WO2016161801A1 - 上行控制信息发送方法、装置及用户设备 - Google Patents

上行控制信息发送方法、装置及用户设备 Download PDF

Info

Publication number
WO2016161801A1
WO2016161801A1 PCT/CN2015/093428 CN2015093428W WO2016161801A1 WO 2016161801 A1 WO2016161801 A1 WO 2016161801A1 CN 2015093428 W CN2015093428 W CN 2015093428W WO 2016161801 A1 WO2016161801 A1 WO 2016161801A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control information
harq
ack
bits
Prior art date
Application number
PCT/CN2015/093428
Other languages
English (en)
French (fr)
Inventor
梁春丽
戴博
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016161801A1 publication Critical patent/WO2016161801A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a user equipment for transmitting uplink control information.
  • the uplink channel of the terminal includes a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH). Physical Ramdom Acess Channel (PRACH).
  • the PUSCH can transmit data information, a scheduling request (Scheduling Request, abbreviated as SR), a hybrid automatic repeat request ACKnowledgement (HARQ-ACK), and a channel state information (Channel State Information, referred to as CSI), SR, HARQ-ACK and CSI can be transmitted in the PUCCH.
  • SR scheduling request
  • HARQ-ACK hybrid automatic repeat request ACKnowledgement
  • CSI Channel State Information
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • a carrier to be aggregated is called a component carrier (CC), which is also called a serving cell.
  • CC component carrier
  • PCC/PCell primary component carrier/cell
  • SCC/SCell secondary component carrier/cell
  • the system includes at least one primary serving cell and a secondary serving cell, wherein the primary serving cell is always in an active state.
  • the uplink control information includes an SR, a HARQ-ACK, and a periodic CSI.
  • the foregoing control information can only be sent on the PUCCH of the PCell.
  • the protocol defines multiple PUCCH formats to accommodate different uplink control information in different scenarios.
  • the various PUCCH formats include:
  • PUCCH format 1 bears the SR
  • PUCCH format 1a/1b bears 1/2 bit HARQ-ACK or 1/2 bit HARQ-ACK and SR
  • PUCCH format 2a/2b carrying 1/2 bit HARQ-ACK and periodic CSI
  • PUCCH format 2 bearer period CSI or bearer period CSI and HARQ-ACK;
  • PUCCH format 3 bears HARQ-ACK, or carries HARQ-ACK and SR, or carries HARQ-ACK and CSI, or carries HARQ-ACK, SR, and CSI.
  • the PUCCH format 3 itself can carry up to 22 bits, and the existing protocol stipulates that it can carry up to 20 bits of HARQ-ACK, or 20 bits of HARQ-ACK and 1 bit of SR, or 10 bits of HARQ and 11 bits.
  • CSI and 1-bit SR are the existing protocol stipulates that it can carry up to 20 bits of HARQ-ACK, or 20 bits of HARQ-ACK and 1 bit of SR, or 10 bits of HARQ and 11 bits.
  • the numbers 1, 2, etc. in the PUCCH format 1, PUCCH format 2, etc. are used to distinguish different channel formats, where the channel format refers to the position of the reference signal, and the channelization process, and the letters a and b respectively indicate binary phase shift keying (BPSK) modulation and quaternary phase shift keying (QPSK) modulation.
  • BPSK binary phase shift keying
  • QPSK quaternary phase shift keying
  • the carrier aggregation technology supporting up to 32 serving cells results in the number of HARQ-ACK bits that need to be transmitted far exceeds 10/20 bits, and the existing PUCCH format 3 cannot be carried.
  • the present invention provides a method, an apparatus, and a user equipment for transmitting uplink control information.
  • a method for transmitting uplink control information including: pre-processing uplink control information; and transmitting the uplink control information on a physical uplink control channel that carries the uplink control information.
  • the pre-processing includes at least one of the following: source bit division, channel coding, concatenation, and resource mapping.
  • the channel coder for channel coding comprises: P block codes, where P is an integer greater than two.
  • the channel coding further includes: determining a value of P according to a maximum number of bits of the uplink control information that the system needs to feed back; or determining a value of P according to the number of bits of the uplink control information that the terminal needs to feed back.
  • determining the value of P according to the maximum number of bits of the uplink control information that the system needs to feed includes: according to a Time Division Duplexing (TDD) system and a Frequency Division Duplexing (Frequency Division Duplexing, respectively) FDD)
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the uplink control information includes one of: HARQ-ACK; CSI; HARQ-ACK and CSI; HARQ-ACK and SR; HARQ-ACK, CSI, and SR.
  • the value of P includes one of the following: 3, 4, 6, 8, 9, 10, 12.
  • the pre-processing further includes: time domain expansion, or time domain repetition.
  • the source bit segmentation comprises: determining a letter according to the number of channel encoders used for channel coding and the number of bits of uplink control information currently required to be fed back. The number of source bit splits.
  • the channel coder for channel coding comprises: Q block codes and 1 tail-biting convolutional code, where Q is an integer greater than or equal to 1.
  • the channel coding includes: performing, by using the Q block codes, the HARQ-ACK, Alternatively, the HARQ-ACK and the SR perform channel coding; the CSI is channel coded by the tail biting convolutional code.
  • the channel coding further includes: determining a value of Q according to a number of bits of the HARQ-ACK in the uplink control information.
  • the cascading is one of the following manners: a sequential cascading, or an interleaving cascading.
  • the resource mapping is one of the following modes: Orthogonal Frequency Division Multiplexing (OFDM) according to frequency domain subcarriers and time domain orthogonal frequency division multiplexing (OFDM)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the sequence of the symbol and the time slot is mapped to the resource block unit that carries the uplink control information; and is mapped to the resource block unit that carries the uplink control information according to the frequency domain subcarrier, the time slot, and the time domain OFDM symbol; according to the time domain OFDM symbol
  • the sequence of the time slot and the frequency domain subcarrier is mapped to the resource block unit that carries the uplink control information; and is mapped to the resource block unit that carries the uplink control information according to the sequence of the time slot, the time domain OFDM symbol, and the frequency domain subcarrier.
  • the physical uplink control channel includes N physical resource blocks in the frequency domain, and one subframe is occupied in the time domain, and the two frequency slots of the one subframe occupy different frequency domain resources, where , N is a positive integer.
  • the physical uplink control channel includes, in a frequency domain, an OFDM symbol for carrying uplink control information, and an OFDM symbol for carrying a reference signal, where the number of OFDM symbols used for carrying the reference signal is K. , K has a value of 1 or 2.
  • the OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, or at the OFDM symbol positions of the 1st and 5th.
  • the OFDM symbol used to carry the uplink control information is located at other OFDM symbol locations than the OFDM symbol used to carry the reference signal, where the OFDM symbols of each slot are numbered starting from number 0;
  • the OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, and the OFDM symbol for carrying the uplink control information is located in addition to the reference signal for carrying the reference signal.
  • the channel coding further includes: according to the number of OFDM symbols used to carry uplink control information in the physical uplink control channel, and a block code in the block encoder.
  • the number of outputs determines the number of output bits for each of the block encoders used for channel coding.
  • the uplink control information includes: HARQ-ACK, or HARQ-ACK and CSI, or HARQ-ACK, SR, and CSI, on a physical uplink control channel that carries the uplink control information.
  • the sending the uplink control information includes: sending, by using the uplink control information, the uplink control information on the physical uplink control channel, where the total number of bits of the uplink control information does not exceed a first preset value; After the total number of bits exceeds the first preset value, after spatially binding the HARQ-ACK, the total number of bits of the uplink control information that is spatially bound is calculated; the total number of bits does not exceed
  • the spatially bound HARQ-ACK is transmitted on the physical uplink control channel, or the spatially bound HARQ-ACK and other uplink control information are sent; otherwise, in the The spatially bound HARQ-ACK is transmitted on the physical uplink control channel, or the spatially bound HARQ-ACK and SR are subjected
  • sending the uplink control information on the physical uplink control channel that carries the uplink control information includes: the total number of bits in the CSI does not exceed the second pre- If the value is set, the CSI is sent on the physical uplink control channel; if the total number of bits of the CSI exceeds the second preset value, the priority is low according to the preset priority principle.
  • the transmit power of the physical uplink control channel is determined according to at least one of the following parameters: P CMAX,c (i ), ⁇ F_PUCCH (F), ⁇ TxD (F'), h (n CQI , n HARQ , n SR ), P O_PUCCH , g(i); wherein P CMAX,c (i) are configured for the terminal Transmit power on subframe i of serving cell c; ⁇ F_PUCCH (F) is a configuration value corresponding to the adopted PUCCH format configured by the higher layer to the terminal; ⁇ TxD (F') is a high layer configuration for transmitting PUCCH using two antennas The configuration value of the terminal corresponding to the adopted PUCCH format; h(n CQI , n HARQ , n SR ) is the amount related to the number of input uplink control
  • an apparatus for transmitting uplink control information including: a pre-processing module configured to perform pre-processing on uplink control information; and a sending module configured to carry the uplink control information
  • the uplink control information is sent on a physical uplink control channel.
  • the pre-processing module includes at least one of the following: a source bit division unit, a channel coding unit, a cascading unit, and a resource mapping unit.
  • the channel coding unit includes: P block codes, where P is an integer greater than 2.
  • the channel coding unit further includes: a first determining subunit, configured to determine a value of P according to a maximum number of bits of the uplink control information that the system needs to feed back; or a second determining subunit, configured to be based on the current terminal The number of bits of the uplink control information that needs to be fed back determines the value of P.
  • the first determining subunit is configured to: determine a value of P according to a maximum number of bits of the HARQ-ACK that the TDD system and the FDD system need to feed back; or a maximum bit of the HARQ-ACK that is required to be fed back according to the TDD system. The number determines the value of P.
  • the uplink control information includes one of: HARQ-ACK; CSI; HARQ-ACK and CSI; HARQ-ACK and SR; HARQ-ACK, CSI, and SR.
  • the value of P includes one of the following: 3, 4, 6, 8, 9, 10, 12.
  • the pre-processing module further includes: a time domain extension unit, or a time domain repetition unit.
  • the source bit division unit includes: a third determining subunit, configured to determine the number of source bit partitions according to the number of channel encoders used for channel coding and the number of bits of uplink control information currently required to be fed back .
  • the channel coding unit includes: Q block codes and one tail biting convolution code, where Q is an integer greater than or equal to 1.
  • the Q block codes are used to perform channel coding on the HARQ-ACK, or the HARQ-ACK and the SR, and the tail biting convolutional code is used to perform channel coding on the CSI.
  • the channel coding unit further includes: a fourth determining subunit, configured to determine a value of Q according to the number of bits of the HARQ-ACK in the uplink control information.
  • the cascading unit includes: a sequential cascading subunit, or an interleaved cascading subunit.
  • the resource mapping unit includes one of the following: a first resource mapping subunit, configured to map to a resource block unit that carries uplink control information according to a frequency domain subcarrier, a time domain OFDM symbol, and a time slot;
  • the second resource mapping subunit is configured to map to a resource block unit that carries uplink control information according to an order of frequency domain subcarriers, time slots, and time domain OFDM symbols;
  • the third resource mapping subunit is set to use time domain OFDM symbols
  • the sequence of the time slot and the frequency domain subcarrier is mapped to the resource block unit that carries the uplink control information
  • the fourth resource mapping subunit is set to be mapped to the bearer according to the sequence of the time slot, the time domain OFDM symbol, and the frequency domain subcarrier.
  • a resource block unit of uplink control information configured to map to a resource block unit that carries uplink control information according to a frequency domain subcarrier, a time domain OFDM symbol, and a time slot.
  • the physical uplink control channel includes N physical resource blocks in the frequency domain, and one subframe is occupied in the time domain, and the positions of the frequency domain resources occupied by the two time slots of the one subframe are different, Is a positive integer.
  • the physical uplink control channel includes, in a frequency domain, an OFDM symbol for carrying uplink control information, and an OFDM symbol for carrying a reference signal, where the number of OFDM symbols used for carrying the reference signal is K. , K has a value of 1 or 2.
  • the OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, or at the OFDM symbol positions of the 1st and 5th.
  • the OFDM symbol used to carry the uplink control information is located at other OFDM symbol locations than the OFDM symbol used to carry the reference signal, where the OFDM symbols of each slot are numbered starting from number 0;
  • the OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, and the OFDM symbol for carrying the uplink control information is located in addition to the reference signal for carrying the reference signal.
  • the channel coding unit further includes: a fifth determining subunit, configured to be according to the physical uplink control signal The number of OFDM symbols used to carry the uplink control information in the track and the number of block codes in the block encoder determine the number of output bits of each of the block encoders used for channel coding.
  • the sending module includes: a first sending unit, configured to include, in the uplink control information, a HARQ-ACK, or a HARQ-ACK and a CSI, or a HARQ-ACK, an SR, and a CSI, and the uplink If the total number of bits of the control information does not exceed the first preset value, the uplink control information is sent on the physical uplink control channel; and the second sending unit is configured to include the HARQ-ACK in the uplink control information.
  • HARQ-ACK and CSI or HARQ-ACK, SR, and CSI
  • the total number of bits of the uplink control information exceeds a first preset value
  • after spatially binding the HARQ-ACK Recalculating the total number of bits of the uplink control information that is spatially bound; and transmitting the spatially bound HARQ on the physical uplink control channel if the total number of bits does not exceed the first preset value - ACK, or spatially bound HARQ-ACK and other uplink control information; otherwise, spatially bound HARQ-ACK is transmitted on the physical uplink control channel, or spatially bound HARQ-ACK and SR, and knock out CSI.
  • the sending module includes: a third sending unit, configured to: when the uplink control information is CSI, and the total number of bits of the CSI does not exceed a second preset value, in the physical uplink
  • the CSI is sent on the control channel
  • the fourth sending unit is configured to set the CSI according to the preset priority when the uplink control information is CSI and the total number of bits of the CSI exceeds the second preset value.
  • the CSI of the lower priority serving cell is cancelled until the total number of bits of the CSI of the remaining serving cell does not exceed the second preset value, and the CSI that has been erased is transmitted on the physical uplink control channel.
  • the sending module further includes: a power control unit, configured to determine, according to at least one of the following parameters, a transmit power of the physical uplink control channel: P CMAX,c (i), ⁇ F_PUCCH (F), ⁇ TxD (F'), h(n CQI , n HARQ , n SR ), P O_PUCCH , g(i); wherein P CMAX,c (i) is the transmission to the terminal i on the subframe i of the serving cell c Power; ⁇ F_PUCCH (F) is a configuration value corresponding to the adopted PUCCH format configured by the higher layer to the terminal; ⁇ TxD (F') is a higher layer configuration for the terminal transmitting the PUCCH using the two antennas, corresponding to the adopted PUCCH configuration values format; h (n CQI, n HARQ , n SR) in an amount of information bits of the uplink input from the control-related; P O_PUCCH
  • a user equipment comprising: an uplink control information transmitting apparatus as described above.
  • the uplink control information is pre-processed, and the uplink control information is sent on the physical uplink control channel that carries the uplink control information, and the uplink control information of the PUCCH format bearer in the related art is solved.
  • the problem of a small number of bits increases the number of bits of uplink control information that can be carried by the physical uplink control channel.
