WO2018120745A1 - 用于光通信的编码方法、信号发送装置和接收装置及方法 - Google Patents

用于光通信的编码方法、信号发送装置和接收装置及方法 Download PDF

Info

Publication number
WO2018120745A1
WO2018120745A1 PCT/CN2017/092065 CN2017092065W WO2018120745A1 WO 2018120745 A1 WO2018120745 A1 WO 2018120745A1 CN 2017092065 W CN2017092065 W CN 2017092065W WO 2018120745 A1 WO2018120745 A1 WO 2018120745A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
segment
bit
inter
Prior art date
Application number
PCT/CN2017/092065
Other languages
English (en)
French (fr)
Inventor
刘若鹏
黄薇子
周志强
Original Assignee
深圳光启智能光子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启智能光子技术有限公司 filed Critical 深圳光启智能光子技术有限公司
Publication of WO2018120745A1 publication Critical patent/WO2018120745A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present invention relates to optical communication technologies, and more particularly to an encoding method for optical communication, a signal transmitting device, a signal receiving device, and an optical communication method.
  • Optical communication technology is a communication technology that uses light waves as carriers.
  • the light source used in optical communication can be either a visible light source or an invisible light source.
  • a laser, a fluorescent lamp, a light emitting diode (LED), or a visible or invisible light generated by a flash lamp can be used as a light source for optical communication.
  • the optical transmission medium can be either air or fiber.
  • a binary numerical sequence is characterized by a change in intensity or flicker frequency to effect data transmission.
  • direct modulation can be realized by changing the operating parameters of the light source according to the data signal, in which the data signal is directly converted into a change in the intensity or the flicker frequency of the light source.
  • the operating parameters of the light source remain unchanged, and the physical parameters of at least a portion of the transmission medium are changed by the photoelectric effect, magneto-optical effect, or acousto-optic effect of the crystal, thereby enabling indirect modulation, wherein the data signal is converted into a physical property of the transmission medium.
  • the change In the signal receiving apparatus, a corresponding change in the electrical signal is obtained in accordance with the change in the intensity of the light or the frequency of the flicker, and demodulation can be performed to obtain a sequence of binary values.
  • the current data encoding method is mainly adapted to the communication technology using radio waves as a carrier.
  • optical communication it is difficult to accurately control the lighting period due to the control characteristics of the light source and the transmission medium in the modulation of the optical signal, so data transmission errors may occur. The problem.
  • the hexadecimal value solves the problem that the illuminating length is unstable and the signal cannot be transmitted accurately and quickly during the optical signal transmission.
  • an encoding method for optical communication comprising: generating a continuous pulse signal; and inverting a signal level in each chirp period of the continuous pulse signal Once, before the inversion, the signal level is in the first level state and continues for the first inter-segment, after the inversion, the signal level is in the second level state and continues for the second inter-frame, according to the modulation
  • the binary value of the data controls the relative duration of the first inter-segment segment and the second inter-segment segment bit by bit to generate a modulated signal.
  • the first level state is a high level
  • the second level state is a low level
  • the first level state is a low level
  • the second level state is a high level Level
  • the first level state is a level state of the end of the previous chirp period
  • the second level state is a level state opposite to the end of the previous chirp period
  • the first inter-segment segment is smaller than the second inter-segment segment, it represents one bit in the binary value, and if the first inter-segment segment is greater than the second inter-segment segment, Represents another bit in a binary value.
  • the first inter-segment segment is less than or equal to one-half of the second inter-segment segment, it represents one bit in the binary value, if the first inter-segment segment is greater than or equal to twice the second inter-segment segment , means another bit in the binary value.
  • an optical communication method including: encapsulating original data into data frames to form package data; performing modulation by using the above coding method, and converting the package data into a modulation signal bit by bit; Driving the light source according to the modulation signal to generate the optical signal; detecting the optical signal by using the photoelectric conversion method to generate the detection signal; demodulating by using the above encoding method, converting the detection signal into a data frame bit by bit, obtaining package data; and from the package data Extract raw data.
  • the data frame includes a data segment and a check bit
  • the step of forming the encapsulated data includes: encapsulating the original data in a data segment of the data frame; and calculating the check data according to the original data and storing the check data In the bit, wherein the check data represents a relative amount of a binary value "0" and a binary value "1" in the original data.
  • the step of forming the package data further comprises: the number of bits of the original data represented in each data frame is An even number is added to the complementary bit, the complementary bit is the most significant bit of the data segment and is a binary value of "0"
  • the step of forming the package data further comprises: if the most significant bit of the original data represented by each data frame is a binary value “0”, then starting from the most significant bit, sequentially removing the binary value to "0" The data bits, until the first data bit with a binary value of "1", form valid data.
  • the step of forming the package data further comprises: adding a complementary bit to the even number of valid data bits, the complementary bit being the most significant bit of the data segment and being a binary value of "0".
  • the step of forming the package data further comprises: adding a header before the data segment of each data frame to indicate the start of the data frame.
  • a signal transmitting apparatus for optical communication comprising: a first data processing unit, configured to receive original data, and encapsulate the original data into data frames according to an optical communication protocol, And generating a package data; the modulation unit is connected to the first data processing unit to receive the package data, and receives the cuckoo clock signal, and generates a modulation signal according to the package data and the cuckoo clock signal; and the driving unit is connected to the modulation unit to receive And modulating a signal, and generating a driving signal according to the modulating signal; and a light emitting unit connected to the driving unit and illuminating and extinguishing according to the driving signal to implement transmission of the optical signal, wherein the modulating unit performs the above encoding method Modulating such that a relative duration of the first inter-segment and the second inter-segment in each chirp period of the modulated signal coincides with a binary value of a corresponding bit
  • the data frame includes a data segment and a check bit
  • the first data processing unit encapsulates the original data in a data segment of the data frame; and calculates the verification data according to the original data and stores the verification data.
