WO2018121216A1 - 散热基板及其制备方法和应用以及电子元器件 - Google Patents

散热基板及其制备方法和应用以及电子元器件 Download PDF

Info

Publication number
WO2018121216A1
WO2018121216A1 PCT/CN2017/115139 CN2017115139W WO2018121216A1 WO 2018121216 A1 WO2018121216 A1 WO 2018121216A1 CN 2017115139 W CN2017115139 W CN 2017115139W WO 2018121216 A1 WO2018121216 A1 WO 2018121216A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
metal layer
substrate
solder
Prior art date
Application number
PCT/CN2017/115139
Other languages
English (en)
French (fr)
Inventor
连俊兰
熊贻婧
林宏业
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/474,680 priority Critical patent/US20200126886A1/en
Priority to EP17885508.6A priority patent/EP3564988A4/en
Publication of WO2018121216A1 publication Critical patent/WO2018121216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the present disclosure relates to the field of heat dissipation substrates for electronic component packaging, and in particular to a heat dissipation substrate, a method and application thereof, and an electronic component.
  • packaging materials In the fabrication process of electronic components, it is often necessary to use packaging materials to solve the thermal failure of electronic circuits, such as chips.
  • the packaging material needs to be able to withstand the soldering of the copper substrate and carry the chip, and at the same time be responsible for heat dissipation. Since the encapsulating material is in contact with the cooling liquid during the heat exchange process, the encapsulating material is also required to have anticorrosive properties.
  • the encapsulating material is usually applied in the form of a substrate, and one side of the substrate is required to solder the copper substrate and carry the chip, which can have a soldering function; the opposite side is in contact with the cooling liquid to achieve heat dissipation, and can have an anti-corrosion function.
  • the current common solution is to plate the entire substrate with nickel.
  • this strictly requires the quality of the surface of the substrate, such as pits, blisters, etc., nickel plating can not cover these defects, resulting in low welding excellent rate.
  • the thickness of the plating layer can be increased by the design of the plating structure, the detail increases the cost of production.
  • the prior art adopts a nickel plating method in the preparation process of electronic components to solve the heat dissipation and anti-corrosion problems of the packaging materials, but has the defects of low product excellent rate and high cost.
  • the purpose of the present disclosure is to solve the above problems of the heat dissipation substrate used for packaging electronic components, and to provide a heat dissipation substrate, a preparation method and application thereof, and an electronic component.
  • the present disclosure provides a heat dissipation substrate, wherein the heat dissipation substrate comprises: a metal-ceramic composite plate, the metal-ceramic composite plate is a metal layer coated ceramic body; on an outer surface of the metal layer Forming a metal oxide layer integral with the metal layer; and a solder metal layer formed on at least a portion of an outer surface of the metal oxide layer, the solder metal layer being used to bond the copper substrate and the carrier chip.
  • the present disclosure also provides a method for preparing the heat dissipation substrate of the present disclosure, comprising: directly performing metal oxidation on a metal-ceramic composite plate, wherein the metal-ceramic composite plate is a composite plate with a metal layer coated ceramic body; A metal oxide layer integrated with the metal is formed on the outer surface of the metal layer; metal spraying is performed on at least part of the outer surface of the metal oxide layer to form a solder metal layer.
  • the present disclosure also provides an application of the heat dissipation substrate of the present disclosure in an electronic component.
  • the present disclosure also provides an electronic component including: a heat dissipation substrate having a solder metal layer; and a first solder layer sequentially formed on the surface of the solder metal layer a copper substrate, a liner, a second copper substrate, a second solder layer and a chip, wherein the chip and the second copper substrate are connected by wires; the heat dissipation substrate is a heat dissipation substrate of the present disclosure.
  • the in-situ direct oxidation on the outer surface of the metal layer of the metal-ceramic composite plate forms a metal oxide layer, which can provide a heat dissipation substrate having heat dissipation, anti-corrosion and soldering functions, and the heat-dissipating substrate has a stronger bonding strength.
  • Better carrying the chip overcomes the shortcomings of the nickel plating method in the prior art.
  • the obtained heat dissipating substrate can be provided with better soldering performance, that is, by the static drop method, the heat dissipating substrate has better wetting property. Further provided heat sink substrates have better corrosion resistance through neutral salt spray testing.
  • FIG. 1 is a schematic structural view of a heat dissipation substrate
  • Figure 3 is a schematic view of the contact angle ⁇ of the static drop method.
  • Metal-ceramic composite board 2. Metal oxide layer 3. Welding metal layer
  • a first object of the present disclosure is to provide a heat dissipating substrate, as shown in FIG. 1 , wherein the heat dissipating substrate comprises: a metal-ceramic composite board 1 , wherein the metal-ceramic composite board is a metal layer coated ceramic body; a metal oxide layer 2 integrated with the metal layer is formed on an outer surface of the metal layer; and a solder metal layer 3 formed on at least a portion of an outer surface of the metal oxide layer, the solder metal layer 3 being used for bonding Copper substrate and carrier chip.
  • the metal oxide layer is formed by directly oxidizing the metal layer to coat the metal layer.
  • the metal oxide layer is formed by direct in-situ oxidation of the metal layer, and the bonding strength can be greater.
  • the cross section of the heat dissipating substrate provided by the present disclosure can be observed by a metallographic microscope, and there is no boundary between the metal layer of the metal-ceramic composite board and the metal oxide layer.
  • a metal oxide layer is obtained by re-oxidation by coating or depositing a metal layer, a clear boundary exists between the metal layer of the metal-ceramic composite sheet and the formed metal oxide layer as observed by a metallographic microscope.
  • the metal oxide layer may be provided with a soldering surface (or A surface) and a heat dissipation surface (or a B surface).
  • the soldering surface (or the A surface) and the heat dissipating surface (or the B surface) may be two opposite surfaces on the heat dissipating substrate, and are generally the two surfaces having the largest area on the heat dissipating substrate.
  • the solder metal layer is only disposed on the soldering surface and can be further used for soldering a copper substrate and a chip.
  • the heat dissipating surface may be in contact with the cooling liquid phase for heat dissipation.
  • the solder metal layer is disposed on the metal oxide layer on one side of the heat dissipation substrate; and the metal oxide layer on the other side is used to contact the coolant to dissipate heat.
  • the solder metal layer optionally, on the soldering surface, partially covers the metal oxide layer.
  • the coverage of the solder metal layer on the metal oxide layer may be as long as the soldering of the copper substrate and the chip is satisfied.
  • the provided heat dissipation substrate can have better bonding strength, weldability, and corrosion resistance by forming the metal oxide layer in situ as described above.
  • the heat dissipation substrate may be selected from a substrate material conventionally used in an electronic component packaging material as a substrate, for example, a metal-containing substrate, and a metal-ceramic composite plate may be preferably used as the substrate. Further, the metal oxide layer and the solder metal layer are formed on the substrate.
  • the ceramic body is selected from a SiC ceramic body or a Si ceramic body; and the metal layer is an Al metal layer, a Mg metal layer or a Ti metal layer.
  • the metal-ceramic composite panels are commercially available.
  • the thickness of the ceramic body is not particularly limited and may be about 3 mm.
  • the metal oxide layer is formed in situ for the metal layer, and the metal oxide layer is an oxide corresponding to a metal used for the metal layer.
  • the metal oxide layer is an aluminum oxide layer, a magnesium oxide layer or a titanium oxide layer.
  • the solder metal layer may be formed using a metal which is conventionally used for soldering.
  • the solder metal layer is a copper metal layer or a nickel metal layer.
  • the thickness of each layer included in the heat dissipation substrate can achieve heat dissipation, anti-corrosion, and the function of connecting the copper substrate and the carrier chip.
  • the metal layer has a thickness of 20 to 500 ⁇ m;
  • the thickness of the oxide layer is 5 to 300 ⁇ m;
  • the thickness of the solder metal layer is 20 to 1000 ⁇ m.
  • the thickness of the metal oxide layer is less than the thickness of the metal layer.
  • the metal layer and the metal oxide layer in the heat dissipation substrate may have better bonding strength.
  • the bonding strength between the metal oxide layer and the metal layer is 4B or more according to the Baige method.
