signal generating method includes: indication information of the first transmission time-frequency resource and a transmission signal generation method on the second transmission time-frequency resource; demodulation on the transmission time-frequency resource
  • the indication information of the dedicated pilot includes: indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource;
  • Generating a module configured to generate a transmission signal according to the indication information of the transmission signal generating method
  • Inserting a pilot module configured to insert a corresponding demodulation dedicated pilot in the transmission signal according to the indication information of the demodulation dedicated pilot
  • the mapping module is configured to map, according to the configuration information, a transmission signal inserted into the demodulation dedicated pilot to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource for data transmission.
  • the present disclosure also provides a data demodulating apparatus, including:
  • a receiving module configured to receive, by the terminal, data sent by the first transmission time-frequency resource and the second transmission time-frequency resource, and identify the terminal by using a demodulation dedicated pilot in the data;
  • a first demodulation module configured to demodulate data on the first transmission time-frequency resource
  • a canceling module configured to cancel data of demodulation success on the first transmission time-frequency resource, and to cancel data on the second transmission time-frequency resource corresponding to data that is successfully demodulated;
  • the second demodulation module is configured to: according to the symbol weighting factor on the first transmission time-frequency resource preset in the configuration information, and a symbol weighting factor on the second transmission time-frequency resource, or according to the configuration information a sequence of a symbol weighting factor of the first transmission time-frequency resource and a sequence of symbol weighting factors of the second transmission time-frequency resource, the first transmission time-frequency resource and the second transmission time-frequency
  • the remaining undemodulated data in the resource is demodulated, and the preset symbol weighting factor is used to separate data transmitted by different terminals.
  • the present disclosure also provides a terminal comprising a processor and a memory storing the processor executable instructions and the set of sequences stored, when the instructions are executed by the processor, performing the following operations:
  • the indication information of the transmission signal generating method includes: indication information of the first transmission time-frequency resource and a method for generating a transmission signal on the second transmission time-frequency resource;
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource includes: the first transmission time-frequency resource and the indication information of the demodulation dedicated pilot on the second transmission time-frequency resource;
  • the present disclosure also provides a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, Having the computer perform any of the methods described above.
  • the base station allocates a second transmission time-frequency resource (for example, a public redundancy pool) to the terminal by sending the configuration information, so that the terminal sends the second transmission time-frequency resource (for example, a public redundancy pool). Repeated transmission of data improves resource utilization.
  • a second transmission time-frequency resource for example, a public redundancy pool
  • FIG. 1 is a schematic diagram of a SPS provisioned resource reservation in a related art shared by a plurality of URLLC users.
  • FIG. 2 is a schematic diagram of the doubling of the SPS provisioning resource and the URLLC signal being sent twice in a simplified HARQ retransmission scenario in the related art.
  • FIG. 3 is a flow chart of a data transmission method provided by the second embodiment.
  • FIG. 4 is a schematic diagram of data transmission provided by the fourth embodiment.
  • FIG. 5 is a schematic diagram of data transmission provided by the fifth embodiment.
  • FIG. 6 is a schematic diagram of data transmission provided by the sixth embodiment.
  • FIG. 7 is a schematic diagram of data transmission provided by the seventh embodiment.
  • FIG. 8 is a flowchart of a data demodulation method provided by the eighth embodiment.
  • FIG. 9 is a schematic diagram of terminal data on a data demodulation SPS group dedicated pool provided by the eighth embodiment.
  • FIG. 10 is a schematic diagram of demodulation cancellation demodulation success data provided by the eighth embodiment.
  • FIG. 11 is a schematic diagram of data of a joint detection demodulation terminal provided by an eighth embodiment.
  • Figure 12 is a block diagram showing the structure of a data transmission apparatus provided in a ninth embodiment.
  • FIG. 13 is a structural block diagram of a data transmission apparatus according to a tenth embodiment.
  • Figure 14 is a block diagram showing the structure of a data demodulating apparatus according to an eleventh embodiment.
  • FIG. 15 is a schematic structural diagram of a base station device according to a thirteenth embodiment.
  • FIG. 16 is a schematic structural diagram of a terminal device according to a fourteenth embodiment.
  • one method is to reserve a resource for sharing with multiple users with event-triggered services, as shown in FIG. 1 , where 11 indicates reserved orthogonal resources, 12 Indicates that the user corresponding to the reserved orthogonal resource, one SPS resource pool (that is, the reserved orthogonal resource) is reserved for four users, so that the vacancy rate of the reserved orthogonal resources is greatly reduced, and the two accesses in FIG.
  • the number on the SPS resource pool is the number of users accessing at the same time.
  • each user's data may be sent more than once, for example, 2 or 4 times in a continuous time. In fact, this is also a simplified Hybrid Automatic Repeat reQuest (HARQ).
  • HARQ Hybrid Automatic Repeat reQuest
  • the transmission scheme that is, retransmission, does not require the base station to feed back NACK (non-response) and then retransmit, but the terminal retransmits according to the number of pre-configured retransmissions.
  • NACK non-response
  • the terminal retransmits according to the number of pre-configured retransmissions.
  • the high reliability of the HARQ multiple retransmission can be obtained, and the signaling interaction related to the HARQ process is not used, which causes the time-frequency overhead to be large
  • FIG. 2 is a schematic diagram of two consecutive times, wherein 21 is The orthogonal resource is reserved, and 22 is the user corresponding to the reserved orthogonal resource. In this case, the overhead of reserved orthogonal resources is doubled.
  • This embodiment provides a data transmission method, which is performed by a base station, and the method includes the following processing:
  • the base station sends configuration information to the terminal.
  • the method provided in this embodiment may further include a process for the base station to configure the configuration information, where the configuration information includes at least: indication information for transmitting time-frequency resources, and a method for generating a transmission signal. And indication information, and demodulation-specific pilot indication information on the transmission time-frequency resource; where the indication information of the transmission time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource.
  • the indication information of the transmission signal generation method includes: indication information of the first transmission time-frequency resource and the transmission signal generation method on the second transmission time-frequency resource; and indication information of the demodulation dedicated pilot on the transmission time-frequency resource, And including: indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource.
  • the method may further include causing the terminal to generate a transmission signal according to the received configuration information, inserting a demodulation dedicated pilot in the transmission signal, and mapping a transmission signal inserted into the demodulation dedicated pilot to the Data transmission is performed on the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource.
  • the indication information of the transmission signal generating method includes at least one of the following: at least one coding modulation mode indication information, weighting factor information of the modulation symbol (ie, the modulated data symbol) on the first transmission time-frequency resource. And weighting factor information of the modulation symbols on the second transmission time-frequency resource.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource can be configured in the following manners:
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource indicates a demodulation dedicated pilot of the first transmission time-frequency resource and a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource includes: indication information for indicating that the second transmission time-frequency resource is directly multiplexed with the demodulation dedicated pilot of the first transmission time-frequency resource, or And demodulating a dedicated pilot of the second transmission time-frequency resource by using indication information of the demodulation dedicated pilot of the first transmission time-frequency resource and indication information of the first time-frequency resource.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource may include: an indication indicating that the demodulation dedicated pilot on the second transmission time-frequency resource is more than the demodulation dedicated pilot on the first transmission time-frequency resource information.
  • the demodulation dedicated pilot on the second transmission time-frequency resource is at least one time of the demodulation dedicated pilot on the first transmission time-frequency resource, and the demodulation dedicated pilot on the transmission time-frequency resource
  • the indication information includes indication information indicating a multiple between the number of demodulation-dedicated pilots of the second transmission time-frequency resource and the number of first transmission time-frequency resources.
  • the indication information of the method for generating a signal on the second transmission time-frequency resource includes: at least: indicating that the modulation symbol on the second transmission time-frequency resource is the modulation symbol on the first transmission time-frequency resource Repeated or partially repeated instructions.
  • the value of the weighting factor in this embodiment may be taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the weighting factor of the modulation symbol on the second transmission time-frequency resource may be specified by one sequence, or the weighting factor of the modulation symbol on the first transmission time-frequency resource and the second may be specified by one sequence.
  • the weighting factor of the modulation symbol on the time-frequency resource is transmitted, and the configuration information includes the information of the sequence.
  • the sequence may be a sequence in a sequence set, and the configuration information further includes an index of the sequence in the sequence set, and the sequence may be determined by configuring an index in the sequence set, and the sequence is specified by using the sequence.
  • the elements of the sequence and all sequences in the sequence are taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • sequence-to-modulation symbol extension process may include: using a length-extended sequence (eg, a sequence of length N, where the extension sequence of length N means that the extension sequence consists of N symbols, or may be said to be N elements are constructed, where N symbols or N elements may be N digital symbols).
  • the modulated data symbols are spread, and the process may be that each modulated data symbol is multiplied by each symbol of the extended sequence.
  • a symbol sequence of the same length as the extended sequence used is formed.
  • the S k may be a constellation point symbol modulated by BPSK or QAM, or a symbol modulated by Orthogonal Frequency Division Multiplexing (OFDM) carrier, and assumed.
  • the formula can be expressed as:
  • the sequence set involved in this embodiment includes at least one of the sequence set 1 to the sequence set 18 and the sequence set formed by processing the following sequence set 1 to the sequence set 18;
  • the processing of the sequence set 1 to the sequence set 18 includes one of the following processes: multiplying the X-th sequence element of each of the sequence set 1 to the sequence set 18 or the X-th sequence element of each sequence by 1, i, -1, -i or i's power of A.
  • the phase adjustment of W ⁇ or the phase rotation of W ⁇ is performed for each sequence in the following sequence set or the Xth sequence element of each sequence, or multiplied by exp(i ⁇ W ⁇ ).
  • sequence set 1 to the sequence set 18 include:
  • Sequence set 1 comprising four sequences of length 1: [1], [-1], [i], and [-i];
  • Sequence set 2 comprising four sequences of length 2: [1, 1], [1, -1], [1, i], and [1, -i];
  • Sequence set 3 containing 16 sequences of length 3: [1,1,1], [1,-1,-1], [-1,1,-1], [-1,-1,1] , [1,i,-i], [1,-i,i],[-1,i,i],[-1,-i,-i],[i,1,-i],[i ,-1,i],[-i,1,i],[-i,-1,-i],[i,i,-1],[i,-i,1],[-i,i , 1] and [-i,-i,-1];
  • Sequence set 4 containing 16 sequences of length 3: [1,1,-1], [1,-1,1], [-1,1,1], [-1,-1,-1] , [1, i, i], [1, -i, -i], [-1, i, -i], [-1, -i, i], [i, 1, i], [i, -1,-i], [-i,1,-i], [-i,-1,i],[i,i,1],[i,-i,-1],[-i,i , -1] and [-i,-i,1];
  • Sequence set 5 containing 16 sequences of length 3: [1,1,i], [1,-1,-i], [-1,1,-i], [-1,-1,i] , [1, i, 1], [1, -i, -1], [-1, i, -1], [-1, -i, 1], [i, 1, 1], [i, -1,-1], [-i,1,-1], [-i,-1,1],[i,i,-i],[i,-i,i],[-i,i , i] and [-i,-i,-i];
  • Sequence set 6 containing 16 sequences of length 3: [1,1,-i], [1,-1,i], [-1,1,i],[-1,-1,-i] , [1, i, -1], [1, -i, 1], [-1, i, 1], [-1, -i, -1], [i, 1, -1], [i ,-1,1],[-i,1,1],[-i,-1,-1],[i,i,i],[i,-i,-i],[-i,i , -i] and [-i,-i,i];
  • Sequence set 8 containing 32 sequences of length 3: [1,1,i], [i,-1,1], [-1,1,-i], [-i,-1,-1] , [1, i, 1], [i, -i, -i], [-1, i, -1], [-i, -i, i], [i, 1, 1], [-1 ,-1,-i], [-i,1,-1], [1,-1,i],[i,i,-i],[-1,-i,-1],[-i ,i,i],[1,-i,1],[1,1,-i], [i,-1,-1], [-1,1,i],[-i,-1, 1], [1, i, -1], [i, -i, i], [-1, i, 1], [1, i, -1], [i, -i, i], [-1, i, 1], [-i, -i, -i], [i, 1, -1], [-1,-1,i],[-i,1,1], [1,
  • Sequence set 10 containing 16 sequences of length 4: [1,1,1,-1], [1,1,-1,1], [1,-1,1,1], [1,- 1,-1,-1], [1,1,i,i],[1,1,-i,-i], [1,-1,-i,i],[1,-1,-i,i],[1,i,1,i],[1,i,-1,-i], [1,-i,1,-i], [1,-i,-1,i] , [1, i, i, 1], [1, i, -i, -1], [1, -i, i, -1] and [1, -i, -i, 1];
  • Sequence set 11 comprising 16 sequences of length 4: [1,1,1,i], [1,1,-1,-i], [1,-1,1,-i], [1, -1,-1,i],[1,1,i,1],[1,1,-i,-1], [1,-1,i,-1],[1,-1,- i,1],[1,i,1,1], [1,i,-1,-1], [1,-i,1,-1], [1,-i,-1,1] , [1, i, i, -i], [1, i, -i, i], [1, -i, i, i] and [1, -i, -i, -i];
  • Sequence set 12 containing 16 sequences of length 4: [1,1,1,-i], [1,1,-1,i], [1,-1,1,i],[1,- 1,-1,-i], [1,1,i,-1], [1,1,-i,1], [1,-1,-i ,1],[1,-1,-i , -1], [1, i, 1, -1], [1, i, 1, -1], [1, -i, 1, 1], [1, -i, 1, 1], [1, -i, -1, -1] , [1, i, i, i], [1, i, -i, -i], [1, -i, i, -i] and [1, -i, -i, i];
  • Sequence set 13 comprising 32 sequences of length 4: [1,1,1,1], [1,i,-1,-i], [1,-1,1,-1], [1, -i,-1,i],[1,1,i,-i], [1,i,-i,-1], [1,-1,i,i],[1,-i,-i,1],[1,i,1,-i], [1,-1,-1,-1], [1,-i,1,i],[1,1,-1,1] , [1, i, i, -1], [1, -i, i], [1, -i, i, 1], [1, 1, 1,1,-1], [1,i,-1,i],[1,-1,1,1], [1,-i,-1,-i], [1,1,i, i], [1, i, -i], [1, i, -i], [1, i, -i], [1, i, 1, i], [1, i, -i], [1, i, -i], [1, i, 1, i], [1, i, -
  • Sequence set 14 comprising 32 sequences of length 4: [1,1,1,i], [1,i,-1,1], [1,-1,1,-i], [1,- i,-1,-1], [1,1,i,1], [1,i,-i,-i], [1,-1,i,-1],[1,-i,-i],[1,i,1,1], [1,-1,-1,-i], [1,-i,1,-1], [1,1,-1,i] , [1, i, i] , [1, i, i, -i], [1, 1, -i, 1], [1, 1,1,-i], [1,i,-1,-1], [1,-1,1,i], [1,-i,-1,1], [1,1,i, -1], [1, i, -1], [1, i, -1], [1,1,i, -1], [1,1,i, -1], [1,1,i, -1], [1,1,i, -1], [1,1,i, -1], [1,1,i, -1], [1,1,i, -1], [
  • Sequence set 16 containing 16 sequences of length 6: [1,0,1,0,1,0], [-1,0,1,0,-1,0], [1,0,-1 ,0,-1,0],[-1,0,-1,0,1,0], [1,0,0,1,0], [1,0,0,1,0,1], [-1,0,0,-1], [-1,0,0,-1], [-1,0,0,1], [0,1,1,0,0,1] , [0,-1,1,0,0,-1], [0,1,-1,0,0,-1], [0,-1,-1,0,0, 1],[ 0,1,0,1,1,0], [0,-1,0,1,-1,0], [0,1,0,-1,-1,0] and [0,-1 ,0,-1,1,0];
  • Sequence set 18 comprising 16 sequences of length 6: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, -1], [1, 1, 1, 1, -1,1,-1], [1,1,1,-1,-1,1], [1,1,-1,1,1,-1], [1,1,-1,1 ,-1,1],[1,1,-1,-1,1,1], [1,1,-1,-1,-1], [1,-1,1,1 ,1,-1], [1,-1,1,1,-1], [1,-1,1,1,1], [1,-1,1,1,1,1], [1,-1,1,-1,1,1], [1,-1,1,-1,-1,-1], [1,-1,-1,1,1,1], [1,-1,-1,-1,1,-1], [1,-1,-1,-1,1,-1] and [1,-1,-1,-1,-1,1].
  • the transmission time corresponding to the first transmission time-frequency resource is the same as the transmission time corresponding to the second transmission time-frequency resource, the transmission time slot corresponding to the first transmission time-frequency resource, and the transmission time slot corresponding to the second transmission time-frequency resource.