  • the check data represents a relative amount of a binary value "0" and a binary value "1" in the original data.
  • the first data processing unit adds a complementary bit to the even number of bits of the original data represented by each data frame, the complementary bit is the most significant bit of the data segment and is binary The value is "0".
  • the first data processing unit performs data compression on the original data represented by each data frame to form valid data, wherein if the most significant bit of the original data represented by each data frame is a binary value "0" Then, starting from the most significant bit, the data bits with binary value "0" are sequentially removed until the first binary value is "1" data bit.
  • the first data processing unit adds a complementary bit to the even number of valid data bits represented by each data frame, the complementary bit is the most significant bit of the data segment and is binary The value is "0".
  • the first data processing unit adds a header before the data segment of each data frame to indicate the start of the data frame.
  • the light emitting unit comprises any one selected from the group consisting of a laser, a fluorescent lamp, a light emitting diode, and a flash lamp.
  • it comprises any one selected from the group consisting of a mobile phone, a tablet computer, and a digital camera.
  • a signal receiving apparatus for optical communication comprising: a photoelectric conversion unit for converting an optical signal into a detection signal; and a demodulation unit coupled to the photoelectric conversion unit Connecting to receive the detection signal, and receiving the chirp signal, demodulating the detection signal to generate package data in a data frame format; and a second data processing unit coupled to the demodulation unit to receive the package data, and according to the light
  • the communication protocol parses the encapsulated data into original data, wherein the demodulation unit performs demodulation by using the above encoding method, so that the first inter-segment and the second inter-segment in each chirp period of the detection signal
  • the relative duration is consistent with the binary value of the corresponding bit of the package data.
  • the data frame includes a data segment and a check bit
  • the second data processing unit separates the original data and the check bit from the encapsulated data, and verifies the integrity of the original data according to the check digit.
  • the photoelectric conversion unit is a photodiode.
  • the demodulation unit comprises: an edge detection circuit, wherein the edge detection circuit is configured to obtain an initial engraving and an end engraving of each chirp period according to edge detection of the chirp signal, and Obtaining an inversion engraving in each chirp period according to edge detection of the detection signal; and calculating a circuit for calculating the inter-turn segment from the initial etching to the inversion engraving as the first The inter-segment segment, and the inter-turn segment from the reverse engraving to the end engraving as the second inter-segment segment.
  • the method further includes: a chirp clock correction unit connected to the photoelectric conversion unit to receive the detection signal, and correcting the chirp signal according to the inversion operation of the detection signal.
  • a chirp clock correction unit connected to the photoelectric conversion unit to receive the detection signal, and correcting the chirp signal according to the inversion operation of the detection signal.
  • the cuckoo clock correction unit includes an edge detection circuit for obtaining an edge of each chirp period in the detection signal.
  • An encoding method, a signal transmitting apparatus, a signal receiving apparatus, and an optical communication method for optical communication introduces a reversal of a signal level in each chirp period, using a relative level of a signal level Continuously characterize binary values in the daytime.
  • the encoding method can accommodate the deviation between the emission period of the LED or flash light signal and the chirp period of the modulated signal. Even if the illumination period of the light signal fluctuates, the encoding method can achieve stable data transmission, thereby solving the problem that the signal cannot be transmitted accurately and quickly due to unstable illumination length during the transmission of the optical signal.
  • FIG. 1 shows a waveform diagram of an optical communication encoding method according to the related art
  • FIG. 2 shows a waveform diagram of an optical communication encoding method according to an embodiment of the present invention
  • FIG. 3 shows a data frame format of an optical communication system according to an embodiment of the present invention
  • FIG. 4 shows a schematic block diagram of a signal transmitting apparatus in an optical communication system according to an embodiment of the present invention
  • FIG. 5 is a schematic block diagram showing a signal receiving apparatus in an optical communication system according to an embodiment of the present invention.
  • FIG. 6 shows a flow chart of an optical communication method according to an embodiment of the present invention.
  • the encoding method is No Return Zero-Inverted (abbreviated as NRZ-I).
  • NRZ-I No Return Zero-Inverted
  • the signal level of each ⁇ clock period TCLK is maintained at a constant value.
  • the pattern of changes in signal level between adjacent chirp periods is used to characterize binary values. If the signal level remains unchanged between adjacent clock cycles, it indicates that the signal level of the next clock cycle represents a value of "0". Conversely, if the signal level is inverted between adjacent clock cycles, it indicates that the signal level of the next clock cycle represents the value "1".
  • the binary value of the encoding method is independent of the relative value of the signal level and is only related to the level inversion action of the adjacent clock cycle. Regardless of whether the signal level is inverted from a high level to a low level, or vice versa, it indicates that the signal level of the next one-clock period represents a value of "1".
  • the transmission speed and reliability of the data encoding method depend on the chirp clock period TCLK.
  • the data encoding method is mainly adapted to a communication technique using radio waves as carriers. In the case of optical communication, it is difficult to accurately control the illumination period due to the control characteristics of the light source and the transmission medium in the modulation of the optical signal.
  • the illumination period of the light source does not accurately follow the clock period for a predetermined clock period.