  • a second object of the present disclosure is to provide a method for preparing a heat dissipation substrate of the present disclosure, comprising: directly performing metal oxidation on a metal-ceramic composite plate, wherein the metal-ceramic composite plate is a composite of a metal layer coated ceramic body a metal oxide layer formed integrally with the metal on the outer surface of the metal layer; metal spraying on at least a portion of the outer surface of the metal oxide layer to form a solder metal layer.
  • an existing material suitable for packaging of an electronic component may be selected, and may be a metal-containing material, for example, a metal-ceramic composite plate may be used as a substrate for forming the heat dissipation substrate.
  • the ceramic body may be selected from a SiC ceramic body or a Si ceramic body;
  • the metal layer may be selected from an Al metal layer, a Mg metal layer or a Ti metal layer.
  • the thickness of the ceramic body is not particularly limited and may be about 3 mm.
  • the metal layer may have a thickness of 20 to 500 ⁇ m.
  • the metal oxide layer may be directly formed in situ on the outer surface of the metal layer in the metal-ceramic composite panel by the metal oxidation. If the metal layer is an Al metal layer, an aluminum oxide layer is obtained; when the metal layer is a Mg metal layer, a magnesium oxide layer is obtained; and when the metal layer is a Ti metal layer, a titanium oxide layer is obtained.
  • the metal oxidation may be carried out in various specific embodiments as long as a metal oxide layer satisfying a desired thickness is formed on the outer surface of the metal layer in the metal-ceramic composite sheet.
  • the method of metal oxidation comprises chemical oxidation, anodization, micro-arc oxidation or phosphating.
  • the metal oxidation is carried out to obtain a metal oxide layer having a sufficient thickness.
  • the metal oxide layer formed by the metal oxidation has a thickness of 5 to 300 ⁇ m.
  • the method and conditions for chemical oxidation include removing the surface oil stain and the surface oxide layer from the metal-ceramic composite sheet, and then placing it in the chemical oxidation solution for 5 to 10 minutes.
  • the chemical oxidizing solution contains 50 to 80 ml/L of phosphoric acid and 20 to 25 g/L of chromic anhydride (chromium trioxide).
  • the temperature of the chemical oxidation solution is 30 to 40 °C.
  • the method and conditions for anodizing include: removing the surface oil and surface oxide layer from the metal-ceramic composite sheet, and then placing it in a chemical oxidizing solution for 10 to 30 minutes for blocking treatment.
  • the sealing treatment can be closed with hot water.
  • the oxidizing solution is a sulfuric acid solution containing 180 to 220 g/L, a temperature of -5 ° C to 25 ° C, a voltage of 10 to 22 V, and a current density of 0.5 to 2.5 A/dm 2 .
  • the method and conditions for micro-arc oxidation include: removing the surface oil from the metal-ceramic composite plate, placing it in a micro-arc oxidizing solution in a micro-arc oxidation tank for electrification for micro-arc oxidation, and performing hot-water sealing after completion of micro-arc oxidation.
  • the micro-arc oxidizing solution is generally a weakly alkaline solution and may contain a silicate, a phosphate, a borate or the like.
  • the temperature of the micro-arc oxidation is controlled at 20 to 60 ° C, and the voltage is generally controlled at 400 to 750 V.
  • the micro-arc oxidation can also be carried out using a low pressure micro-arc oxidation technique.
  • the phosphating methods and conditions include: removing the surface oil from the metal-ceramic composite board, surface treatment with a surface conditioner of type PL-Z (Guangzhou Pakajing Precision Co., Ltd.) for 5 min, using phosphating agent FT-7 (Guangzhou) Paccarat Fine Co., Ltd.) Phosphate for 5min, dry.
  • the metal spray is used to form the weld metal layer.
  • the solder metal layer may be formed in a partial region on one side surface of the heat dissipation substrate for further soldering the copper substrate and the chip.
  • the method of metal spraying comprises: cold spraying, plasma spraying, flame spraying or sputtering.
  • the metal spraying may be carried out to achieve a sufficient thickness and a desired distribution of the solder metal layer.
  • the solder metal layer formed by the metal spraying has a thickness of 20 to 1000 ⁇ m.
  • the method and conditions for cold spraying include: removing the oil from the surface of the formed metal oxide layer, treating it with borax, and then entering the cold spraying process: the gas is nitrogen and/or helium; the cold spraying pressure is 1.5 to 3.5 MPa.
  • the spraying distance is 10 to 50 mm; the powder feeding speed is 3 to 15 kg/h.
  • the metal formed by the cold spray coating to form the solder metal layer such as copper or nickel, is in the form of a powder having an average particle diameter of 1 to 50 ⁇ m. It can be obtained commercially, such as the 37 ⁇ m copper powder of TITD-Q Cu brand, which is commercially available from Tianjiu Metal Materials Co., Ltd.
  • the powder feeding speed refers to the speed at which the metal forming the weld metal layer is sprayed when the cold spray is performed.
  • a portion of the metal oxide layer that does not need to be sprayed may be protected by a masking method.
  • the above preparation method may further include: pretreating the metal-ceramic composite plate, degreasing and waxing the metal-ceramic composite plate, and further removing the metal-ceramic due to natural oxidation.
  • An oxide layer formed on the outer surface of the metal layer of the composite sheet is then subjected to the metal oxidation in the above-described preparation method provided by the present disclosure.
  • degreasing and waxing may be performed by soaking the metal-ceramic composite panel in an alcohol solution for 5 minutes or by using a degreaser U-151 (Atotech) at 50 ° C for 5 minutes.
  • the method and condition for removing the oxide layer formed by natural oxidation may be to soak the metal-ceramic composite plate in an aqueous solution of sodium hydroxide having a concentration of 50 g/L for 3 minutes, or to soak the scale powder by hot dip at room temperature.
  • U-152 is configured in the bath for 1 min.
  • the above preparation method may further include: after completing the metal oxidation step, sealing and drying the obtained plate, and then performing the metal spraying.
  • the effect of the closure may be to close the pores formed by the oxidation process.
  • the sealing can be achieved by boiling water sealing. Drying can be carried out by drying at 80 to 100 ° C for 20 to 30 minutes.
  • a third object of the present disclosure is to provide an application of the heat dissipation substrate of the present disclosure in an electronic component.
  • the heat dissipation substrate of the present disclosure can be used as an encapsulation material in an electronic component.
  • a fourth object of the present disclosure is to provide an electronic component, as shown in FIG. 2, the electronic component includes: a heat dissipation substrate 1 having a solder metal layer 3; and on a surface of the solder metal layer a first solder layer 4, a first copper substrate 5, a liner 6, a second copper substrate 7, a second solder layer 8, and a chip 9 which are sequentially stacked, and the chip and the second copper substrate 7 pass through the wire 10.
  • the heat dissipating substrate is the heat dissipating substrate of the present disclosure.
  • the heat dissipation substrate includes: a metal-ceramic composite plate coated with a metal layer; a metal oxide layer formed on an outer surface of the metal layer and integrated with the metal layer; and the metal oxide layer
  • the solder metal layer is formed on at least a portion of the outer surface.
  • the heat dissipation substrate provides a function of carrying heat dissipation of the chip and the chip.
  • the heat dissipating substrate is further provided with a plurality of stacked layers on one side of the soldering metal layer to carry the chip; and the opposite side has no soldering metal layer, and can be in contact with the cooling liquid to provide heat dissipation of the chip as a cooling surface.
  • the cooling liquid is corrosive
  • the cooling surface of the heat dissipation substrate has the metal oxide layer formed by directly oxidizing the metal layer to form an anticorrosive function.
  • the layers formed in this order on the solder metal layer are sequentially stacked to finally carry the chip.
  • the first solder layer is used to provide a connection between the first copper substrate and the solder metal layer.
  • the first solder layer may be formed by soldering using a solder paste.
  • the second solder layer is used to provide a connection between the second copper substrate and the chip.
  • the second solder layer may also be formed by soldering using a solder paste.
  • the first copper substrate and the second copper substrate are copper substrates conventionally used in the art.
  • the second copper substrate can form a conductive line, and then connect the chip and the second copper substrate through the wire to meet the use requirements of the chip.
  • the backing plate is disposed between the first copper substrate and the second copper substrate, and may be a liner for electronic component packaging which is conventionally used in the art.
  • the method of forming the first solder layer, the first copper substrate, the liner, the second copper substrate, and the second solder layer may be a conventional method in the art, and will not be described again.