  • the frame number corresponding to the TTI and the first transmission time-frequency resource is the same as the frame number corresponding to the second transmission time-frequency resource.
  • the transmission time corresponding to the first transmission time-frequency resource is different from the transmission time corresponding to the second transmission time-frequency resource, or the transmission time slot corresponding to the first transmission time-frequency resource and the transmission corresponding to the second transmission time-frequency resource
  • the time slot TTI is different, or the frame number corresponding to the first transmission time-frequency resource is different from the frame number corresponding to the second transmission time-frequency resource.
  • the configuration information may be semi-statically scheduled SPS information. Based on this, the configuration information may further include data indicating that the terminal transmits the transmission signal with a preset start transmission time and a preset transmission period within a preset time period. Instructions.
  • Step 301 The terminal receives configuration information sent by the base station.
  • the configuration information includes: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource; wherein, the indication information of the transmission time-frequency resource includes The indication information of the first transmission time-frequency resource and the indication information of the second transmission time-frequency resource; the indication information of the transmission signal generation method, including: the first transmission time-frequency resource and the second transmission time-frequency resource transmission signal generation method.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource includes: indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource;
  • Step 302 Generate a transmission signal according to the indication information of the first transmission time frequency resource and the transmission signal generation method on the second transmission time frequency resource.
  • Step 303 Insert a corresponding demodulation dedicated pilot in the transmission signal according to the indication information of the demodulation dedicated pilot.
  • Step 304 Map the transmission signal inserted into the demodulation dedicated pilot to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource according to the configuration information for data transmission.
  • the indication information of the transmission signal generating method includes at least one of: at least one coding modulation mode indication information, weighting factor information of the modulation symbol on the first transmission time-frequency resource, and the second transmission time frequency. Weighting factor information for modulation symbols on the resource.
  • the transmission signal is generated according to the indication information of the transmission signal generating method, and includes at least one of the following: the modulation symbol generated on the first transmission time-frequency resource and the second transmission time-frequency resource are encoded and modulated according to the indication information of the coding modulation mode.
  • the modulation symbol, and the terminal weights at least one of the first transmission time-frequency resource and the modulation symbol on the second transmission time-frequency resource by a weighting factor according to the weighting factor information to generate a transmission signal.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource may be configured in the following manners: the indication information of the demodulation dedicated pilot on the transmission time-frequency resource indicates the demodulation dedicated pilot of the first transmission time-frequency resource Demodulation dedicated pilot for the second transmission time-frequency resource. Or the indication information of the demodulation dedicated pilot on the second transmission time-frequency resource, comprising: an indication for indicating that the second transmission time-frequency resource is directly multiplexed on the first transmission time-frequency resource Information, or a demodulation dedicated instruction for indicating that the second transmission time-frequency resource is generated by the indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the demodulation dedicated pilot on the first time-frequency resource Frequency indication.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource includes: indicating that the demodulation dedicated pilot on the second transmission time-frequency resource is more than demodulation dedicated on the first transmission time-frequency resource Pilot indication information.
  • the demodulation dedicated pilot on the second transmission time-frequency resource is at least one time of the demodulation dedicated pilot on the first transmission time-frequency resource
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource Also included is indication information indicating a multiple between the number of demodulation-dedicated pilots of the second transmission time-frequency resource and the number of first transmission time-frequency resources.
  • the indication information of the transmission signal generating method on the second transmission time-frequency resource includes: at least: indicating that the modulation symbol on the second transmission time-frequency resource is a modulation symbol on the first transmission time-frequency resource All the repeated or partially repeated indication information, based on which the transmission signal is generated according to the indication information of the transmission signal generation method, including:
  • All or part of the modulation symbols on the first transmission time-frequency resource are treated as modulation symbols on the second transmission time-frequency resource to generate a transmission signal.
  • the value of the weighting factor in this embodiment is taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the weighting factor of the modulation symbol on the second transmission time-frequency resource may be specified by one sequence, or the weighting factor of the modulation symbol and the second transmission time-frequency on the first transmission time-frequency resource may be specified by one sequence.
  • the weighting factor of the modulation symbol on the resource, the configuration information includes the information of the sequence, and based on this, the transmission signal is generated according to the indication information of the transmission signal generation method, including: determining the sequence by using the information of the sequence included in the configuration information, and using the generated modulation symbol After the sequence is extended, a symbol is transmitted on the second transmission time-frequency resource to generate a transmission signal, or the generated modulation symbol is extended by using a sequence to form a transmission on the first transmission time-frequency resource and the second transmission time-frequency resource. Symbol to generate a transmission signal.
  • the sequence may be a sequence in a sequence set, the configuration information includes an index of the sequence in the sequence set, the sequence is determined by configuring an index in the sequence set, and the sequence is used to specify the second transmission A weighting factor of the modulation symbol on the time-frequency resource, or a weighting factor of the modulation symbol on the first transmission time-frequency resource and a weighting factor of the modulation symbol on the second transmission time-frequency resource.
  • generating the transmission signal according to the indication information of the transmission signal generating method includes: the terminal, by using an index of the sequence included in the sequence information in the configuration information, from a sequence set known by the terminal Determining the sequence, using the sequence to expand the generated modulation symbols, forming a transmission symbol on the second transmission time-frequency resource to generate a transmission signal, or forming a first transmission time-frequency resource and A symbol is transmitted on the second transmission time-frequency resource to generate a transmission signal.
  • elements of all sequences in the sequence and sequence set take values from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the first transmission time-frequency resource configured for the terminal in the configuration information and the transmission time, the transmission time slot TTI, and the frame number corresponding to the second transmission time-frequency resource are all the same, or at least one different.
  • the sizes of the first transmission time-frequency resource and the second transmission time-frequency resource are the same or different.
  • the configuration information may be semi-persistent scheduling SPS information, and the configuration information further includes indicating that the terminal transmits the transmission signal by using a preset start transmission time and a preset transmission period within a preset time period.
  • the indication information of the data based on this, generating the transmission signal according to the indication information of the transmission signal generation method, comprising: generating a transmission signal according to the SPS information; after the generating the transmission signal, the method includes:
  • the data of the transmission signal is transmitted in a preset time period with a preset start transmission time and a preset transmission period.
  • the first transmission time-frequency resource is equivalent to a SPS user-specific SPS dedicated pool, and thus may be referred to as a group-specific pool.
  • the SPS configuration information is configured as a dedicated first time-frequency resource user; in contrast, the second transmission time-frequency resource is equivalent to a public redundant resource pool. Data sharing for repeated transmissions of multiple groups of users.
  • the amount of data repeatedly transmitted on the public redundant resource pool may not be equal to the amount of data transmitted on the group-specific pool, that is, the number of repeated transmission symbols may not be equal to the number of symbols transmitted on the group-specific pool.
  • the SPS public redundancy pool is equivalent to the second transmission time-frequency resource corresponding to at least two preset terminals, and the SPS public redundancy pool is used for transmitting data repeatedly transmitted by the preset terminal, and each preset terminal corresponds to one SPS.
  • a group-specific pool that is, the first transmission time-frequency resource.
  • the SPS group-specific pool can be configured to be larger than the SPS public-redundancy pool.
  • the SPS configuration information sent by the base station to the terminal and other transmission-related information can be as follows:
  • the configuration information may also be configured as a repetition weighting, wherein the repeated weighted scalar may also be -1, j, or -j, which is equivalent to a time domain extension, that is, a group-specific pool and a public redundancy pool. , use (1,1) (1,-1) or (1,j) or (1,-j) extension sequences together.
  • the TTI in Table 1 can also be set to 0.125 ms, or the subcarrier spacing can be set to 15 KHz, and the TTI can be set to 1 OFDM duration.
  • Modulation and Coding Scheme (MCS) in Table 1 can also be set to Long Term Evolution (LTE) convolutional code, 1/3, quadrature phase shift keying (Quadrature Phase). Shift Keyin, QPSK).
  • LTE Long Term Evolution
  • QPSK Quadrature phase shift keying
  • This embodiment provides another data transmission method, which is substantially the same as the data transmission method provided by the first embodiment, and the difference is that the number of SPS public redundancy pools may be multiple in this embodiment.
  • the TTIs of the multiple SPS common redundancy pools and the SPS group dedicated pools are different.
  • 41 represents the SPS group dedicated pool
  • the number of the public redundancy pools 42 is three
  • 43 represents the user.
  • the SPS configuration information, as well as other transmission-related information can be as shown in Table 2 below:
  • a sequence set containing 16 four long sequences includes:
  • the first sequence is [1,1,1,1], the second sequence is [1,1,-1,-1], the third sequence is [1,-1,1,-1], and the fourth sequence is [1,-1,-1,1], the fifth sequence is [1,1,1i,-1i], the sixth sequence is [1,1,-1i,1i], and the seventh sequence is [1,- 1,1i,1i], the eighth sequence is [1,-1,-1i,-1i], the ninth sequence is [1,1i,1,-1i], and the tenth sequence is [1,1i,-1 , 1i], the eleventh sequence is [1,-1i,1,1i], the twelfth sequence is [1,-1i,-1,-1i], and the thirteenth sequence is [1,1i,1i, -1], the fourteenth sequence is [1, 1i, -1i, 1], the fifteenth sequence is [1, -1i, 1i, 1], and the sixteenth sequence is [1, -1i, -1i, -1].
  • the TTI in Table 2 can also be set to 0.125 ms, or the subcarrier spacing can be set to 15 KHz, and the TTI can be set to 1 OFDM duration.
  • the MCS in Table 2 can also be set to LTE convolutional code, 1/3, QPSK.
  • This embodiment provides another data transmission method, which is substantially the same as the data transmission method provided by the first embodiment.
  • the number of SPS public redundancy pools 52 may be multiple. (There are three shown in the figure), and the TTI corresponding to the SPS group dedicated pool 51 and the SPS public redundancy pool 52 is different, and 53 represents the user, wherein at least two of the SPS public redundancy pools 52 (in the figure)
  • the two SPS common redundancy pools 52 are shown to have the same TTI.
  • the SPS configuration information, as well as other transmission related information can be as shown in Table 3 below:
  • a sequence set comprising 16 four-length sequences includes: the first sequence is [1, 1, 1, -1], the second sequence is [1, 1, -1, 1], and the third sequence is [1, - 1,1,1], the fourth sequence is [1,-1,-1,-1], the fifth sequence is [1,1,1i,1i], and the sixth sequence is [1,1,-1i, -1i], the seventh sequence is [1,-1,1i,-1i], the eighth sequence is [1,-1,-1i,1i], and the ninth sequence is [1,1i,1,1i], The tenth sequence is [1,1i,-1,-1i], the eleventh sequence is [1,-1i,1,-1i], and the twelfth sequence is [1,-1i,-1,1i], The thirteenth sequence is [1, 1i, 1i, 1], the fourteenth sequence is [1, 1i, -1i, -1], and the fifteenth sequence is [1, -1i, 1i, -1], The sixteen sequence is [1,-1i,-1i,1].
  • the TTI in Table 3 can also be set to 0.125 ms, or the subcarrier spacing can be set to 15 KHz, and the TTI can be set to 1 OFDM duration.
  • the MCS in Table 3 can also be set to LTE convolutional code, 1/3, QPSK.
  • the embodiment provides a data transmission method, which is substantially the same as the data transmission method provided by the first embodiment, and the difference is that the SPS group dedicated pool and the SPS public redundancy pool are set in the method.
  • the TTI is the same, and the number of PRBs corresponding to the SPS group dedicated pool and the SPS public redundancy pool is different.
  • the base station configures four group-specific pools 61 with a certain period and a common redundancy pool 62 through SPS.
  • SPS group-specific pools 61 each group-specific pool 61 is pre-allocated to four users 63 ( Equivalent to a terminal), that is, a total of 16 users 63 are pre-allocated.
  • the SPS public redundancy pool 62 is reserved for these 16 users 63.
  • Each user 63 transmits the duplicate copy data of the previous group-specific pool 61 on the common redundancy pool 62, and the data of each user 63 is weighted by different weights (ie, scalars), and the data of the user 63 is repeated and weighted by default.
  • the scalar is transmitted on the SPS group dedicated pool 61 and the SPS common redundancy pool 62, which is equivalent to the symbol extension technique.
  • the data is repeatedly transmitted once, and one of the repeated version weighting sequences [1, j, -1, -j] of the data of the different users 63 may be used, and the weighting values may be pre-configured by the base station through the SPS configuration information.
  • the extension length is 2, and the extension sequence is one of [11]; [1-1]; [1j]; [1-j].
  • the MCS used by each terminal may also be configured by the base station, and may be configured by the SPS configuration information, and the uplink demodulation reference signal (ULDMRS) used by the terminal in the SPS group dedicated pool 61 and the SPS common redundancy pool 62.
  • ULDMRS uplink demodulation reference signal
  • the pilot can also be pre-configured by the base station through the SPS configuration information. It is usually possible to configure different users to use different cyclically shifted DMRS configurations, or to configure different users to use mutually orthogonal sequences as DMRS.
  • the SPS configuration information may be as shown in Table 4 below:
  • a sequence set comprising four sequences of length 2 includes:
  • the first sequence is [1, 1]
  • the second sequence is [1, -1]
  • the third sequence is [1, i]
  • the fourth sequence is [1, -i].
  • the TTI in Table 4 can also be set to 0.125 ms, or the subcarrier spacing can be set to 15 KHz, and the TTI can be set to 1 OFDM duration.
  • the MCS in Table 4 can also be set to LTE convolutional code, 1/3, QPSK.
  • the embodiment provides a data transmission method, which is substantially the same as the method provided in the first embodiment, except that the SPS group dedicated pool and the SPS public redundancy pool are configured to be transmitted in the method.
  • the time interval TTI is different, and the number of physical resource blocks PRB corresponding to the SPS group dedicated pool and the SPS common redundancy pool is the same.
  • the base station configures four group-specific pools 71 with a certain period and a common redundancy pool 72 through SPS.
  • SPS group-specific pools 71 each group-specific pool 71 is pre-allocated to four users 73. That is, a total of 16 users 73 are pre-allocated.
  • the SPS public redundancy pool 72 is reserved for these 16 users 73.
  • Each user 73 transmits the duplicate copy data of the group-specific pool 71 on the public redundancy pool 72, each weighting different weights (ie, scalars) with data of 73 households, and the data of the terminal is repeated and weighted by default.
  • the scalar is transmitted on the SPS group dedicated pool 71 and the SPS common redundancy pool 72, which is equivalent to the symbol extension technique.
  • the data is repeatedly transmitted once, one of the repeated version weighting sequences [1, j, -1, -j] of different users, and these weighting values may be pre-configured by the base station through the SPS configuration information.
  • the SPS configuration information may be as shown in Table 5 below:
  • the TTI in Table 5 can also be set to 0.125 ms, or the subcarrier spacing can be set to 15 KHz, and the TTI can be set to 1 OFDM duration.
  • the MCS in Table 5 can also be set to LTE convolutional code, 1/3, QPSK.
  • FIG. 8 is a flowchart of the method. As shown in FIG. 8, the method includes the following processing:
  • Step 801 The base station receives data sent by the terminal by using the first transmission time-frequency resource and the second transmission time-frequency resource, and identifies the terminal by using a demodulation dedicated pilot in the data.
  • Step 802 Demodulate data on the first transmission time-frequency resource.
  • Step 803 Eliminate the successfully decoded data on the first transmission time-frequency resource, and cancel the data on the second transmission time-frequency resource corresponding to the demodulated data.
  • Step 804 According to the symbol weighting factor (weighting factor of the modulation symbol) on the first transmission time-frequency resource preset in the configuration information, and the symbol weighting factor on the second transmission time-frequency resource, or according to the preset in the configuration information. Demodulating the first transmission time-frequency resource and the remaining undemodulated data in the second transmission time-frequency resource by a sequence of symbol weighting factors of the transmission time-frequency resource and a sequence of symbol weighting factors of the second transmission time-frequency resource The preset symbol weighting factor is used to separate data sent by different terminals.
  • the symbol weighting factor weighting factor of the modulation symbol
  • the second transmission time-frequency resource pair may be applied to at least two preset terminals, and the second transmission time-frequency resource is used to transmit data repeatedly transmitted by the preset terminal, and each preset terminal corresponds to one first transmission time-frequency resource.
  • the SPS public redundancy pool (ie, the second transmission time-frequency resource) may correspond to at least two preset terminals, and the SPS public redundancy pool is used to transmit data repeatedly transmitted by the preset terminal, and each preset terminal may correspond to one.
  • SPS group dedicated pool (that is, the first transmission time-frequency resource).
  • the base station may first perform user discovery through the DMRS (ie, identify the user corresponding to the current data), and perform user discovery. Then, channel estimation is performed through DMRS.
  • the terminal data on the dedicated pool of the SPS group can be demodulated first.