  • data is obtained from the received signal based on the chirp period. Due to the deviation between the illumination period of the signal transmitting device and the chirp period, there is also a deviation between the chirp period and the predetermined period of the received signal, so that the state of the signal level and the reversal action are also determined by using the predetermined chirp period. Inaccurate, it is prone to data demodulation errors.
  • the coding method is a Relative-State-Duration Code (Relative-State-Duration Code,
  • the first level state is a high level and the second level state is a low level.
  • the first level state is a low level and the second level state is a high level.
  • the binary value is characterized by the relative duration of the signal level.
  • T1 ⁇ 1/2 * TCLK preferably, T1 ⁇ 1/3 * TCLK
  • the signal of the clock cycle is used to characterize the binary value "0”
  • T1 > 1/2 * TCLK preferably Ground
  • T1>2/3*TCLK the signal of this clock cycle is used to characterize the binary value "1”.
  • the binary value of the encoding method is independent of the signal level and the inversion operation of the adjacent chirp period, regardless of the level state before and after the inversion in each chirp period.
  • a level inversion is introduced once in each chirp period, and a binary value is obtained depending on the relative duration of the signal level.
  • the signal level of the second inter-turn period T2 is correspondingly a low level state or a high level.
  • the encoding method compares the first inter-temporal segment T1 with the second inter-temporal segment T2, and determines the binary value according to the relative duration of the two.
  • the encoding method for obtaining binary values based on signal level inversion of adjacent cuckoo clock periods with the above prior art
  • the encoding method according to an embodiment of the present invention introduces one inversion in each chirp period.
  • the signal receiving device can easily correct the deviation of the chirp time period TCLK according to the inversion operation, and the signal receiving device can obtain the signal level inversion according to the optical signal even if the illumination period of the light source does not coincide with the predetermined clock period of the signal transmitting device. Engraved to obtain the corrected cuckoo clock cycle.
  • the signal receiving device can accurately determine the relative duration of the first inter-turn T1 with respect to the second inter-turn T2.
  • the metering circuit can be used to calculate the duration of the first inter-section T1 and the second inter-section T2, respectively, and then compare the two to determine the relative duration.
  • the receiving signal can be used to control the charging and discharging process of the capacitor. During each chirp period, the capacitor is charged in the first inter-turn T1 and the capacitor is discharged in the second inter-turn T2. And based on the charge stored by the capacitor, the relative duration is determined.
  • the inversion of the signal level is introduced in each chirp period, and the binary value is represented by the relative duration of the signal level, thereby improving the accuracy of data transmission, Reliability and reduced circuit cost.
  • FIG. 3 shows a data frame format of an optical communication system according to an embodiment of the present invention.
  • a large number of data are transmitted using a plurality of consecutive data frames.
  • a data frame is a data transmission specified by an optical communication protocol, for example, containing multiple valid binary values.
  • the original data is encapsulated into data frames according to an optical communication protocol, and the multi-bit binary value represented by the data frame is transmitted according to the encoding method shown in FIG.
  • the multi-bit binary value represented by the data frame is demodulated according to the encoding method shown in Fig. 2, the data frame is verified according to the optical communication protocol, and the original data is parsed.
  • each data frame includes a data segment and a parity bit
  • the data segment further includes a complementary bit and a valid segment.
  • the valid segment contains the original data
  • the complement bit is used to ensure that the total number of bits in the data segment is odd. If the total number of bits of the original data is odd, the length of the completion bit is 0, which eliminates the completion bit. If the total number of bits of the original data is even, the length of the completion bit is 1, and the binary value is "0".
  • the completion bit is used as the data segment together with the valid segment. Since the completion bit is the most significant bit of the data segment and the binary value is "0", the completion bit does not change the value of the original data represented by the valid segment. That is, the encapsulated data represented by the data segment is equal to the value of the original data represented by the valid segment.
  • the check bits are used for data verification during data transfer.
  • the check digit is used to indicate the relative number of values "0" and "1" in the data segment. If the data bit with the value “0" in the data segment is more than the data with the value "1" Bit, then the value of the check digit is "0". Conversely, if the data bit with the value "0" in the data segment is less than the data bit with the value "1", the value of the check digit is "1". Since the data frame contains a complementary bit, the total number of bits in the data segment is always an odd number. It is impossible for a data segment to have a data bit with a value of "0” equal to a data bit having a value of "1", thereby ensuring the uniqueness of the value of the check bit.
  • the value of one frame data is: 00011010, wherein the complementary bit and the proof bit are respectively the value "0" represented by the most significant bit and the value "0" represented by the least significant bit, the original data represented by the valid segment For the data between the two is 001101.
  • the original data is 6 bits, so the complement bits are used to form 7-bit data.
  • Check Digit Indicates that the data bit with the value "0" in the data segment is more than the data bit with the value "1".
  • the 7-bit data 0 001101 of the data segment includes 4 data bits with a value of "0" and 3 data bits with a value of "1".
  • the data frame is a fixed length of 8-bit data
  • the data segment is 7 bits, including a 1-bit complementary bit and a 6-bit valid segment, and the parity bit is 1 bit.
  • the data frame can be connected for transmission, and the continuous data frame is transmitted between the signal transmitting device and the signal receiving device according to a predetermined 8-bit data length.
  • the data frame includes additional header segments and variable length data segments in accordance with an optical communication protocol. This header is located before the data segment and is used to indicate the start of the data frame.
  • the data segment includes a 1-bit complement and a variable-length valid segment.