  • the wire connecting the chip and the second copper substrate may also adopt a conventional method in the art, and will not be described again.
  • the metal-ceramic composite board is an Al-SiC composite board, HWT Technology Co., Ltd.;
  • the soldering performance was tested by the Sessile Drop method: the molten solder liquid was dropped on the surface of the solder metal layer of the clean and smooth heat dissipating substrate, and the photograph was taken as shown in FIG.
  • the magnified photo directly measures the contact angle ⁇ and calculates the corresponding liquid-solid interfacial tension by the ⁇ angle.
  • the corrosion resistance of the heat-dissipating substrate is tested by neutral salt spray: the heat-dissipating substrate is inclined by 15° to 30°, so that the surface to be tested can simultaneously receive the spray of salt water; the condition is (5 ⁇ 0.1)% NaCl solution; the pH value is 6.5 Between 7.2; salt spray settlement: 1 to 2 ml / 80 cm 2 ⁇ h; temperature: 35 ⁇ 2 ° C. The surface of the test sample was observed to record the time of occurrence of blistering and rusting.
  • the bonding strength between the metal oxide layer of the heat dissipation substrate and the metal-ceramic composite plate, and the bonding strength between the nickel layer of the heat dissipation substrate and the metal-ceramic composite plate in the comparative example are tested in accordance with GB/T 8642-2002.
  • the bonding strength between the metal oxide layer of the heat dissipation substrate and the metal-ceramic composite plate in the embodiment, and the bonding strength between the nickel layer of the heat dissipation substrate and the metal-ceramic composite plate in the comparative example are determined according to the hundred grid method:
  • the salt spray was tested for 24 h of the heat-dissipating substrate, and a square grid of 1 mm ⁇ 1 mm was drawn on the surface by a cross-cutting device.
  • a 600-type Scotch tape made by American 3M Company was flatly bonded to the square without leaving a gap, and then lifted at the fastest speed of 60° to observe whether the metal was peeled off and scored at the edge of the scratch.
  • the scoring criteria are: no detachment is 5B, the amount of shed is between 4 and 5 wt%, 4B, between 5 and 15 wt%, 3B, between 15 and 35 wt%, between 2B and 35 to 65 wt%. It is 1B, and 65% by weight or more is 0B.
  • This embodiment illustrates a heat dissipation substrate of the present disclosure.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm and the thickness of Al is 200 ⁇ m) is degreased and dewaxed by degreasing powder U-151 (Atotech) at 50 ° C for 5 min, and then immersed in heat at room temperature.
  • the deoxidation layer is obtained by immersing the solution of the slag powder U-152 in a bath for 1 min to obtain a substrate to be oxidized;
  • the substrate to be oxidized was placed in an oxidizing solution containing 200 g/L of sulfuric acid (98% by weight), anodized at 15 ° C, 10 V and 2.5 A/cm 3 for 20 min; an aluminum oxide layer having a thickness of 100 ⁇ m was obtained;
  • the purified water is sealed at 95 ° C for 5 min and then at 80 ° C for 30 min; the substrate to be sprayed is obtained;
  • One side of the substrate to be sprayed is defined as a soldering surface, and the portion not to be sprayed with the metal layer is shielded, and then cold-sprayed copper: nitrogen, pressure 2.5 MPa, spray distance 30 mm, copper powder (TITD-Q Cu) speed At 10 kg/h, a welded metal layer having a thickness of 20 ⁇ m was obtained. A heat sink substrate is obtained.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • This embodiment illustrates a heat dissipation substrate of the present disclosure and a method of fabricating the same.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm, the thickness of Al is 100 ⁇ m) is immersed in alcohol for 5 minutes for degreasing and waxing, and then immersed in a 50 g/L sodium hydroxide aqueous solution for 3 minutes to obtain a substrate to be oxidized;
  • the substrate to be oxidized was placed in an oxidizing solution containing 180 g/L of sulfuric acid (98% by weight), anodized at -5 ° C, 22 V and 1 A/cm 3 for 30 min; an aluminum oxide layer having a thickness of 30 ⁇ m was obtained;
  • the purified water is sealed at 95 ° C for 5 min and then at 80 ° C for 30 min; the substrate to be sprayed is obtained;
  • One side of the substrate to be sprayed is defined as a welded surface, and a portion where the welded metal layer is not sprayed is shielded, and then cold-sprayed copper: nitrogen gas, pressure of 3 MPa, spray distance of 40 mm, and copper powder feed speed of 10 kg/h are obtained to obtain a thickness of 50 ⁇ m welded metal layer.
  • a heat sink substrate is obtained.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • This embodiment illustrates a heat dissipation substrate of the present disclosure and a method of fabricating the same.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm and the thickness of Al is 50 ⁇ m) is degreased and dewaxed by degreasing powder U-151 (Atotech) at 50 ° C for 5 min, and then immersed in heat at room temperature.
  • the deoxidation layer is obtained by immersing the solution of the slag powder U-152 in a bath for 1 min to obtain a substrate to be oxidized;
  • the substrate to be oxidized was placed in an oxidizing solution containing 200 g/L of sulfuric acid (98% by weight), anodized at 25 ° C, 18 V and 0.5 A/cm 3 for 10 min; an aluminum oxide layer having a thickness of 5 ⁇ m was obtained;
  • the purified water is sealed at 95 ° C for 5 min and then at 80 ° C for 30 min; the substrate to be sprayed is obtained;
  • One side of the substrate to be sprayed is defined as a welded surface, and a portion where the welded metal layer is not sprayed is shielded, and then cold-sprayed copper is used: helium gas, pressure 2 MPa, spray distance 30 mm, and copper powder speed 10 kg/h.
  • a heat sink substrate is obtained.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • This embodiment illustrates a heat dissipation substrate of the present disclosure and a method of fabricating the same.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm and the thickness of Al is 500 ⁇ m) is degreased and dewaxed by degreasing powder U-151 (Atotech) at 50 ° C for 5 min, and then immersed in heat at room temperature.
  • the deoxidation layer is obtained by immersing the solution of the slag powder U-152 in a bath for 1 min to obtain a substrate to be oxidized;
  • the substrate to be oxidized was placed in an oxidizing solution containing 200 g/L of sulfuric acid (98% by weight), anodized at 15 ° C, 10 V and 2.5 A/cm 3 for 5 min; an aluminum oxide layer having a thickness of 300 ⁇ m was obtained;
  • the purified water is sealed at 95 ° C for 5 min and then at 80 ° C for 30 min; the substrate to be sprayed is obtained;
  • One side of the substrate to be sprayed is defined as a soldering surface, and a portion where the solder metal layer is not sprayed is shielded, and then cold-sprayed copper: nitrogen gas, a pressure of 1.5 MPa, a spraying distance of 50 mm, and a copper powder feeding speed of 3 kg/h.
  • a welded metal layer having a thickness of 1000 ⁇ m was obtained.
  • a heat sink substrate is obtained.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • This embodiment illustrates a heat dissipation substrate of the present disclosure and a method of fabricating the same.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm and the thickness of Al is 350 ⁇ m) is degreased and dewaxed by degreasing powder U-151 (Atotech) at 50 ° C for 5 min, and then immersed in heat at room temperature.
  • the deoxidation layer is obtained by immersing the solution of the slag powder U-152 in a bath for 1 min to obtain a substrate to be oxidized;
  • the substrate to be oxidized is placed in a chemical oxidation solution containing phosphoric acid 60 ml/L and chromic anhydride 25 g/L, and chemically oxidized at 35 ° C for 5 min to obtain an aluminum oxide layer having a thickness of 200 ⁇ m; then cleaned and dried at 80 ° C. Drying for 30 minutes; obtaining a substrate to be sprayed;
  • One side of the substrate to be sprayed is defined as a soldering surface, and a portion where the solder metal layer is not sprayed is shielded, and then cold-sprayed copper: nitrogen gas, a pressure of 3.5 MPa, a spraying distance of 10 mm, and a copper powder feeding speed of 15 kg/h are obtained.
  • a heat sink substrate is obtained.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • the Al-SiC composite plate (the thickness of SiC is 3 mm and the thickness of Al is 200 ⁇ m) is immersed in ERPREP Flex for 5 min at 50 ° C for degreasing and waxing, and then immersed in a bath composed of Actane 4322s. Deoxidation layer was performed for 3 minutes; a treated substrate was obtained;
  • the treated substrate was subjected to nickel plating in accordance with the procedure shown in Table 1 to obtain a nickel layer having a thickness of 10 ⁇ m; and a heat-dissipating substrate was obtained.
  • the chemical products are purchased by Lex Chemical.
  • the heat-dissipating substrate was tested for soldering performance, corrosion resistance, and bonding performance. The results are shown in Table 2.
  • the heat dissipating substrate provided by the present disclosure can simultaneously have good corrosion resistance, soldering and bonding properties.
  • the present disclosure provides a simpler process for dissipating a heat-dissipating substrate, is industrially convenient, and reduces the use of nickel, reduces the cost, and discharges nickel waste liquid.
  • the present disclosure provides a heat-dissipating substrate with better performance in a more environmentally friendly manner.