  • the terminal data on the dedicated pools of the first three SPS groups can be successfully decoded (that is, the group dedicated pool marked with a check mark in the figure).
  • the terminal data in the dedicated pools of the three SPS groups will be eliminated, and the elimination includes erasure on the two pools of the SPS group dedicated pool and the SPS public redundancy pool.
  • the elimination includes erasure on the two pools of the SPS group dedicated pool and the SPS public redundancy pool.
  • the SPS group dedicated pool and the SPS public redundancy pool are jointly detected by sequence despreading, or MMSE (maximum likelihood sequence detection).
  • the method is joint detection, where s1 is the symbol of user 1, and s2 is the symbol of user 2.
  • the demodulated terminal data is eliminated, and the data in the SPS group-specific pool is successfully demodulated and the data in the SPS public redundancy pool corresponding to the data is eliminated.
  • FIG. 12 is a structural block diagram of the device. As shown in FIG. 12, the device 120 includes the following structure:
  • the sending module 121 is configured to send configuration information to the terminal by using the base station, where the configuration information includes at least: indication information of a transmission time-frequency resource, indication information of a method for generating a transmission signal, and demodulation dedicated pilot on a transmission time-frequency resource.
  • the indication information where the indication information of the transmission time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource; indication information of the transmission signal generation method, including: during the first transmission The frequency information and the indication information of the method for generating a signal on the second transmission time-frequency resource; the indication information of the demodulation dedicated pilot on the transmission time-frequency resource, including: the first transmission time-frequency resource and the second transmission time-frequency resource Demodulating dedicated pilot indication information, so that the terminal generates a transmission signal according to the received configuration information, inserts a demodulation dedicated pilot into the transmission signal, and inserts the demodulation dedicated pilot
  • the transmission signal is mapped to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource for data transmission.
  • the second transmission time-frequency resource is a resource shared by multiple terminals.
  • the indication information of the transmission signal generating method includes at least one of the following: at least one indication information of the coding modulation mode, weighting factor information of the modulation symbol on the first transmission time-frequency resource, and the second transmission time-frequency resource. Weighting factor information for the modulation symbols.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource can be configured in the following manners:
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource indicates a demodulation dedicated pilot of the first transmission time-frequency resource and a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource may include: demodulation dedicated pilot that directly multiplexes the second transmission time-frequency resource on the first transmission time-frequency resource, or The indication information of the demodulation dedicated pilot on the transmission time-frequency resource and the indication information on the first transmission time-frequency resource generate a demodulation dedicated guide of the second transmission time-frequency resource.
  • the indication information of the transmission signal generating method on the second transmission time-frequency resource includes: indicating that the modulation symbol on the second transmission time-frequency resource is a repetition of the modulation symbol on the first transmission time-frequency resource Or partially repeated instructions.
  • the value of the weighting factor in this embodiment may be taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the weighting factor of the modulation symbol on the second transmission time-frequency resource may be specified by one sequence, or the weighting factor of the modulation symbol and the second transmission time-frequency of the first transmission time-frequency resource may be specified by one sequence.
  • the weighting factor of the modulation symbol on the resource, and the configuration information contains the information of the sequence.
  • the sequence may be a sequence in a sequence set
  • the configuration information includes an index of the sequence in the sequence set
  • the sequence may be determined by an index in the sequence set
  • the sequence is used to specify the second transmission A weighting factor of the modulation symbol on the time-frequency resource, or a weighting factor of the modulation symbol on the first transmission time-frequency resource and a weighting factor of the modulation symbol on the second transmission time-frequency resource.
  • elements of all sequences in the sequence and sequence set take values from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the transmission time or the transmission time slot TTI or the frame number corresponding to the first transmission time-frequency resource and the second transmission time-frequency resource configured for the terminal in the configuration information are the same, or at least one different.
  • the sizes of the first transmission time-frequency resource and the second transmission time-frequency resource are the same or different.
  • the configuration information may be semi-persistent scheduling SPS information. Based on the configuration, the configuration information further includes indicating that the terminal transmits the preset transmission time and the preset transmission of the transmission signal within a preset time period. Information indicating the data.
  • FIG. 13 is a structural block diagram of the device. As shown in the figure, the device 130 includes the following components:
  • the receiving module 131 is configured to receive configuration information sent by the base station by using the terminal, where the configuration information includes at least:
  • the indication information of the transmission signal generating method includes: indication information of a first transmission time-frequency resource and a transmission signal generation method on the second transmission time-frequency resource; and indication information of the demodulation dedicated pilot on the transmission time-frequency resource, including : indication information of the demodulation dedicated pilot on the first transmission time-frequency resource and the second transmission time-frequency resource;
  • the generating module 132 is configured to generate a transmission signal according to the indication information of the transmission signal generating method
  • the insertion pilot module 133 is configured to insert a corresponding demodulation dedicated pilot into the transmission signal according to the indication information of the demodulation dedicated pilot;
  • the mapping module 134 is configured to map the transmission signal inserted into the demodulation dedicated pilot to the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource according to the configuration information.
  • the indication information of the transmission signal generating method includes at least one of: at least one coding modulation mode indication information, weighting factor information of the modulation symbol on the first transmission time-frequency resource, and modulation on the second transmission time-frequency resource.
  • Weighting factor information of the symbol based on this, the generating module 132 is configured to: according to the indication information of the coded modulation mode, the coded modulation generates a modulation symbol on the first transmission time-frequency resource and a modulation symbol on the second transmission time-frequency resource And, the terminal weights a weighting factor on the first transmission time-frequency resource and the modulation symbol on the second transmission time-frequency resource according to the weighting factor information to generate a transmission signal.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource can be configured in the following manners:
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource indicates a demodulation dedicated pilot of the first transmission time-frequency resource and a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource includes: indication information indicating that the second transmission time-frequency resource is directly multiplexed on the first transmission time-frequency resource Or, indicating that the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource is generated by the indication information of the demodulation dedicated pilot of the first transmission time-frequency resource and the indication information of the first transmission time-frequency resource.
  • the indication information of the transmission signal generation manner on the second transmission time-frequency resource includes: indicating that the modulation symbol on the second transmission time-frequency resource is all repetitions of the modulation symbol on the first transmission time-frequency resource Or partially repeated indication information, based on this, the generating module 132 is configured to: treat all or part of the modulation symbols on the first transmission time-frequency resource as modulation symbols on the second transmission time-frequency resource to generate a transmission signal. .
  • the value of the weighting factor in this embodiment may be taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the weighting factor of the modulation symbol on the second transmission time-frequency resource may be specified by one sequence, or the weighting factor of the modulation symbol and the second transmission time-frequency resource on the first transmission time-frequency resource may be specified by one sequence.
  • the weighting factor of the upper modulation symbol, the configuration information includes the information of the sequence, and based on this, the generating module 132 is configured to: determine the sequence by using the sequence information included in the configuration information, and expand the generated modulation symbol using the sequence to form the second Transmitting symbols on the transmission time-frequency resource to generate a transmission signal, or forming transmission symbols on the first transmission time-frequency resource and the second transmission time-frequency resource to generate a transmission signal.
  • the sequence may be a sequence in a sequence set
  • the configuration information includes an index of the sequence in the sequence set
  • the sequence is determined by configuring an index in the sequence set
  • the sequence is used to specify the second transmission A weighting factor of the modulation symbol on the time-frequency resource, or a weighting factor of the modulation symbol on the first transmission time-frequency resource and a weighting factor of the modulation symbol on the second transmission time-frequency resource.
  • elements of all sequences in the sequence and sequence set take values from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the generating module 132 is configured to: determine a sequence by using an index in the configuration information, and use the sequence to expand the generated modulation symbol using the sequence to form a symbol on the second transmission time-frequency resource to generate a transmission signal. Or, a transmission symbol formed on the first transmission time-frequency resource and the second transmission time-frequency resource is formed to generate a transmission signal.
  • the configuration information may be semi-statically scheduled SPS information, and the configuration information further includes: instructing the terminal to transmit the transmission signal by using a preset start transmission time and a preset transmission period within a preset time period. Information indicating the data.
  • the generating module is configured to: according to the SPS information, generate a transmission signal, and transmit the data of the transmission signal by using a preset start transmission time and a preset transmission period within a preset time period.
  • FIG. 14 is a structural block diagram of the device 140. As shown in FIG. 14, the device includes the following structure:
  • the receiving module 141 is configured to receive data sent by the terminal by using the first transmission time-frequency resource and the second transmission time-frequency resource, and identify the terminal by using a demodulation dedicated pilot in the data;
  • the first demodulation module 142 is configured to demodulate data on the first transmission time-frequency resource
  • the erasing module 143 is configured to: cancel the data of the demodulation success on the first transmission time-frequency resource, and cancel the data on the second transmission time-frequency resource corresponding to the demodulated data;
  • the second demodulation module 144 is configured to set a symbol weighting factor on the first transmission time-frequency resource preset in the configuration information and a symbol weighting factor on the second transmission time-frequency resource, or according to the first preset in the configuration information. a sequence of a symbol weighting factor for transmitting a time-frequency resource and a sequence of a symbol weighting factor of the second transmission time-frequency resource, demodulating the first transmission time-frequency resource and the remaining undemodulated data in the second transmission time-frequency resource, The symbol weighting factor is used to separate the transmission data of different terminals.
  • the configuration information includes: a demodulation dedicated pilot of the first transmission time-frequency resource and a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the demodulation dedicated pilot that is used to directly multiplex the second transmission time-frequency resource on the first transmission time-frequency resource in the configuration information, or the dedicated demodulation on the first transmission time-frequency resource
  • the frequency indication information and the demodulation dedicated pilot on the first time-frequency resource generate a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the configuration information further includes indication information indicating that the modulation symbol on the second transmission time-frequency resource is all repetition or partial repetition of the modulation symbol on the first transmission time-frequency resource.
  • the second transmission time-frequency resource is corresponding to the at least two preset terminals, and the second transmission time-frequency resource is configured to transmit data repeatedly transmitted by the preset terminal, and each preset terminal corresponds to one first transmission time-frequency resource.
  • the configuration information in this embodiment may be the same as the configuration information described in the first embodiment, and therefore will not be described again.
  • the embodiment provides a terminal, which includes a processor and a memory storing processor-executable instructions.
  • a terminal which includes a processor and a memory storing processor-executable instructions.
  • the terminal receives the configuration information sent by the base station, where the configuration information includes at least: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource; wherein, the transmission The indication information of the time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource; indication information of the transmission signal generation method, including: the first transmission time-frequency resource and the second transmission The indication information of the transmission signal generation method on the time-frequency resource; the indication information of the demodulation dedicated pilot on the transmission time-frequency resource, including: demodulation dedicated on the first transmission time-frequency resource and the second transmission time-frequency resource Frequency indication information;
  • the indication information of the transmission signal generating method includes at least one of: at least one coding modulation mode indication information, weighting factor information of the modulation symbol on the first transmission time-frequency resource, and the second transmission time-frequency resource. Weighting factor information for the modulation symbols.
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource can be configured in the following manners:
  • the indication information of the demodulation dedicated pilot on the transmission time-frequency resource indicates a demodulation dedicated pilot of the first transmission time-frequency resource and a demodulation dedicated pilot of the second transmission time-frequency resource.
  • the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource includes: indication information indicating that the second transmission time-frequency resource is directly multiplexed with the demodulation dedicated pilot of the first transmission time-frequency resource, Or indicating that the indication information of the demodulation dedicated pilot of the second transmission time-frequency resource is generated by the indication information of the demodulation dedicated pilot of the first transmission time-frequency resource and the indication information of the first transmission time-frequency resource.
  • the indication information of the transmission signal generating method on the second transmission time-frequency resource includes: indicating that the modulation symbol on the second transmission time-frequency resource is a repetition of the modulation symbol on the first transmission time-frequency resource Or partially repeated instructions.
  • the value of the weighting factor in this embodiment may be taken from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the weighting factor of the modulation symbol on the second transmission time-frequency resource may be specified by one sequence, or the weighting factor of the modulation symbol on the first transmission time-frequency resource and the second may be specified by one sequence.
  • the weighting factor of the modulation symbol on the transmission time-frequency resource, and the configuration information includes the information of the sequence.
  • the sequence may be a sequence in a sequence set, the configuration information includes an index of the sequence in the sequence set, the sequence is determined by an index in the sequence set, and the sequence is used to specify the second transmission time.
  • elements of all sequences in the sequence and sequence set take values from the set ⁇ 1, -1, j, -j ⁇ or the set ⁇ 1, -1, j, -j, 0 ⁇ .
  • the sequence set involved in this embodiment may include at least one of the eighteen sequence sets enumerated in the foregoing first embodiment and the sequence set formed by processing the sequence sets; wherein, the sequence sets are processed Processing includes one of the following processes: multiplying the Xth sequence element of each sequence or each sequence of the sequence by the A power of 1, i, -1-i or i for the following sequence set Each sequence or the Xth sequence element of each sequence performs phase adjustment of W ⁇ or phase rotation of W ⁇ , or multiplication by exp(i ⁇ W ⁇ ), and for the following sequence set Multiply the Xth sequence element of each sequence or each sequence by the specified value.
  • i is an imaginary unit
  • i sqrt(-1)
  • X is an integer greater than or equal to 1 and less than or equal to the length of the sequence
  • A is an integer
  • W is a real number.
  • the configuration information may be semi-persistent scheduling SPS information. Based on this, the configuration information further includes indication information indicating that the terminal transmits data by using a preset start transmission time and a preset transmission period within a preset time period.
  • the embodiment provides a computer program, a storage medium storing the program or a sequence set, and a base station device.
  • the computer program is used to implement the foregoing data transmission method, including:
  • the configuration information includes at least: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource; wherein, the transmission The indication information of the time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource; indication information of the transmission signal generation method, including: the first transmission time-frequency resource and the second transmission The indication information of the transmission signal generation method on the time-frequency resource; the indication information of the demodulation dedicated pilot on the transmission time-frequency resource, including: demodulation dedicated on the first transmission time-frequency resource and the second transmission time-frequency resource Frequency indication information, so that the terminal generates a transmission signal according to the received configuration information, inserts a demodulation dedicated pilot into the transmission signal, and maps a transmission signal inserted into the demodulation dedicated pilot to the Data transmission is performed on the first transmission time-frequency resource and the time-frequency position of the second transmission time-frequency resource.
  • the configuration information involved in the embodiment may have any one of the configuration information described in the first embodiment. Since the portion has been described in detail in the first embodiment, it will not be described again.
  • the storage medium is used to store the above program. Therefore, the program in the storage medium is not described in detail in the embodiment; and the storage medium can store the above program.
  • base station device 150 may include at least one (only one shown) processor 152 (processor 152 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), A memory 154 for storing data, and a data transceiver 156 for communication functions.
  • processor 152 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), A memory 154 for storing data, and a data transceiver 156 for communication functions.
  • the structure shown in FIG. 15 is merely illustrative and does not impose a single limitation on the structure of the above base station.
  • the base station device 150 may further include more or less components than those shown in FIG. 15 by splitting or merging the above functions, or have a configuration different from that shown in FIG.
  • the memory 154 can be used to store software programs and modules of the application software.
  • the program instructions/modules corresponding to the data transmission method disclosed in the foregoing embodiments can be stored in the memory 154.
  • the data transmission method has been described in detail in the previous embodiments, and therefore The embodiment will not be repeated in detail.
  • the processor 152 performs at least one of the functional applications and data processing by executing software programs and modules stored in the memory 154, i.e., implementing the methods described above.
  • Memory 154 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic storage device, flash memory, or other non-volatile solid state memory.
  • memory 154 can include memory (cloud memory) remotely located relative to processor 152, which can be connected to mobile terminal 150 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the data transceiver 156 is for receiving or transmitting data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 150.
  • the transmission device 156 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 156 can be a Radio Frequency (RF) module for wirelessly communicating with the Internet.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the embodiment provides a computer program, a storage medium and a terminal storing the program or a sequence set.
  • the program is used to implement the above data transmission method, including:
  • the terminal receives the configuration information sent by the base station, where the configuration information includes at least: indication information of the transmission time-frequency resource, indication information of the transmission signal generation method, and indication information of the demodulation dedicated pilot on the transmission time-frequency resource; wherein, the transmission The indication information of the time-frequency resource includes: indication information of the first transmission time-frequency resource and indication information of the second transmission time-frequency resource; indication information of the transmission signal generation method, including: the first transmission time-frequency resource and the second transmission The indication information of the transmission signal generation method on the time-frequency resource; the indication information of the demodulation dedicated pilot on the transmission time-frequency resource, including: demodulation dedicated on the first transmission time-frequency resource and the second transmission time-frequency resource Frequency indication information;
  • the configuration information involved in the embodiment may have any one of the configuration information described in the first embodiment. Since the portion has been described in detail in the first embodiment, it will not be described again.