  • the length of the valid segment may be 0 to 16 bits according to the value of the original data, wherein the value is sequentially removed from the most significant bit on the basis of the original data. The data bits are until the first value is "1".
  • the data frame format introduces a data compression method that reduces the amount of data transmitted actually, and does not change the value of the original data represented by the valid segment. For example, if the original data is 0x0000, the length of the data segment is 1 bit, including only one completion bit with a value of "0", and the number of valid segments is 0. If the original data is OxFFFF, the valid segment is 17 bits long and includes a completion bit with a value of "0" and a valid segment of 16 bits.
  • the signal transmitting apparatus 100 includes a first data processing unit 101, a modulating unit 102, a driving unit 103, a light emitting unit 104, and a power supply unit 108.
  • a direct modulation method using a relative state length encoding RSD is described in which the light intensity or variation frequency generated by the light emitting unit is changed in accordance with the data signal.
  • the transmission medium of the optical signal is air.
  • the first data processing unit 101 is a single chip microcomputer, and the modulation unit 102 is a signal modulation circuit.
  • the driving unit 103 is an LED driving circuit
  • the light emitting unit 104 is a light emitting diode
  • the power supply unit 108 includes a battery and a power supply circuit.
  • the battery can be equipped with a nickel-cadmium battery or a nickel-hydrogen battery or a lithium-ion battery, and the power supply circuit converts the battery voltage into a supply voltage required for each unit in the signal transmitting device.
  • the first data processing unit 101 receives the original data DATA and generates package data according to the optical communication protocol.
  • the original data DATA contains original data
  • the first data processing unit 101 encapsulates the original data into data frames in accordance with a predetermined optical communication protocol.
  • each data frame includes a data segment and a parity bit, and the data segment further includes a complementary bit and a valid segment.
  • the valid segment contains the original data, and the complement bit is used to ensure that the total number of bits in the data segment is odd.
  • the encapsulated data represented by the data segment is equal to the value of the original data represented by the valid segment.
  • Modulation unit 102 receives the package data and the chirp signal TCLK.
  • the modulation scheme of the modulation unit is amplitude modulation, frequency modulation, or phase modulation.
  • the modulation scheme of the modulation unit is a relative state length modulation.
  • the signal level is inverted once in each clock cycle TCLK. Before the inversion, the signal level maintains the first level state (i.e., the level state at the end of the last chirp period). During the inversion, the signal level changes from the first level state to the second level state. After the inversion, the signal level maintains the second level state. In one instance
  • the first level state is high level and the second level state is low level.
  • the first level state is a low level and the second level state is a high level.
  • the driving unit 103 is configured to generate a driving signal of the light emitting unit according to the modulation signal.
  • the light emitting unit 104 is a light emitting diode whose luminance is related to the driving current.
  • the driving unit 103 supplies a rated driving current required for lighting the LED, and controls supply and disconnection of the driving current in accordance with the level state of the modulation signal.
  • the light emitting unit 104 is turned on and off according to the driving current, thereby realizing optical signal transmission.
  • the light emitting unit 104 is a light emitting diode.
  • the light emission single Element 104 can be a flash.
  • the signal transmitting device 100 may be a mobile terminal such as a mobile phone, a tablet, a digital camera, wherein the first data processing unit 101 and the modulating unit 102 may be implemented by a processor in the mobile terminal.
  • the mobile terminal includes a light emitting diode or flash for filling the camera.
  • the driving unit 103 and the light emitting unit 104 are, for example, an LED driving circuit and a light emitting diode, or a flash driving circuit and a flash lamp.
  • the mobile terminal transmits data using the blinking of a light emitting diode or a flash.
  • the encoding method of the present invention introduces a reversal of the signal level in each chirp period, and utilizes the relative duration of the signal level to characterize the binary value, thereby improving the accuracy, reliability, and circuit cost of the data transmission. Therefore, the mobile terminal can adapt to the deviation between the lighting period of the light-emitting diode or the flash lamp and the chirp clock period, and stable data transmission can be realized even if the lighting period fluctuates.
  • FIG. 5 is a schematic block diagram showing a signal receiving apparatus in an optical communication system according to an embodiment of the present invention.
  • the signal receiving apparatus 200 includes a photoelectric conversion unit 201, a chirp correction unit 202, a demodulation unit 203, a second data processing unit 204, and a power supply unit 208.
  • a demodulation method using the relative state length encoding R SD is described in this embodiment.
  • the photoelectric conversion unit 201 is a photodiode
  • the chirp correction unit 202 is, for example, an edge detection circuit
  • the demodulation unit 203 is an edge detection circuit and a counting circuit
  • the second data processing unit 204 is a single chip microcomputer.
  • the power supply unit 208 includes a battery and a power supply circuit.
  • the battery can be equipped with a nickel-cadmium battery or a nickel-hydrogen battery or a lithium-ion battery.
  • the power supply circuit converts the battery voltage into the power supply voltage required for each unit in the signal receiving device.
  • the photoelectric conversion unit 201 receives the optical signal, and converts the optical signal into an electrical signal, thereby obtaining a detection signal.
  • the detection signal at the receiving end corresponds to the driving signal at the transmitting end.
  • the detection signal is a pulse signal of a plurality of fixed clock cycles TCLK. In each tick period TCLK, the signal level is inverted once. Before the reversal, the signal level maintains the first level state (i.e., the level state at the end of the last chirp period). During the inversion, the signal level transitions from the first level state to the second level state. After the inversion, the signal level maintains the second level state.