Abstract

一种散热基板及其制备方法和应用以及电子元器件,涉及用于电子元器件封装的散热基板领域。该散热基板包括:金属-陶瓷复合板(1),所述金属-陶瓷复合板(1)为金属层包覆陶瓷体;在所述金属层的外表面上形成有与所述金属层成为一体的金属氧化层(2);以及在所述金属氧化层(2)的至少部分外表面上形成的焊接金属层(3),所述焊接金属层(3)用于连结铜基板和承载芯片。

Description

散热基板及其制备方法和应用以及电子元器件
相关申请的交叉引用
本公开主张在2016年12月29日在中国提交的中国专利申请号No.201611249655.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及用于电子元器件封装的散热基板领域,具体地,涉及一种散热基板及其制备方法和应用以及电子元器件。
背景技术
在电子元器件的制备工艺中,通常需要使用封装材料解决电子电路,如芯片的热失效问题。封装材料既需要起到能够承受焊接铜基板并承载芯片的作用,还要同时负责散热。由于进行热交换的过程中封装材料与冷却液相接触,还要求封装材料具有防腐性能。
因此在实际使用中,封装材料通常以基板的形式应用,要求基板的一面焊接铜基板并承载芯片,能够具有焊接功能;相对的另一面与冷却液相接触实现散热,能够具有防腐功能。而为了满足此要求,目前通常的解决方法是将整个基板进行镀镍。但这严格要求基板的表面的质量,如有凹坑、砂眼等,镀镍不能掩盖这些缺陷,会造成焊接优良率低。虽然可以通过镀层结构的设计,增加镀层厚度,但明细增加生产的成本。
现有技术在电子元器件的制备工艺中采取镀镍方法解决封装材料的散热和防腐问题,但是存在产品优良率低,成本高的缺陷。
发明内容
本公开的目的是为了解决封装电子元器件所使用的散热基板存在的上述问题,提供一种散热基板及其制备方法和应用以及电子元器件。
为了实现上述目的,本公开提供一种散热基板,其中,该散热基板包括:金属-陶瓷复合板,所述金属-陶瓷复合板为金属层包覆陶瓷体;在所述金属层的外表面上形成有与所述金属层成为一体的金属氧化层;以及在所述金属氧化层的至少部分外表面上形成的焊接金属层,所述焊接金属层用于连结铜基板和承载芯片。
本公开还提供了一种制备本公开的散热基板的方法,包括:将金属-陶瓷复合板直接进 行金属氧化,其中,所述金属-陶瓷复合板为金属层包覆陶瓷体的复合板材;在金属层的外表面上形成与金属成为一体的金属氧化层;在所述金属氧化层的至少部分外表面上进行金属喷涂,形成焊接金属层。
本公开还提供了一种本公开的散热基板在电子元器件中的应用。
本公开还提供了一种电子元器件,该电子元器件包括:散热基板,所述散热基板具有焊接金属层;以及在所述焊接金属层的表面上依次层叠地形成的第一焊层、第一铜基板、衬板、第二铜基板、第二焊层和芯片,所述芯片与所述第二铜基板通过导线连接;所述散热基板为本公开的散热基板。
通过上述技术方案,采取在金属-陶瓷复合板的金属层外表面上原位直接氧化形成金属氧化层,可以提供具有散热、防腐和焊接功能的散热基板,该散热基板的结合强度更大,可以更好地承载芯片,克服已有技术中采取镀镍方法的缺陷。通过上述技术方案,可以提供得到的散热基板以更好的焊接性能,即通过静滴法测试,散热基板有更好的润湿性能。再有提供的散热基板通过中性盐雾测试有更好的防腐蚀性能。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为散热基板的结构示意图;
图2为电子元器件的结构示意图;
图3为静滴法测试接触角θ示意图。
附图标记说明
1、金属-陶瓷复合板        2、金属氧化层             3、焊接金属层
4、第一焊层               5、第一铜基板             6、衬板
7、第二铜基板             8、第二焊层               9、芯片
10、导线
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本公开的第一目的,提供一种散热基板,如图1所示,其中,该散热基板包括:金属-陶瓷复合板1,所述金属-陶瓷复合板为金属层包覆陶瓷体;在所述金属层外表面上形成有与所述金属层成为一体的金属氧化层2;以及在所述金属氧化层的至少部分外表面上形成的焊接金属层3,所述焊接金属层3用于连结铜基板和承载芯片。
根据本公开,所述金属氧化层通过将所述金属层直接进行氧化而形成,包覆所述金属层。所述金属氧化层由所述金属层直接原位氧化形成,可以结合强度更大。可以通过金相显微镜进行照相观察,观察本公开提供的散热基板的截面,所述金属-陶瓷复合板的金属层和所述金属氧化层之间没有分界。而如果通过涂覆或沉积金属层再氧化得到金属氧化层,则通过金相显微镜观察在所述金属-陶瓷复合板的金属层与形成的金属氧化层之间存在明显的分界。进一步地,所述金属氧化层可以设置焊接面(或A面)和散热面(或B面)。焊接面(或A面)与散热面(或B面)可以是所述散热基板上两个相对的面,且一般是所述散热基板上面积最大的两个面。所述焊接金属层仅设置在所述焊接面上可以进一步用于焊接铜基板和芯片。所述散热面可以与冷却液相接触用于散热。可选地,所述焊接金属层设置在所述散热基板一侧的所述金属氧化层上;另一侧的所述金属氧化层用于与冷却液接触,进行散热。
本公开中,可选地,在所述焊接面上,所述焊接金属层为部分覆盖所述金属氧化层。所述焊接金属层在所述金属氧化层上的覆盖分布只要满足进一步地铜基板和芯片的焊接即可。
本公开中,提供的散热基板可以通过上述原位形成金属氧化层可以具有更好的结合强度、焊接性能和抗腐蚀性能。
根据本公开,所述散热基板可以选用电子元器件封装材料中常规使用的基板材料作为基材,例如可以是含有金属的基材,可以优选金属-陶瓷复合板作为基材。进而在此基材上形成所述金属氧化层、焊接金属层。可选地,所述陶瓷体选自SiC陶瓷体或Si陶瓷体;所述金属层为Al金属层、Mg金属层或Ti金属层。所述金属-陶瓷复合板可以商购获得。陶瓷体的厚度可以没有特别的限定,可以是3mm左右。
根据本公开,所述金属氧化层为所述金属层原位形成,所述金属氧化层为与所述金属层所使用的金属相应的氧化物。所述金属氧化层为氧化铝层、氧化镁层或氧化钛层。
根据本公开,所述焊接金属层可以选用常规使用的可用于焊接的金属形成。可选地, 所述焊接金属层为铜金属层或镍金属层。
根据本公开,所述散热基板中包括的各层的厚度能够实现散热、防腐以及连接铜基板和承载芯片的功能即可,可选地,所述金属层的厚度为20至500μm;所述金属氧化层的厚度为5至300μm;所述焊接金属层的厚度为20至1000μm。本公开中,所述金属氧化层的厚度小于所述金属层的厚度。
根据本公开,所述散热基板中的所述金属层和所述金属氧化层可以具有更好的结合强度。可选地,所述金属氧化层与所述金属层的结合强度按照百格法测定达到4B以上
本公开的第二目的,提供一种制备本公开的散热基板的方法,包括:将金属-陶瓷复合板直接进行金属氧化,其中,所述金属-陶瓷复合板为金属层包覆陶瓷体的复合板材;在金属层的外表面上形成与金属成为一体的金属氧化层;在所述金属氧化层的至少部分外表面上进行金属喷涂,形成焊接金属层。