  • FIG. 1 is a schematic diagram showing a time-frequency structure of a PUCCH format 1/1a/1b according to the related art
  • FIG. 2 is a schematic diagram of a time-frequency structure of a PUCCH format 2 according to the related art
  • FIG. 3 is a schematic diagram showing a time-frequency structure of a PUCCH format 3 according to the related art
  • FIG. 4 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram 1 of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 7 is a second schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 8 is a third schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 9 is a fourth schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 5 of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram 6 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram 7 of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram 8 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram IX of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • 15 is a schematic diagram 10 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram 11 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram 12 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a pre-processing procedure of uplink control information according to an alternative embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a physical uplink control channel according to an alternative embodiment of the present invention.
  • 20 is a schematic diagram of a basic sequence of a (32, O) block code supported by an LTE system according to the related art
  • FIG. 22 is a schematic structural diagram of a source bit splitter according to an alternative embodiment of the present invention.
  • FIG. 23 is another schematic structural diagram of a source bit splitter according to an alternative embodiment of the present invention.
  • 24 is a schematic diagram of sequential cascading in accordance with an alternative embodiment of the present invention.
  • 25 is a schematic diagram of an interleaving cascade in accordance with an alternative embodiment of the present invention.
  • 26 is a schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • FIG. 28 is another schematic diagram of a physical uplink control channel in accordance with an alternative embodiment of the present invention.
  • 29 is another schematic diagram of a physical uplink control channel in accordance with an alternative embodiment of the present invention.
  • Figure 34 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • FIG. 40 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • Figure 46 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • 49 is another schematic structural diagram of a channel encoder according to an alternative embodiment of the present invention.
  • Figure 50 is a schematic illustration of an interleaving cascade in accordance with an alternative embodiment of the present invention.
  • Figure 51 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • FIG. 52 is another schematic structural diagram of a channel encoder according to an alternative embodiment of the present invention.
  • FIG. 53 is a schematic diagram of an interleaving cascade in accordance with an alternative embodiment of the present invention.
  • Figure 54 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • FIG. 55 is another schematic structural diagram of a channel encoder according to an alternative embodiment of the present invention.
  • Figure 56 is a schematic illustration of an interleaving cascade in accordance with an alternative embodiment of the present invention.
  • 57 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • 58 is another schematic structural diagram of a channel encoder according to an alternative embodiment of the present invention.
  • Figure 59 is a schematic illustration of an interleaving cascade in accordance with an alternate embodiment of the present invention.
  • Figure 60 is another schematic diagram of resource mapping in accordance with an alternate embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 Perform pre-processing on the uplink control information.
  • Step S404 transmitting uplink control information on a physical uplink control channel carrying uplink control information.
  • the uplink control information is pre-processed, for example, after pre-processing of the source source bit division, channel coding, cascading, resource mapping, etc., so that the uplink control information can be evenly distributed throughout In the uplink physical control channel, the problem that the number of bits of the uplink control information carried by the PUCCH format in the related art is small is solved, thereby improving the number of bits of the uplink control information that can be carried by the physical uplink control channel.
  • the pre-processing in step S402 includes at least one of the following: source bit segmentation, channel coding, concatenation, resource mapping.
  • source bit segmentation By preprocessing the source bit division, channel coding, etc., the physical uplink control channel can be further loaded. Multi-bit uplink control information.
  • the channel coder for channel coding includes: P block codes, where P is an integer greater than 2.
  • P is an integer greater than 2.
  • the value of P can be a preset value, for example: 3, 4, 6, 8, 9, 10, 12. Of course, it is not limited to adopting other preset values.
  • the embodiment of the present invention provides two methods, including: determining the maximum number of bits of the uplink control information that is fed back according to the system requirements. The value of P is determined; or the value of P is determined according to the number of bits of the uplink control information that the terminal currently needs to feed back.
  • determining, according to the maximum number of bits of the uplink control information that is required to be fed back by the system, determining the value of P determining, according to the maximum number of bits of the HARQ-ACK that the TDD system and the FDD system need to feed back, respectively; or The maximum number of bits of the HARQ-ACK that the TDD system needs to feed back determines the value of P.
  • a method of determining the value of P according to the system is provided.
  • the foregoing uplink control information includes one of the following: HARQ-ACK; CSI; HARQ-ACK and CSI; HARQ-ACK and SR; HARQ-ACK, CSI, and SR.
  • the foregoing pre-processing may further include: time domain expansion, or time domain repetition.
  • the number of source bit partitions may be determined according to the number of channel encoders used for channel coding and the number of bits of uplink control information currently required to be fed back.
  • the channel encoder for channel coding comprises: Q block codes and 1 tail biting convolutional code, wherein Q is an integer greater than or equal to 1.
  • channel coding processing may be separately performed according to different uplink control information, for example, the uplink control information is HARQ-ACK and CSI, or HARQ.
  • the uplink control information is HARQ-ACK and CSI, or HARQ.
  • -ACK, SR, and CSI HARQ-ACK, or HARQ-ACK and SR may be channel-coded by Q block codes; in addition, for CSI, CSI may be channel-encoded by a tail biting convolutional code.
  • the value of Q may be determined according to the number of bits of the HARQ-ACK in the uplink control information.
  • the cascading in the pre-processing may be a sequential cascading or an interleaving cascading manner, which is not limited in the embodiment of the present invention.
  • the resource mapping manner in the pre-processing may adopt multiple mapping sequences, for example, in one of the following manners: mapping to the resource carrying the uplink control information according to the frequency domain subcarrier, the time domain OFDM symbol, and the time slot sequence
  • the block unit is mapped to the resource block unit carrying the uplink control information according to the sequence of the frequency domain subcarrier, the time slot, and the time domain OFDM symbol; and mapped to the bearer uplink according to the sequence of the time domain OFDM symbol, the time slot, and the frequency domain subcarrier.
  • the resource block unit of the control information is mapped to the resource block unit carrying the uplink control information in the order of the time slot, the time domain OFDM symbol, and the frequency domain subcarrier.
  • the method of mapping to the resource block unit carrying the uplink control information in the order of the frequency domain subcarrier, the time domain OFDM symbol, and the time slot, and the cascading mode of the interleaving cascade, can obtain a better dispelling effect.
  • the physical uplink control channel used for sending the uplink control information includes N physical resource blocks in the frequency domain, one subframe in the time domain, and the location of the frequency domain resource occupied by two time slots of one subframe. Different, where N is a positive integer. Preferably, N takes a value of 1. In the above manner, a method for configuring a physical uplink control channel is provided.
  • the foregoing physical uplink control channel includes, in a frequency domain, an OFDM symbol for carrying uplink control information, and an OFDM symbol for carrying a reference signal, where the number of OFDM symbols used to carry the reference signal is K, K.
  • the value is 1 or 2.
  • the OFDM symbols carrying the reference signal and the uplink control information may take different forms.
  • the OFDM symbol used to carry the reference signal is located at the OFDM symbol position of each slot, or at the OFDM symbol positions of No. 1 and No. 5, for carrying uplink control.
  • the OFDM symbols of the information are located at other OFDM symbol locations than the OFDM symbols used to carry the reference signals, where the OFDM symbols for each slot are numbered starting with number 0.
  • the OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, and the OFDM symbol for carrying the uplink control information is located for the bearer reference.
  • the number of output bits of each block encoder may be determined by: according to the number of OFDM symbols used to carry uplink control information and the block code in the packet encoder in the physical uplink control channel. The number determines the number of output bits for each of the block encoders used for channel coding.
  • the uplink control information includes: HARQ-ACK, or HARQ-ACK and CSI, or HARQ-ACK, SR, and CSI
  • sending uplink control information on a physical uplink control channel carrying uplink control information includes: sending uplink control information on the physical uplink control channel if the total number of bits of the uplink control information does not exceed the first preset value; and if the total number of bits of the uplink control information exceeds the first preset value, After performing spatial binding on the HARQ-ACK, calculating the total number of bits of the spatially bound uplink control information; if the total number of bits does not exceed the first preset value, sending on the physical uplink control channel Spatially bound HARQ-ACK, or spatially bound HARQ-ACK and other uplink control information; otherwise, spatially bound HARQ-ACK is transmitted on the physical uplink control channel, or spatially bound HARQ-ACK and SR, and knock out CSI.
  • sending the uplink control information on the physical uplink control channel carrying the uplink control information includes: in a case where the total number of bits of the CSI does not exceed the second preset value, Sending CSI on the uplink control channel; if the total number of bits of the CSI exceeds the second preset value, the CSI of the lower priority serving cell is cancelled according to the preset priority principle, until the total CSI of the remaining serving cell The CSI that has been erased is transmitted on the physical uplink control channel until the number of bits does not exceed the second preset value.
  • the transmit power of the physical uplink control channel is determined according to at least one of the following parameters: P CMAX,c (i), ⁇ F_PUCCH (F ), ⁇ TxD (F'), h(n CQI , n HARQ , n SR ), P O_PUCCH , g(i); wherein P CMAX,c (i) is a subframe allocated to the serving cell c to the terminal The transmission power on i; ⁇ F_PUCCH (F) is a configuration value corresponding to the adopted PUCCH format that is configured by the upper layer to the terminal, that is, the parameter has different configuration values for different PUCCH formats; ⁇ TxD (F') Configuring, for a higher layer, a configuration value corresponding to the adopted PUCCH format for a terminal that uses two antennas to transmit a PUCCH, where the parameter has different configuration values for different
  • an uplink control information sending apparatus is further provided to implement the above-mentioned embodiments and optional embodiments.
  • the descriptions of the modules involved in the apparatus are described below.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a schematic structural diagram of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the apparatus includes: a pre-processing module 52 and a sending module 54, wherein the pre-processing module 52 is configured to set uplink control information.
  • the pre-processing is performed.
  • the sending module 54 is coupled to the pre-processing module 52 and configured to send the uplink control information on the physical uplink control channel carrying the uplink control information.
  • FIG. 6 is a first schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the pre-processing module 52 includes at least one of the following: a source bit dividing unit 522, and channel coding.
  • the unit 524, the cascading unit 526, and the resource mapping unit 528 are coupled one by one.
  • channel coding unit 524 includes: P block codes, where P is an integer greater than two.
  • FIG. 7 is a second schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the channel encoding unit 524 further includes: a first determining subunit 5242, which is set according to system requirements. The maximum number of bits of the feedback uplink control information determines the value of P; or the second determining subunit 5244 is configured to determine the value of P according to the number of bits of the uplink control information that the terminal currently needs to feed back.
  • the first determining subunit 5242 is configured to: determine a value of P according to a maximum number of bits of the HARQ-ACK that the TDD system and the FDD system need to feed back; or a maximum number of bits of the HARQ-ACK that is required to be fed back according to the TDD system. Determine the value of P.
  • the uplink control information includes one of: HARQ-ACK; CSI; HARQ-ACK and CSI; HARQ-ACK and SR; HARQ-ACK, CSI, and SR.
  • the value of P includes one of the following: 3, 4, 6, 8, 9, 10, 12.
  • FIG. 8 is a third schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the pre-processing module 52 further includes The time domain extension unit 527a, or the time domain repeat unit 527b, is coupled to the cascade unit 526 and the resource mapping unit 528, respectively.
  • FIG. 9 is a fourth schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the source bit dividing unit 522 includes: a third determining subunit 5224, configured to be used according to FIG.
  • the number of channel encoders for channel coding and the number of bits of uplink control information currently required to be fed back determine the number of source bit partitions.
  • FIG. 10 is a schematic diagram 5 of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the channel encoding unit 524 includes: Q block codes 5246 and a tail biting convolutional code. 5248, wherein Q is an integer greater than or equal to 1.
  • Q block codes are used for channel coding of HARQ-ACK, or HARQ-ACK and SR; and a tail biting convolutional code is used for channel coding CSI.
  • FIG. 11 is a schematic diagram of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the channel encoding unit 524 further includes a fourth determining subunit 5249 coupled to the block code 5246. And being set to determine the value of Q according to the number of bits of the HARQ-ACK in the uplink control information.
  • FIG. 12 is a schematic diagram of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the cascading unit 526 includes: a sequential cascading subunit 5262, or an interleaving cascading subunit. 5264.
  • FIG. 13 is a schematic structural diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the resource mapping unit 528 includes one of the following: a first resource mapping sub-unit 5282, which is set to Mapping to a resource block unit carrying uplink control information according to a frequency domain subcarrier, a time domain OFDM symbol, and a time slot; the second resource mapping subunit 5284 is configured to follow frequency domain subcarriers, time slots, and time domain OFDM symbols.
  • the sequence is mapped to the resource block unit that carries the uplink control information; the third resource mapping sub-unit 5286 is configured to map to the resource block unit that carries the uplink control information in the order of the time domain OFDM symbol, the time slot, and the frequency domain subcarrier.
  • the fourth resource mapping subunit 5288 is configured to map to the resource block unit that carries the uplink control information in the order of the time slot, the time domain OFDM symbol, and the frequency domain subcarrier.
  • the physical uplink control channel includes N physical resource blocks in the frequency domain, and one subframe is occupied in the time domain, and the positions of the frequency domain resources occupied by the two time slots of one subframe are different, where N is positive Integer.
  • the physical uplink control channel includes, in the frequency domain, an OFDM symbol for carrying uplink control information, and an OFDM symbol for carrying the reference signal, where the number of OFDM symbols used for carrying the reference signal is one or two. .
  • the OFDM symbol used to carry the reference signal is located at the OFDM symbol position of each slot, or at the OFDM symbol positions of No. 1 and No. 5, for carrying The OFDM symbol of the uplink control information is located at other OFDM symbol locations than the OFDM symbol used to carry the reference signal, wherein the OFDM symbols of each slot are numbered starting from number 0; in the case where the uplink uses the extended cyclic shift prefix The OFDM symbol for carrying the reference signal is located at the OFDM symbol position of each slot, and the OFDM symbol for carrying the uplink control information is located at other OFDM symbol positions than the OFDM symbol for carrying the reference signal, where The OFDM symbols for each slot are numbered starting with number 0.
  • FIG. 14 is a schematic diagram of an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the channel encoding unit 524 further includes: a fifth determining subunit 5247 coupled to the packet encoder. Set to the number of OFDM symbols used to carry uplink control information and the number of block codes in the packet encoder according to the physical uplink control channel. The number of output bits per packet encoder used in channel coding.
  • FIG. 15 is a schematic diagram of an optional structure of an uplink control information sending apparatus according to an embodiment of the present invention.
  • the sending module 54 includes: a first sending unit 542, configured to include HARQ in uplink control information. - ACK, or, HARQ-ACK and CSI, or HARQ-ACK, SR, and CSI, and the uplink control information is sent on the physical uplink control channel if the total number of bits of the uplink control information does not exceed the first preset value.
  • the second sending unit 544 is configured to include, in the uplink control information, HARQ-ACK, or HARQ-ACK and CSI, or HARQ-ACK, SR, and CSI, and the total number of bits of the uplink control information exceeds the first preset.
  • the total number of bits of the space-bound uplink control information is calculated; if the total number of bits does not exceed the first preset value, the physical uplink is performed.
  • the spatially bound HARQ-ACK or the spatially bound HARQ-ACK and other uplink control information are transmitted on the control channel; otherwise, the spatially bound HARQ-ACK is transmitted on the physical uplink control channel, or Binding between the HARQ-ACK and SR, and destroyed CSI.