  • the first level state is a high level and the second level state is a low level. In another example, the first level state is a low level and the second level state is a high level.
  • the clock correction unit 202 is connected to the photoelectric conversion unit 201, and receives a detection signal according to the detection signal.
  • the inversion operation corrects the deviation of the chopping clock signal TCLK. Even if the illumination period of the light source does not coincide with the predetermined clock period of the signal transmitting device, the signal receiving device uses the edge detection circuit to obtain the engraving of the signal level inversion according to the optical signal, thereby obtaining The corrected cuckoo clock cycle.
  • the demodulation unit 203 is connected to the photoelectric conversion unit 201 and the chirp correction unit 202, respectively receives the detection signal and the chirp signal TCLK, and demodulates the detection signal to generate package data.
  • the demodulation unit 203 obtains the initial engraving t0 and the end engraving t2 of the deuterium clock period by using the edge detection circuit, and the inversion engraving t1 of the detection signal in each chirp period, and obtains the engraving t0 by using the counting circuit.
  • the first inter-section T1 of tl that is, the inter-segment period in which the first level state is maintained in each ⁇ clock period, and the second inter- ⁇ ⁇ 2 in the engraving of t1 to t2, that is, the maintenance of the first inter-turn period
  • the inter-segment of the two-level state As described above, in each chirp period, the relative duration of the first inter-segment T1 of the first level state and the second inter-segment ⁇ 2 of the second level state are maintained, and the number of the package data is maintained.
  • the second data processing unit 204 receives the package data and generates the original data DAT A according to the optical communication protocol.
  • the package data is data encapsulated in a data frame format. Referring to FIG. 3, each data frame includes a data segment and a parity bit, and the data segment further includes a complementary bit and a valid segment.
  • the valid segment contains the original data, and the complement bit is used to ensure that the total number of bits in the data segment is odd.
  • the encapsulated data represented by the data segment is equal to the value of the original data represented by the valid segment.
  • the second data processing unit 204 separates the original data and the check bits from the encapsulated data and verifies the integrity and accuracy of the original data based on the check bits.
  • the raw data DATA generated by the second data processing unit 204 contains the original data.
  • the signal receiving device 200 may be a server including a photoelectric conversion unit, wherein the second data processing unit 204, the clock correction unit 202, and the demodulation unit 203 may be implemented by a processor in a server.
  • the server uses photodiodes to receive data.
  • the encoding method of the present invention introduces a reversal of the signal level in each chirp period, and utilizes the relative duration of the signal level to characterize the binary value, thereby improving the accuracy, reliability, and cost of the circuit. Therefore, the server can adapt to the deviation between the lighting period of the light-emitting diode or the flash lamp and the chirp time, and stable data transmission can be realized even if the lighting period fluctuates.
  • FIG. 6 shows a flow chart of an optical communication method according to an embodiment of the present invention.
  • the optical communication method adopts a relative shape The state coded RSD for signal modulation and demodulation.
  • step S01 the original data is encapsulated into data frames to form package data.
  • each data frame includes a data segment and a parity bit, and the data segment further includes a complementary bit and a valid segment.
  • the valid segment contains the original data, and the complement bit is used to ensure that the total number of bits in the data segment is odd.
  • the encapsulated data represented by the data segment is equal to the value of the original data represented by the valid segment.
  • the check digit is used to indicate the relative number of values "0" and "1" in the data segment.
  • step S02 the package data is converted bit by bit into a modulation signal by a modulation method of relative state length encoding.
  • the signal level is inverted once in each clock cycle TCLK. Controlling the edge of each chirp period according to the digital value of the package data such that the first inter-turn period T1 of the first level state is maintained and the relative duration of the second inter-turn period T2 of the second level state is maintained, The digital values of the packaged data correspond.
  • step S03 a drive signal is generated based on the modulation signal.
  • the voltage or current value of the drive signal matches the parameters of the light source, such as the rated voltage or rated current of the light source.
  • step S04 the driving signal is used to control the light source to emit light to generate an optical signal.
  • the light source is for example a light emitting diode or a flash lamp.
  • data is transmitted by blinking of a light emitting diode or a flash lamp.
  • step S05 an optical signal is received to generate a detection signal.
  • a photodiode is used to receive an optical signal.
  • the detection signal generated by the photodiode corresponds to a driving signal for driving the light source.
  • step S06 the chirp signal is corrected based on the detection signal.
  • an edge detection circuit is used to obtain an inversion of a signal level in the detected signal, thereby obtaining a corrected chirp period.
  • step S07 the detection signal is converted bit by bit into a data frame by a demodulation method of relative state length encoding.
  • the edge detection circuit is used to obtain the initial engraving t0 and the end engraving t2 of the chopping clock period, and the inversion engraving t1 of the detection signal in each chopping period, and the first circuit is obtained by ticking t0 to t1.
  • the inter-turn period T1, that is, the inter-turn period in which the first level state is maintained in each chirp period, and the second inter-turn period T2 in the engraving of t1 to t2, that is, the second level state is maintained in each chirp period Intersection.
  • step S08 data is extracted from the encapsulated data of the data frame.
  • This step involves separating the original data and check bits from the package data and verifying the integrity and accuracy of the original data based on the check bits. Since the signal transmitting apparatus and the signal receiving apparatus generate the encapsulated data and the parsed package data in the same data frame format, the original data consistent with the transmitting end can be obtained from the encapsulated data at the receiving end.
  • Example 1 Sending a Mobile Phone ID
  • the method comprises the following steps:
  • step S101 on the mobile terminal, the application acquires the mobile phone identification code, and the identification code is represented in a binary manner as the original data.