根据本公开,可以选用已有的适用于电子元器件封装的材料,可以是含金属的材料,例如可以是金属-陶瓷复合板作为形成所述散热基板的基材。其中,所述陶瓷体可以选自SiC陶瓷体或Si陶瓷体;所述金属层可以选自Al金属层、Mg金属层或Ti金属层。陶瓷体的厚度可以没有特别的限定,可以是3mm左右。所述金属层的厚度可以为20至500μm。进一步地,可以通过所述金属氧化在金属-陶瓷复合板中的金属层外表面上直接原位形成金属氧化层。如金属层为Al金属层,则得到氧化铝层;金属层为Mg金属层,则得到氧化镁层;金属层为Ti金属层,则得到氧化钛层。
根据本公开,所述金属氧化可以有多种具体的实施方法,只要在金属-陶瓷复合板中的金属层外表面上形成满足需要厚度的金属氧化层即可。可选地,所述金属氧化的方法包括化学氧化、阳极氧化、微弧氧化或磷化。实施所述金属氧化实现获得足够厚度的所述金属氧化层即可,可选地,经过所述金属氧化形成的所述金属氧化层的厚度为5至300μm。
具体地,化学氧化的方法和条件包括:将金属-陶瓷复合板除去表面油污和表面氧化层,然后放入化学氧化溶液中5至10min。所述化学氧化液含有50至80ml/L的磷酸,20至25g/L的铬酐(三氧化铬)。所述化学氧化溶液的温度为30至40℃。
阳极氧化的方法和条件包括:将金属-陶瓷复合板除去表面油污和表面氧化层,然后放入化学氧化溶液中通电10至30min进行封闭处理。所述封闭处理可以采用热水封闭。所述氧化溶液为含有180至220g/L的硫酸溶液,温度为-5℃至25℃,电压为10至22V,电流密度为0.5至2.5A/dm 2
微弧氧化的方法和条件包括:将金属-陶瓷复合板除去表面油污后放入微弧氧化槽中的微弧氧化液中通电进行微弧氧化,微弧氧化完成后进行热水封闭。所述微弧氧化液一般为弱 碱性溶液,可以含有硅酸盐、磷酸盐、硼酸盐等。微弧氧化的温度控制在20至60℃,电压一般可控制在400至750V。所述微弧氧化也可以采用低压微弧氧化技术实施。
磷化的方法和条件包括:将金属-陶瓷复合板除去表面油污,采用型号为PL-Z的表面调整剂(广州帕卡濑精有限公司)表面处理5min,采用磷化剂FT-7(广州帕卡濑精有限公司)磷化5min,烘干即可。
根据本公开,所述金属喷涂用于形成所述焊接金属层。如上所述,可以在所述散热基板的一侧表面上部分区域形成所述焊接金属层,用于进一步焊接铜基板和芯片。可选地,所述金属喷涂的方法包括:冷喷涂、等离子喷涂、火焰喷涂或溅射镀。实施所述金属喷涂实现获得足够厚度和需要的分布的所述焊接金属层即可,可选地,经过所述金属喷涂形成的所述焊接金属层的厚度为20至1000μm。
具体地,冷喷涂的方法和条件包括:将形成的金属氧化层的表面去除油污,再经硼砂处理,然后进入冷喷涂工序:气体为氮气和/或氦气;冷喷涂压力为1.5至3.5MPa;喷涂距离为10至50mm;送粉速度为3至15kg/h。其中,经所述冷喷涂进行喷涂而形成所述焊接金属层的金属,如铜或镍,为粉末状,平均颗粒直径为1至50μm。可以商购获得,如商购天久金属材料有限公司TITD-Q Cu牌号的37μm铜粉。送粉速度是指进行所述冷喷涂时喷涂形成所述焊接金属层的金属的速度。
本公开中,进行所述金属喷涂时,可以将所述金属氧化层上不需要喷涂的部分采用遮蔽的方法进行保护。
本公开中,上述制备方法还可以包括:将所述金属-陶瓷复合板先进行预处理,将所述金属-陶瓷复合板进行除油除蜡,并进一步去除因自然氧化在所述金属-陶瓷复合板的金属层外表面上形成的氧化层,然后再进行本公开提供的上述制备方法中的所述金属氧化。例如,除油除蜡可以将所述金属-陶瓷复合板在酒精溶液中浸泡5min,或者采用除油粉U-151(安美特)在50℃下浸泡5min。除去因自然氧化形成的氧化层的方法和条件可以为将所述金属-陶瓷复合板在浓度为50g/L的氢氧化钠水溶液中浸泡3min,或者在室温下浸泡在由热浸电解除垢粉U-152配置成的槽液中1min。
本公开中,上述制备方法还可以包括:在完成所述金属氧化步骤之后,将得到的板材进行封闭并烘干,然后再进行所述金属喷涂。其中封闭的作用可以是将氧化过程形成的孔封闭。可以采用沸水封孔的方法实现封闭。烘干可以采用在80至100℃下烘干20至30min即可。
本公开的第三目的,提供一种本公开的散热基板在电子元器件中的应用。本公开的散热基板在电子元器件中可以用作封装材料。
本公开的第四目的,提供一种电子元器件,如图2所示,该电子元器件包括:散热基板1,所述散热基板具有焊接金属层3;以及在所述焊接金属层的表面上依次层叠地形成的第一焊层4、第一铜基板5、衬板6、第二铜基板7、第二焊层8和芯片9,所述芯片与所述第二铜基板7通过导线10连接;所述散热基板为本公开的散热基板。所述散热基板包括:金属层包覆陶瓷体的金属-陶瓷复合板;在所述金属层的外表面上形成的且与所述金属层成为一体的金属氧化层;以及在所述金属氧化层的至少部分外表面上形成所述焊接金属层。
本公开的所述电子元器件中,所述散热基板提供承载芯片和芯片散热的功能。所述散热基板形成有所述焊接金属层的一侧进一步设置多个层叠的层,承载芯片;而相对的另一侧没有所述焊接金属层,可以与冷却液接触,作为冷却面提供芯片散热。由于冷却液具有腐蚀性,所述散热基板的冷却面具有直接氧化所述金属层而原位形成的所述金属氧化层,可以提供防腐功能。
本公开中,在所述焊接金属层上依次层叠地形成的各层,最终承载芯片。所述第一焊层用于提供连结第一铜基板和所述焊接金属层。所述第一焊层可以是通过锡焊方法采用锡膏形成。所述第二焊层用于提供连结第二铜基板和芯片。所述第二焊层也可以通过锡焊方法采用锡膏形成。
本公开中,所述第一铜基板和第二铜基板为本领域常规使用的铜基板。所述第二铜基板可以形成导电线路,再通过所述导线连接芯片和所述第二铜基板,满足芯片的使用需要。
本公开中,所述第一铜基板和第二铜基板之间设置有所述衬板,可以为本领域常规使用的用于电子元器件封装的衬板。
本公开的电子元器件中,形成第一焊层、第一铜基板、衬板、第二铜基板、第二焊层的方法可以为本领域常规的方法,不再赘述。所述导线连接所述芯片和所述第二铜基板也可以采用本领域常规的方法,不再赘述。
以下将通过实施例对本公开进行详细描述。
以下实施例和对比例中,金属-陶瓷复合板为Al-SiC复合板,HWT科技有限公司;
焊接性能通过静滴法(Sessile Drop)测试:将融溶焊料液体滴落在洁净光滑的散热基板的焊接金属层表面上,待达到平衡稳定状态后拍照如图3所示。放大照片直接测量接触角θ,并通过θ角计算相应的液-固界面张力。该法中接触角θ可用于表征润湿合格与否:θ<90°,称为润湿;θ>90°,称为不润湿:θ=0°,称为完全润湿;θ=180°,称为完全不润湿。润湿代表焊接性好,以“OK”表示;不润湿代表焊接性不好。
散热基板的抗腐蚀性能通过中性盐雾测试:将散热基板倾斜15°至30°,使待测试表面 能同时接受盐水的喷雾;条件为(5±0.1)%NaCl溶液;pH值在6.5至7.2之间;盐雾沉降量:1至2ml/80cm 2·h;温度:35±2℃。观察测试样品表面,记录出现起泡、锈蚀的时间。
实施例中散热基板的金属氧化层与金属-陶瓷复合板之间的结合强度,以及对比例中散热基板的镍层与金属-陶瓷复合板之间的结合强度按照GB/T 8642-2002测试。