  • the storage medium is used to store the above program. Therefore, the program in the storage medium is not described in detail in the embodiment; and the storage medium can store the above program.
  • the technical solution of the data transmission method disclosed in the foregoing embodiment can be implemented by being implemented at the terminal device.
  • the terminal may be a mobile terminal (a device having a processing function such as a mobile phone or a tablet), or may be a computer terminal or the like. This embodiment is described as an example of operating on a mobile terminal.
  • FIG. 16 is a schematic diagram of a hardware structure of a terminal device according to this embodiment.
  • the terminal device 160 may include at least one (only one shown) processor 162 (the processor 162 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), A memory 164 for storing data, and a data transceiver 166 for communication functions.
  • the structure shown in FIG. 16 is merely illustrative and does not impose a single limitation on the structure of the above base station.
  • the base station device 160 may further include more or less components than those shown in FIG. 16 or have a configuration different from that shown in FIG. 16 by splitting or merging the above functions.
  • the memory 164 can be used to store software programs and modules of the application software, and the program instructions/modules corresponding to the data transmission method disclosed in the foregoing embodiments can be stored in the memory 164.
  • the data transmission method has been described in the previous embodiment, and thus the present embodiment The example will not be repeated in detail.
  • the processor 162 performs at least one of the functional applications and data processing by executing software programs and modules stored in the memory 164, i.e., implementing the methods described above.
  • Memory 164 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 164 can include memory (cloud memory) remotely located relative to processor 162, which can be connected to mobile terminal 160 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Data transceiver 166 is used to receive or transmit data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 160.
  • the transmission device 166 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 166 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the present invention provides a data transmission method, a data demodulation method, a device, and a terminal, which can solve the problem of low reliability and large resource overhead of data transmission in a URLLC scenario.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

数据传输方法、数据解调方法、装置及终端,该方法包括:基站向终端发送配置信息,配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息。

Description

数据传输方法、数据解调方法、装置及终端 技术领域
本公开涉及通讯领域,例如涉及数据传输方法、数据解调方法、装置及终端。
背景技术
5G丰富的应用场景经过抽象分为两大类,一类是移动宽带接入,还有一类是物与物连接进而发展的物联网(Internet of Things,IoT),其中IoT又分为两大类,一类是低数据速率,但具有海量节点的海量机器类通信(mMTC);另一类是超高可靠低时延连接(Ultra-Reliable Low Latency Communications,URLLC)场景。
在5G URLLC场景中,免调度接入能免去整个接入流程,是实现超低时延接入的一个重要技术。其中,对于周期的URLLC业务,基于半静态周期性资源预留的正交接入方式半静态调度(Semi-Persistent Scheduling,SPS)可以视为是一种高效的免动态调度、低时延接入方式。与业务发生周期匹配的周期预留资源可以保证高效的资源利用率;而不同用户独占资源,没有用户间干扰,性能相对具有保证。要达到URLLC的超高可靠需求,还往往需要结合其他提高可靠性的技术。
而对于事件触发的非周期的URLLC业务,周期性预留的正交资源往往得不到充分利用:预留正交资源的周期越长,预留正交资源利用率越高,但终端接入需要等待的平均时间越长,越难保证超低时延需求;相反,预留正交资源的周期越短,终端接入需要等待的平均时间越短,越容易保证超低时延需求,但预留正交资源的空置率就会越高,利用率越低。
发明内容
本公开提供一种数据传输方法、数据解调方法、装置及终端,用以解决相关技术中URLLC场景下数据传输的可靠性低和资源开销较大的问题。
本公开提供一种数据传输方法,包括:
基站向终端发送配置信息,所述配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;
其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二 传输时频资源上的解调专用导频的指示信息。
可选地,所述方法还包括:以使所述终端根据接收的所述配置信息生成传输信号、在所述传输信号中插入解调专用导频并将插入所述解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本公开还提供一种数据传输方法,包括:
终端接收基站发送的配置信息,所述配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;
其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
根据所述传输信号生成方法的指示信息生成传输信号;
根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本公开还提供一种数据解调方法,包括:
基站接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过所述数据中的解调专用导频来识别所述终端;
解调所述第一传输时频资源上的数据;
消去所述第一传输时频资源上的解调成功的数据,以及消去所述解调成功的数据对应的所述第二传输时频资源上的数据;
根据配置信息中预设的所述第一传输时频资源上的符号加权因子和所述第二传输时频资源上的符号加权因子,或者根据所述配置信息中预设的所述第一传输时频资源的符号加权因子的序列以及所述第二传输时频资源的符号加权因子的序列,对所述第一传输时频资源以及所述第二传输时频资源中剩余的未解调的数据进行解调,其中,预设的符号加权因子用于分离不同的终端发送的数据。
本公开还提供一种数据传输装置,包括:
发送模块,设置为通过基站向终端发送配置信息,所述配置信息中至少包括:
传输时频资源的指示信息,传输信号生成方法的指示信息,和在所述传输时频资源上的解调专用导频指示信息;
其中,所述传输时频资源的指示信息,包括:
第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
所述传输信号生成方法的指示信息,包括:
在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
在所述传输时频资源上的解调专用导频的指示信息,包括:
在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息。
可选地,所述发送模块还设置为:以使所述终端根据接收的所述配置信息生成传输信号、在所述传输信号中插入解调专用导频并将插入所述解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本公开还提供一种数据传输装置,包括:
接收模块,设置为通过终端接收基站发送的配置信息,所述配置信息中至少包括:
传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
生成模块,设置为根据所述传输信号生成方法的指示信息生成传输信号;
插入导频模块,设置为根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
映射模块,设置为根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本公开还提供一种数据解调装置,包括:
接收模块,设置为接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过所述数据中的解调专用导频来识别所述终端;
第一解调模块,设置为解调所述第一传输时频资源上的数据;
消去模块,设置为消去所述第一传输时频资源上的解调成功的数据,以及消去解调成功的数据对应的所述第二传输时频资源上的数据;
第二解调模块,设置为根据配置信息中预设的所述第一传输时频资源上的符号加权因子和所述第二传输时频资源上的符号加权因子,或者根据所述配置信息中预设的所述第一传输时频资源的符号加权因子的序列以及所述第二传输时频资源的符号加权因子的序列,对所述第一传输时频资源以及所述第二传输时频资源中剩余的未解调数据进行解调,所述预设的符号加权因子用于分离不 同的终端发送的数据。
本公开还提供一种终端,包括处理器以及存储有所述处理器可执行指令和存储有所述序列集合的存储器,当所述指令被处理器执行时,执行如下操作:
通过终端接收基站发送的配置信息,所述配置信息中至少包括:
传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
在所述传输时频资源上的解调专用导频的指示信息,包括:所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
根据所述传输信号生成方法的指示信息生成传输信号;
根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本公开还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一方法。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意一种方法。
本实施例提供的方案中,基站通过配置信息的下发为终端分配第二传输时频资源(例如公共冗余池子),使得终端通过该第二传输时频资源(例如公共冗余池子)发送重复传输的数据,提高了资源利用率。
附图说明
图1是相关技术中一份SPS预配的资源预留给多个URLLC用户共享的示意图。
图2是相关技术中简化HARQ重传场景下,SPS预配资源翻倍,URLLC信号连发两次的示意图。
图3是第二实施例提供的数据传输方法的流程图。
图4是第四实施例提供的数据传输示意图。
图5是第五实施例提供的数据传输示意图。
图6是第六实施例提供的数据传输示意图。
图7是第七实施例提供的数据传输示意图。
图8是第八实施例提供的数据解调方法流程图。
图9是第八实施例提供的数据解调SPS组专用池子上的终端数据的示意图。
图10是第八实施例提供的解调消去解调成功数据的示意图。
图11是第八实施例提供的联合检测解调终端数据的示意图。
图12是第九实施例提供的数据传输装置的结构框图。
图13是第十实施例提供的数据传输装置的结构框图。
图14是第十一实施例提供的数据解调装置的结构框图。
图15是第十三实施例提供的基站设备的结构示意图。
图16是第十四实施例提供的终端设备的结构示意图。
具体实施方式
为了提高周期预留正交资源的利用率,一个方法是让一份资源预留给多个具有事件触发业务的用户共享使用,如图1所示,其中,11表示预留正交资源,12表示该预留正交资源对应的用户,一个SPS资源池子(即预留正交资源)预留给4个用户,这样预留正交资源的空置率大为减少,图1中两次接入的SPS资源池子上的数字是同时接入的用户数。而为了提高可靠性,每个用户的数据可能不止发一次,例如在连续的时间上发2次或者4次,其实这也是一种简化的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)重传方案,也即重传不需要基站反馈NACK(非应答)再重传,而是终端按预配的重传次数重传。这样可以取得HARQ多次重传的高可靠性,而且不用HARQ过程相关的信令交互,这样会导致时频开销很大,如下图2是连续的时间上发2次的示意,其中,21是预留正交资源,22是该预留正交资源对应的用户,在这种情况下,预留正交资源的开销翻倍。
第一实施例
本实施例提供了一种数据传输方法,该方法由基站来执行,该方法包括如下处理:
基站向终端发送配置信息,在此之前,本实施例提供的方法还可以包括基站配置上述配置信息的处理过程,其中,配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息。该方法还可以包括以使所述终端根据接收的所述配置信息生成传输信号、在所述传输信号中插入解调专用导频并将插入所述解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
可选地,传输信号生成方法的指示信息包括以下至少一种:至少一种编码调制方式的指示信息,在第一传输时频资源上的调制符号(即调制后的数据符号)的加权因子信息,以及在第二传输时频资源上的调制符号的加权因子信息。传输时频资源上的解调专用导频的指示信息可以采用以下几种方式配置:
传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。或,第二传输时频资源的解 调专用导频的指示信息,包括:用于指示第二传输时频资源直接复用在第一传输时频资源的解调专用导频的指示信息,或者,通过在所述第一传输时频资源的解调专用导频的指示信息以及所述第一时频资源的指示信息生成第二传输时频资源的解调专用导频。
传输时频资源上的解调专用导频的指示信息可以包括:用于指示第二传输时频资源上的解调专用导频多于第一传输时频资源上的解调专用导频的指示信息。可选地,第二传输时频资源上的解调专用导频是在第一传输时频资源上的解调专用导频的至少一倍,在传输时频资源上的解调专用导频的指示信息包括用于指示第二传输时频资源的解调专用导频的个数与第一传输时频资源的个数之间的倍数的指示信息。
可选地,第二传输时频资源上传输信号生成方法的指示信息,至少包括:用于指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
本实施例中加权因子的取值可以取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
可选地,在本实施例中可以通过一条序列指定在第二传输时频资源上调制符号的加权因子,或者,通过一条序列指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子,上述配置信息中包含上述序列的信息。其中,序列可以是一个序列集合中的一条序列,配置信息中还包括该序列在序列集合中的索引,可以通过配置该序列集合中的索引来确定所述序列,并利用所述序列指定在第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。可选地,该序列和序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
使用序列对调制符号扩展过程可以包括:用一定长度的扩展序列(如,长度为N的扩展序列,这里,长度为N的扩展序列是指这个扩展序列由N个符号构成,也可以说是由N个元素构成,此处的N个符号或N个元素可以是N个数字符号)对调制后的数据符号进行扩展,过程可以是每个已调制的数据符号与扩展序列的每个符号相乘,最终形成与所用扩展序列长度相同的符号序列。
假设数据符号为S k,所述S k可以是采用BPSK或QAM调制后的星座点符号,或者采用即正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)载波调制后的符号,且假设扩展序列长度为N的扩展序列为C={C 1,C 2,......C N},此时,所述符号扩展过程则为将Sk与扩展序列C中的每个元素相乘,进而最终得到扩展后的序列{S kC 1,S kC 2,......S kC N}。公式可以表示为:
Figure PCTCN2017118964-appb-000001
可选地,本实施例中所涉及的序列集合包括下述序列集合1至序列集合18 以及由下述序列集合1至序列集合18经过处理后形成的序列集合中的至少一个;其中,对下述序列集合1至序列集合18进行处理包括如下处理之一:对下述序列集合1至序列集合18中的每条序列或每条序列的第X个序列元素乘以1、i、-1、-i或i的A次方。对下述序列集合中的每条序列或每条序列的第X个序列元素进行W×π的相位调整或W×π的相位旋转,或者乘以exp(i×W×π)。以及,对下述序列集合1至序列集合18中的每条序列或每条序列的第X个序列元素乘以指定值;其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数。
其中,序列集合1至序列集合18包括:
序列集合1,包含4条长度为1的序列:[1]、[-1]、[i]和[-i];
序列集合2,包含4条长度为2的序列:[1,1]、[1,-1]、[1,i]和[1,-i];
序列集合3,包含16条长度为3的序列:[1,1,1]、[1,-1,-1]、[-1,1,-1]、[-1,-1,1]、[1,i,-i]、[1,-i,i]、[-1,i,i]、[-1,-i,-i]、[i,1,-i]、[i,-1,i]、[-i,1,i]、[-i,-1,-i]、[i,i,-1]、[i,-i,1]、[-i,i,1]和[-i,-i,-1];