  • step S102 on the mobile terminal, the identification code is encapsulated into a data frame, where the data segment and the check digit.
  • step S103 on the mobile terminal, modulation is performed using a modulation method of relative state length encoding and the flash is driven to emit an optical signal, thereby transmitting the identification code.
  • the binary value "0" is represented as a signal pulse of a first level state for a period of time less than a second level state
  • a binary value "1" is represented as a first level state.
  • step S104 on the server side, the optical signal is received by the photodiode, and demodulated by a demodulation method of relative state length encoding to obtain a data frame, and then the mobile phone identification code is parsed from the data frame.
  • Example 2 Sending a User ID
  • the method comprises the following steps:
  • step S201 on the mobile terminal, the application acquires the user identifier, and displays the identifier in binary form as the original data.
  • step S202 on the mobile terminal, the identifier is encapsulated into a data frame, where the data segment and the parity bit.
  • step S203 on the mobile terminal, modulation is performed using a modulation method of relative state length encoding and the flash is driven to emit an optical signal, thereby transmitting the identification.
  • the binary value "0" is represented as a signal pulse of a first level state for a period of time less than a second level state, and a binary signal The value "1" indicates a signal pulse in which the first level state continues for a period longer than the second level state.
  • step S204 on the server side, the optical signal is received by the photodiode, and demodulated by a demodulation method of relative state length encoding to obtain a data frame, and then the user identification is parsed from the data frame.
  • Example 3 Binding a Mobile Phone ID and User ID
  • the method comprises the following steps:
  • step S301 on the mobile terminal, the application acquires the mobile phone identification code and the user identifier, and displays the mobile phone identification code and the user identifier in a binary manner as the original data.
  • step S302 on the mobile phone end, the mobile phone identification code and the user identity are encapsulated into data frames, wherein the data segment and the check digit.
  • step S303 on the mobile terminal, the modulation method is used to modulate the relative state length encoding and drive the flash to emit an optical signal, thereby transmitting the mobile phone identification code and the user identification.
  • the binary value "0" is represented as a signal pulse of a first level state for a period longer than a second level state
  • a binary value "1" is represented as a first level state.