实施例中散热基板的金属氧化层与金属-陶瓷复合板之间的结合强度,以及对比例中散热基板的镍层与金属-陶瓷复合板之间的结合强度按照百格法测定:将进行中性盐雾测试24h的散热基板,用划格器在表面上划100个1mm×1mm的正方形格。用美国3M公司生产的型号为600的透明胶带平整粘结在方格上,不留一丝空隙,然后以最快的速度60°角揭起,观察划痕边缘处是否有金属脱落并评分。评分标准为:没有任何脱落为5B,脱落量在0至5重量%之间为4B,5至15重量%之间为3B,15至35重量%之间为2B,35至65重量%之间为1B,65重量%以上为0B。
实施例1
本实施例说明本公开的散热基板。
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为200μm)采用除油粉U-151(安美特)在50℃下浸泡5min进行除油除蜡,然后在室温下浸泡在由热浸电解除垢粉U-152配置成的槽液中1min进行去氧化层,得到待氧化的基板;
将待氧化的基板放入含有200g/L硫酸(98重量%)的氧化溶液中,在15℃、10V和2.5A/cm 3下进行阳极氧化20min;得到厚度为100μm的氧化铝层;然后以纯净水在95℃下进行封闭5min,再在80℃下30min;得到待喷涂的基板;
将待喷涂的基板的一面定为焊接面,并遮蔽不喷涂焊接金属层的部分,然后进行冷喷涂铜:氮气、压力为2.5MPa、喷涂距离为30mm、送铜粉(TITD-Q Cu)速度为10kg/h,得到厚度为20μm的焊接金属层。得到散热基板。
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
实施例2
本实施例说明本公开的散热基板及其制备方法。
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为100μm)在酒精中浸泡5min进行除油除蜡,然后在50g/L的氢氧化钠水溶液中浸泡3min,得到待氧化的基板;
将待氧化的基板放入含有180g/L硫酸(98重量%)的氧化溶液中,在-5℃、22V和1A/cm 3下进行阳极氧化30min;得到厚度为30μm的氧化铝层;然后以纯净水在95℃下进行封闭 5min,再在80℃下30min;得到待喷涂的基板;
将待喷涂的基板的一面定为焊接面,并遮蔽不喷涂焊接金属层的部分,然后进行冷喷涂铜:氮气、压力为3MPa、喷涂距离为40mm、送铜粉速度10kg/h,得到厚度为50μm的焊接金属层。得到散热基板。
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
实施例3
本实施例说明本公开的散热基板及其制备方法。
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为50μm)采用除油粉U-151(安美特)在50℃下浸泡5min进行除油除蜡,然后在室温下浸泡在由热浸电解除垢粉U-152配置成的槽液中1min进行去氧化层,得到待氧化的基板;
将待氧化的基板放入含有200g/L硫酸(98重量%)的氧化溶液中,在25℃、18V和0.5A/cm 3下进行阳极氧化10min;得到厚度为5μm的氧化铝层;然后以纯净水在95℃下进行封闭5min,再在80℃下30min;得到待喷涂的基板;
将待喷涂的基板的一面定为焊接面,并遮蔽不喷涂焊接金属层的部分,然后进行冷喷涂铜:氦气、压力为2MPa、喷涂距离为30mm、送铜粉速度为10kg/h,得到厚度为100μm的焊接金属层。得到散热基板。
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
实施例4
本实施例说明本公开的散热基板及其制备方法。
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为500μm)采用除油粉U-151(安美特)在50℃下浸泡5min进行除油除蜡,然后在室温下浸泡在由热浸电解除垢粉U-152配置成的槽液中1min进行去氧化层,得到待氧化的基板;
将待氧化的基板放入含有200g/L硫酸(98重量%)的氧化溶液中,在15℃、10V和2.5A/cm 3下进行阳极氧化5min;得到厚度为300μm的氧化铝层;然后以纯净水在95℃下进行封闭5min,再在80℃下30min;得到待喷涂的基板;
将待喷涂的基板的一面定为焊接面,并遮蔽不喷涂焊接金属层的部分,然后进行冷喷涂铜:氮气、压力为1.5MPa、喷涂距离为50mm、送铜粉速度为3kg/h。得到厚度为1000μm的焊接金属层。得到散热基板。
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
实施例5
本实施例说明本公开的散热基板及其制备方法。
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为350μm)采用除油粉U-151(安美特)在50℃下浸泡5min进行除油除蜡,然后在室温下浸泡在由热浸电解除垢粉U-152配置成的槽液中1min进行去氧化层,得到待氧化的基板;
将待氧化的基板放入含有磷酸60ml/L、铬酐25g/L的化学氧化溶液中,在35℃下进行化学氧化5min,得到厚度为200μm的氧化铝层;然后清洗干净并在80℃下烘干30min;得到待喷涂的基板;
将待喷涂的基板的一面定为焊接面,并遮蔽不喷涂焊接金属层的部分,然后进行冷喷涂铜:氮气、压力为3.5MPa、喷涂距离为10mm、送铜粉速度为15kg/h,得到厚度为500μm的焊接金属层。得到散热基板。
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
对比例1
将Al-SiC复合板(SiC的厚度为3mm,Al的厚度为200μm)采用ERPREP Flex(安美特)在50℃下浸泡5min进行除油除蜡,然后在由Actane 4322s配置成的槽液中浸泡3min进行去氧化层;得到处理基板;
将处理基板按照表1所示的流程进行镀镍,得到厚度为10μm的镍层;得到散热基板。其中化学品商购乐思化学的产品。
表1
流程 化学品 温度 时间
除垢 ENPLATE BS 室温 3min
水洗 纯净水 室温 1min
浸锌1 ENPLATE BS EN 室温 1min
水洗 纯净水 室温 1min
退锌 50%硝酸 室温 1min
水洗 纯净水 室温 1min
浸锌1 ENPLATE BS EN 室温 30s
水洗 纯净水 室温 1min
碱镍 ENPLATE ENI-120 室温 10min
水洗 纯净水 室温 1min
镀镍 ENPLATE ENI-807 85℃ 60min
水洗 纯净水 室温 1min
烘干 80℃ 30min
将散热基板进行焊接性能、抗腐蚀性能、结合性能测试,结果见表2。
表2
编号 焊接性能 抗腐蚀性能 结合性能
实施例1 OK 500h 5B
实施例2 OK 500h 5B
实施例3 OK 500h 5B
实施例4 OK 96h 4B
实施例5 OK 48h 4B
对比例1 OK 24h 3B
由实施例、对比例和表2的数据结果可以看出,本公开提供的散热基板可以同时具有好的抗腐蚀、焊接、结合力性能。同时本公开提供散热基板的工艺更简单,工业化方便,且减少了镍的使用,降低了成本以及镍废液的排放,本公开以更环保的方式提供了性能更好的散热基板。