序列集合4,包含16条长度为3的序列:[1,1,-1]、[1,-1,1]、[-1,1,1]、[-1,-1,-1]、[1,i,i]、[1,-i,-i]、[-1,i,-i]、[-1,-i,i]、[i,1,i]、[i,-1,-i]、[-i,1,-i]、[-i,-1,i]、[i,i,1]、[i,-i,-1]、[-i,i,-1]和[-i,-i,1];
序列集合5,包含16条长度为3的序列:[1,1,i]、[1,-1,-i]、[-1,1,-i]、[-1,-1,i]、[1,i,1]、[1,-i,-1]、[-1,i,-1]、[-1,-i,1]、[i,1,1]、[i,-1,-1]、[-i,1,-1]、[-i,-1,1]、[i,i,-i]、[i,-i,i]、[-i,i,i]和[-i,-i,-i];
序列集合6,包含16条长度为3的序列:[1,1,-i]、[1,-1,i]、[-1,1,i]、[-1,-1,-i]、[1,i,-1]、[1,-i,1]、[-1,i,1]、[-1,-i,-1]、[i,1,-1]、[i,-1,1]、[-i,1,1]、[-i,-1,-1]、[i,i,i]、[i,-i,-i]、[-i,i,-i]和[-i,-i,i];
序列集合7,包含32条长度为3的序列:[1,1,1]、[i,-1,-i]、[-1,1,-1]、[-i,-1,i]、[1,i,-i]、[i,-i,-1]、[-1,i,i]、[-i,-i,1]、[i,1,-i]、[-1,-1,-1]、[-i,1,i]、[1,-1,1]、[i,i,-1]、[-1,-i,i]、[-i,i,1]、[1,-i,-i],第十七序列为[1,1,-1]、[i,-1,i]、[-1,1,1]、[-i,-1,-i]、[1,i,i]、[i,-i,1]、[-1,i,-i]、[-i,-i,-1]、[i,1,i]、[-1,-1,1]、[-i,1,-i]、[1,-1,-1]、[i,i,1]、[-1,-i,-i]、[-i,i,-1]和[1,-i,i];
序列集合8,包含32条长度为3的序列:[1,1,i]、[i,-1,1]、[-1,1,-i]、[-i,-1,-1]、[1,i,1]、[i,-i,-i]、[-1,i,-1]、[-i,-i,i]、[i,1,1]、[-1,-1,-i]、[-i,1,-1]、[1,-1,i]、[i,i,-i]、[-1,-i,-1]、[-i,i,i]、[1,-i,1]、[1,1,-i]、[i,-1,-1]、[-1,1,i]、[-i,-1,1]、[1,i,-1]、[i,-i,i]、[-1,i,1]、[-i,-i,-i]、[i,1,-1]、[-1,-1,i]、[-i,1,1]、[1,-1,-i]、[i,i,i]、[-1,-i,1]、[-i,i,-i]和[1,-i,-1];
序列集合9,包含16条长度为4的序列:[1,1,1,1]、[1,1,-1,-1]、 [1,-1,1,-1]、[1,-1,-1,1]、[1,1,i,-i]、[1,1,-i,i]、[1,-1,i,i]、[1,-1,-i,-i]、[1,i,1,-i]、[1,i,-1,i]、[1,-i,1,i]、[1,-i,-1,-i]、[1,i,i,-1]、[1,i,-i,1]、[1,-i,i,1]和[1,-i,-i,-1];
序列集合10,包含16条长度为4的序列:[1,1,1,-1]、[1,1,-1,1]、[1,-1,1,1]、[1,-1,-1,-1]、[1,1,i,i]、[1,1,-i,-i]、[1,-1,i,-i]、[1,-1,-i,i]、[1,i,1,i]、[1,i,-1,-i]、[1,-i,1,-i]、[1,-i,-1,i]、[1,i,i,1]、[1,i,-i,-1]、[1,-i,i,-1]和[1,-i,-i,1];
序列集合11,包含16条长度为4的序列:[1,1,1,i]、[1,1,-1,-i]、[1,-1,1,-i]、[1,-1,-1,i]、[1,1,i,1]、[1,1,-i,-1]、[1,-1,i,-1]、[1,-1,-i,1]、[1,i,1,1]、[1,i,-1,-1]、[1,-i,1,-1]、[1,-i,-1,1]、[1,i,i,-i]、[1,i,-i,i]、[1,-i,i,i]和[1,-i,-i,-i];
序列集合12,包含16条长度为4的序列:[1,1,1,-i]、[1,1,-1,i]、[1,-1,1,i]、[1,-1,-1,-i]、[1,1,i,-1]、[1,1,-i,1]、[1,-1,i,1]、[1,-1,-i,-1]、[1,i,1,-1]、[1,i,-1,1]、[1,-i,1,1]、[1,-i,-1,-1]、[1,i,i,i]、[1,i,-i,-i]、[1,-i,i,-i]和[1,-i,-i,i];
序列集合13,包含32条长度为4的序列:[1,1,1,1]、[1,i,-1,-i]、[1,-1,1,-1]、[1,-i,-1,i]、[1,1,i,-i]、[1,i,-i,-1]、[1,-1,i,i]、[1,-i,-i,1]、[1,i,1,-i]、[1,-1,-1,-1]、[1,-i,1,i]、[1,1,-1,1]、[1,i,i,-1]、[1,-1,-i,i]、[1,-i,i,1]、[1,1,-i,-i]、[1,1,1,-1]、[1,i,-1,i]、[1,-1,1,1]、[1,-i,-1,-i]、[1,1,i,i]、[1,i,-i,1]、[1,-1,i,-i]、[1,-i,-i,-1]、[1,i,1,i]、[1,-1,-1,1]、[1,-i,1,-i]、[1,1,-1,-1]、[1,i,i,1]、[1,-1,-i,-i]、[1,-i,i,-1]和[1,1,-i,i];
序列集合14,包含32条长度为4的序列:[1,1,1,i]、[1,i,-1,1]、[1,-1,1,-i]、[1,-i,-1,-1]、[1,1,i,1]、[1,i,-i,-i]、[1,-1,i,-1]、[1,-i,-i,i]、[1,i,1,1]、[1,-1,-1,-i]、[1,-i,1,-1]、[1,1,-1,i]、[1,i,i,-i]、[1,-1,-i,-1]、[1,-i,i,i]、[1,1,-i,1]、[1,1,1,-i]、[1,i,-1,-1]、[1,-1,1,i]、[1,-i,-1,1]、[1,1,i,-1]、[1,i,-i,i]、[1,-1,i,1]、[1,-i,-i,-i]、[1,i,1,-1]、[1,-1,-1,i]、[1,-i,1,1]、[1,1,-1,-i]、[1,i,i,i]、[1,-1,-i,1]、[1,-i,i,-i]和[1,1,-i,-1];
序列集合15,包含16条长度为5的序列:[1,1,1,1,1]、[1,1,1,-1,-1]、[1,1,-1,1,-1]、[1,1,-1,-1,1]、[1,-1,1,1,-1]、[1,-1,1,-1,1]、[1,-1,-1,1,1]、[1,-1,-1,-1,-1]、[-1,1,1,1,-1]、[-1,1,1,-1,1]、[-1,1,-1,1,1]、[-1,1,-1,-1,-1]、[-1,-1,1,1,1]、[-1,-1,1,-1,-1]、[-1,-1,-1,1,-1]和[-1,-1,-1,-1,1];
序列集合16,包含16条长度为6的序列:[1,0,1,0,1,0]、[-1,0,1,0,-1,0]、[1,0,-1,0,-1,0]、[-1,0,-1,0,1,0]、[1,0,0,1,0,1]、[-1,0,0,1,0,-1]、[1,0,0,-1,0,-1]、[-1,0,0,-1,0,1]、[0,1,1,0,0,1]、[0,-1,1,0,0,-1]、[0,1,-1,0,0,-1]、[0,-1,-1,0,0, 1]、[0,1,0,1,1,0]、[0,-1,0,1,-1,0]、[0,1,0,-1,-1,0]和[0,-1,0,-1,1,0];
序列集合17,包含16条长度为6的序列:[1,1,1,0,0,0]、[-1,1,-1,0,0,0]、[1,-1,-1,0,0,0]、[-1,-1,1,0,0,0]、[0,0,1,1,1,0]、[0,0,-1,-1,1,0]、[0,0,-1,1,-1,0]、[0,0,1,-1,-1,0]、[1,0,0,0,1,1]、[-1,0,0,0,1,-1]、[1,0,0,0,-1,-1]、[-1,0,0,0,-1,1]、[0,1,0,1,0,1]、[0,1,0,-1,0,-1]、[0,-1,0,1,0,-1]和[0,-1,0,-1,0,1];
序列集合18,包含16条长度为6的序列:[1,1,1,1,1,1]、[1,1,1,1,-1,-1]、[1,1,1,-1,1,-1]、[1,1,1,-1,-1,1]、[1,1,-1,1,1,-1]、[1,1,-1,1,-1,1]、[1,1,-1,-1,1,1]、[1,1,-1,-1,-1,-1]、[1,-1,1,1,1,-1]、[1,-1,1,1,-1,1]、[1,-1,1,-1,1,1]、[1,-1,1,-1,-1,-1]、[1,-1,-1,1,1,1]、[1,-1,-1,1,-1,-1]、[1,-1,-1,-1,1,-1]和[1,-1,-1,-1,-1,1]。
可选地,第一传输时频资源对应的传输时间和第二传输时频资源对应的传输时间相同、第一传输时频资源对应的传输时隙和第二传输时频资源对应的传输时隙TTI相同以及第一传输时频资源对应的帧号与第二传输时频资源对应的帧号相同。
可选地,第一传输时频资源对应的传输时间和第二传输时频资源对应的传输时间不同,或第一传输时频资源对应的传输时隙TTI和第二传输时频资源对应的传输时隙TTI不同,或第一传输时频资源对应的帧号和第二传输时频资源对应的帧号不同。
在本实施例中,配置信息可以为半静态调度SPS信息,基于此,配置信息中还可以包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输传输信号的数据的指示信息。
第二实施例
本实施例提供了一种数据传输方法,该方法由终端来执行,该方法包括如下处理:步骤301:终端接收基站发送的配置信息。配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,以及在传输时频资源上的解调专用导频的指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息;
步骤302:根据在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息生成传输信号。
步骤303:根据解调专用导频的指示信息在传输信号中插入对应的解调专用 导频。
步骤304:根据配置信息将插入解调专用导频的传输信号映射到第一传输时频资源以及第二传输时频资源的时频位置上进行数据传输。
可选地,传输信号生成方法的指示信息包括以下至少一种:至少一种编码调制方式的指示信息,在第一传输时频资源上的调制符号的加权因子信息,以及在第二传输时频资源上的调制符号的加权因子信息。基于此,根据传输信号生成方法的指示信息生成传输信号,包括以下至少一种:根据编码调制方式的指示信息编码调制生成在第一传输时频资源上的调制符号和在第二传输时频资源上的调制符号,和,终端根据加权因子信息,对第一传输时频资源和第二传输时频资源上的调制符号中的至少一个加权相应地加权因子以生成传输信号。
传输时频资源上的解调专用导频的指示信息可以采用以下几种方式配置:传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。或,在第二传输时频资源上的解调专用导频的指示信息,包括:用于指示第二传输时频资源直接复用在第一传输时频资源上的解调专用导频的指示信息,或者,用于指示通过在第一传输时频资源上的解调专用导频的指示信息以及第一时频资源上的解调专用导频生成第二传输时频资源的解调专用导频的指示信息。
可选地,传输时频资源上的解调专用导频的指示信息,包括:用于指示第二传输时频资源上的解调专用导频多于第一传输时频资源上的解调专用导频的指示信息。
可选地,第二传输时频资源上的解调专用导频是第一传输时频资源上的解调专用导频的至少一倍,传输时频资源上的解调专用导频的指示信息还包括用于指示第二传输时频资源的解调专用导频的个数与第一传输时频资源的个数之间的倍数的指示信息。
可选地,在第二传输时频资源上传输信号生成方法的指示信息,至少包含:用于指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息,基于此,根据传输信号生成方法的指示信息生成传输信号,包括:
将第一传输时频资源上的调制符号的全部或部分,当作在第二传输时频资源上的调制符号以生成传输信号。
可选地,本实施例中加权因子的取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
在本实施例中,可以通过一条序列指定在第二传输时频资源上调制符号的加权因子,或者,通过一条序列指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子,配置信息中包含序列的信息,基于此,根据传输信号生成方法的指示信息生成传输信号,包括:通过配置信息中包括的序列的信息确定序列,生成的调制符号使用序列进行扩展后形成在第二传输时频资源上传输符号以生成传输信号,或者,将生成的调制符号使用 序列进行扩展后形成在第一传输时频资源和第二传输时频资源上的传输符号以生成传输信号。
可选地,序列可以是一个序列集合中的一条序列,配置信息中包含序列在序列集合中的索引,通过配置序列集合中的索引来确定所述序列,并利用所述序列指定在第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。基于此,根据传输信号生成方法的指示信息生成传输信号,包括:所述终端通过所述配置信息中包含的所述序列在所述序列集合中的索引,从所述终端已知的序列集合中确定所述序列,将生成的调制符号使用所述序列进行扩展后,形成在所述第二传输时频资源上的传输符号以生成传输信号,或者,形成在所述第一传输时频资源和第二传输时频资源上传输符号以生成传输信号。可选地,序列和序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。本实施例中所涉及到的序列集合可以包括上述第一实施例中所列举的十八个序列集合以及这些个述序列集合经过处理后形成的序列集合中的至少一个;其中,对这些序列集合进行处理包括如下处理之一:对这些序列集合中的每条序列或每条序列的第X个序列元素乘以1、i、-1-i,或i的A次方;对下述序列集合中的每条序列或每条序列的第X个序列元素进行W×π的相位调整、W×π的相位旋转或者乘以exp(i×W×π);以及,对下述序列集合中的每条序列或每条序列的第X个序列元素乘以指定值;其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数。
可选地,配置信息中为终端配置的第一传输时频资源和第二传输时频资源对应的传输时间、传输时隙TTI和帧号均相同,或至少有一项不同。第一传输时频资源和第二传输时频资源的大小相同或不同。
在本实施例中,配置信息可以为半静态调度SPS信息,基于此,配置信息中还包括指示了终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息,基于此,根据传输信号生成方法的指示信息生成传输信号,包括:根据SPS信息,生成传输信号;在所述生成传输信号之后,上述方法包括:
在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据。
第三实施例
本实施例提供了另一种数据传输方法,在本实施例中,第一传输时频资源相当于一组SPS用户专用的SPS专用池子,因此可以称为组专用池子。例如4个用户(相当于一个终端)为一组,通过SPS配置信息,配置为专用第一传输时频资源的用户;相对地,第二传输时频资源相当于一个公共冗余的资源池子,供多组用户的重复传输的数据共用。
而且在公共冗余的资源池子上重复传输的数据量可以不等于在组专用池子 上发送的数据量,也即重复传输符号的数量可以不等于在组专用池子上发送的符号的数量。其中,SPS公共冗余池子即相当于上述第二传输时频资源对应于至少两个预设终端,SPS公共冗余池子用于传输预设终端重复传输的数据,每个预设终端对应一个SPS组专用池子,即第一传输时频资源。
基于此,可以配置SPS组专用池子大于SPS公共冗余池子,在该种情况下,基站下发给终端的SPS配置信息,以及其他传输相关的信息,可以如下表1所示:
表1
Figure PCTCN2017118964-appb-000002
如上表1所示,配置信息中也可以配置为重复加权,其中,重复加权的标量也可以是-1,j,或-j,即相当于时域扩展,即组专用池子和公共冗余池子,一起使用(1,1)(1,-1)或(1,j)或(1,-j)扩展序列。
可选的,表1中的TTI还可以设置为0.125ms,或者,子载波间隔可以设置为15KHz,同时TTI可以设置为1个OFDM时长。
可选的,表1中的调制与编码策略(Modulation and Coding Scheme,MCS)还可以设置为长期演进(Long Term Evolution,LTE)卷积码,1/3,正交相移键控(Quadrature Phase Shift Keyin,QPSK)。
第四实施例
本实施例提供了另一种数据传输方法,该方法与上述第一实施例提供的数据传输的方法大致相同,其区别在于,在本实施例中SPS公共冗余池子的数量可以为多个,该多个SPS公共冗余池子以及SPS组专用池子对应的TTI均不相同,如图4所示,41表示SPS组专用池子,公共冗余池子42的数量为3个,43表示用户,在该种情况下,SPS配置信息,以及其他传输相关的信息,可以如下表2所示:
表2
Figure PCTCN2017118964-appb-000003
一个包含16条4长序列的序列集合包括:
第一序列为[1,1,1,1],第二序列为[1,1,-1,-1],第三序列为[1,-1,1,-1],第四序列为[1,-1,-1,1],第五序列为[1,1,1i,-1i],第六序列为[1,1,-1i,1i],第七序列为[1,-1,1i,1i],第八序列为[1,-1,-1i,-1i],第九序列为[1,1i,1,-1i],第十序列为[1,1i,-1,1i],第十一序列为[1,-1i,1,1i],第十二序列为[1,-1i,-1,-1i],第十三序列为[1,1i,1i,-1],第十四序列为[1,1i,-1i,1],第十五序列为[1,-1i,1i,1],第十六序列为[1,-1i,-1i,-1]。
可选的,表2中的TTI还可以设置为0.125ms,或者,子载波间隔可以设置为15KHz,同时TTI可以设置为1个OFDM时长。
可选的,表2中的MCS还可以设置为LTE卷积码,1/3,QPSK。
第五实施例
本实施例提供了另一种数据传输方法,该方法与上述第一实施例提供的数据传输的方法大致相同,其区别在于,如图5所示,SPS公共冗余池子52的数量可以为多个(图中所示为3个),且SPS组专用池子51和SPS公共冗余池子52对应的TTI不相同,53表示用户,其中,SPS公共冗余池子52中至少有两个(图中所示为两个)SPS公共冗余池子52对应的TTI相同,在该种情况下,SPS配置信息,以及其他传输相关的信息,可以如下表3所示:
表3
Figure PCTCN2017118964-appb-000004
一个包含16条4长序列的序列集合包括:第一序列为[1,1,1,-1],第二序列为[1,1,-1,1],第三序列为[1,-1,1,1],第四序列为[1,-1,-1,-1],第五序列为[1,1,1i,1i],第六序列为[1,1,-1i,-1i],第七序列为[1,-1,1i,-1i],第八序列为[1,-1,-1i,1i],第九序列为[1,1i,1,1i],第十序列为[1,1i,-1,-1i],第十一序列为[1,-1i,1,-1i],第十二序列为[1,-1i,-1,1i],第十三序列为[1,1i,1i,1],第十四序列为[1,1i,-1i,-1],第十五序列为[1,-1i,1i,-1],第十六序列为[1,-1i,-1i,1]。
可选的,表3中的TTI还可以设置为0.125ms,或者,子载波间隔可以设置 为15KHz,同时TTI可以设置为1个OFDM时长。
可选的,表3中的MCS还可以设置为LTE卷积码,1/3,QPSK。
第六实施例
本实施例提供了一种数据传输方法,该方法与上述第一实施例提供的数据传输方法大致相同,其不同之处在于,该方法中设定了SPS组专用池子和SPS公共冗余池子对应的TTI相同,SPS组专用池子和SPS公共冗余池子对应的PRB的个数不同。
如图6所示,基站通过SPS配置具有一定周期的4个组专用池子61,以及一个公共冗余池子62。4个SPS组专用池子61,每个组专用池子61预配给4个用户63(相当于一个终端),即一共预配给16个用户63。SPS公共冗余池子62预留给这16个用户63。每个用户63在公共冗余池子62上发射的是前面组专用池子61的重复拷贝数据,每个用户63的数据加权不同的权值(即标量),用户63的数据通过重复并加权预设的标量后在SPS组专用池子61和SPS公共冗余池子62上传输,相当于符号扩展技术。如图6,数据重复传输一次,可以对不同用户63的数据的重复版本加权序列[1,j,-1,-j]中的一个,这些加权值可以是基站通过SPS配置信息预先配置的。等价于时域扩展,扩展长度为2,扩展序列是[11];[1-1];[1j];[1-j]中的一条。