  • FIG. 16 is a schematic diagram showing an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the sending module 54 includes: a third sending unit 546, configured to CSI, and if the total number of bits of the CSI does not exceed the second preset value, the CSI is sent on the physical uplink control channel; the fourth sending unit 548 is set to the CSI in the uplink control information, and the total number of bits of the CSI exceeds In the case of the second preset value, the CSI of the serving cell with the lower priority is cancelled according to the preset priority principle, until the total number of bits of the CSI of the remaining serving cell does not exceed the second preset value, and the physical uplink is performed. The CSI that has been erased is sent on the control channel.
  • FIG. 17 is a schematic diagram showing an optional structure of an uplink control information transmitting apparatus according to an embodiment of the present invention.
  • the transmitting module 54 further includes: a power control unit 549, configured to be at least according to the following parameters.
  • P CMAX,c (i) is the transmit power of the subframe i of the serving cell c configured to the terminal
  • ⁇ F_PUCCH (F) is the configuration value corresponding to the adopted PUCCH format configured by the upper layer to the terminal
  • ⁇ TxD (F') is a high-level configuration for a terminal transmitting a PUCCH using two antennas, corresponding to a configured value of the adopted PUCCH format
  • the embodiment of the present invention further provides a user equipment, including the foregoing uplink control information sending apparatus.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • an alternative embodiment of the present invention provides a method for transmitting uplink control information, thereby implementing uplink control information transmission when aggregation of up to 32 serving cells.
  • the pre-processing procedure of the optional embodiment of the present invention includes: source bit segmentation, channel coding, concatenation, scrambling, modulation, time domain extension or repetition, transmission pre-transformation, resource mapping, and the like.
  • the channel coding may be composed of P block codes, where P is an integer greater than 2.
  • P is determined according to one of the following ways:
  • Manner 1 The maximum number of bits of the uplink control information is determined according to the system requirements
  • Manner 2 determining the number of bits of the uplink control information that the terminal needs to feed back
  • Mode 1a Determined according to the maximum number of bits of HARQ-ACK that the FDD and TDD systems need to feed back, respectively.
  • a packet encoder 64 of which is equal to 32 ⁇ 2, that is, 32 FDD serving cell aggregations, and each serving cell is configured with a transmission mode of 2 transport blocks, which is required for the FDD system to support 32 carrier aggregations.
  • a packet encoder where 128 is equal to 32 ⁇ 4, that is, 32 TDD serving cell aggregations, and each serving cell needs to feed back a HARQ-ACK scenario of 4 downlink subframes according to the downlink reference configuration.
  • the required block code codec is required for the FDD and TDD systems because the maximum number of HARQ-ACK bits to be supported is different.
  • the number is different, and the number of different block codes will result in different complexity of codec.
  • the codec of the block code is relatively simple, the complexity of the codec is not a bottleneck.
  • the standardization workload is different, and different encoder designs need to be introduced for FDD and TDD systems respectively.
  • Mode 1b Determine according to the maximum number of bits of HARQ-ACK that the TDD system needs to feed back.
  • the determined P block code encoders are equally applicable to FDD when determining the value of P according to the maximum number of bits of HARQ-ACK that the TDD system needs to feed back.
  • the number of packet codecs required at this time is the most, but the standardization workload is relatively small, because only one encoder design needs to be introduced.
  • a new PUCCH format 4 in which 6 OFDM symbols are used to carry uplink control information will be described as an example.
  • the physical uplink control channel carrying the uplink control information adopts a reference signal structure as shown in FIG. 19, and the third OFDM symbol of each slot (that is, the OFDM symbol No. 3 described above is in the embodiment of the present invention. A similar description is explained with reference to this definition) for carrying reference signals, and other OFDM symbols are used for carrying uplink control information.
  • the OFDM symbols of each slot are numbered starting from 0, the same below.
  • the block encoder can use a (32, O) block code supported by the existing LTE system, and its basic sequence is as shown in FIG.
  • Figure 21 is a block diagram showing the structure of a channel coder of the present invention using six (32, 0) block codes.
  • the HARQ-ACK input bit is first passed through a source bit splitter, and the input bit is divided into 6 parts, which are respectively input into 6 (32, O) block codes, and then 6 coded bits are outputted by the block encoder, and the coded bits are encoded. It is then cascaded through a cascade of six parallel encoder outputs for input as a subsequent process.
  • the 16 coded bits can be obtained by cyclic repetition. Assume that the 32 bits of the (32, O) block code encoding output are Then, the 48 coded output bits obtained by the loop repetition are That is, the next 16 coded bits are the repetition of the first 16 coded bits.
  • the source bit splitter is related to the number of channel encoders and the number of bits of uplink control information that need to be fed back. Assume that the number of uplink control information bits that need to be fed back is N, N is a positive integer, and the channel coder is composed of P (P is an integer greater than 2) (32, O) block code, after passing through the source bit splitter, Then, P HARQ-ACK bit blocks are respectively input into P (32, O) block encoders.
  • the number of input bits of the first m encoders is The input Ptex of the post Pm encoders is Or, the input bits of the former Pm encoders are The number of input bits of the last m encoders is
  • N 26.
  • the source bit splitter can have the following form:
  • the above two forms of the source bit splitter are shown in Fig. 22 and Fig. 23, respectively. Assuming that the HARQ-ACK input bits are a 0 , a 1 , . . . , a 25 , when the order is divided as shown in FIG. 22, the output of the source bit divider is a 0 , a 1 , a 2 , respectively.
  • the output of the source bit divider is a 0 , a 6 , a 12 , a 18 , a 24 , a 1 , a 7 , a 13 , a 19 , a 25 , respectively. , a 2 , a 8 , a 14 , a 20 , a 3 , a 9 , a 15 , a 21 , a 4 , a 10 , a 16 , a 22 , a 5 , a 11 , a 17 , a 23 .
  • the bit sequence output by the cascader is subjected to a series of processing, such as scrambling, modulation, symbol-level cyclic shift cyclic shift, transmission pre-transformation, and finally mapped to the physical uplink control channel for carrying uplink control information.
  • the resource block unit goes. Among them, the mapping can be one of the following ways:
  • Mapping mode 1 mapping the first frequency domain subcarrier, the backward time domain OFDM symbol, and the reslot sequence to the resource block unit carrying the uplink control information;
  • Mapping mode 2 mapping to the resource block unit carrying the uplink control information in the order of the pre-frequency domain subcarrier, the post-slot, and the time-domain OFDM symbol;
  • Mapping mode 3 mapping to the resource block unit carrying the uplink control information in the order of the first time domain OFDM symbol, the latter time slot, and the frequency domain subcarrier;
  • the mapping mode 4 maps to the resource block unit that carries the uplink control information according to the first time slot, the backward time domain OFDM symbol, and the frequency domain subcarrier.
  • FIG. 26 is a schematic diagram showing the mapping of the output of each encoder obtained according to the above-described interleaving cascade and mapping method 1 on the physical uplink control channel.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 26 only gives a schematic diagram.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is a transmission pre-transformation process after modulation, here is a simple illustration It follows that the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, where different encoder outputs are represented by different padding.
  • the physical uplink control channel carrying the uplink control information adopts a reference signal structure as shown in FIG. 19, and the third OFDM symbol of each slot is used to carry the reference signal, and the other OFDM symbols are used to carry the uplink control information.
  • Figure 27 is a block diagram showing the structure of a 12 (32, 0) block code used by the channel coder of the present invention.
  • the HARQ-ACK input bit is first passed through a source bit splitter, and the input bit is divided into 12 parts, which are respectively input into 12 (32, O) block codes, and then 12 coded bits are outputted by the block encoder, and the coded bits are encoded.
  • the 12 parallel encoder outputs are then cascaded through a cascade as an input to subsequent processing.
  • the (32, O) block coder outputs 32 coded bits, and 24 bits are intercepted as the output of the final coder.
  • the processing of the source bit division and the resource mapping is the same as that of the optional embodiment 2 and the optional embodiment 3, except that the values of the corresponding parameters are different, and therefore are not described here.
  • the physical uplink control channel carrying the uplink control information adopts a reference signal structure as shown in FIG. 28 or FIG. 29, and in FIG. 28, the first and fifth OFDM symbols of each slot are used to carry the reference signal, and other OFDM The symbol is used to carry uplink control information.
  • the third OFDM symbol of each slot is used to carry the reference signal, and the other OFDM symbols are used to carry the uplink control information.
  • Figure 30 is a block diagram showing the structure of a channel coder of the present invention using six (32, 0) block codes.
  • the HARQ-ACK input bit is first passed through a source bit splitter, and the input bit is divided into 6 parts, which are respectively input into 6 (32, O) block codes, and then 6 coded bits are outputted by the block encoder, and the coded bits are encoded. It is then cascaded through a cascade of six parallel encoder outputs for input as a subsequent process.
  • (32, O) The block coder outputs 32 coded bits, and the remaining 8 coded bits can be obtained by cyclic repetition.
  • the 32 bits of the (32, O) block code encoding output are Then the 40 coded output bits obtained by the loop repetition are That is, the next 8 coded bits are the repetition of the first 8 coded bits.
  • the physical uplink control channel carrying the uplink control information adopts a reference signal structure as shown in FIG. 28 or FIG. 29, and in FIG. 28, the first and fifth OFDM symbols of each slot are used to carry the reference signal, and other OFDM The symbol is used to carry uplink control information.
  • the third OFDM symbol of each slot is used to carry the reference signal, and the other OFDM symbols are used to carry the uplink control information.
  • the block encoder can use a (32, O) block code supported by the existing LTE system, and its basic sequence is as shown in FIG.
  • Figure 31 is a block diagram showing the structure of a 12 (32, 0) block code used by the channel encoder of the present invention.
  • the HARQ-ACK input bit is first passed through a source bit splitter, and the input bit is divided into 12 parts, which are respectively input into 12 (32, O) block codes, and then 12 coded bits are outputted by the block encoder, and the coded bits are encoded.
  • the 12 parallel encoder outputs are then cascaded through a cascade as an input to subsequent processing.
  • the block coder outputs 32 coded bits, and 20 of them are intercepted as the output of the final coder.
  • the uplink control information processing when the value of P is determined by the mode 2 is described.
  • the number of the channel coded P code is determined according to the mode 2 of the optional embodiment of the present invention, and then according to the number of bits of the uplink control information that the terminal needs to feed back, the following factors need to be considered in determining the P:
  • the number of REs used to carry uplink control information in the physical uplink control channel is the number of REs used to carry uplink control information in the physical uplink control channel
  • Each block code uses the same design; the same design here shows that the coded bits output by each block code are the same, and thus the same cyclic repetition or truncation.
  • the physical uplink control channel carrying the uplink control information adopts a reference signal structure as shown in FIG. 19, and the third OFDM symbol of each slot is used to carry the reference signal, and the other OFDM symbols are used to carry the uplink control information.
  • the QPSK modulation scheme Assuming that the QPSK modulation scheme is used, a total of 288 coded bits can be carried. Considering the above factors, when the number of bits that the terminal needs to feed back is X, the value of P, and the output of each encoder is:
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 3 HARQ-ACK bit blocks 0, 1, 2, and then enter 3 (32 respectively).
  • O) block coder and cyclically repeating, each (32, O) block coder outputs 48 bits, after output bit interleaving cascade, after scrambling, QPSK modulation, one for every 12 symbols
  • the second-order time domain extension of the time domain is further processed by the transmission pre-transformation process.
  • mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. Go, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel is as shown in FIG.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 33 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the physical uplink control channel may also multiplex two terminals, and different terminals use different second-order time domain spreading codes to distinguish.
  • slot #1 may be repeated transmission of slot #0 in a time domain repeating manner, as shown in FIG.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 4 HARQ-ACK bit blocks 0, 1, 2, 3, and then enter 4 respectively.
  • the second-order time domain extension of the time domain is performed, and then the transmission pre-transformation process is performed.
  • mapping mode 1 is mapped to the physical uplink control channel shown in FIG. 19 for carrying the uplink control information.
  • the mapping of the output of each encoder to the RE of the physical uplink control channel is as shown in FIG.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 36 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the physical uplink control channel may also multiplex two terminals, and different terminals use different second-order time domain spreading codes to distinguish.
  • slot #1 may be repeated transmission of slot #0 in a time domain repeating manner.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 8 HARQ-ACK bit blocks 0, 1, 2, 3, ..., 7, and then Enter 8 (32, O) block encoders respectively, and cyclically repeat each mode
  • each (32, O) block encoder outputs 36 bits, and after output bit interleaving cascade, after scrambling, QPSK modulation, after The pre-transformation process is performed.
  • mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the output of each encoder is in the physical
  • the mapping of REs of the uplink control channel is as shown in FIG.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 38 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbols, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the structure is applicable to a scenario in which the number of bits of uplink control information is 88 ⁇ X ⁇ 99.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 9 HARQ-ACK bit blocks 0, 1, 2, 3, ..., 8, and then Entering 9 (32, O) block encoders respectively, each (32, O) block encoder outputs 32 bits, and the output bits are interleaved and cascaded.
  • mapping mode 1 of the optional embodiment of the present invention is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel As shown in Figure 40.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • FIG. 40 only shows a schematic diagram, and D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 3 HARQ-ACK bit blocks 0, 1, 2, and then enter 3 (32 respectively).
  • mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel as shown in FIG. 28 or FIG. 29, and finally the output of each encoder is in the physical uplink control.
  • the mapping of the RE of the channel is as shown in FIG. 42 (taking the reference signal structure of FIG. 28 as an example), where slot #1 is a repetition of slot #0.
  • each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 42 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 3 HARQ-ACK bit blocks 0, 1, 2, 3, and then enter 4 respectively.
  • (32, O) block coder and in a truncated manner, each (32, O) block coder outputs 30 bits, and the output bits are interleaved and cascaded, after scrambling, QPSK modulation, and then subjected to transmission pre-transformation.
  • the mapping mode 1 of the embodiment is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 28 or FIG. 29, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel is as follows. 44 (take the reference signal structure of FIG. 28 as an example), in which slot #1 is a repetition of slot #0. As can be seen from the figure, the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel. Similarly, it is worth noting that FIG. 44 only shows a schematic diagram, and D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation. Here, it is simply illustrated that the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 8 HARQ-ACK bit blocks 0, 1, 2, 3, ..., 7, and then Enter 8 (32, O) block encoders respectively, and in a truncated manner, each (32, O) block encoder outputs 30 bits, and the output bits are interleaved and cascaded, after scrambling, QPSK modulation, and then
  • the mapping mode 1 according to the optional embodiment of the present invention is mapped to the RE for carrying the uplink control information in the physical uplink control channel as shown in FIG.
  • each encoder The mapping of the output of the RE of the physical uplink control channel is as shown in FIG. 46 (taking the reference signal structure of FIG. 28 as an example). As can be seen from the figure, the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel. Similarly, it is worth noting that Figure 46 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbols, because there is time domain expansion and transmission pre-transform processing after modulation. Here, it is simply illustrated that the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the uplink control information is HARQ-ACK
  • the HARQ-ACK input bit is first divided by the source bit to obtain 10 HARQ-ACK bit blocks 0, 1, 2, 3, ..., 9, and then Enter 12 (32, O) block encoders respectively, and in a truncated manner, each (32, O) block encoder outputs 24 bits, and the output bits are interleaved and cascaded, after scrambling, QPSK modulation, and then
  • the mapping mode 1 according to the optional embodiment of the present invention is mapped to the RE for carrying the uplink control information in the physical uplink control channel as shown in FIG.