  • step S304 on the server side, the optical signal is received by the photodiode, and demodulation is performed by using a demodulation method of relative state length encoding to obtain a data frame, and then the mobile phone identification code and the user are parsed from the data frame.
  • a demodulation method of relative state length encoding to obtain a data frame
  • the mobile phone identification code and the user are parsed from the data frame.
  • step S305 on the server side, the mobile phone identification code and the user identifier are associated and recorded in the database, thereby implementing binding of the two.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供用于光通信的编码方法、信号发送装置、信号接收装置及光通信方法。该编码方法以信号电平相对较短的持续时间代表二进制数值中的一位,而相对较长的持续时间代表二进制数值中的另一位,从而提高数据传输的准确性、可靠性以及降低电路成本。

Description

用于光通信的编码方法、 信号发送装置和接收装置及方 法 技术领域
[0001] 本发明涉及光通信技术, 特别是用于光通信的编码方法、 信号发送装置、 信号 接收装置及光通信方法。
背景技术
[0002] 光通信技术是利用光波作为载波的通信技术。 在光通信中使用的光源既可以是 可见光源, 也可以是不可见光源, 例如激光器、 荧光灯、 发光二极管 (LED) 或 闪光灯产生的可见光或不可见光均可以作为光通信的光源。 光传输介质既可以 是空气, 也可以是光纤。 在光通信中, 通过强度或闪烁频率的变化表征二进制 数值序列, 从而实现数据传输。
[0003] 在信号发送装置, 根据数据信号改变光源的工作参数, 可以实现直接调制, 其 中直接将数据信号转变为光源的强度或闪烁频率的变化。 或者, 光源的工作参 数保持不变, 利用晶体的光电效应、 磁光效应或声光效应等改变至少一部分传 输介质的物理参数, 从而可以实现间接调制, 其中将数据信号转变为传输介质 的物理特性的变化。 在信号接收装置中, 根据光的强度或闪烁频率的变化获得 电信号的相应变化, 可以实现解调, 获得二进制数值序列。
技术问题
[0004] 在信号发送装置的调制过程和信号接收装置的解调过程中, 根据编码协议实现 数据值与信号电平之间的转换。 现在的数据编码方法主要适应于以电波作为载 波的通信技术, 在应于光通信吋, 由于光信号的调制中光源和传输介质的控制 特性, 难以精确地控制发光周期, 因此可能出现数据传输错误的问题。
问题的解决方案
技术解决方案
[0005] 有鉴于此, 本发明的目的在于提供, 其中利用信号电平的相对持续吋间表征二 进制数值, 从而解决光信号传输过程中, 发光吋长不稳定而不能准确且快速地 传输信号的问题。
[0006] 根据本发明的第一方面, 提供一种用于光通信的编码方法, 包括: 产生连续脉 冲信号; 以及在所述连续脉冲信号的每个吋钟周期中, 使信号电平反转一次, 其中, 在反转之前, 信号电平为第一电平状态且持续第一吋间段, 在反转之后 , 信号电平为第二电平状态且持续第二吋间段, 根据调制数据的二进制数值, 逐位控制所述第一吋间段与所述第二吋间段的相对持续吋间, 从而产生调制信 号。
[0007] 优选地, 所述第一电平状态为高电平, 第二电平状态为低电平; 或所述第一电 平状态为低电平, 所述第二电平状态为高电平。
[0008] 优选地, 所述第一电平状态为前一吋钟周期结束吋的电平状态, 所述第二电平 状态为与前一吋钟周期结束吋相反的电平状态。
[0009] 优选地, 在每个吋钟周期中, 如果第一吋间段小于第二吋间段, 则表示二进制 数值中的一位, 如果第一吋间段大于第二吋间段, 则表示二进制数值中的另一 位。
[0010] 优选地, 如果第一吋间段小于等于第二吋间段的二分之一, 则表示二进制数值 中的一位, 如果第一吋间段大于等于第二吋间段的两倍, 则表示二进制数值中 的另一位。
[0011] 根据本发明的第二方面, 提供一种光通信方法, 包括: 将原始数据封装成数据 帧, 形成封装数据; 采用上述的编码方法进行调制, 将封装数据逐位转换成调 制信号; 根据调制信号驱动光源以产生光信号; 采用光电转换方法检测光信号 以产生检测信号; 采用上述的编码方法进行解调, 将检测信号逐位转换成数据 帧, 获得封装数据; 以及从封装数据中提取原始数据。
[0012] 优选地, 所述数据帧包括数据段和校验位, 形成封装数据的步骤包括: 将原始 数据封装在数据帧的数据段中; 以及根据原始数据计算出校验数据并且存储在 检验位中, 其中, 所述校验数据表征原始数据中二进制数值 "0"与二进制数值 "1" 的相对数量。
[0013] 优选地, 形成封装数据的步骤还包括: 在每个数据帧表示的原始数据的位数为 偶数吋附加补全位, 所述补全位是所述数据段的最高有效位且为二进制数值 "0"
[0014] 优选地, 形成封装数据的步骤还包括: 如果每个数据帧表示的原始数据最高有 效位为二进制数值" 0", 则从最高有效位幵始, 依次去除二进制数值为 "0"的数据 位, 直到第一个二进制数值为 "1"的数据位, 形成有效数据。
[0015] 优选地, 形成封装数据的步骤还包括: 在有效数据的位数为偶数吋附加补全位 , 所述补全位是所述数据段的最高有效位且为二进制数值 "0"。
[0016] 优选地, 形成封装数据步骤还包括: 在每个数据帧的数据段前附加头段, 以指 示数据帧的幵始。
[0017] 根据本发明的第三方面, 提供一种用于光通信的信号发送装置, 包括: 第一数 据处理单元, 用于接收原始数据, 以及根据光通信协议将原始数据封装成数据 帧, 以产生封装数据; 调制单元, 与第一数据处理单元相连接以接收封装数据 , 并且接收吋钟信号, 根据封装数据和吋钟信号产生调制信号; 驱动单元, 与 所述调制单元相连接以接收调制信号, 以及根据调制信号产生驱动信号; 以及 光发射单元, 与驱动单元相连接, 以及根据驱动信号点亮和熄灭, 以实现光信 号的发送, 其中, 所述调制单元采用上述的编码方法进行调制, 使得所述调制 信号的每个吋钟周期中第一吋间段与第二吋间段的相对持续吋间与所述封装数 据相应位的二进制数值一致。
[0018] 优选地, 所述数据帧包括数据段和校验位, 所述第一数据处理单元将原始数据 封装在数据帧的数据段中; 以及根据原始数据计算出校验数据并且存储在检验 位中, 其中, 所述校验数据表征原始数据中二进制数值 "0"与二进制数值 "1 "的相 对数量。