在本实施例中,每个终端使用的MCS也可以由基站配置,可以通过SPS配置信息配置,终端在SPS组专用池子61和SPS公共冗余池子62使用的上行链路解调参考信号(ULDMRS,Up Link Demodulation Reference Signal)导频也可以是基站通过SPS配置信息预先配置好的。通常可以配置不同的用户使用不同循环移位的DMRS配置,或者配置不同用户使用互相正交的序列作为DMRS。
在本实施例中,SPS配置信息,以及其他传输相关的信息,可以如下表4所示:
表4
Figure PCTCN2017118964-appb-000005
包含4条长度为2的序列的序列集合包括:
第一序列为[1,1],第二序列为[1,-1],第三序列为[1,i],第四序列为[1,-i]。
可选的,表4中的TTI还可以设置为0.125ms,或者,子载波间隔可以设置为15KHz,同时TTI可以设置为1个OFDM时长。
可选的,表4中的MCS还可以设置为LTE卷积码,1/3,QPSK。
第七实施例
本实施例提供了一种数据传输方法,该方法与上述第一实施例提供的方法大致相同,其不同之处在于,该方法中设定了SPS组专用池子和SPS公共冗余池子对应的传输时间间隔TTI不同,SPS组专用池子和SPS公共冗余池子对应的物理资源块PRB的个数相同。
如图7所示,基站通过SPS配置具有一定周期的4个组专用池子71,以及一个公共冗余池子72。4个SPS组专用池子71,每个组专用池子71预配给4个用户73,即一共预配给16个用户73。SPS公共冗余池子72预留给这16个用户73。每个用户73在公共冗余池子72上发射的是组专用池子71的重复拷贝数据,每个用73户的数据加权不同的权值(即标量),终端的数据通过重复并加权预设的标量后在SPS组专用池子71和SPS公共冗余池子72上传输,相当于符号扩展技术。如图7,数据重复传输一次,不同用户的重复版本加权序列[1, j,-1,-j]中的一个,这些加权值可以是基站通过SPS配置信息预先配置的。等价于频域扩展,扩展长度为2,扩展序列是[11];[1-1];[1j];[1-j]中的一条。
在本实施例中,SPS配置信息,以及其他传输相关的信息,可以如下表5所示:
表5
Figure PCTCN2017118964-appb-000006
可选的,表5中的TTI还可以设置为0.125ms,或者,子载波间隔可以设置为15KHz,同时TTI可以设置为1个OFDM时长。
可选的,表5中的MCS还可以设置为LTE卷积码,1/3,QPSK。
第八实施例
本实施例提供了一种数据解调方法,该方法可以由基站侧的接收机来执行,图8是该方法的流程图,如图8所示,该方法包括如下处理:
步骤801:基站接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过数据中的解调专用导频来识别终端。
步骤802:解调第一传输时频资源上的数据。
步骤803:消去第一传输时频资源上的译码成功的数据,以及消去解调成功的数据对应的第二传输时频资源上的数据。
步骤804:根据配置信息中预设的第一传输时频资源上的符号加权因子(调制符号的加权因子)和第二传输时频资源上的符号加权因子,或者根据配置信息中预设的第一传输时频资源的符号加权因子的序列以及第二传输时频资源的符号加权因子的序列,对第一传输时频资源以及第二传输时频资源中剩余的未解调的数据进行解调,预设的符号加权因子用于分离不同的终端发送的数据。
其中,第二传输时频资源对可以应于至少两个预设终端,第二传输时频资源用于传输预设终端重复传输的数据,每个预设终端对应一个第一传输时频资源。
其中,SPS公共冗余池子(即第二传输时频资源)可以对应于至少两个预设终端,SPS公共冗余池子用于传输预设终端重复传输的数据,每个预设终端可以对应一个SPS组专用池子(即第一传输时频资源)。
以下对该方法的实现过程进行说明:
在本实施例中,由于每个终端的导频DMRS是基站预配的、互相正交的,所以基站可以先通过DMRS来进行用户发现(即识别出当前数据对应的用户),进行用户发现后,再通过DMRS做信道估计。
然后,可以先解调SPS组专用池子上的终端数据,如图9所示,前面3个SPS组专用池子上的终端数据可以译码成功(即图中用对号标记的组专用池子),则这3个SPS组专用池子中的终端数据会消去,这个消去包括SPS组专用池子和SPS公共冗余池子两个池子上的消去。公共冗余池子上消去这3个终端数据后,还剩2个用户,如图10所示。直到SPS组专用池子不能再解调出终端数据时,如图11所示,则SPS组专用池子和SPS公共冗余池子两个池子联合检测,通过序列解扩,或者MMSE(最大似然序列检测)方法来联合检测,其中,s1是用户1的符号,s2是用户2的符号。
其中,消去解调成功的终端数据,此处的消去包括SPS组专用池子中解调成功的数据和与该数据对应的SPS公共冗余池子中的数据。
第九实施例
本实施例提供了一种数据传输装置,该装置设置于基站一侧,图12是该装置的结构框图,如图12所示,该装置120包括如下结构:
发送模块121,设置为通过基站向终端发送配置信息,该配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息,以使所述终端根据接收的所述配置信息生成传输信号、在所述传输信号中插入解调专用导频并将插入所述解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。可选地,所述第二传输时频资源为多个所述终端共用的资源。
其中,传输信号生成方法的指示信息包括以下至少一种:至少一种编码调制方式的指示信息,在第一传输时频资源上的调制符号的加权因子信息,以及在第二传输时频资源上的调制符号的加权因子信息。
传输时频资源上的解调专用导频的指示信息可以采用以下几种方式配置:
传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。在第二传输时频资源的解调 专用导频的指示信息,可以包括:指示第二传输时频资源直接复用在第一传输时频资源上的解调专用导频,或者,通过第一传输时频资源上的解调专用导频的指示信息和第一传输时频资源上的指示信息生成第二传输时频资源的解调专用导。
可选地,在第二传输时频资源上传输信号生成方法的指示信息,至少包括:指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
本实施例中加权因子的取值可以取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
在本实施例中可以通过一条序列指定在第二传输时频资源上调制符号的加权因子,或者,通过一条序列指定在第一传输时频资源上的调制符号的加权因子和第二传输时频资源上的调制符号的加权因子,配置信息中包含序列的信息。可选地,序列可以是一个序列集合中的一条序列,配置信息中包含序列在序列集合中的索引,可以通过序列集合中的索引来确定所述序列,并利用所述序列指定在第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。可选地,序列和序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
本实施例中所涉及到的序列集合可以包括上述第一实施例中所列举的十八个序列集合以及这些个述序列集合经过处理后形成的序列集合中的至少一个;其中,对这些序列集合进行处理包括如下处理之一:对这些序列集合中的每条序列或每条序列的第X个序列元素乘以1、i、-1-i或i的A次方;对下述序列集合中的每条序列或每条序列的第X个序列元素进行W×π的相位调整、W×π的相位旋转或者乘以exp(i×W×π),以及对下述序列集合中的每条序列或每条序列的第X个序列元素乘以指定值;其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数。
本实施例中所涉及的配置信息还可以具有如下特点:
配置信息中为终端配置的第一传输时频资源和第二传输时频资源对应的传输时间或传输时隙TTI或帧号均相同,或至少有一项不同。第一传输时频资源和第二传输时频资源的大小相同或不同。
在本实施例中,配置信息可以为半静态调度SPS信息,基于此,配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输所述传输信号的周期传输数据的指示信息。
第十实施例
本实施例提供了一种数据传输装置,该装置应用于终端一侧,图13是该装置的结构框图,如图所示,该装置130包括如下组成部分:
接收模块131,设置为通过终端接收基站发送的配置信息,配置信息中至少 包括:
传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频的指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息;
生成模块132,设置为根据传输信号生成方法的指示信息生成传输信号;
插入导频模块133,设置为根据解调专用导频的指示信息在传输信号中插入对应的解调专用导频;
映射模块134,设置为根据配置信息将插入解调专用导频的传输信号映射到第一传输时频资源以及第二传输时频资源的时频位置上进行数据传输。
其中,传输信号生成方法的指示信息包括以下至少一个:至少一种编码调制方式的指示信息,在第一传输时频资源上的调制符号的加权因子信息以及在第二传输时频资源上的调制符号的加权因子信息,基于此,生成模块132是设置为:根据编码调制方式的指示信息,编码调制生成在第一传输时频资源上的调制符号和在第二传输时频资源上的调制符号,以及,终端根据加权因子信息,对第一传输时频资源以及第二传输时频资源上的调制符号相应地加权一个加权因子以生成传输信号。
传输时频资源上的解调专用导频的指示信息可以采用以下几种方式配置:
传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。可选地,在第二传输时频资源的解调专用导频的指示信息,包括:指示第二传输时频资源直接复用在第一传输时频资源上的解调专用导频的指示信息,或者,指示通过在第一传输时频资源的解调专用导频的指示信息和第一传输时频资源的指示信息生成第二传输时频资源的解调专用导频的指示信息。
可选地,在第二传输时频资源上传输信号生成方式的指示信息,至少包括:指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息,基于此,生成模块132是设置为:将第一传输时频资源上的调制符号的全部或部分,当作在第二传输时频资源上的调制符号以生成传输信号。
本实施例中加权因子的取值可以取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
在本实施例中可以通过一条序列指定在第二传输时频资源上调制符号的加权因子,或者,通过一条序列指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子,配置信息中包含序列的信息,基于此,生成模块132是设置为:通过配置信息中包含的序列信息确定序列,将 生成的调制符号使用序列进行扩展后形成在第二传输时频资源上传输符号以生成传输信号,或者,形成在第一传输时频资源和第二传输时频资源上的传输符号以生成传输信号。
可选地,序列可以是一个序列集合中的一条序列,配置信息中包含序列在序列集合中的索引,通过配置序列集合中的索引来确定所述序列,并利用所述序列指定在第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。可选地,序列和序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。基于此,生成模块132是设置为:通过配置信息中的索引来确定序列,并利用所述序列将生成的调制符号使用序列进行扩展后形成在第二传输时频资源上传输符号以生成传输信号,或者,形成在第一传输时频资源和第二传输时频资源上的传输符号以生成传输信号。
本实施例中所涉及到的序列集合可以包括上述第一实施例中所列举的十八个序列集合以及这些个述序列集合经过处理后形成的序列集合中的至少一个;其中,对这些序列集合进行处理包括如下处理之一:对这些序列集合中的每条序列或每条序列的第X个序列元素乘以1、i、-1-i,或i的A次方,对下述序列集合中的每条序列或每条序列的第X个序列元素进行W×π的相位调整或W×π的相位旋转,或者乘以exp(i×W×π),以及,对下述序列集合中的每条序列或每条序列的第X个序列元素乘以指定值;其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数。
在本实施例中,配置信息可以为半静态调度SPS信息,基于此,配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息。基于此,生成模块是设置为:根据SPS信息,生成传输信号,在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据。
第十一实施例
本实施例提供了一种数据解调装置,该装置可以设置于基站一侧,图14是该装置140的结构框图,如图14所示,该装置包括如下结构:
接收模块141,设置为接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过数据中的解调专用导频来识别终端;
第一解调模块142,设置为解调第一传输时频资源上的数据;
消去模块143,设置为消去第一传输时频资源上的解调成功的数据,以及消去解调成功的数据对应的第二传输时频资源上的数据;
第二解调模块144,设置为根据配置信息中预设的第一传输时频资源上的符号加权因子和第二传输时频资源上的符号加权因子,或者根据配置信息中预设的第一传输时频资源的符号加权因子的序列以及第二传输时频资源的符号加权因子的序列,对第一传输时频资源以及第二传输时频资源中剩余的未解调数据 进行解调,预设的符号加权因子用于分离不同的终端的发送数据。
可选地,配置信息中包括:第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。可选地,配置信息中指示第二传输时频资源直接复用在第一传输时频资源上的解调专用导频,或者,通过在所述第一传输时频资源上的解调专用导频的指示信息以及所述第一时频资源上的解调专用导频生成所述第二传输时频资源的解调专用导频。可选地,配置信息中还包括指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
可选地,第二传输时频资源对应于至少两个预设终端,第二传输时频资源设置为传输预设终端重复传输的数据,每个预设终端对应一个第一传输时频资源。
在本实施例中所涉及到的配置信息,可以与上述第一实施例中所记载的配置信息相同,故在此不再赘述。
第十二实施例
本实施例提供了一种终端,该终端包括处理器以及存储有处理器可执行指令的存储器,当指令被处理器执行时,执行如下操作:
终端接收基站发送的配置信息,配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频的指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息;
根据在第一上行传输时频资源以及第二上行传输时频资源上传输信号生成方法的指示信息生成传输信号;
根据解调专用导频的指示信息在传输信号中插入对应的解调专用导频;
根据配置信息将插入解调专用导频的传输信号映射到第一传输时频资源以及第二传输时频资源的时频位置上进行数据传输。
可选地,传输信号生成方法的指示信息包括以下至少一个:至少一种编码调制方式的指示信息,在第一传输时频资源上的调制符号的加权因子信息以及在第二传输时频资源上的调制符号的加权因子信息。
传输时频资源上的解调专用导频的指示信息可以采用以下几种方式配置:
传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和第二传输时频资源的解调专用导频。可选地,在第二传输时频资源的解调专用导频的指示信息,包括:指示第二传输时频资源直接复用在第一传输时频资源的解调专用导频的指示信息,或者,指示通过在第一传输时频资源的解调专用导频的指示信息和第一传输时频资源的指示信息生成第二传输时 频资源的解调专用导频的指示信息。
可选地,在第二传输时频资源上传输信号生成方法的指示信息,至少包括:指示在第二传输时频资源上的调制符号是在第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
本实施例中加权因子的取值可以取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
可选地,在本实施例中可以通过一条序列指定在第二传输时频资源上调制符号的加权因子,或者,通过一条序列指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子,配置信息中包含序列的信息。可选地,序列可以是一个序列集合中的一条序列,配置信息中包含序列在序列集合中的索引,通过序列集合中的索引来确定所述序列,并利用所述序列指定在第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。可选地,序列和序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
本实施例中所涉及到的序列集合可以包括上述第一实施例中所列举的十八个序列集合以及这些个述序列集合经过处理后形成的序列集合中的至少一个;其中,对这些序列集合进行处理包括如下处理之一:对这些序列集合中的每条序列或每条序列的第X个序列元素乘以1、i、-1-i或i的A次方,对下述序列集合中的每条序列或每条序列的第X个序列元素进行W×π的相位调整或W×π的相位旋转,或者乘以exp(i×W×π),以及,对下述序列集合中的每条序列或每条序列的第X个序列元素乘以指定值。其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数。
在本实施例中,配置信息可以为半静态调度SPS信息,基于此,配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输数据的指示信息。
第十三实施例
本实施例提供一种计算机程序、存储有该程序或者序列集合的存储介质和基站设备。
其中,该计算机程序用于实现上述数据传输方法,包括:
向终端发送配置信息,其中,配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频的指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息,以使所述终端根据接收的 所述配置信息生成传输信号、在所述传输信号中插入解调专用导频并将插入所述解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
本实施例中所涉及的配置信息可以具有上述第一实施例所记载的任意一种配置信息,由于上述第一实施例中已经对该部分做了详细的阐述,故此不再赘述。
其中,存储介质用于存储上述程序,因此,本实施例不再详细描述存储介质内的程序;而存储介质只要能存储上述程序即可。
前述实施例所公开的数据传输方法的技术方案可以通过在基站设备实施。如图15所示,基站设备150可以包括至少一个(图中仅示出一个)处理器152(处理器152可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器154、以及用于通信功能的数据收发器156。本领域普通技术人员可以理解,图15所示的结构仅为示意,并不对上述基站的结构造成单一限定。例如,基站设备150通过对上述功能的拆分或合并,还可包括比图15中所示更多或者更少的组件,或者具有与图15所示不同的配置。
存储器154可用于存储应用软件的软件程序以及模块,前述实施例中公开的数据传输方法对应的程序指令/模块就可以存储在存储器154,关于数据传输方法在之前的实施例已经详细描述,因此本实施例不再详细重述。
处理器152通过运行存储在存储器154内的软件程序以及模块,从而执行至少一种种功能应用以及数据处理,即实现上述的方法。存储器154可包括高速随机存储器,还可包括非易失性存储器,如至少一个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器154可以包括相对于处理器152远程设置的存储器(云存储器),这些远程存储器可以通过网络连接至移动终端150。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