  • each encoder The mapping of the output of the RE of the physical uplink control channel is as shown in FIG. 48 (taking the reference signal structure of FIG. 28 as an example). As can be seen from the figure, the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel. Similarly, it is worth noting that Figure 48 only gives a schematic diagram. D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation. Here, it is simply illustrated that the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the uplink control information currently fed back by the terminal includes HARQ-ACK, or CSI, or HARQ-ACK and CSI, or HARQ-ACK and SR, or HARQ-ACK and CSI, and SR.
  • the formation of the uplink control information bit sequence may be formed according to the manner specified by the existing protocol, and is not described here.
  • the channel encoder uses a block code and a Tail Biting CC (TBCC) as an example.
  • TBCC Tail Biting CC
  • the encoder may be composed of P block codes and one TBCC, where the HARQ-ACK Or HARQ-ACK and SR are encoded via P block codes, which are encoded via TBCC.
  • the channel encoder uses three block codes and one tail biting convolutional code as an example for description.
  • Figure 49 shows a schematic diagram of the above hybrid coding scheme.
  • the uplink control information is sent on the physical uplink control channel as shown in FIG. 19, the physical uplink control channel can carry a total of 288 coded bits, and the number of coded bits of the HARQ-ACK is 128.
  • CRC Cyclic Redundancy Check
  • the outputs of the three (32, 0) encoders and the output of the TBCC encoder are subjected to cascade, scrambling, QPSK modulation as shown in FIG. 50, and then subjected to transmission pre-transform processing, and finally in accordance with an alternative embodiment of the present invention.
  • the mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel is as shown in FIG. 51.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 51 only gives a schematic diagram.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the channel encoder uses four block codes and one tail biting convolutional code as an example for description.
  • Figure 52 shows a schematic diagram of the above hybrid coding scheme.
  • the output of the four (32, O) encoders and the output of the TBCC encoder are cascaded, scrambled, QPSK modulated as shown in Figure 53, and then transmitted.
  • the mapping process 1 according to the optional embodiment of the present invention is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the output of each encoder is in the physical uplink control.
  • the mapping of the RE of the channel is as shown in FIG.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 54 only gives a schematic diagram.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the channel coder uses five block codes and one tail biting convolutional code as an example for description.
  • Fig. 55 shows a schematic diagram of the above hybrid coding scheme.
  • the output of the five (32, O) encoders and the output of the TBCC encoder are subjected to cascading, scrambling, QPSK modulation as shown in FIG. 56, and then subjected to transmission pre-transform processing, and finally in accordance with an alternative embodiment of the present invention.
  • the mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel is as shown in FIG. 57.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 57 only gives a schematic diagram.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbol, because there is time domain expansion and transmission pre-transform processing after modulation.
  • the symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, wherein different encoder outputs are represented by different padding.
  • the channel coder uses six block codes and one tail biting convolutional code as an example for description.
  • Figure 58 shows a schematic diagram of the above hybrid coding scheme.
  • the output of the five (32, O) encoders and the output of the TBCC encoder are subjected to cascading, scrambling, QPSK modulation as shown in FIG. 59, and then subjected to transmission pre-transform processing, and finally in accordance with an alternative embodiment of the present invention.
  • the mapping mode 1 is mapped to the RE for carrying the uplink control information in the physical uplink control channel shown in FIG. 19, and finally the mapping of the output of each encoder to the RE of the physical uplink control channel is as shown in FIG. 60.
  • the output of each (32, O) encoder is evenly distributed throughout the physical uplink control channel.
  • Figure 60 only gives a schematic diagram.
  • D0 does not directly correspond to the (32, O) block coder output modulated corresponding symbols, because there is time domain expansion and transmission pre-transform processing after modulation.
  • symbols carried on the corresponding REs on each OFDM symbol are derived from which encoder outputs, where different encoder outputs are represented by different padding.
  • the physical uplink control channel in the optional embodiment of the present invention is mainly for a large number of carrier aggregation scenarios, such as aggregation of up to 32 carriers.
  • the physical uplink control channel according to the optional embodiment of the present invention may be used to carry HARQ-ACK, or CSI, or HARQ-ACK and CSI, or HARQ-ACK, SR, and CSI.
  • HARQ-ACK is the most important part of the uplink control information, and the design of the new physical uplink control channel is mainly determined for the HARQ-ACK feedback.
  • the physical uplink control channel of the optional embodiment of the present invention is designed with the maximum number of bits of the HARQ-ACK that needs to be fed back. That is, the physical uplink control channel of the optional embodiment of the present invention can carry up to 128 bits.
  • the physical uplink control channel based on the HARQ-ACK design can be used to carry CSI, HARQ-ACK and CSI in addition to the HARQ-ACK.
  • the uplink control information Transmitting the uplink control information on the physical uplink control channel when the total number of bits of the uplink control information does not exceed the first preset value; when the total number of bits of the uplink control information exceeds the first
  • the preset value is used, the space binding operation is performed on the HARQ-ACK, and then the total number of bits of the uplink control information is calculated. If the first preset value is not exceeded, the path is sent on the physical uplink control channel. Spatially bound HARQ-ACK or spatially bound HARQ-ACK and other uplink control information; otherwise, the spatially bound HARQ-ACK is transmitted on the physical uplink control channel or After the spatially bound HARQ-ACK and SR, the CSI is destroyed.
  • the uplink control information is CSI
  • the uplink control information when the number of bits of the uplink control information does not exceed a second preset value, sending the uplink control information on the physical uplink control channel;
  • the CSIs of the M serving cells with lower priority are cancelled according to the preset priority principle, until the total number of CSIs of the remaining serving cells does not exceed the first Up to the preset value, the CSI that has undergone the knock-out processing is transmitted on the physical uplink control channel.
  • the one selected value of the second preset value is 128.
  • An optional embodiment of the present invention provides a new physical uplink control channel (PUCCH) for carrying uplink control information.
  • the reference signal structure and coding scheme are as shown in the foregoing optional embodiments 1-22. Since the PUCCH format described in the optional embodiment of the present invention is different from the existing PUCCH, it is necessary to rethink the method of determining the transmission power.
  • the terminal transmits the PUCCH on the subframe i of the serving cell c
  • the terminal determines the transmission power of the PUCCH according to the following formula:
  • P CMAX,c (i) is the transmit power allocated to the terminal on the subframe i of the serving cell c; for the new PUCCH format of the present invention, the configuration of the parameter can follow the values specified by the existing protocol;
  • ⁇ F_PUCCH (F) is a parameter configured by the upper layer to the terminal, and the parameter has different configuration values for different PUCCH formats; since the present invention proposes a PUCCH format different from the existing protocol definition, the parameter is Values need to introduce new values.
  • ⁇ TxD (F') is a parameter that is configured by the upper layer to the terminal when the terminal configures two antennas to transmit the PUCCH, and the parameter has different configuration values for different PUCCH formats; since the present invention proposes a different protocol from the existing protocol The defined PUCCH format, therefore, the value of the parameter needs to introduce a new value; when the terminal single antenna transmits the PUCCH, the value is 0;
  • P O_PUCCH P O_NOMINAL_PUCCH configuration parameters configuration parameters and the level is high and the P O_UE_PUCCH;
  • g(i) is the cumulative power control; this parameter can be determined by using the existing protocol.
  • h(n CQI , n HARQ , n SR ) is an amount related to the number of input uplink control information bits.
  • k HARQ , k CQI , P HARQ , P CQI , and P SR are the number of block codes used in the encoder corresponding to the corresponding uplink control information.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种上行控制信息发送方法、装置及用户设备,其中,该方法包括:对上行控制信息进行预处理;在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息。通过本发明,解决了相关技术中的PUCCH格式承载的上行控制信息的比特数小的问题,从而提高了物理上行控制信道所能承载的上行控制信息的比特数。

Description

上行控制信息发送方法、装置及用户设备 技术领域
本发明涉及通信领域,具体而言,涉及一种上行控制信息发送方法、装置及用户设备。
背景技术
在长期演进(Long Term Evolution,简称为LTE)系统中,终端的上行信道包括物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)、物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)和物理随机接入信道(Physical Ramdom Acess Channel,简称为PRACH)。其中,PUSCH中可以传输数据信息、调度请求(Scheduling Request,简称为SR)、混合自动重传请求应答(Hybrid Automatic Repeat request ACKnowledgement,简称为HARQ-ACK)和信道状态信息(Channel State Information,简称为CSI),PUCCH中可以传输SR、HARQ-ACK和CSI。