Claims (11)

  1. 一种散热基板,包括:
    金属-陶瓷复合板,所述金属-陶瓷复合板为金属层包覆陶瓷体;
    在所述金属层的外表面上形成有与所述金属层成为一体的金属氧化层;以及
    在所述金属氧化层的至少部分外表面上形成的焊接金属层,所述焊接金属层用于连结铜基板和承载芯片。
  2. 根据权利要求1所述的基板,其中,所述金属氧化层通过所述金属层直接进行氧化形成。
  3. 根据权利要求1或2所述的基板,其中,所述陶瓷体选自SiC陶瓷体或Si陶瓷体;所述金属层为Al金属层、Mg金属层或Ti金属层;所述金属氧化层为氧化铝层、氧化镁层或氧化钛层;所述焊接金属层为铜金属层或镍金属层。
  4. 根据权利要求1或2所述的基板,其中,所述金属层的厚度为20至500μm;所述金属氧化层的厚度为5至300μm;所述焊接金属层的厚度为20至1000μm。
  5. 根据权利要求1或2所述的基板,其中,所述金属氧化层与所述金属层的结合强度按照百格法测定达到4B以上。
  6. 一种制备权利要求1-5中任意一项所述的散热基板的方法,包括:将金属-陶瓷复合板直接进行金属氧化,其中,所述金属-陶瓷复合板为金属层包覆陶瓷体的复合板材;在金属层的外表面上形成与金属成为一体的金属氧化层;在所述金属氧化层的至少部分外表面上进行金属喷涂,形成焊接金属层。
  7. 根据权利要求6所述的方法,其中,所述金属氧化的方法包括化学氧化、阳极氧化、微弧氧化或磷化。
  8. 根据权利要求6或7所述的方法,其中,所述金属喷涂的方法包括:冷喷涂、等离子喷涂、火焰喷涂或溅射镀。
  9. 根据权利要求6或7所述的方法,其中,经过所述金属氧化形成的所述金属氧化层的厚度为5至300μm;经过所述金属喷涂形成的所述焊接金属层的厚度为20至1000μm。
  10. 一种权利要求1-5中任意一项所述的散热基板在电子元器件中的应用。
  11. 一种电子元器件,包括:
    散热基板,所述散热基板具有焊接金属层;以及
    在所述焊接金属层的表面上依次层叠地形成的第一焊层、第一铜基板、衬板、第二铜基板、第二焊层和芯片,所述芯片与所述第二铜基板通过导线连接;
    所述散热基板为权利要求1-5中任意一项所述的散热基板。
PCT/CN2017/115139 2016-12-29 2017-12-08 散热基板及其制备方法和应用以及电子元器件 WO2018121216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/474,680 US20200126886A1 (en) 2016-12-29 2017-12-08 Heat-dissipation substrate, preparation method and application thereof, and electronic component
EP17885508.6A EP3564988A4 (en) 2016-12-29 2017-12-08 HEAT DISSIPATION SUBSTRATE, PREPARATION METHOD AND APPLICATION THEREOF, AND ELECTRONIC COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611249655.8A CN108257922A (zh) 2016-12-29 2016-12-29 一种散热基板及其制备方法和应用以及电子元器件
CN201611249655.8 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018121216A1 true WO2018121216A1 (zh) 2018-07-05