数据收发器156用于经由一个网络接收或者发送数据。上述的网络实例可包括移动终端150的通信供应商提供的无线网络。在一个实例中,传输装置156包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置156可以为射频(Radio Frequency,简称为RF)模块,用于通过无线方式与互联网进行通讯。
第十四实施例
本实施例提供一种计算机程序、存储有该程序或者序列集合的存储介质和终端。
其中,该程序用于实现上述数据传输方法,包括:
终端接收基站发送的配置信息,配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,和在传输时频资源上的解调专用导频 的指示信息;其中,传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;传输信号生成方法的指示信息,包括:在第一传输时频资源以及第二传输时频资源上传输信号生成方法的指示信息;在传输时频资源上的解调专用导频的指示信息,包括:在第一传输时频资源以及第二传输时频资源上的解调专用导频的指示信息;
本实施例中所涉及的配置信息可以具有上述第一实施例所记载的任意一种配置信息,由于上述第一实施例中已经对该部分做了详细的阐述,故此不再赘述。其中,存储介质用于存储上述程序,因此,本实施例不再详细描述存储介质内的程序;而存储介质只要能存储上述程序即可。
前述实施例所公开的数据传输方法的技术方案可以通过在终端设备实施执行。终端可以为移动终端(手机、平板电脑等具有处理功能的设备),也可以为计算机终端或者类似的装置。本实施例以运行在移动终端上为例进行说明,图16是本实施例的一种终端设备的硬件结构示意图。如图16所示,终端设备160可以包括至少一个(图中仅示出一个)处理器162(处理器162可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器164、以及用于通信功能的数据收发器166。本领域普通技术人员可以理解,图16所示的结构仅为示意,并不对上述基站的结构造成单一限定。例如,基站设备160通过对上述功能的拆分或合并,还可包括比图16中所示更多或者更少的组件,或者具有与图16所示不同的配置。
存储器164可用于存储应用软件的软件程序以及模块,前述实施例中公开的数据传输方法对应的程序指令/模块就可以存储在存储器164,关于数据传输方法在之前的实施例已经描述,因此本实施例不再详细重述。
处理器162通过运行存储在存储器164内的软件程序以及模块,从而执行至少一种种功能应用以及数据处理,即实现上述的方法。存储器164可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器164可以包括相对于处理器162远程设置的存储器(云存储器),这些远程存储器可以通过网络连接至移动终端160。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
数据收发器166用于经由一个网络接收或者发送数据。上述的网络实例可包括移动终端160的通信供应商提供的无线网络。在一个实例中,传输装置166包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置166可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
工业实用性
本公提供了数据传输方法、数据解调方法、装置及终端,可以解决URLLC场景下数据传输的可靠性低和资源开销较大的问题。

Claims (50)

  1. 一种数据传输方法,包括:
    基站向终端发送配置信息,所述配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;
    其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
    所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息。
  2. 根据权利要求1所述的方法,其中,所述传输信号生成方法的指示信息包括以下至少一种:至少一种编码调制方式的指示信息,在所述第一传输时频资源上的调制符号的加权因子信息以及在所述第二传输时频资源上的调制符号的加权因子信息。
  3. 根据权利要求1所述的方法,其中,所述传输时频资源上的解调专用导频的指示信息指示了所述第一传输时频资源的解调专用导频和所述第二传输时频资源的解调专用导频。
  4. 根据权利要求1所述的方法,其中,所述第二传输时频资源上的解调专用导频的指示信息,包括:
    用于指示所述第二传输时频资源直接复用在所述第一传输时频资源上的解调专用导频的指示信息,或者,用于指示通过在所述第一传输时频资源上的解调专用导频的指示信息和所述第一传输时频资源上的指示信息生成所述第二传输时频资源的解调专用导频的指示信息。
  5. 根据权利要求1所述的方法,其中,所述传输时频资源上的解调专用导频的指示信息,还包括:
    用于指示所述第二传输时频资源上的解调专用导频多于所述第一传输时频资源上的解调专用导频的指示信息。
  6. 根据权利要求5所述的方法,其中,所述第二传输时频资源上的解调专用导频是在所述第一传输时频资源上的解调专用导频的至少一倍,在所述传输时频资源上的解调专用导频的指示信息还包括用于指示所述第二传输时频资源的解调专用导频的个数与所述第一传输时频资源的个数之间的倍数的指示信息。
  7. 根据权利要求2所述的方法,其中,所述第二传输时频资源上传输信号生成方法的指示信息,至少包括:
    用于指示在所述第二传输时频资源上的调制符号是在所述第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
  8. 根据权利要求2所述的方法,其中,所述加权因子的取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  9. 根据权利要求2所述的方法,其中,所述配置信息还包括一序列的信息;
    所述序列用于指定:在所述第二传输时频资源上的调制符号的加权因子,或者,在所述第一传输时频资源上的调制符号的加权因子和第二传输时频资源上的调制符号的加权因子。
  10. 根据权利要求9所述的方法,其中,所述序列是一个序列集合中的一条序列,所述配置信息还包括所述序列在所述序列集合中的索引,所述方法还包括:
    通过所述序列在所述序列集合中的索引来确定所述序列,并利用所述序列指定在所述第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。
  11. 根据权利要求10所述的方法,其中,所述序列和所述序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  12. 根据权利要求10所述的方法,其中,所述序列集合包括下述序列集合1至序列集合18以及由下述序列集合1至序列集合18经过处理后形成的序列集合中的至少一个;
    其中,对下述序列集合1至序列集合18进行处理包括如下处理之一:
    对下述序列集合1至序列集合18中的每条序列或每条序列的第X个序列元素乘以1、i、-1、-i或i的A次方,
    对下述序列集合1至序列集合18中的每条序列或每条序列的第X个序列元素进行W×π的相位调整、W×π的相位旋转或者乘以exp(i×W×π),以及
    对下述序列集合1至序列集合18中的每条序列或每条序列的第X个序列元素乘以指定值,
    其中,i为虚数单位,i=sqrt(-1),X为大于等于1且小于等于序列长度的整数,A为整数,W为实数;
    其中,序列集合1至序列集合18包括:
    序列集合1,包含4条长度为1的序列:[1]、[-1]、[i]和[-i];
    序列集合2,包含4条长度为2的序列:[1,1]、[1,-1]、[1,i]和[1,-i];
    序列集合3,包含16条长度为3的序列:[1,1,1]、[1,-1,-1]、[-1,1,-1]、[-1,-1,1]、[1,i,-i]、[1,-i,i]、[-1,i,i]、[-1,-i,-i]、[i,1,-i]、[i,-1,i]、[-i,1,i]、[-i,-1,-i]、[i,i,-1]、[i,-i,1]、[-i,i,1]和[-i,-i,-1];
    序列集合4,包含16条长度为3的序列:[1,1,-1]、[1,-1,1]、[-1,1,1]、[-1,-1,-1]、[1,i,i]、[1,-i,-i]、[-1,i,-i]、[-1,-i,i]、[i,1,i]、[i,-1,-i]、[-i,1,-i]、[-i,-1,i]、[i,i,1]、[i,-i,-1]、[-i,i,-1]和[-i,-i,1];
    序列集合5,包含16条长度为3的序列:[1,1,i]、[1,-1,-i]、[-1,1,-i]、[-1,-1,i]、[1,i,1]、[1,-i,-1]、[-1,i,-1]、[-1,-i,1]、[i,1,1]、[i,-1,-1]、[-i,1,-1]、[-i,-1,1]、[i,i,-i]、[i,-i,i]、[-i,i,i]和[-i,-i,-i];
    序列集合6,包含16条长度为3的序列:[1,1,-i]、[1,-1,i]、[-1,1, i]、[-1,-1,-i]、[1,i,-1]、[1,-i,1]、[-1,i,1]、[-1,-i,-1]、[i,1,-1]、[i,-1,1]、[-i,1,1]、[-i,-1,-1]、[i,i,i]、[i,-i,-i]、[-i,i,-i]和[-i,-i,i];
    序列集合7,包含32条长度为3的序列:[1,1,1]、[i,-1,-i]、[-1,1,-1]、[-i,-1,i]、[1,i,-i]、[i,-i,-1]、[-1,i,i]、[-i,-i,1]、[i,1,-i]、[-1,-1,-1]、[-i,1,i]、[1,-1,1]、[i,i,-1]、[-1,-i,i]、[-i,i,1]、[1,-i,-i],第十七序列为[1,1,-1]、[i,-1,i]、[-1,1,1]、[-i,-1,-i]、[1,i,i]、[i,-i,1]、[-1,i,-i]、[-i,-i,-1]、[i,1,i]、[-1,-1,1]、[-i,1,-i]、[1,-1,-1]、[i,i,1]、[-1,-i,-i]、[-i,i,-1]和[1,-i,i];
    序列集合8,包含32条长度为3的序列:[1,1,i]、[i,-1,1]、[-1,1,-i]、[-i,-1,-1]、[1,i,1]、[i,-i,-i]、[-1,i,-1]、[-i,-i,i]、[i,1,1]、[-1,-1,-i]、[-i,1,-1]、[1,-1,i]、[i,i,-i]、[-1,-i,-1]、[-i,i,i]、[1,-i,1]、[1,1,-i]、[i,-1,-1]、[-1,1,i]、[-i,-1,1]、[1,i,-1]、[i,-i,i]、[-1,i,1]、[-i,-i,-i]、[i,1,-1]、[-1,-1,i]、[-i,1,1]、[1,-1,-i]、[i,i,i]、[-1,-i,1]、[-i,i,-i]和[1,-i,-1];
    序列集合9,包含16条长度为4的序列:[1,1,1,1]、[1,1,-1,-1]、[1,-1,1,-1]、[1,-1,-1,1]、[1,1,i,-i]、[1,1,-i,i]、[1,-1,i,i]、[1,-1,-i,-i]、[1,i,1,-i]、[1,i,-1,i]、[1,-i,1,i]、[1,-i,-1,-i]、[1,i,i,-1]、[1,i,-i,1]、[1,-i,i,1]和[1,-i,-i,-1];
    序列集合10,包含16条长度为4的序列:[1,1,1,-1]、[1,1,-1,1]、[1,-1,1,1]、[1,-1,-1,-1]、[1,1,i,i]、[1,1,-i,-i]、[1,-1,i,-i]、[1,-1,-i,i]、[1,i,1,i]、[1,i,-1,-i]、[1,-i,1,-i]、[1,-i,-1,i]、[1,i,i,1]、[1,i,-i,-1]、[1,-i,i,-1]和[1,-i,-i,1];
    序列集合11,包含16条长度为4的序列:[1,1,1,i]、[1,1,-1,-i]、[1,-1,1,-i]、[1,-1,-1,i]、[1,1,i,1]、[1,1,-i,-1]、[1,-1,i,-1]、[1,-1,-i,1]、[1,i,1,1]、[1,i,-1,-1]、[1,-i,1,-1]、[1,-i,-1,1]、[1,i,i,-i]、[1,i,-i,i]、[1,-i,i,i]和[1,-i,-i,-i];
    序列集合12,包含16条长度为4的序列:[1,1,1,-i]、[1,1,-1,i]、[1,-1,1,i]、[1,-1,-1,-i]、[1,1,i,-1]、[1,1,-i,1]、[1,-1,i,1]、[1,-1,-i,-1]、[1,i,1,-1]、[1,i,-1,1]、[1,-i,1,1]、[1,-i,-1,-1]、[1,i,i,i]、[1,i,-i,-i]、[1,-i,i,-i]和[1,-i,-i,i];
    序列集合13,包含32条长度为4的序列:[1,1,1,1]、[1,i,-1,-i]、[1,-1,1,-1]、[1,-i,-1,i]、[1,1,i,-i]、[1,i,-i,-1]、[1,-1,i,i]、[1,-i,-i,1]、[1,i,1,-i]、[1,-1,-1,-1]、[1,-i,1,i]、[1,1,-1,1]、[1,i,i,-1]、[1,-1,-i,i]、[1,-i,i,1]、[1,1,-i,-i]、[1,1,1,-1]、[1,i,-1,i]、[1,-1,1,1]、[1,-i,-1,-i]、[1,1,i,i]、[1,i,-i,1]、[1,-1,i,-i]、[1,-i,-i,-1]、[1,i,1,i]、[1,-1,-1,1]、[1,-i,1,-i]、[1,1,-1,-1]、[1,i,i,1]、[1,-1,-i,-i]、[1,-i,i,-1]和[1,1,-i,i];
    序列集合14,包含32条长度为4的序列:[1,1,1,i]、[1,i,-1,1]、[1,-1,1,-i]、[1,-i,-1,-1]、[1,1,i,1]、[1,i,-i,-i]、[1,-1,i,-1]、[1,-i,-i,i]、[1,i,1,1]、[1,-1,-1,-i]、[1,-i,1,-1]、[1,1,-1,i]、[1,i,i,-i]、[1,-1,-i,-1]、[1,-i,i,i]、[1,1,-i,1]、[1,1,1,-i]、[1,i,-1,-1]、[1,-1,1,i]、[1,-i,-1,1]、[1,1,i,-1]、[1,i,-i,i]、[1,-1,i,1]、[1,-i,-i,-i]、[1,i,1,-1]、[1,-1,-1,i]、[1,-i,1,1]、[1,1,-1,-i]、[1,i,i,i]、[1,-1,-i,1]、[1,-i,i,-i]和[1,1,-i,-1];
    序列集合15,包含16条长度为5的序列:[1,1,1,1,1]、[1,1,1,-1,-1]、[1,1,-1,1,-1]、[1,1,-1,-1,1]、[1,-1,1,1,-1]、[1,-1,1,-1,1]、[1,-1,-1,1,1]、[1,-1,-1,-1,-1]、[-1,1,1,1,-1]、[-1,1,1,-1,1]、[-1,1,-1,1,1]、[-1,1,-1,-1,-1]、[-1,-1,1,1,1]、[-1,-1,1,-1,-1]、[-1,-1,-1,1,-1]和[-1,-1,-1,-1,1];
    序列集合16,包含16条长度为6的序列:[1,0,1,0,1,0]、[-1,0,1,0,-1,0]、[1,0,-1,0,-1,0]、[-1,0,-1,0,1,0]、[1,0,0,1,0,1]、[-1,0,0,1,0,-1]、[1,0,0,-1,0,-1]、[-1,0,0,-1,0,1]、[0,1,1,0,0,1]、[0,-1,1,0,0,-1]、[0,1,-1,0,0,-1]、[0,-1,-1,0,0,1]、[0,1,0,1,1,0]、[0,-1,0,1,-1,0]、[0,1,0,-1,-1,0]和[0,-1,0,-1,1,0];
    序列集合17,包含16条长度为6的序列:[1,1,1,0,0,0]、[-1,1,-1,0,0,0]、[1,-1,-1,0,0,0]、[-1,-1,1,0,0,0]、[0,0,1,1,1,0]、[0,0,-1,-1,1,0]、[0,0,-1,1,-1,0]、[0,0,1,-1,-1,0]、[1,0,0,0,1,1]、[-1,0,0,0,1,-1]、[1,0,0,0,-1,-1]、[-1,0,0,0,-1,1]、[0,1,0,1,0,1]、[0,1,0,-1,0,-1]、[0,-1,0,1,0,-1]和[0,-1,0,-1,0,1];
    序列集合18,包含16条长度为6的序列:[1,1,1,1,1,1]、[1,1,1,1,-1,-1]、[1,1,1,-1,1,-1]、[1,1,1,-1,-1,1]、[1,1,-1,1,1,-1]、[1,1,-1,1,-1,1]、[1,1,-1,-1,1,1]、[1,1,-1,-1,-1,-1]、[1,-1,1,1,1,-1]、[1,-1,1,1,-1,1]、[1,-1,1,-1,1,1]、[1,-1,1,-1,-1,-1]、[1,-1,-1,1,1,1]、[1,-1,-1,1,-1,-1]、[1,-1,-1,-1,1,-1]和[1,-1,-1,-1,-1,1]。
  13. 根据权利要求1所述的方法,其中,所述第一传输时频资源对应的传输时间和所述第二传输时频资源对应的传输时间相同、所述第一传输时频资源对应的传输时隙和所述第二传输时频资源对应的传输时隙相同以及所述第一传输时频资源对应的帧号与所述第二传输时频资源对应的帧号相同。
  14. 根据权利要求1所述的方法,其中,所述第一传输时频资源对应的传输时间和所述第二传输时频资源对应的传输时间不同,或所述第一传输时频资源对应的传输时隙和所述第二传输时频资源对应的传输时隙不同,或所述第一传输时频资源对应的帧号和所述第二传输时频资源对应的帧号不同。
  15. 根据权利要求1所述的方法,其中,所述第一传输时频资源和所述第二传输时频资源的大小相同。
  16. 根据权利要求1所述的方法,其中,所述第一传输时频资源和所述第二传输时频资源的大小不同。
  17. 根据权利要求1所述的方法,其中,所述配置信息为半静态调度SPS信息,所述配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息。
  18. 一种数据传输方法,包括:
    终端接收基站发送的配置信息,所述配置信息中至少包括:传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;
    其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
    所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
    在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
    根据所述传输信号生成方法的指示信息生成传输信号;
    根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
    根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
  19. 根据权利要求18所述的方法,其中,所述传输信号生成方法的指示信息包括以下至少一个:至少一种编码调制方式的指示信息,在所述第一传输时频资源上的调制符号的加权因子信息以及在所述第二传输时频资源上的调制符号的加权因子信息;
    所述根据所述传输信号生成方法的指示信息生成传输信号,包括以下至少一种:
    根据所述编码调制方式的指示信息,编码调制生成在所述第一传输时频资源上的调制符号和在所述第二传输时频资源上的调制符号,以及,
    所述终端根据所述加权因子信息,对第一传输时频资源上的调制符号和第二传输时频资源上的调制符号中的至少一个加权相应的加权因子以生成传输信号。
  20. 根据权利要求18所述的方法,其中,所述传输时频资源上的解调专用导频的指示信息指示了第一传输时频资源的解调专用导频和所述第二传输时频资源的解调专用导频。
  21. 根据权利要求18所述的方法,其中,所述第二传输时频资源上的解调专用导频的指示信息,包括:
    用于指示所述第二传输时频资源直接复用在所述第一传输时频资源上的解 调专用导频的指示信息,或者,用于指示通过所述第一传输时频资源上的解调专用导频的指示信息生成所述第二传输时频资源上的解调专用导频的指示信息。
  22. 根据权利要求18所述的方法,其中,所述传输时频资源上的解调专用导频的指示信息,还包括:
    用于指示所述第二传输时频资源上的解调专用导频多于所述第一传输时频资源上的解调专用导频的指示信息。
  23. 根据权利要求22所述的方法,其中,所述第二传输时频资源上的解调专用导频是所述第一传输时频资源上的解调专用导频的至少一倍,所述传输时频资源上的解调专用导频的指示信息还包括用于指示所述第二传输时频资源的解调专用导频的个数与所述第一传输时频资源的个数之间的倍数的指示信息。