为了满足高级国际电信联盟(International Telecommunication Union-Advanced,简称为ITU-Advanced)的要求,作为LTE的演进标准的高级长期演进(Long Term Evolution Advanced,简称为LTE-A)系统需要支持更大的系统带宽(最高可达100MHz),并需要后向兼容LTE现有的标准。在现有的LTE系统的基础上,可以将LTE系统的带宽进行合并来获得更大的带宽,这种技术称为载波聚合(Carrier Aggregation,简称为CA)技术,该技术能够提高IMT-Advance系统的频谱利用率、缓解频谱资源紧缺,进而优化频谱资源的利用。
在引入了载波聚合的系统中,进行聚合的载波称为分量载波(Component Carrier,简称为CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,简称为PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,简称为SCC/SCell)的概念,在进行了载波聚合的系统中,至少包含一个主服务小区和辅服务小区,其中主服务小区一直处于激活状态。
在相关技术的载波聚合系统中,上行控制信息包括SR,HARQ-ACK以及周期CSI,当没有PUSCH同时发送时,上述控制信息只能在PCell的PUCCH上发送。同时,协议定义了多种PUCCH格式,以适应在不同的场景下承载不同的上行控制信息。所述的多种PUCCH格式包括:
PUCCH格式1:承载SR;
PUCCH格式1a/1b:承载1/2比特的HARQ-ACK或1/2比特的HARQ-ACK和SR
PUCCH格式2a/2b:承载1/2比特的HARQ-ACK以及周期CSI;
PUCCH格式2:承载周期CSI或者承载周期CSI和HARQ-ACK;
PUCCH格式3:承载HARQ-ACK,或承载HARQ-ACK和SR,或承载HARQ-ACK和CSI,或承载HARQ-ACK、SR和CSI。
其中,PUCCH格式3本身最多可以承载22比特,而现有协议规定最多可以承载20比特的HARQ-ACK,或者20比特的HARQ-ACK和1比特的SR,或者是10比特的HARQ和11比特的CSI以及1比特的SR。
在上述格式中,PUCCH格式1、PUCCH格式2等格式中的数字1、2等,是用于区分不同的信道格式,这里的信道格式指的是参考信号的位置,以及信道化过程,而字母a和b分别表示采用了二进制相移键控(BPSK)调制和四进制相移键控(QPSK)调制。图1~图3分别给出了这三种不同的PUCCH格式。
考虑到后续版本中,支持至多32个服务小区的载波聚合技术导致需要发送的HARQ-ACK比特数远超过10/20比特,现有的PUCCH格式3将无法承载。
针对相关技术中的PUCCH格式承载的上行控制信息的比特数小的问题,目前尚未提出有效的解决方案。
发明内容
为了解决上述技术问题,本发明提供了一种上行控制信息发送方法、装置及用户设备。
根据本发明实施例的一个方面,提供了一种上行控制信息发送方法,包括:对上行控制信息进行预处理;在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息。
可选地,所述预处理包括以下至少之一:信源比特分割、信道编码、级联、资源映射。
可选地,在所述预处理包括信道编码的情况下,用于信道编码的信道编码器包括:P个分组码,其中,P为大于2的整数。
可选地,所述信道编码还包括:根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
可选地,根据系统需要反馈的上行控制信息的最大比特数确定P的取值包括:分别根据时分双工(Time Division Duplexing,简称为TDD)系统和频分双工(Frequency Division Duplexing,简称为FDD)系统需要反馈的HARQ-ACK的最大比特数确定P的取值;或者根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值。
可选地,所述上行控制信息包括以下之一:HARQ-ACK;CSI;HARQ-ACK和CSI;HARQ-ACK和SR;HARQ-ACK、CSI和SR。
可选地,P的取值包括以下之一:3、4、6、8、9、10、12。
可选地,在P的取值为3或者4的情况下,所述预处理还包括:时域扩展、或者时域重复。
可选地,在所述预处理包括信源比特分割的情况下,所述信源比特分割包括:根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
可选地,在所述预处理包括信道编码的情况下,用于信道编码的信道编码器包括:Q个分组码和1个咬尾卷积码,其中,Q为大于或者等于1的整数。
可选地,在所述上行控制信息为HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,所述信道编码包括:通过所述Q个分组码对所述HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;通过所述咬尾卷积码对所述CSI进行信道编码。
可选地,所述信道编码还包括:根据所述上行控制信息中HARQ-ACK的比特数确定Q的取值。
可选地,在所述预处理包括级联的情况下,所述级联为以下方式之一:顺序级联、或者交织级联。
可选地,在所述预处理包括资源映射的情况下,所述资源映射为以下方式之一:按照频域子载波、时域正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号、时隙的顺序,映射到承载上行控制信息的资源块单元;按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。
可选地,所述物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且所述一个子帧的两个时隙占用的频域资源的位置不同,其中,N为正整数。
可选地,所述物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,所述用于承载参考信号的OFDM符号数为K,K的取值为1或2。
可选地,在上行采用常规循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号;在上行采用扩展循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
可选地,在所述预处理包括信道编码的情况下,所述信道编码还包括:根据所述物理上行控制信道中用于承载上行控制信息的OFDM符号数和所述分组编码器中分组码的个数确定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
可选地,在所述上行控制信息包括:HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息包括:在所述上行控制信息的总比特数未超过第一预设值的情况下,在所述物理上行控制信道上发送所述上行控制信息;在所述上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的所述上行控制信息的总比特数;在该总比特数未超过所述第一预设值的情况下,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
可选地,在所述上行控制信息为CSI的情况下,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息包括:在所述CSI的总比特数未超过第二预设值的情况下,在所述物理上行控制信道上发送所述CSI;在所述CSI的总比特数超过所述第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过所述第二预设值为止,在所述物理上行控制信道上发送经过打掉处理的CSI。
可选地,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息的情况下,所述物理上行控制信道的发送功率根据以下参数至少之一确定:PCMAX,c(i),△F_PUCCH(F),△TxD(F'),h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;△F_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值;△TxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值;h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;g(i)为累计功控量。
根据本发明实施例的另一个方面,还提供了一种上行控制信息发送装置,包括:预处理模块,设置为对上行控制信息进行预处理;发送模块,设置为在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息。
可选地,所述预处理模块包括以下至少之一:信源比特分割单元、信道编码单元、级联单元、资源映射单元。
可选地,所述信道编码单元包括:P个分组码,其中,P为大于2的整数。
可选地,所述信道编码单元还包括:第一确定子单元,设置为根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者第二确定子单元,设置为根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
可选地,所述第一确定子单元设置为:分别根据TDD系统和FDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值;或者根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值。
可选地,所述上行控制信息包括以下之一:HARQ-ACK;CSI;HARQ-ACK和CSI;HARQ-ACK和SR;HARQ-ACK、CSI和SR。
可选地,P的取值包括以下之一:3、4、6、8、9、10、12。
可选地,在P的取值为3或者4的情况下,所述预处理模块还包括:时域扩展单元、或者时域重复单元。
可选地,所述信源比特分割单元包括:第三确定子单元,设置为根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
可选地,所述信道编码单元包括:Q个分组码和1个咬尾卷积码,其中,Q为大于或者等于1的整数。
可选地,所述Q个分组码,用于对所述HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;所述咬尾卷积码,用于对所述CSI进行信道编码。
可选地,所述信道编码单元还包括:第四确定子单元,设置为根据所述上行控制信息中HARQ-ACK的比特数确定Q的取值。
可选地,所述级联单元包括:顺序级联子单元、或者交织级联子单元。
可选地,所述资源映射单元包括以下之一:第一资源映射子单元,设置为按照频域子载波、时域OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元;第二资源映射子单元,设置为按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;第三资源映射子单元,设置为按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;第四资源映射子单元,设置为按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。
可选地,所述物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且所述一个子帧的两个时隙占用的频域资源的位置不同,N为正整数。
可选地,所述物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,所述用于承载参考信号的OFDM符号数为K,K的取值为1或2。
可选地,在上行采用常规循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号;在上行采用扩展循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
可选地,所述信道编码单元还包括:第五确定子单元,设置为根据所述物理上行控制信 道中用于承载上行控制信息的OFDM符号数和所述分组编码器中分组码的个数确定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
可选地,所述发送模块包括:第一发送单元,设置为在所述上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且所述上行控制信息的总比特数未超过第一预设值的情况下,在所述物理上行控制信道上发送所述上行控制信息;第二发送单元,设置为在所述上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且所述上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的所述上行控制信息的总比特数;在该总比特数未超过所述第一预设值的情况下,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
可选地,所述发送模块包括:第三发送单元,设置为在所述上行控制信息为CSI,且所述CSI的总比特数未超过第二预设值的情况下,在所述物理上行控制信道上发送所述CSI;第四发送单元,设置为在所述上行控制信息为CSI,且所述CSI的总比特数超过所述第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过所述第二预设值为止,在所述物理上行控制信道上发送经过打掉处理的CSI。
可选地,所述发送模块还包括:功率控制单元,设置为根据以下参数至少之一确定所述物理上行控制信道的发送功率:PCMAX,c(i),△F_PUCCH(F),△TxD(F'),h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;△F_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值;△TxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值;h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;g(i)为累计功控量。
根据本发明实施例的另一个方面,还提供了一种用户设备,包括:如上述的上行控制信息发送装置。
通过本发明实施例,采用对上行控制信息进行预处理;在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息的方式,解决了相关技术中的PUCCH格式承载的上行控制信息的比特数小的问题,从而提高了物理上行控制信道所能承载的上行控制信息的比特数。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示 意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的PUCCH格式1/1a/1b的时频结构示意图;
图2是根据相关技术的PUCCH格式2的时频结构示意图;
图3是根据相关技术的PUCCH格式3的时频结构示意图;
图4是根据本发明实施例的上行控制信息发送方法的流程示意图;
图5是根据本发明实施例的上行控制信息发送装置的结构示意图;
图6是根据本发明实施例的上行控制信息发送装置的可选结构示意图一;
图7是根据本发明实施例的上行控制信息发送装置的可选结构示意图二;
图8是根据本发明实施例的上行控制信息发送装置的可选结构示意图三;
图9是根据本发明实施例的上行控制信息发送装置的可选结构示意图四;
图10是根据本发明实施例的上行控制信息发送装置的可选结构示意图五;
图11是根据本发明实施例的上行控制信息发送装置的可选结构示意图六;
图12是根据本发明实施例的上行控制信息发送装置的可选结构示意图七;
图13是根据本发明实施例的上行控制信息发送装置的可选结构示意图八;
图14是根据本发明实施例的上行控制信息发送装置的可选结构示意图九;
图15是根据本发明实施例的上行控制信息发送装置的可选结构示意图十;
图16是根据本发明实施例的上行控制信息发送装置的可选结构示意图十一;
图17是根据本发明实施例的上行控制信息发送装置的可选结构示意图十二;
图18是根据本发明可选实施例的一个上行控制信息的预处理过程的示意图;
图19是根据本发明可选实施例的物理上行控制信道的一个示意图;
图20是根据相关技术的LTE系统所支持的(32,O)分组码的基本序列的示意图;
图21是根据本发明可选实施例的信道编码器(P=6)的一个结构示意图;
图22是根据本发明可选实施例的信源比特分割器的一个结构示意图;
图23是根据本发明可选实施例的源比特分割器的另一个结构示意图;
图24是根据本发明可选实施例的顺序级联的一个示意图;
图25是根据本发明可选实施例的交织级联的一个示意图;
图26是根据本发明可选实施例的资源映射的一个示意图;
图27是根据本发明可选实施例的信道编码器(P=12)的一个结构示意图;
图28是根据本发明可选实施例的物理上行控制信道的另一个示意图;
图29是根据本发明可选实施例的物理上行控制信道的另一个示意图;
图30是根据本发明可选实施例的信道编码器(P=6)的另一个结构示意图;
图31是根据本发明可选实施例的信道编码器(P=12)的另一个结构示意图;
图32是根据本发明可选实施例的信道编码器(P=3)的一个结构示意图;
图33是根据本发明可选实施例的资源映射的另一个示意图;
图34是根据本发明可选实施例的资源映射的另一个示意图;
图35是根据本发明可选实施例的信道编码器(P=4)的一个结构示意图;
图36是根据本发明可选实施例的资源映射的另一个示意图;
图37是根据本发明可选实施例的信道编码器(P=8)的一个结构示意图;
图38是根据本发明可选实施例的资源映射的另一个示意图;
图39是根据本发明可选实施例的信道编码器(P=9)的一个结构示意图;
图40是根据本发明可选实施例的资源映射的另一个示意图;
图41是根据本发明可选实施例的信道编码器(P=3)的另一个结构示意图;
图42是根据本发明可选实施例的资源映射的另一个示意图;
图43是根据本发明可选实施例的信道编码器(P=4)的另一个结构示意图;
图44是根据本发明可选实施例的资源映射的另一个示意图;
图45是根据本发明可选实施例的信道编码器(P=8)的另一个结构示意图;
图46是根据本发明可选实施例的资源映射的另一个示意图;
图47是根据本发明可选实施例的信道编码器(P=10)的一个结构示意图;
图48是根据本发明可选实施例的资源映射的另一个示意图;
图49是根据本发明可选实施例的信道编码器另一个结构示意图;
图50是根据本发明可选实施例的交织级联的一个示意图;
图51是根据本发明可选实施例的资源映射的另一个示意图;
图52是根据本发明可选实施例的信道编码器另一个结构示意图;
图53是根据本发明可选实施例的交织级联的一个示意图;
图54是根据本发明可选实施例的资源映射的另一个示意图;
图55是根据本发明可选实施例的信道编码器另一个结构示意图;
图56是根据本发明可选实施例的交织级联的一个示意图;
图57是根据本发明可选实施例的资源映射的另一个示意图;
图58是根据本发明可选实施例的信道编码器另一个结构示意图;
图59是根据本发明可选实施例的交织级联的一个示意图;
图60是根据本发明可选实施例的资源映射的另一个示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例提供了一种上行控制信息发送方法,图4是根据本发明实施例的上行控制信息发送方法的流程示意图,如图4所示,该流程包括如下步骤:
步骤S402,对上行控制信息进行预处理;
步骤S404,在承载上行控制信息的物理上行控制信道上发送上行控制信息。
通过上述步骤,在发送上行控制信息之前,对上行控制信息进行预处理,例如进行信信源比特分割、信道编码、级联、资源映射等预处理之后,使得上行控制信息可以均匀地分布在整个上行物理控制信道中,从而解决了相关技术中的PUCCH格式承载的上行控制信息的比特数小的问题,从而提高了物理上行控制信道所能承载的上行控制信息的比特数。
可选地,在步骤S402中的预处理包括以下至少之一:信源比特分割、信道编码、级联、资源映射。通过对信源比特分割、信道编码等预处理后,可以使得物理上行控制信道承载更 多比特的上行控制信息。
可选地,在步骤S402中的预处理过程中,用于信道编码的信道编码器包括:P个分组码,其中,P为大于2的整数。较优的,P的取值可以采用预设值,例如:3、4、6、8、9、10、12。当然,也不限于采用其他预设值。
可选地,在预处理过程中的信道编码中,为了确定信道编码采用的分组码个数,本发明实施例提供了两种方式,包括:根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
可选地,上述的根据系统需要反馈的上行控制信息的最大比特数确定P的取值包括:分别根据TDD系统和FDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值;或者根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值。通过该方式,提供了根据系统确定P的取值的方法。
可选地,上述的上行控制信息包括以下之一:HARQ-ACK;CSI;HARQ-ACK和CSI;HARQ-ACK和SR;HARQ-ACK、CSI和SR。
可选地,在P的取值为3或者4的情况下,上述的预处理还可以包括:时域扩展、或者时域重复。
可选地,为了确定信源比特分割的数目,可以根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
可选地,在另一个实施例中,用于信道编码的信道编码器包括:Q个分组码和1个咬尾卷积码,其中,Q为大于或者等于1的整数。
可选地,在信道编码器包括分组码和咬尾卷积码的情况下,可以根据不同的上行控制信息分别进行信道编码处理,例如:在上行控制信息为HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,可以通过Q个分组码对HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;另外,对于CSI,可以通过咬尾卷积码对CSI进行信道编码。
可选地,信道编码时,可以根据上行控制信息中HARQ-ACK的比特数确定Q的取值。
可选地,预处理中的级联可以是顺序级联、也可以是交织级联方式,在本发明实施例中并不限制。
可选地,预处理中的资源映射方式可以采用多种映射顺序,例如可以是以下方式之一:按照频域子载波、时域OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元;按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。其中,按照频域子载波、时域OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元的方式,结合交织级联的级联方式,可以得到较好的打散效果。
可选地,用于发送上行控制信息的物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且一个子帧的两个时隙占用的频域资源的位置不同,其中,N为正整数。较优的,N取值为1。通过上述方式,提供了一种物理上行控制信道的配置方法。
可选地,上述的物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,用于承载参考信号的OFDM符号数K,K的取值为1或2。通过上述方式,提供了一种物理上行控制信道的配置方法。
可选地,对于常规循环移位前缀和扩展循环移位前缀,由于每个时隙上OFDM符号数不同,因此,承载参考信号和上行控制信息的OFDM符号可以采用不同的形式。