Family

ID=62707908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115139 WO2018121216A1 (zh) 2016-12-29 2017-12-08 散热基板及其制备方法和应用以及电子元器件

Country Status (4)

Country Link
US (1) US20200126886A1 (zh)
EP (1) EP3564988A4 (zh)
CN (1) CN108257922A (zh)
WO (1) WO2018121216A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767450B (zh) * 2018-07-27 2022-05-24 浙江清华柔性电子技术研究院 薄膜电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145722A (ja) * 2003-11-11 2005-06-09 Matsushita Electric Ind Co Ltd 酸化物セラミックの製造方法およびこれを用いたセラミック多層基板の製造方法およびパワーアンプモジュール
CN101005108A (zh) * 2006-01-16 2007-07-25 深圳大学 功率型发光二极管热沉及其方法
CN101685805A (zh) * 2008-09-25 2010-03-31 长扬光电股份有限公司 金属陶瓷复合基板及其制备方法
CN102123563A (zh) * 2011-03-30 2011-07-13 余建平 一种陶瓷pcb电路板的制作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918191B2 (ja) * 1994-04-11 1999-07-12 同和鉱業株式会社 金属−セラミックス複合部材の製造方法
EP0746022B1 (en) * 1995-05-30 1999-08-11 Motorola, Inc. Hybrid multi-chip module and method of fabricating
KR100764388B1 (ko) * 2006-03-17 2007-10-05 삼성전기주식회사 양극산화 금속기판 모듈
KR101463075B1 (ko) * 2008-02-04 2014-11-20 페어차일드코리아반도체 주식회사 히트 싱크 패키지
DE102008044641A1 (de) * 2008-04-28 2009-10-29 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
KR20100126909A (ko) * 2009-05-25 2010-12-03 삼성전기주식회사 전력반도체 모듈
JP5739873B2 (ja) * 2010-04-02 2015-06-24 住友電気工業株式会社 マグネシウム基複合部材、放熱部材、および半導体装置
CN102339818B (zh) * 2010-07-15 2014-04-30 台达电子工业股份有限公司 功率模块及其制造方法
US8643188B2 (en) * 2011-06-03 2014-02-04 Infineon Technologies Ag Connecting system for electrically connecting electronic devices and method for connecting an electrically conductive first connector and electrically conductive second connector
US8519532B2 (en) * 2011-09-12 2013-08-27 Infineon Technologies Ag Semiconductor device including cladded base plate
DE102012102611B4 (de) * 2012-02-15 2017-07-27 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
CN103687419A (zh) * 2012-09-04 2014-03-26 富瑞精密组件(昆山)有限公司 散热器及其制造方法
CN202934861U (zh) * 2012-09-04 2013-05-15 深圳市可瑞电子实业有限公司 金属陶瓷复合板及电路板
JP6056432B2 (ja) * 2012-12-06 2017-01-11 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法
US9585241B2 (en) * 2013-09-24 2017-02-28 Infineon Technologies Ag Substrate, chip arrangement, and method for manufacturing the same
DE102013219833B4 (de) * 2013-09-30 2020-02-13 Infineon Technologies Ag Halbleitermodul mit leiterplatte und vefahren zur hertellung eines halbleitermoduls mit einer leiterplatte
DE102014214784A1 (de) * 2014-07-28 2016-02-11 Continental Automotive Gmbh Schaltungsträger, elektronische Baugruppe, Verfahren zum Herstellen eines Schaltungsträgers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145722A (ja) * 2003-11-11 2005-06-09 Matsushita Electric Ind Co Ltd 酸化物セラミックの製造方法およびこれを用いたセラミック多層基板の製造方法およびパワーアンプモジュール
CN101005108A (zh) * 2006-01-16 2007-07-25 深圳大学 功率型发光二极管热沉及其方法
CN101685805A (zh) * 2008-09-25 2010-03-31 长扬光电股份有限公司 金属陶瓷复合基板及其制备方法
CN102123563A (zh) * 2011-03-30 2011-07-13 余建平 一种陶瓷pcb电路板的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564988A4 *

Also Published As

Publication number Publication date
EP3564988A1 (en) 2019-11-06
EP3564988A4 (en) 2019-11-20
US20200126886A1 (en) 2020-04-23
CN108257922A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
TWI639732B (zh) 用於電鍍黏附之陽極氧化架構
JP5845563B2 (ja) 容器用鋼板の製造方法
US9417018B2 (en) Multi-layer protective coating for an aluminum heat exchanger
WO2018121219A1 (zh) 散热基板及其制备方法和应用以及电子元器件
JPS6358228B2 (zh)
WO2018121216A1 (zh) 散热基板及其制备方法和应用以及电子元器件
ES2594458T3 (es) Método para formar una capa de óxido en un artículo soldado fuerte
US10422593B2 (en) Sacrificial aluminum fins for failure mode protection of an aluminum heat exchanger
JP2009001853A (ja) 容器用鋼板とその製造方法
US7473308B2 (en) Gel containing phosphate salts for passivation
WO2018121217A1 (zh) 散热基板及其制备方法和应用以及电子元器件
JP2013510944A (ja) 海洋気候に耐えられる工事部材の塗層に対する拡散処理を施す方法
JP2005260046A (ja) プラズマ処理装置用部材
JP2020026564A (ja) 化成処理被膜を有する塗装鋼材、及びその製造方法
JPH01156496A (ja) 耐蝕被覆方法
JP6583012B2 (ja) ポリオレフィン被覆鋼管及びその製造方法
JP7066868B2 (ja) 反応室コンポーネント、作製方法、及び反応室
CN105397092B (zh) 一种高体积分数铝基复合材料的表面防腐处理方法
JPS60194094A (ja) 高耐食性アルミニウム溶射鋼材
JPS6067677A (ja) 溶接缶用鋼板
TW202010866A (zh) 鎂合金表面處理工藝
JPH02282488A (ja) 複層めっき鋼板
JPS61253377A (ja) 塗装性能及び強度特性にすぐれたクロメ−ト系処理被覆Cr含有系鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885508

Country of ref document: EP

Effective date: 20190729