  24. 根据权利要求19所述的方法,其中,在所述第二传输时频资源上传输信号生成方法的指示信息,至少包括:
    用于指示在所述第二传输时频资源上的调制符号,是在所述第一传输时频资源上的调制符号的全部重复或部分重复的指示信息;
    所述根据所述传输信号生成方法的指示信息生成传输信号,包括:
    将所述第一传输时频资源上的调制符号的全部或部分,当作在所述第二传输时频资源上的调制符号以生成传输信号。
  25. 根据权利要求19所述的方法,其中,所述加权因子的取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  26. 根据权利要求19所述的方法,其中,所述配置信息还包括一序列的信息;
    所述序列用于指定:在所述第二传输时频资源上的调制符号的加权因子,或者,在所述第一传输时频资源上的调制符号的加权因子和第二传输时频资源上的调制符号的加权因子;
    所述根据所述传输信号生成方法的指示信息生成传输信号,包括:
    根据所述配置信息中包括的所述序列的信息确定所述序列,
    将生成的调制符号使用所述序列进行扩展后形成在所述第二传输时频资源上的传输符号以生成传输信号,或者,形成在所述第一传输时频资源和第二传输时频资源上的传输符号以生成传输信号。
  27. 根据权利要求26所述的方法,其中,所述序列是一个序列集合中的一条序列,所述配置信息中还包括所述序列在所述序列集合中的索引,所述方法还包括:
    通过所述序列在所述序列集合中的索引来确定所述序列,并利用所述序列指定所述第二传输时频资源上调制符号的加权因子,或者指定所述第一传输时频资源上调制符号的加权因子和所述第二传输时频资源上调制符号的加权因子;
    所述根据所述传输信号生成方法的指示信息生成传输信号,包括:
    所述终端通过所述配置信息中包括的所述序列在所述序列集合中的索引,从所述终端已知的序列集合中确定所述序列,将生成的调制符号使用所述序列 进行扩展后,形成在所述第二传输时频资源上的传输符号以生成传输信号,或者,形成在所述第一传输时频资源和第二传输时频资源上传输符号以生成传输信号。
  28. 根据权利要求27所述的方法,其中,所述序列和所述序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  29. 根据权利要求28所述的方法,其中,所述配置信息为半静态调度SPS信息,所述配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息;
    所述根据所述传输信号生成方法的指示信息生成传输信号,包括:
    根据所述SPS信息,生成传输信号;
    在所述生成传输信号之后,所述方法还包括:
    在所述预设时间段内以所述预设开始传输时间以及所述预设的传输周期传输所述传输信号的数据。
  30. 一种数据解调方法,包括:
    基站接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过所述数据中的解调专用导频来识别所述终端;
    解调所述第一传输时频资源上的数据;
    消去所述第一传输时频资源上的解调成功的数据,以及消去所述解调成功的数据对应的所述第二传输时频资源上的数据;
    根据配置信息中预设的所述第一传输时频资源上的符号加权因子和所述第二传输时频资源上的符号加权因子,或者根据所述配置信息中预设的所述第一传输时频资源的符号加权因子的序列以及所述第二传输时频资源的符号加权因子的序列,对所述第一传输时频资源以及所述第二传输时频资源中剩余的未解调的数据进行解调,其中,预设的符号加权因子用于分离不同的终端发送的数据。
  31. 根据权利要求30所述的方法,其中,所述配置信息中包括以下指示信息之一:
    所述第一传输时频资源的解调专用导频和所述第二传输时频资源的解调专用导频的指示信息;
    指示所述第二传输时频资源直接复用在所述第一传输时频资源的解调专用导频的指示信息;
    指示通过在所述第一传输时频资源的解调专用导频的指示信息和所述第一传输时频资源的指示信息生成所述第二传输时频资源的解调专用导频的指示信息;
    指示在所述第二传输时频资源上的调制符号是在所述第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
  32. 一种数据传输装置,包括:
    发送模块,设置为通过基站向终端发送配置信息,所述配置信息中至少包 括:
    传输时频资源的指示信息,传输信号生成方法的指示信息,和在所述传输时频资源上的解调专用导频指示信息;
    其中,所述传输时频资源的指示信息,包括:
    第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
    所述传输信号生成方法的指示信息,包括:
    在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
    在所述传输时频资源上的解调专用导频的指示信息,包括:
    在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息。
  33. 根据权利要求32所述的装置,其中,所述传输信号生成方法的指示信息包括以下至少一种:至少一种编码调制方式的指示信息,
    在所述第一传输时频资源上的调制符号的加权因子信息,以及在所述第二传输时频资源上的调制符号的加权因子信息。
  34. 根据权利要求32所述的装置,其中,所述第二传输时频资源上的解调专用导频的指示信息,包括:用于指示所述第二传输时频资源直接复用在所述第一传输时频资源上的解调专用导频的指示信息,或者,用于指示通过所述第一传输时频资源上的解调专用导频的指示信息和所述第一传输时频资源上的指示信息生成所述第二传输时频资源的解调专用导频的指示信息。
  35. 根据权利要求32所述的装置,其中,所述配置信息还包括一序列的信息;所述序列用于指定:在所述第二传输时频资源上调制符号的加权因子,或者,在所述第一传输时频资源上调制符号的加权因子和第二传输时频资源上的调制符号的加权因子。
  36. 根据权利要求32所述的装置,其中,所述配置信息为半静态调度SPS信息,所述配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息。
  37. 一种数据传输装置,包括:
    接收模块,设置为通过终端接收基站发送的配置信息,所述配置信息中至少包括:
    传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
    所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;在所述传输时频资源上的解调专用导频的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
    生成模块,设置为根据所述传输信号生成方法的指示信息生成传输信号;
    插入导频模块,设置为根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
    映射模块,设置为根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
  38. 一种数据解调装置,包括:
    接收模块,设置为接收终端通过第一传输时频资源和第二传输时频资源发送的数据,通过所述数据中的解调专用导频来识别所述终端;
    第一解调模块,设置为解调所述第一传输时频资源上的数据;
    消去模块,设置为消去所述第一传输时频资源上的解调成功的数据,以及消去解调成功的数据对应的所述第二传输时频资源上的数据;
    第二解调模块,设置为根据配置信息中预设的所述第一传输时频资源上的符号加权因子和所述第二传输时频资源上的符号加权因子,或者根据所述配置信息中预设的所述第一传输时频资源的符号加权因子的序列以及所述第二传输时频资源的符号加权因子的序列,对所述第一传输时频资源以及所述第二传输时频资源中剩余的未解调数据进行解调,所述预设的符号加权因子用于分离不同的终端发送的数据。
  39. 根据权利要求38所述的装置,其中,所述配置信息中包括以下指示信息之一:
    所述第一传输时频资源的解调专用导频和所述第二传输时频资源的解调专用导频的指示信息;
    指示所述第二传输时频资源直接复用在所述第一传输时频资源的解调专用导频;
    指示通过在所述第一传输时频资源的解调专用导频的指示信息和所述第一传输时频资源的指示信息生成所述第二传输时频资源的解调专用导频的指示信息;
    指示在所述第二传输时频资源上的调制符号是在所述第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
  40. 一种终端,包括处理器以及存储有所述处理器可执行指令和存储有所述序列集合的存储器,当所述指令被处理器执行时,执行如下操作:
    通过终端接收基站发送的配置信息,所述配置信息中至少包括:
    传输时频资源的指示信息,传输信号生成方法的指示信息,以及在所述传输时频资源上的解调专用导频的指示信息;其中,所述传输时频资源的指示信息,包括:第一传输时频资源的指示信息以及第二传输时频资源的指示信息;
    所述传输信号生成方法的指示信息,包括:在所述第一传输时频资源以及所述第二传输时频资源上传输信号生成方法的指示信息;
    在所述传输时频资源上的解调专用导频的指示信息,包括:所述第一传输时频资源以及所述第二传输时频资源上的解调专用导频的指示信息;
    根据所述传输信号生成方法的指示信息生成传输信号;
    根据所述解调专用导频的指示信息在所述传输信号中插入对应的解调专用导频;
    根据所述配置信息将插入解调专用导频的传输信号映射到所述第一传输时频资源以及所述第二传输时频资源的时频位置上进行数据传输。
  41. 根据权利要求40所述的终端,其中,所述传输信号生成方法的指示信息包括以下至少一个:至少一种编码调制方式的指示信息,
    在所述第一传输时频资源上的调制符号的加权因子信息以及在所述第二传输时频资源上的调制符号的加权因子信息。
  42. 根据权利要求40所述的终端,其中,所述传输时频资源上的解调专用导频的指示信息配置了第一传输时频资源的解调专用导频和所述第二传输时频资源的解调专用导频。
  43. 根据权利要求40所述的终端,其中,所述第二传输时频资源上的解调专用导频的指示信息,包括:
    用于指示所述第二传输时频资源直接复用在所述第一传输时频资源的解调专用导频的指示信息,或者,用于指示通过在所述第一传输时频资源上的解调专用导频的指示信息和所述第一传输时频资源上的指示信息生成所述第二传输时频资源的解调专用导频的指示信息。
  44. 根据权利要求41所述的终端,其中,所述在所述第二传输时频资源上传输信号生成方法的指示信息,至少包括:
    用于指示在所述第二传输时频资源上的调制符号是在所述第一传输时频资源上的调制符号的全部重复或部分重复的指示信息。
  45. 根据权利要求41所述的终端,其中,所述加权因子的取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  46. 根据权利要求41所述的终端,其中,
    所述配置信息还包括一序列的信息;所述序列用于指定:在所述第二传输时频资源上调制符号的加权因子,或者,在所述第一传输时频资源上的调制符号的加权因子和第二传输时频资源上的调制符号的加权因子。
  47. 根据权利要求46所述的终端,其中,所述序列是一个序列集合中的一条序列,所述配置信息中还包括所述序列在所述序列集合中的索引,所述方法还包括:通过所述序列在所述序列集合中的索引来确定所述序列,并利用所述序列指定在所述第二传输时频资源上调制符号的加权因子,或者指定在第一传输时频资源上调制符号的加权因子和第二传输时频资源上调制符号的加权因子。
  48. 根据权利要求47所述的终端,其中,所述序列和所述序列集合里所有序列的元素取值取自集合{1,-1,j,-j}或集合{1,-1,j,-j,0}。
  49. 根据权利要求40所述的终端,其中,所述配置信息为半静态调度SPS信息,所述配置信息中还包括指示终端在预设时间段内以预设开始传输时间以及预设的传输周期传输所述传输信号的数据的指示信息。
  50. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-17、18-29和30-31中任一项的方法。
PCT/CN2017/118964 2016-12-27 2017-12-27 数据传输方法、数据解调方法、装置及终端 WO2018121599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611225229.0A CN108242989B (zh) 2016-12-27 2016-12-27 数据传输方法、数据解调方法、装置及终端
CN201611225229.0 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018121599A1 true WO2018121599A1 (zh) 2018-07-05

Family

ID=62701493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118964 WO2018121599A1 (zh) 2016-12-27 2017-12-27 数据传输方法、数据解调方法、装置及终端

Country Status (2)

Country Link
CN (1) CN108242989B (zh)
WO (1) WO2018121599A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088085A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种资源指示的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627589A (zh) * 2007-03-07 2010-01-13 摩托罗拉公司 用于在多载波通信系统中传输的方法和装置
CN102387507A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 一种多模共传输时传输资源的管理方法和装置
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信系统
CN104168600A (zh) * 2014-08-01 2014-11-26 电信科学技术研究院 一种信号发送方法、测量方法、通信控制方法及装置
CN105101434A (zh) * 2010-01-18 2015-11-25 瑞典爱立信有限公司 无线电基站和用户设备以及其中的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155021A (zh) * 2006-09-30 2008-04-02 华为技术有限公司 移动通信中的同步方法和同步系统
US20100260126A1 (en) * 2009-04-13 2010-10-14 Qualcomm Incorporated Split-cell relay packet routing
CN102111252B (zh) * 2009-12-25 2014-03-19 中兴通讯股份有限公司南京分公司 基于混合自动重传请求的重传资源分配方法
US10448379B2 (en) * 2012-05-04 2019-10-15 Texas Instruments Incorporated Enhanced downlink control channel configuration for LTE
CN105450329B (zh) * 2014-05-30 2019-01-08 华为技术有限公司 并行信道的编码调制方法和装置
CN105490787B (zh) * 2014-09-15 2019-06-14 中兴通讯股份有限公司 下行导频的发送方法、检测方法、装置及基站、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627589A (zh) * 2007-03-07 2010-01-13 摩托罗拉公司 用于在多载波通信系统中传输的方法和装置
CN105101434A (zh) * 2010-01-18 2015-11-25 瑞典爱立信有限公司 无线电基站和用户设备以及其中的方法
CN102387507A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 一种多模共传输时传输资源的管理方法和装置
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信系统
CN104168600A (zh) * 2014-08-01 2014-11-26 电信科学技术研究院 一种信号发送方法、测量方法、通信控制方法及装置

Also Published As

Publication number Publication date
CN108242989B (zh) 2022-07-15
CN108242989A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
EP3413652B1 (en) Method and apparatus for transmitting uplink control information
CN111052658B (zh) 在无线通信系统中发送或接收上行链路控制信道的方法、设备和系统
US8184579B2 (en) ACK/NAK repetition schemes in wireless networks
US8755806B2 (en) Transmission of feedback information on PUSCH in wireless networks
JP4972694B2 (ja) Phich送信資源領域情報の獲得方法及びこれを用いるpdcch受信方法
US8068466B2 (en) Transmission of multiple information elements in multiple channels
CN105471555B (zh) 在无线通信系统中发送参考信号的方法和用户设备
JP2018514972A (ja) アップリンクspucchにおける短縮pucch
US20090067391A1 (en) Separate Rank and CQI Feedback in Wireless Networks
WO2016161801A1 (zh) 上行控制信息发送方法、装置及用户设备
WO2015139429A1 (zh) 控制信息的传输、接收方法、装置及系统
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
WO2016070790A1 (zh) 一种harq确认信息的反馈方法及装置
EP3113561B1 (en) Terminal device, integrated circuit, and wireless communication method
CN103416015A (zh) 针对多分量载波的物理上行链路控制信道资源分配
CN109586882A (zh) 用于在无线通信系统中发射和接收数据信息的方法和设备
WO2016127409A1 (zh) 传输上行控制信息的方法、用户设备和接入网设备
JP6442781B2 (ja) 端末装置
JP2018524951A (ja) アップリンクデータ送信装置および方法、ならびにアップリンクデータ受信装置および方法
CN106685614B (zh) 一种指示信息的传输方法和设备
WO2015106371A1 (zh) 发送和接收系统信息的方法和装置
CN109803393B (zh) 信息发送方法及装置
US11979878B2 (en) Method and apparatus for transmitting and receiving broadcast signal in communication system
CN107046718B (zh) 配置缩短的pucch的方法和装置
WO2015021941A1 (zh) 一种确认信息的传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886574

Country of ref document: EP

Kind code of ref document: A1