例如,在上行采用常规循环移位前缀的情况下,用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,用于承载上行控制信息的OFDM符号位于除用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
又例如,在上行采用扩展循环移位前缀的情况下,用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,用于承载上行控制信息的OFDM符号位于除用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
可选地,在进行信道编码时,可以通过下列的方式确定每个分组编码器的输出比特数:根据物理上行控制信道中用于承载上行控制信息的OFDM符号数和分组编码器中分组码的个数确定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
可选地,在上行控制信息包括:HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,在承载上行控制信息的物理上行控制信道上发送上行控制信息包括:在上行控制信息的总比特数未超过第一预设值的情况下,在物理上行控制信道上发送上行控制信息;在上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的上行控制信息的总比特数;在该总比特数未超过第一预设值的情况下,在物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
可选地,在上行控制信息为CSI的情况下,在承载上行控制信息的物理上行控制信道上发送上行控制信息包括:在CSI的总比特数未超过第二预设值的情况下,在物理上行控制信道上发送CSI;在CSI的总比特数超过第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过第二预设值为止,在物理上行控制信道上发送经过打掉处理的CSI。
可选地,在承载上行控制信息的物理上行控制信道上发送上行控制信息的情况下,物理上行控制信道的发送功率根据以下参数至少之一确定:PCMAX,c(i),△F_PUCCH(F),△TxD(F'), h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;△F_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值,即该参数对于不同的PUCCH格式,有不同的配置值;△TxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值,其中,该参数对于不同的PUCCH格式有不同的配置值;当终端单天线发送PUCCH时,取值为0;h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;g(i)为累计功控量。
在本实施例中还提供了一种上行控制信息发送装置,用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述,下面对该装置中涉及到的模块进行说明。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的上行控制信息发送装置的结构示意图,如图5所示,该装置包括:预处理模块52和发送模块54,其中,预处理模块52,设置为对上行控制信息进行预处理;发送模块54,耦合至预处理模块52,设置为在承载上行控制信息的物理上行控制信道上发送上行控制信息。
图6是根据本发明实施例的上行控制信息发送装置的可选结构示意图一,如图6所示,可选地,预处理模块52包括以下至少之一:信源比特分割单元522、信道编码单元524、级联单元526、资源映射单元528,上述模块逐一耦合。
可选地,信道编码单元524包括:P个分组码,其中,P为大于2的整数。
图7是根据本发明实施例的上行控制信息发送装置的可选结构示意图二,如图7所示,可选地,信道编码单元524还包括:第一确定子单元5242,设置为根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者第二确定子单元5244,设置为根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
可选地,第一确定子单元5242设置为:分别根据TDD系统和FDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值;或者根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值。
可选地,上行控制信息包括以下之一:HARQ-ACK;CSI;HARQ-ACK和CSI;HARQ-ACK和SR;HARQ-ACK、CSI和SR。
可选地,P的取值包括以下之一:3、4、6、8、9、10、12。
图8是根据本发明实施例的上行控制信息发送装置的可选结构示意图三,如图8所示,可选地,在P的取值为3或者4的情况下,预处理模块52还包括:时域扩展单元527a、或者时域重复单元527b,分别耦合至级联单元526和资源映射单元528。
图9是根据本发明实施例的上行控制信息发送装置的可选结构示意图四,如图9所示,可选地,信源比特分割单元522包括:第三确定子单元5224,设置为根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
图10是根据本发明实施例的上行控制信息发送装置的可选结构示意图五,如图10所示,可选地,信道编码单元524包括:Q个分组码5246和1个咬尾卷积码5248,其中,Q为大于或者等于1的整数。
可选地,Q个分组码,用于对HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;咬尾卷积码,用于对CSI进行信道编码。
图11是根据本发明实施例的上行控制信息发送装置的可选结构示意图六,如图11所示,可选地,信道编码单元524还包括:第四确定子单元5249,耦合至分组码5246,设置为根据上行控制信息中HARQ-ACK的比特数确定Q的取值。
图12是根据本发明实施例的上行控制信息发送装置的可选结构示意图七,如图12所示,可选地,级联单元526包括:顺序级联子单元5262、或者交织级联子单元5264。
图13是根据本发明实施例的上行控制信息发送装置的可选结构示意图八,如图13所示,可选地,资源映射单元528包括以下之一:第一资源映射子单元5282,设置为按照频域子载波、时域OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元;第二资源映射子单元5284,设置为按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;第三资源映射子单元5286,设置为按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;第四资源映射子单元5288,设置为按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。
可选地,物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且一个子帧的两个时隙占用的频域资源的位置不同,其中,N为正整数。
可选地,物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,用于承载参考信号的OFDM符号数为1个或2个。
可选地,在上行采用常规循环移位前缀的情况下,用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,用于承载上行控制信息的OFDM符号位于除用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号;在上行采用扩展循环移位前缀的情况下,用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,用于承载上行控制信息的OFDM符号位于除用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
图14是根据本发明实施例的上行控制信息发送装置的可选结构示意图九,如图14所示,可选地,信道编码单元524还包括:第五确定子单元5247,耦合至分组编码器,设置为根据物理上行控制信道中用于承载上行控制信息的OFDM符号数和分组编码器中分组码的个数确 定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
图15是根据本发明实施例的上行控制信息发送装置的可选结构示意图十,如图15所示,可选地,发送模块54包括:第一发送单元542,设置为在上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且上行控制信息的总比特数未超过第一预设值的情况下,在物理上行控制信道上发送上行控制信息;第二发送单元544,设置为在上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的上行控制信息的总比特数;在该总比特数未超过第一预设值的情况下,在物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
图16是根据本发明实施例的上行控制信息发送装置的可选结构示意图十一,如图16所示,可选地,发送模块54包括:第三发送单元546,设置为在上行控制信息为CSI,且CSI的总比特数未超过第二预设值的情况下,在物理上行控制信道上发送CSI;第四发送单元548,设置为在上行控制信息为CSI,且CSI的总比特数超过第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过第二预设值为止,在物理上行控制信道上发送经过打掉处理的CSI。
图17是根据本发明实施例的上行控制信息发送装置的可选结构示意图十二,如图17所示,可选地,发送模块54还包括:功率控制单元549,设置为根据以下参数至少之一确定物理上行控制信道的发送功率:PCMAX,c(i),△F_PUCCH(F),△TxD(F'),h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;△F_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值;△TxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值;h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;g(i)为累计功控量。
本发明实施例还提供了一种用户设备,包括上述的上行控制信息发送装置。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
为了使本发明实施例的描述更加清楚,下面结合可选实施例进行描述和说明。
考虑到后续版本中,支持至多32个服务小区的载波聚合技术导致需要发送的HARQ-ACK比特数远超过10/20比特,现有的PUCCH格式3将无法承载。为此,本发明可选实施例给出一种上行控制信息的发送方法,从而实现于至多32个服务小区的聚合时上行控制信息的发送。
可选实施例1:
如图18所示,给出了本发明可选实施例的一个上行控制信息的预处理过程,该图为图5或者图6的一种变形形式。在该实例中,本发明可选实施例的预处理过程包括:信源比特分割,信道编码,级联,加扰,调制,时域扩展或重复,传输预变换,资源映射等。
其中,加扰,传输预变换的处理过程,可以参考现有LTE标准中PUCCH格式3中相应的处理过程,本发明可选实施例中不再重复。
其中,信道编码可以由P个分组码组成,其中P为大于2的整数。
可选地,P根据以下方式之一确定:
方式1:根据系统需要反馈上行控制信息最大比特数确定;
方式2:根据终端当前需要反馈的上行控制信息的比特数确定;
时域扩展或重复这一预处理过程的有无,取决于具体编码器的设计以及承载上行控制信息的物理上行信道的具体设计,因而在图18中以虚框的形式出现。
可选实施例2
当信道编码的分组码个数P根据系统需要反馈的上行控制信息的最大比特数确定时,可以采用以下两种方式确定分组码的个数:
方式1a:分别根据FDD和TDD系统需要反馈的HARQ-ACK的最大比特数确定。
其中,对于FDD,需要
Figure PCTCN2015093428-appb-000001
个分组编码器;其中的64等于32×2,也就是32个FDD服务小区聚合,每个服务小区均配置了2个传输块的传输模式的场景,该场景为FDD系统支持32个载波聚合需要反馈的HARQ-ACK最多的场景。
而对于TDD,需要
Figure PCTCN2015093428-appb-000002
个分组编码器;其中的128等于32×4,也就是32个TDD服务小区聚合,每个服务小区根据下行参考配置需要反馈4个下行子帧的HARQ-ACK的场景。
当分别根据FDD和TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值时,对于FDD和TDD系统由于需要支持的HARQ-ACK最大比特数不同,所需的分组码编解码器的个数也不同,不同分组码个数不同会导致编解码的复杂度不同。不过考虑到分组码的编解码都相对比较简单,编解码的复杂度并不是瓶颈。同时,标准化的工作量也不同,需要分别针对FDD和TDD系统引入不同编码器设计。
方式1b:根据TDD系统需要反馈的HARQ-ACK的最大比特数确定。
此时,需要的分组编码器个数
Figure PCTCN2015093428-appb-000003
当根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值时,所述确定的P个分组码编码器对于FDD同样适用。此时需要的分组编解码器的个数是最多的,但是标准化的工作量要相对小一些,因为只需要引入一种编码器设计即可。
可选实施例3
以采用6个分组码的编码器、采用6个OFDM符号承载上行控制信息的new PUCCH格式4为例进行说明。
假设承载上行控制信息的物理上行控制信道采用如图19所示的参考信号结构,每个时隙的第3个OFDM符号(也即上文所述的3号OFDM符号,在本发明实施例中的类似描述均参照该定义进行解释)用于承载参考信号,其他OFDM符号用于承载上行控制信息。每个时隙的OFDM符号从0开始编号,下同。
在这种结构下,可以承载上行控制信息的资源块单元数为12×12=144,假设采用QPSK调制方式,则一共可以承载288个编码比特。
分组编码器,可以采用现有LTE系统所支持的(32,O)分组码,其基本序列如图20所示。
图21给出了本发明信道编码器采用6个(32,O)分组码的一个结构示意图。HARQ-ACK输入比特先经过一个信源比特分割器,将输入比特分割为6部分,分别输入到6个(32,O)分组码中去,然后经分组编码器输出6路编码比特,编码比特再经过一个级联器6个并行的编码器输出串联起来,作为后续处理的输入。
如前所述,对于FDD系统,当采用方式1确定编码器中(32,O)分组码的个数,将需要6个(32,O)分组码,考虑到如图19所示的物理上行控制信道总共可以承载288个编码比特,则每个(32,O)分组编码器输出288/6=48个编码比特,而(32,O)分组编码器输出的是32个编码比特,其余的16个编码比特可以通过循环重复获得。假设(32,O)分组码编码输出的32个比特为
Figure PCTCN2015093428-appb-000004
则通过循环重复得到的48个编码输出比特为
Figure PCTCN2015093428-appb-000005
也即后面16个编码比特为前面16个编码比特的重复。
信源比特分割器与信道编码器的个数以及当前需要反馈的上行控制信息的比特数有关。假设当前需要反馈的上行控制信息比特数为N,N为正整数,信道编码器由P(P为大于2的整数)个(32,O)分组码组成,则经过信源比特分割器后,则有P个HARQ-ACK比特分块分别输入到P个(32,O)分组编码器中去。
Figure PCTCN2015093428-appb-000006
若m=0,则每个编码器的输入比特数为
Figure PCTCN2015093428-appb-000007
若m≠0,则前m个编码器的输入比特数为
Figure PCTCN2015093428-appb-000008
后P-m个编码器的输入比 特数为
Figure PCTCN2015093428-appb-000009
或者,前P-m个编码器的输入比特为
Figure PCTCN2015093428-appb-000010
后m个编码器的输入比特数为
Figure PCTCN2015093428-appb-000011
作为一个实施例,假设当前输入的控制信息比特数为N=26,
由于
Figure PCTCN2015093428-appb-000012
则前2个编码器的输入比特数为
Figure PCTCN2015093428-appb-000013
后面4个编码器的输入比特数为
Figure PCTCN2015093428-appb-000014
可选地,信源比特分割器可以有以下形式:
顺序分割;
交织分割。
图22和图23分别给出了信源比特分割器的上述两种形式。假设HARQ-ACK输入比特为a0,a1,....,a25,当采用如图22所示的顺序分割时,信源比特分割器的输出分别为a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25
而当采用如图23所示交织分割时,信源比特分割器的输出分别为a0,a6,a12,a18,a24,a1,a7,a13,a19,a25,a2,a8,a14,a20,a3,a9,a15,a21,a4,a10,a16,a22,a5,a11,a17,a23
假设6个(32,O)分组编码器的输出编码比特分别为:
Figure PCTCN2015093428-appb-000015
经过级联器后,当采用顺序级联时,如图24所示,则级联器输出为:
Figure PCTCN2015093428-appb-000016
而当采用交织级联时,如图25所示,假设后面的调制方式采用QPSK,则级联器输出为:
Figure PCTCN2015093428-appb-000017
级联器输出后的比特序列,经过一系列的处理,如加扰,调制,符号级循环移位循环移位,传输预变换,后最后映射到物理上行控制信道中用于承载上行控制信息的资源块单元去。其中,映射可以采用以下方式之一:
映射方式1:按照先频域子载波,后时域OFDM符号,再时隙的顺序映射到承载上行控制信息的资源块单元;
映射方式2:按照先频域子载波,后时隙,再时域OFDM符号的顺序映射到承载上行控制信息的资源块单元;
映射方式3:按照先时域OFDM符号,后时隙,再频域子载波的顺序映射到承载上行控制信息的资源块单元;
映射方式4:按照先时隙,后时域OFDM符号,再频域子载波的顺序映射到承载上行控制信息的资源块单元。
图26给出了,按照上述的交织级联以及映射方式1得到的每个编码器的输出在物理上行控制信道的映射示意图。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。值得注意的是,图26只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有一个传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例4
以采用12个分组码的编码器、采用6个OFDM符号承载上行控制信息的new PUCCH格式4为例进行说明。
假设承载上行控制信息的物理上行控制信道采用如图19所示的参考信号结构,每个时隙的第3个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息。
在这种结构下,可以承载上行控制信息的资源块单元(Resource Element,简称为RE)数为12×12=144,假设采用QPSK调制方式,则一共可以承载288个编码比特。
图27给出了本发明信道编码器采用12个(32,O)分组码的一个结构示意图。HARQ-ACK输入比特先经过一个信源比特分割器,将输入比特分割为12部分,分别输入到12个(32,O)分组码中去,然后经分组编码器输出12路编码比特,编码比特再经过一个级联器12个并行的编码器输出串联起来,作为后续处理的输入。
如前所述,对于TDD系统,当采用方式1确定编码器中(32,O)分组码的个数,将需要12 个(32,O)分组码,考虑到如图19所示的物理上行控制信道总共可以承载288个编码比特,则每个(32,O)分组编码器输出288/12=24个编码比特,而(32,O)分组编码器输出的是32个编码比特,截取其中的24比特作为最终编码器的输出。
信源比特分割、资源映射的处理过程与可选实施例2、可选实施例3雷同,只是相应参数的取值不同,因此这里不再累述。
可选实施例5
以采用6个分组码的编码器、采用5个OFDM符号承载上行控制信息的new PUCCH格式4为例进行说明。
假设承载上行控制信息的物理上行控制信道采用如图28或图29所示的参考信号结构,在图28中,每个时隙的第1和第5个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息,在图29中,每个时隙的第3个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息。所述两种参考信号结构所对应的物理上行控制信道的共同点是承载上行控制信息的OFDM符号数相同,用于承载上行控制信息的RE数为10×12=120,假设采用QPSK调制,则一共可以承载240个编码比特。
图30给出了本发明信道编码器采用6个(32,O)分组码的一个结构示意图。HARQ-ACK输入比特先经过一个信源比特分割器,将输入比特分割为6部分,分别输入到6个(32,O)分组码中去,然后经分组编码器输出6路编码比特,编码比特再经过一个级联器6个并行的编码器输出串联起来,作为后续处理的输入。
考虑到如图28或图29所示的物理上行控制信道总共可以承载240个编码比特,则每个(32,O)分组编码器输出240/6=40个编码比特,而(32,O)分组编码器输出的是32个编码比特,其余的8个编码比特可以通过循环重复获得。假设(32,O)分组码编码输出的32个比特为
Figure PCTCN2015093428-appb-000018
则通过循环重复得到的40个编码输出比特为
Figure PCTCN2015093428-appb-000019
也即后面8个编码比特为前面8个编码比特的重复。
信源比特分割、资源映射的处理过程与可选实施例2和可选实施例3雷同,只是相应参数的取值不同,因此这里不再累述。
可选实施例6
以采用12个分组码的编码器、采用5个OFDM符号承载上行控制信息的new PUCCH格式4为例进行说明。
假设承载上行控制信息的物理上行控制信道采用如图28或图29所示的参考信号结构,在图28中,每个时隙的第1和第5个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息,在图29中,每个时隙的第3个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息。所述两种参考信号结构所对应的物理上行控制信道的共同点是 承载上行控制信息的OFDM符号数相同,用于承载上行控制信息的RE数为10×12=120,假设采用QPSK调制,则一共可以承载240个编码比特。
当信道编码的分组码个数P根据本发明可选实施例的方式1确定时,也就根据系统需要反馈的上行控制信息的最大比特数确定时,
对于FDD,则需要
Figure PCTCN2015093428-appb-000020
个分组编码器;
对于TDD,则需要
Figure PCTCN2015093428-appb-000021
个分组编码器。
分组编码器,可以采用现有LTE系统所支持的(32,O)分组码,其基本序列如图20所示。
图31给出了本发明信道编码器采用12个(32,O)分组码的一个结构示意图。HARQ-ACK输入比特先经过一个信源比特分割器,将输入比特分割为12部分,分别输入到12个(32,O)分组码中去,然后经分组编码器输出12路编码比特,编码比特再经过一个级联器12个并行的编码器输出串联起来,作为后续处理的输入。
考虑到如图28或图29所示的物理上行控制信道总共可以承载240个编码比特,则每个(32,O)分组编码器输出240/12=20个编码比特,而(32,O)分组编码器输出的是32个编码比特,截取其中的20比特作为最终编码器的输出。
信源比特分割、资源映射的处理过程与可选实施例2和可选实施例3雷同,只是相应参数的取值不同,因此这里不再累述。
可选实施例7
在本可选实施例中对采用方式2确定P的取值时的上行控制信息处理进行了描述。
当信道编码的分组码个数P根据本发明可选实施例的方式2确定时,也就根据终端当前需要反馈的上行控制信息的比特数确定时,则P的确定还需要考虑以下因素:
物理上行控制信道中用于承载上行控制信息的RE数;
分组码的最大输入比特数;
每个分组码采用相同的设计;这里的相同设计体现在每个分组码输出的编码比特相同,因而也即是相同的循环重复或截短。
假设承载上行控制信息的物理上行控制信道采用如图19所示的参考信号结构,每个时隙的第3个OFDM符号用于承载参考信号,其他OFDM符号用于承载上行控制信息。在这种结构下,可以承载上行控制信息的RE数为12×12=144,假设采用QPSK调制方式,则一共可以承载288个编码比特。综合上面因素考虑,当终端当前需要反馈的比特数为X,P的取值,以及每个编码器的输出为:
当22<X<=33时,P=3,每个编码器输出48比特,48×3=144,此时预处理进一步包含2 阶的时域扩展或时域重复。
当33<X<=44时,P=4,每个编码比特输出36比特,36×4=144,此时预处理进一步包含2阶的时域扩展或时域重复。
当44<X<=66时,P=6,每个编码器输出48比特,48×6=288;
当66<X<=88时,P=8,每个编码器输出36比特,36×8=288;
当88<X<=99时,P=9,每个编码器输出32比特,32×9=288;
当99<X<=128时,P=12,每个编码器输出24比特,24×12=288;
假设承载上行控制信息的物理上行控制信道采用如图28或图29所示的参考信号结构,在这两种结构下,可以承载上行控制信息的RE数为12×10=120,假设采用QPSK调制方式,则一共可以承载240个编码比特。综合上面因素考虑,当终端当前需要反馈的比特数为X,P的取值,以及每个编码器的输出为:
当22<X<=33时,P=3,每个编码器输出40比特,40×3=120,此时预处理进一步包含2阶的时域扩展或时域重复。
当34<X<=44时,P=4,每个编码比特输出30比特,30×4=120,此时预处理进一步包含2阶的时域扩展或时域重复。
当44<X<=66时,P=6,每个编码器输出40比特,40×6=240;
当66<X<=88时,P=8,每个编码器输出30比特,30×8=240;
当88<X<=128时,P=12,每个编码器输出24比特,24×10=240;
可选实施例8
以采用3个分组码的编码器、采用6个OFDM符号承载上行控制信息为例进行说明。
如图32给出了本发明包含P=3的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在22<X<=33的场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到3个HARQ-ACK比特分块0,1,2,然后分别进入3个(32,O)分组编码器,且经过循环重复的方式,每个(32,O)分组编码器输出48比特,输出比特交织级联后,经过加扰、QPSK调制后,按照每12个符号进行一个时域的2阶时域扩展,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图33所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图33只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
当采用2阶时域扩展的时候,所述的物理上行控制信道还可以复用2个终端,不同终端使用不同的2阶时域扩展码来区分。另外,也可以通过时域重复的方式,时隙#1是时隙#0的重复发送,如图34所示。
可选实施例9
以采用4个分组码的编码器、采用6个OFDM符号承载上行控制信息为例进行说明。
如图35给出了本发明包含P=3的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在33<X<=44的场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到4个HARQ-ACK比特分块0,1,2,3,然后分别进入4个(32,O)分组编码器,且经过循环重复的方式,每个(32,O)分组编码器输出36比特,输出比特交织级联后,经过加扰、QPSK调制后,按照每12个符号进行一个时域的2阶时域扩展,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图36所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图36只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
当采用2阶时域扩展的时候,所述的物理上行控制信道还可以复用2个终端,不同终端使用不同的2阶时域扩展码来区分。另外,也可以通过时域重复的方式,时隙#1是时隙#0的重复发送。
可选实施例10
以采用8个分组码的编码器、采用6个OFDM符号承载上行控制信息为例进行说明。
如图37给出了本发明包含P=8的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在66<X<=88的场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到8个HARQ-ACK比特分块0,1,2,3,…,7,然后分别进入8个(32,O)分组编码器,且经过循环重复的方式,每个(32,O)分组编码器输出36比特,输出比特交织级联后,经过加扰、QPSK调制后,经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图38所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图38只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例11
以采用9个分组码的编码器、采用6个OFDM符号承载上行控制信息为例进行说明。
如图39给出了本发明包含P=9的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在88<X<99的场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到9个HARQ-ACK比特分块0,1,2,3,…,8,然后分别进入9个(32,O)分组编码器,每个(32,O)分组编码器输出32比特,输出比特交织级联后,经过加扰、QPSK调制后,经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图40所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图40只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例12
以采用3个分组码的编码器、采用5个OFDM符号承载上行控制信息为例进行说明。
如图41给出了本发明包含P=3的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在22<X<=33的场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到3个HARQ-ACK比特分块0,1,2,然后分别进入3个(32,O)分组编码器,且经过循环重复的方式,每个(32,O)分组编码器输出40比特,输出比特交织级联后,经过加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图28或图29所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图42所示(以图28的参考信号结构为例),其中时隙#1是时隙#0的重复。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图42只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例13
以采用4个分组码的编码器、采用5个OFDM符号承载上行控制信息为例进行说明。
如图43给出了本发明包含P=4的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在33<X<=44场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到3个HARQ-ACK比特分块0,1,2,3,然后分别进入4个(32,O)分组编码器,且经过截短的方式,每个(32,O)分组编码器输出30比特,输出比特交织级联后,经过加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实 施例的映射方式1映射到如图28或图29所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图44所示(以图28的参考信号结构为例),其中时隙#1是时隙#0的重复。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图44只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例14
以采用8个分组码的编码器、采用5个OFDM符号承载上行控制信息为例进行说明。
如图45给出了本发明包含P=8的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在66<X<=88场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到8个HARQ-ACK比特分块0,1,2,3,…,7,然后分别进入8个(32,O)分组编码器,且经过截短的方式,每个(32,O)分组编码器输出30比特,输出比特交织级联后,经过加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图28或图29所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图46所示(以图28的参考信号结构为例),。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图46只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例15
以采用10个分组码的编码器、采用5个OFDM符号承载上行控制信息为例进行说明。
如图47给出了本发明包含P=10的信道编码器的预处理示意图,本结构适用于上行控制信息的比特数在88<X<=110场景。在该实施例中,假设上行控制信息为HARQ-ACK,那么HARQ-ACK输入比特先经过信源比特分割,得到10个HARQ-ACK比特分块0,1,2,3,…,9,然后分别进入12个(32,O)分组编码器,且经过截短的方式,每个(32,O)分组编码器输出24比特,输出比特交织级联后,经过加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图28或图29所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图48所示(以图28的参考信号结构为例)。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图48只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例16
在本可选实施例中对上行控制信息的级联进行了简单描述。
所述的终端当前反馈的上行控制信息包括HARQ-ACK,或CSI,或HARQ-ACK和CSI,或HARQ-ACK和SR,或HARQ-ACK和CSI以及SR。所述上行控制信息比特序列的形成,按照现有协议规定的方式形成即可,这里不再累述。
可选实施例17
以信道编码器采用分组码和咬尾卷积码(Tail Biting CC,简称为TBCC)为例进行说明。
当所述终端当前反馈的上行控制信息包含HARQ-ACK和CSI,或HARQ-ACK、CSI以及SR时,所述的编码器可以由P个分组码和一个TBCC构成,其中所述的HARQ-ACK或HARQ-ACK和SR经由P个分组码编码,所述的CSI经由TBCC编码。
可选实施例18
以信道编码器采用3个分组码和1个咬尾卷积码为例进行说明。
图49给出了上述混合编码方案的一个示意图。在该实施例中,假设HARQ-ACK的输入比特为22<X<=33,则HARQ-ACK经过3个(32,O)分组编码器,每个编码器输出32比特,一共输出32×3=96比特。再假设所述上行控制信息在如图19所示的物理上行控制信道上发送,则所述的物理上行控制信道一共可以携带288个编码比特,HARQ-ACK的编码比特数为128,则CSI先添加循环冗余校验码(Cyclic Redundancy Check,简称为CRC)后再经过TBCC后输出(288-96=192)个编码比特。3个(32,O)编码器的输出以及TBCC编码器的输出经过如图50所示的级联、加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图51所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图51只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例19
以信道编码器采用4个分组码和1个咬尾卷积码为例进行说明。
图52给出了上述混合编码方案的一个示意图。在该实施例中,假设HARQ-ACK的输入比特为33<X<=44,则HARQ-ACK经过4个(32,O)分组编码器,每个编码器输出32比特,一共输出32×4=125比特。再假设所述上行控制信息在如图19所示的物理上行控制信道上发送,则所述的物理上行控制信道一共可以携带288个编码比特,HARQ-ACK的编码比特数为128,则CSI先添加CRC后再经过TBCC后输出(288-128=160)个编码比特。4个(32,O)编码器的输出以及TBCC编码器的输出经过如图53所示的级联、加扰、QPSK调制后,再经过传输预 变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图54所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图54只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例20
以信道编码器采用5个分组码和1个咬尾卷积码为例进行说明。
图55给出了上述混合编码方案的一个示意图。在该实施例中,假设HARQ-ACK的输入比特为44<X<=55,则HARQ-ACK经过5个(32,O)分组编码器,每个编码器输出32比特,一共输出32×5=160比特。再假设所述上行控制信息在如图19所示的物理上行控制信道上发送,则所述的物理上行控制信道一共可以携带288个编码比特,HARQ-ACK的编码比特数为128,则CSI先添加CRC后再经过TBCC后输出(288-160=128)个编码比特。5个(32,O)编码器的输出以及TBCC编码器的输出经过如图56所示的级联、加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图57所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图57只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例21
以信道编码器采用6个分组码和1个咬尾卷积码为例进行说明。
图58给出了上述混合编码方案的一个示意图。在该实施例中,假设HARQ-ACK的输入比特为55<X<=66,则HARQ-ACK经过6个(32,O)分组编码器,每个编码器输出32比特,一共输出32×6=192比特。再假设所述上行控制信息在如图19所示的物理上行控制信道上发送,则所述的物理上行控制信道一共可以携带288个编码比特,HARQ-ACK的编码比特数为192,则CSI先添加CRC后再经过TBCC后输出(288-192=196)个编码比特。5个(32,O)编码器的输出以及TBCC编码器的输出经过如图59所示的级联、加扰、QPSK调制后,再经过传输预变换处理,最后按照本发明可选实施例的映射方式1映射到如图19所示的物理上行控制信道中用于承载上行控制信息的RE中去,最后每个编码器的输出在物理上行控制信道的RE的映射如图60所示。从图可以看出,每个(32,O)编码器的输出,都均匀的分布在整个物理上行控制信道中去。同样,值得注意的是,图60只是给出了示意图,D0并不直接对应着(32,O)分组编码器输出经调制后对应的符号,因为调制后还有时域扩展以及传输预变换处理,这里只是 简单示意出,每个OFDM符号上对应的RE上承载的符号是由哪些编码器输出得到的而已,其中不同的编码器输出用不同的填充表示。
可选实施例22
在本发明可选实施例中,对上行控制信息的复用进行了描述。
本发明可选实施例所述的物理上行控制信道,主要是针对大数量载波聚合场景的,比如最多32个载波的聚合。本发明可选实施例所述的物理上行控制信道,可以用于承载HARQ-ACK,或CSI,或HARQ-ACK和CSI,或HARQ-ACK、SR和CSI时。
其中,HARQ-ACK是上行控制信息中最重要的部分,新的物理上行控制信道的设计主要是针对HARQ-ACK反馈来确定的。本发明可选实施例所述的物理上行控制信道以需要反馈的HARQ-ACK的最大比特数为设计目标,也即本发明可选实施例所述的物理上行控制信道最大可以承载128个比特。
但是基于HARQ-ACK设计的物理上行控制信道,除了可以承载HARQ-ACK外,还可以用于承载CSI,HARQ-ACK和CSI。
当所述上行控制信息的总的比特数不超过第一预设值时,在所述物理上行控制信道上发送所述上行控制信息;当所述上行控制信息的总的比特数超过了第一预设值时,先对HARQ-ACK进行空间绑定操作后,再计算总的上行控制信息的比特数,如果不超过第一预设值时,在所述物理上行控制信道上发送所述经过了空间绑定后的HARQ-ACK或经过了空间绑定后的HARQ-ACK和其他上行控制信息;否则,在所述物理上行控制信道上发送所述经过了空间绑定后的HARQ-ACK或经过了空间绑定后的HARQ-ACK和SR,打掉CSI。
可选地,当所述上行控制信息为CSI时,当所述上行控制信息的比特数不超过第二预设值时,在所述物理上行控制信道上发送所述上行控制信息;当所述上行控制信息的比特数超过第二预设值时,根据预设的优先级原则打掉优先级低的M个服务小区的CSI,直到剩下的服务小区的CSI的总的比特数不超过第二预设值为止,在所述物理上行控制信道上发送所述经过了打掉处理的CSI。
其中,所述第二预设值的一个可选取值为128。
可选实施例23
采用本发明可选实施例所述的new PUCCH格式4的发送功率控制将在本可选实施例中进行描述。
本发明可选实施例提供了一种新的物理上行控制信道(PUCCH)用于承载上行控制信息。其参考信号结构以及编码方案如前面可选实施1~22例所示。由于本发明可选实施例所述的PUCCH格式相对于已有的PUCCH是不同的,因而需要重新考虑其发送功率的确定方法。
当终端在服务小区c的子帧i上发送PUCCH时,终端按照如下公式确定PUCCH的发送功率:
Figure PCTCN2015093428-appb-000022
其中:
PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;对于本发明的新的PUCCH格式,该参数的配置可以沿用现有协议规定的数值;
F_PUCCH(F)为高层配置给终端的一个参数,该参数对于不同的PUCCH格式,有不同的配置值;由于本发明提出了一种不同于现有协议定义的PUCCH格式,因此,该参数的取值需要引入新的取值。
TxD(F')为当终端配置了两天线发送PUCCH时,高层配置给终端的一个参数,该参数对于不同的PUCCH格式有不同的配置值;由于本发明提出了一种不同于现有协议定义的PUCCH格式,因此,该参数的取值需要引入新的取值;当终端单天线发送PUCCH时,取值为0;
PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;
g(i)为累计功控量;该参数可以沿用现有协议的方式来确定。
h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量。
可选的,
Figure PCTCN2015093428-appb-000023
其中,kHARQ,kCQI,
Figure PCTCN2015093428-appb-000024
PHARQ,PCQI,PSR为相应的上行控制信息所对应的编码器中使用的分组码的个数。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及可选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的对象在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其 它步骤或单元。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (43)

  1. 一种上行控制信息发送方法,包括:
    对上行控制信息进行预处理;
    在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息。
  2. 根据权利要求1所述的方法,其中,所述预处理包括以下至少之一:
    信源比特分割、信道编码、级联、资源映射。
  3. 根据权利要求2所述的方法,其中,在所述预处理包括信道编码的情况下,用于信道编码的信道编码器包括:
    P个分组码,其中,P为大于2的整数。
  4. 根据权利要求3所述的方法,其中,所述信道编码还包括:
    根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者
    根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
  5. 根据权利要求4所述的方法,其中,根据系统需要反馈的上行控制信息的最大比特数确定P的取值包括:
    分别根据时分双工TDD系统和频分双工FDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值;或者
    根据TDD系统需要反馈的混合自动重传请求应答HARQ-ACK的最大比特数确定P的取值。
  6. 根据权利要求1所述的方法,其中,所述上行控制信息包括以下之一:
    HARQ-ACK;信道状态信息CSI;HARQ-ACK和CSI;HARQ-ACK和调度请求SR;HARQ-ACK、CSI和SR。
  7. 根据权利要求3所述的方法,其中,P的取值包括以下之一:3、4、6、8、9、10、12。
  8. 根据权利要求3所述的方法,其中,在P的取值为3或者4的情况下,所述预处理还包括:时域扩展、或者时域重复。
  9. 根据权利要求2所述的方法,其中,在所述预处理包括信源比特分割的情况下,所述信源比特分割包括:
    根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
  10. 根据权利要求2所述的方法,其中,在所述预处理包括信道编码的情况下,用于信道编码的信道编码器包括:
    Q个分组码和1个咬尾卷积码,其中,Q为大于或者等于1的整数。
  11. 根据权利要求10所述的方法,其中,在所述上行控制信息为HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,所述信道编码包括:
    通过所述Q个分组码对所述HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;
    通过所述咬尾卷积码对所述CSI进行信道编码。
  12. 根据权利要求10所述的方法,其中,所述信道编码还包括:
    根据所述上行控制信息中HARQ-ACK的比特数确定Q的取值。
  13. 根据权利要求2所述的方法,其中,在所述预处理包括级联的情况下,所述级联为以下方式之一:
    顺序级联、或者交织级联。
  14. 根据权利要求2所述的方法,其中,在所述预处理包括资源映射的情况下,所述资源映射为以下方式之一:
    按照频域子载波、时域正交频分复用OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元;
    按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;
    按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;
    按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。
  15. 根据权利要求1所述的方法,其中,所述物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且所述一个子帧的两个时隙占用的频域资源的位置不同,其中,N为正整数。
  16. 根据权利要求15所述的方法,其中,所述物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,所述用于承载参考信号的OFDM符号数为K,K的取值为1或2。
  17. 根据权利要求16所述的方法,其中,
    在上行采用常规循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号;
    在上行采用扩展循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
  18. 根据权利要求16所述的方法,其中,在所述预处理包括信道编码的情况下,所述信道编码还包括:
    根据所述物理上行控制信道中用于承载上行控制信息的OFDM符号数和所述分组编码器中分组码的个数确定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
  19. 根据权利要求1所述的方法,其中,在所述上行控制信息包括:HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI的情况下,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息包括:
    在所述上行控制信息的总比特数未超过第一预设值的情况下,在所述物理上行控制信道上发送所述上行控制信息;
    在所述上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的所述上行控制信息的总比特数;在该总比特数未超过所述第一预设值的情况下,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
  20. 根据权利要求1所述的方法,其中,在所述上行控制信息为CSI的情况下,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息包括:
    在所述CSI的总比特数未超过第二预设值的情况下,在所述物理上行控制信道上发送所述CSI;
    在所述CSI的总比特数超过所述第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过所述第二预设值为止,在所述物理上行控制信道上发送经过打掉处理的CSI。
  21. 根据权利要求1所述的方法,其中,在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息的情况下,所述物理上行控制信道的发送功率根据以下参数至少之一确定:
    PCMAX,c(i),ΔF_PUCCH(F),ΔTxD(F'),h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);
    其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;
    ΔF_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值;
    ΔTxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值;
    h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;
    PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;
    g(i)为累计功控量。
  22. 一种上行控制信息发送装置,包括:
    预处理模块,设置为对上行控制信息进行预处理;
    发送模块,设置为在承载所述上行控制信息的物理上行控制信道上发送所述上行控制信息。
  23. 根据权利要求22所述的装置,其中,所述预处理模块包括以下至少之一:
    信源比特分割单元、信道编码单元、级联单元、资源映射单元。
  24. 根据权利要求23所述的装置,其中,所述信道编码单元包括:
    P个分组码,其中,P为大于2的整数。
  25. 根据权利要求24所述的装置,其中,所述信道编码单元还包括:
    第一确定子单元,设置为根据系统需要反馈的上行控制信息的最大比特数确定P的取值;或者
    第二确定子单元,设置为根据终端当前需要反馈的上行控制信息的比特数确定P的取值。
  26. 根据权利要求25所述的装置,其中,所述第一确定子单元设置为:
    分别根据时分双工TDD系统和频分双工FDD系统需要反馈的混合自动重传请求应答HARQ-ACK的最大比特数确定P的取值;或者
    根据TDD系统需要反馈的HARQ-ACK的最大比特数确定P的取值。
  27. 根据权利要求22所述的装置,其中,所述上行控制信息包括以下之一:
    HARQ-ACK;信道状态信息CSI;HARQ-ACK和CSI;HARQ-ACK和调度请求SR;HARQ-ACK、CSI和SR。
  28. 根据权利要求24所述的装置,其中,P的取值包括以下之一:3、4、6、8、9、10、12。
  29. 根据权利要求24所述的装置,其中,在P的取值为3或者4的情况下,所述预处理模块还包括:时域扩展单元、或者时域重复单元。
  30. 根据权利要求23所述的装置,其中,所述信源比特分割单元包括:
    第三确定子单元,设置为根据用于信道编码的信道编码器个数以及当前需要反馈的上行控制信息的比特数确定信源比特分割的数目。
  31. 根据权利要求23所述的装置,其中,所述信道编码单元包括:
    Q个分组码和1个咬尾卷积码,其中,Q为大于或者等于1的整数。
  32. 根据权利要求31所述的装置,其中,
    所述Q个分组码,用于对所述HARQ-ACK,或者,HARQ-ACK和SR进行信道编码;
    所述咬尾卷积码,用于对所述CSI进行信道编码。
  33. 根据权利要求31所述的装置,其中,所述信道编码单元还包括:
    第四确定子单元,设置为根据所述上行控制信息中HARQ-ACK的比特数确定Q的取值。
  34. 根据权利要求23所述的装置,其中,所述级联单元包括:
    顺序级联子单元、或者交织级联子单元。
  35. 根据权利要求23所述的装置,其中,所述资源映射单元包括以下之一:
    第一资源映射子单元,设置为按照频域子载波、时域正交频分复用OFDM符号、时隙的顺序,映射到承载上行控制信息的资源块单元;
    第二资源映射子单元,设置为按照频域子载波、时隙、时域OFDM符号的顺序,映射到承载上行控制信息的资源块单元;
    第三资源映射子单元,设置为按照时域OFDM符号、时隙、频域子载波的顺序,映射到承载上行控制信息的资源块单元;
    第四资源映射子单元,设置为按照时隙、时域OFDM符号、频域子载波的顺序,映射到承载上行控制信息的资源块单元。
  36. 根据权利要求22所述的装置,其中,所述物理上行控制信道在频域上包含N个物理资源块,时域上占用一个子帧,且所述一个子帧的两个时隙占用的频域资源的位置不同,其中,N为正整数。
  37. 根据权利要求36所述的装置,其中,所述物理上行控制信道在频域上包含用于承载上行控制信息的OFDM符号,以及用于承载参考信号的OFDM符号,其中,所述用于承载参 考信号的OFDM符号数为K,K的取值为1或2。
  38. 根据权利要求37所述的装置,其中,
    在上行采用常规循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,或者位于1号和5号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号;
    在上行采用扩展循环移位前缀的情况下,所述用于承载参考信号的OFDM符号位于每个时隙的3号OFDM符号位置,所述用于承载上行控制信息的OFDM符号位于除所述用于承载参考信号的OFDM符号之外的其他OFDM符号位置,其中,每个时隙的OFDM符号由0号开始编号。
  39. 根据权利要求37所述的装置,其中,所述信道编码单元还包括:
    第五确定子单元,设置为根据所述物理上行控制信道中用于承载上行控制信息的OFDM符号数和所述分组编码器中分组码的个数确定用于信道编码的信道编码器中的每个分组编码器的输出比特数。
  40. 根据权利要求22所述的装置,其中,所述发送模块包括:
    第一发送单元,设置为在所述上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且所述上行控制信息的总比特数未超过第一预设值的情况下,在所述物理上行控制信道上发送所述上行控制信息;
    第二发送单元,设置为在所述上行控制信息包括HARQ-ACK,或者,HARQ-ACK和CSI,或者,HARQ-ACK、SR和CSI,且所述上行控制信息的总比特数超过了第一预设值的情况下,在对HARQ-ACK进行空间绑定后,再计算经过空间绑定的所述上行控制信息的总比特数;在该总比特数未超过所述第一预设值的情况下,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和其他上行控制信息;否则,在所述物理上行控制信道上发送经过空间绑定的HARQ-ACK,或者,经过空间绑定的HARQ-ACK和SR,并打掉CSI。
  41. 根据权利要求22所述的装置,其中,所述发送模块包括:
    第三发送单元,设置为在所述上行控制信息为CSI,且所述CSI的总比特数未超过第二预设值的情况下,在所述物理上行控制信道上发送所述CSI;
    第四发送单元,设置为在所述上行控制信息为CSI,且所述CSI的总比特数超过所述第二预设值的情况下,根据预设优先级原则打掉优先级低的服务小区的CSI,直到剩下的服务小区的CSI的总比特数未超过所述第二预设值为止,在所述物理上行控制信道上发送经过打掉处理的CSI。
  42. 根据权利要求22所述的装置,其中,所述发送模块还包括:
    功率控制单元,设置为根据以下参数至少之一确定所述物理上行控制信道的发送功率:
    PCMAX,c(i),ΔF_PUCCH(F),ΔTxD(F'),h(nCQI,nHARQ,nSR),PO_PUCCH,g(i);
    其中,PCMAX,c(i)为配置给终端的在服务小区c的子帧i上的发送功率;
    ΔF_PUCCH(F)为高层配置给终端的、对应于所采用的PUCCH格式的配置值;
    ΔTxD(F')为高层配置给使用两天线发送PUCCH的终端的、对应于所采用的PUCCH格式的配置值;
    h(nCQI,nHARQ,nSR)为与输入的上行控制信息比特数相关的量;
    PO_PUCCH为高层配置参数PO_NOMINAL_PUCCH和高层配置参数PO_UE_PUCCH的和;
    g(i)为累计功控量。
  43. 一种用户设备,包括:如权利要求22至42中任一项所述的上行控制信息发送装置。
PCT/CN2015/093428 2015-04-10 2015-10-30 上行控制信息发送方法、装置及用户设备 WO2016161801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510169511.0A CN106160956A (zh) 2015-04-10 2015-04-10 上行控制信息发送方法、装置及用户设备
CN201510169511.0 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161801A1 true WO2016161801A1 (zh) 2016-10-13

Family

ID=57072113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093428 WO2016161801A1 (zh) 2015-04-10 2015-10-30 上行控制信息发送方法、装置及用户设备

Country Status (2)

Country Link
CN (1) CN106160956A (zh)
WO (1) WO2016161801A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019316A (zh) * 2016-11-03 2020-12-01 Oppo广东移动通信有限公司 传输上行控制信息的方法、装置、网络设备及存储介质
CN112584512A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 Sps pdsch的harq-ack传输方法
WO2022152272A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 上行控制信息uci传输方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282882B (zh) 2017-01-06 2021-06-22 华为技术有限公司 信息传输方法、终端设备及接入网设备
CN108632191B (zh) * 2017-03-24 2022-06-03 中兴通讯股份有限公司 物理上行控制信道配置方法、基站以及用户设备
US10616916B2 (en) * 2017-05-31 2020-04-07 Kt Corporation Methods for multiplexing scheduling request information and HARQ ACK/NACK information while transmitting and receiving PUCCH and apparatuses thereof
CN109660316A (zh) * 2017-10-11 2019-04-19 中兴通讯股份有限公司 信号发送方法及装置
CN109802819B (zh) * 2017-11-16 2024-03-05 北京三星通信技术研究有限公司 上行控制信息处理方法及终端
CN110034867B (zh) * 2018-01-11 2020-09-08 维沃移动通信有限公司 用于传输harq-ack的方法、终端设备和网络设备
WO2019153212A1 (zh) 2018-02-08 2019-08-15 Oppo广东移动通信有限公司 无线通信方法、终端和网络设备
ES2907009T3 (es) 2018-02-11 2022-04-21 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo para transmitir información de control de enlace ascendente
CN110351049B (zh) * 2018-04-04 2020-10-20 电信科学技术研究院有限公司 一种上行控制信息传输的方法与设备
CN110740019B (zh) * 2018-07-18 2021-03-30 电信科学技术研究院有限公司 物理上行控制信道的传输方法、装置、终端及网络侧设备
CN110011945B (zh) * 2019-04-22 2021-10-29 武汉虹信科技发展有限责任公司 Pucch处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104458A (zh) * 2010-07-02 2011-06-22 电信科学技术研究院 上行控制信息的传输方法和设备
WO2012121546A2 (en) * 2011-03-10 2012-09-13 Lg Electronics Inc. Method and apparatus for transmitting channel quality control information using pucch format 3 in a wireless access system
US20120294268A1 (en) * 2010-01-27 2012-11-22 Hyun Woo Lee Method and apparatus for transmitting uplink control information in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294268A1 (en) * 2010-01-27 2012-11-22 Hyun Woo Lee Method and apparatus for transmitting uplink control information in wireless communication system
CN102104458A (zh) * 2010-07-02 2011-06-22 电信科学技术研究院 上行控制信息的传输方法和设备
WO2012121546A2 (en) * 2011-03-10 2012-09-13 Lg Electronics Inc. Method and apparatus for transmitting channel quality control information using pucch format 3 in a wireless access system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019316A (zh) * 2016-11-03 2020-12-01 Oppo广东移动通信有限公司 传输上行控制信息的方法、装置、网络设备及存储介质
CN112165375A (zh) * 2016-11-03 2021-01-01 Oppo广东移动通信有限公司 传输上行控制信息的方法、装置、网络设备及存储介质
CN112019316B (zh) * 2016-11-03 2022-09-02 Oppo广东移动通信有限公司 传输上行控制信息的方法、装置、网络设备及存储介质
CN112165375B (zh) * 2016-11-03 2022-09-02 Oppo广东移动通信有限公司 传输上行控制信息的方法、装置、网络设备及存储介质
CN112584512A (zh) * 2019-09-30 2021-03-30 大唐移动通信设备有限公司 Sps pdsch的harq-ack传输方法
CN112584512B (zh) * 2019-09-30 2023-04-07 大唐移动通信设备有限公司 Sps pdsch的harq-ack传输方法
WO2022152272A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 上行控制信息uci传输方法和装置

Also Published As

Publication number Publication date
CN106160956A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016161801A1 (zh) 上行控制信息发送方法、装置及用户设备
KR102508791B1 (ko) 통신 방법 및 디바이스
JP7073378B2 (ja) 物理アップリンクデータチャンネルで制御情報多重化
JP6247327B2 (ja) アップリンク信号を伝送する方法及びそのための装置
CN111448839B (zh) 用户设备、基站和无线通信方法
CN111510252B (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
EP3080939B1 (en) Group-based resource element mapping for radio transmission of data
CN106559878B (zh) 上行控制信息uci发送、获取方法及装置
JP2023017969A (ja) 無線通信システムの制御チャネルの伝送及び受信方法、装置及びシステム
WO2017167003A1 (zh) 上行控制信息的发送方法、装置及存储介质
US11212036B2 (en) Data communication method, device, and system
CN110247747B (zh) 通信系统中反馈信息的传输方法及装置
KR101867820B1 (ko) 무선통신 시스템에서의 제어정보의 전송 방법 및 장치
KR101994056B1 (ko) Ack/nack 응답 메시지의 매핑 방법 및 단말
CN107113097B (zh) 在无线通信系统中发送ack/nack的方法和设备
RU2684580C1 (ru) Способ передачи и способ приема информации управления восходящей линией и соответствующее устройство
US8948112B2 (en) Mobile communication system, base station apparatus, mobile station apparatus, mobile communication method, and integrated circuit
WO2020192609A1 (zh) 资源的确定、接收方法、装置、电子装置及存储介质
US11368243B2 (en) Codeword adaptation for non-orthogonal coded access
KR20110051156A (ko) 다중 안테나 전송 기법을 지원하기 위한 효율적인 제어정보 전송 방법 및 장치
CN110024344A (zh) 蜂窝通信系统中的上行链路传输方法和装置
CN111566961B (zh) 一种信息传输方法及设备
WO2014112835A1 (ko) 무선통신 시스템에서 상향링크 신호 전송 방법 및 장치
CN110445595B (zh) 一种低延时的无线通信方法和装置
US11337237B2 (en) Methods and devices for transmitting/receiving scheduling commands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888351

Country of ref document: EP

Kind code of ref document: A1