[0019] 优选地, 所述第一数据处理单元在每个数据帧表示的原始数据的位数为偶数吋 附加补全位, 所述补全位是所述数据段的最高有效位且为二进制数值 "0"。
[0020] 优选地, 所述第一数据处理单元对每个数据帧表示的原始数据进行数据压缩以 形成有效数据, 其中, 如果每个数据帧表示的原始数据最高有效位为二进制数 值 "0", 则从最高有效位幵始, 依次去除二进制数值为 "0"的数据位, 直到第一个 二进制数值为 "1 "的数据位。 [0021] 优选地, 所述第一数据处理单元在每个数据帧表示的有效数据的位数为偶数吋 附加补全位, 所述补全位是所述数据段的最高有效位且为二进制数值 "0"。
[0022] 优选地, 所述第一数据处理单元在每个数据帧的数据段前附加头段, 以指示数 据帧的幵始。
[0023] 优选地, 所述光发射单元包括选自激光器、 荧光灯、 发光二极管和闪光灯中的 任一种。
[0024] 优选地, 包括选自手机、 平板电脑和数码相机中的任一种。
[0025] 根据本发明的第四方面, 提供一种用于光通信的信号接收装置, 包括: 光电转 换单元, 用于将光信号转换成检测信号; 解调单元, 与所述光电转换单元相连 接以接收检测信号, 以及接收吋钟信号, 对检测信号进行解调以产生数据帧格 式的封装数据; 以及第二数据处理单元, 与所述解调单元相连接以接收封装数 据, 以及根据光通信协议将封装数据解析成原始数据,其中, 所述解调单元采用 上述的编码方法进行解调, 使得所述检测信号的每个吋钟周期中第一吋间段与 第二吋间段的相对持续吋间与所述封装数据相应位的二进制数值一致。
[0026] 优选地, 所述数据帧包括数据段和校验位, 所述第二数据处理单元从封装数据 中分离出原始数据和校验位, 并且根据校验位验证原始数据的完整性和准确性
[0027] 优选地, 所述光电转换单元为光电二极管。
[0028] 优选地, 所述解调单元包括: 边沿检测电路, 所述边沿检测电路用于根据所述 吋钟信号的边沿检测获得每个吋钟周期的幵始吋刻和结束吋刻, 以及根据所述 检测信号的边沿检测获得每个吋钟周期内的反转吋刻; 以及计吋电路, 所述计 吋电路用于计算幵始吋刻至反转吋刻的吋间段作为第一吋间段, 以及反转吋刻 至结束吋刻的吋间段作为第二吋间段。
[0029] 优选地, 还包括: 吋钟校正单元, 与所述光电转换单元相连接以接收检测信号 , 以及根据检测信号的反转动作修正吋钟信号。
[0030] 优选地, 所述吋钟校正单元包括边沿检测电路, 用于获得检测信号中每个吋钟 周期的边沿。
发明的有益效果 有益效果
[0031] 根据本发明实施例的用于光通信的编码方法、 信号发送装置、 信号接收装置及 光通信方法, 在每个吋钟周期中引入信号电平的反转, 利用信号电平的相对持 续吋间表征二进制数值。 该编码方法可以适应发光二极管或闪光灯光信号的发 光周期与调制信号的吋钟周期之间的偏差。 即使灯光信号的发光周期波动, 该 编码方法也能实现稳定的数据传输, 从而解决光信号传输过程中, 由于发光吋 长不稳定而不能准确且快速地传输信号的问题。
对附图的简要说明
附图说明
[0032] 通过以下参照附图对本发明实施例的描述, 本发明的上述以及其他目的、 特征 和优点将更为清楚, 在附图中:
[0033] 图 1示出根据现有技术的光通信编码方法的波形图;
[0034] 图 2示出根据本发明实施例的光通信编码方法的波形图;
[0035] 图 3示出根据本发明实施例的光通信系统的数据帧格式;
[0036] 图 4示出根据本发明实施例的光通信系统中信号发送装置的示意性框图;
[0037] 图 5示出根据本发明实施例的光通信系统中信号接收装置的示意性框图;
[0038] 图 6示出根据本发明实施例的光通信方法的流程图。
本发明的实施方式
[0039] 以下将参照附图更详细地描述本发明的各种实施例。 在各个附图中, 相同的元 件采用相同或类似的附图标记来表示。 为了清楚起见, 附图中的各个部分没有 按比例绘制。
[0040] 图 1示出根据现有技术的光通信编码方法的波形图。 该编码方法为非归零反相 编码 (No Return Zero-Inverted, 缩写为 NRZ-I) 。 在连续的吋钟周期 TCLK中, 每个吋钟周期 TCLK的信号电平维持为恒定值。 在相邻的吋钟周期之间, 信号电 平的变化方式用于表征二进值数值。 如果相邻的吋钟周期之间, 信号电平维持 不变, 则表示下一个吋钟周期的信号电平表征数值 "0"。 反之, 如果相邻的吋钟 周期之间, 信号电平反转, 则表示下一个吋钟周期的信号电平表征数值 "1"。 该 编码方法的二进制数值与信号电平的相对值无关, 仅仅与相邻吋钟周期的电平 反转动作相关。 不论信号电平从高电平反转至低电平, 或是反之, 均表示下一 个吋钟周期的信号电平表征数值 "1"。
[0041] 然而, 该数据编码方法的传输速度和可靠性取决于吋钟周期 TCLK。 该数据编 码方法主要适应于以电波作为载波的通信技术。 在应于光通信吋, 由于光信号 的调制中光源和传输介质的控制特性, 难以精确地控制发光周期。
[0042] 在高速率传输数据吋, 对于预定吋钟周期, 光源的发光周期不能准确地跟随吋 钟周期。 在信号接收装置的解调过程中, 基于吋钟周期从接收的信号中获得数 据。 由于信号发送装置的发光周期与吋钟周期之间的偏差, 接收信号的吋钟周 期与预定周期之间也会存在着偏差, 从而利用预定吋钟周期判断信号电平的状 态及反转动作也是不准确的, 容易出现数据解调错误的情况。
[0043] 图 2示出根据本发明实施例的光通信编码方法的波形图。 该编码方法为相对状 态吋长编码 (Relative-State-Duration Code,
缩写为 RSD编码) 。 在每个吋钟周期 TCLK中, 信号电平保持为第一电平状态, 并且在第一电平状态持续第一吋间段 Tl, 然后反转, 信号电平保持为第二电平 状态, 并且在第二电平状态持续第二吋间段 Τ2, 其中 TCLK=T1+T2。 在一个实 例中, 第一电平状态为高电平, 第二电平状态为低电平。 在另一个实例中, 所 述第一电平状态为低电平, 所述第二电平状态为高电平。 采用信号电平的相对 持续吋间表征二进制数值。 例如, 如果 T1<1/2*TCLK, 优选地, T1<1/3*TCLK , 则该吋钟周期的信号用于表征二进制数值 "0", 反之, 如果 T1>1/2*TCLK, 优 选地, T1>2/3*TCLK, 则该吋钟周期的信号用于表征二进制数值 "1"。
[0044] 该编码方法的二进制数值与相邻吋钟周期的信号电平及反转动作无关, 与每个 吋钟周期中反转前后的电平状态无关。 在每个吋钟周期中引入一次电平反转, 并且根据信号电平的相对持续吋间, 即可获得二进制数值。 在每个吋钟周期中 , 不论第一吋间段 T1的信号电平为高电平状态或低电平状态, 第二吋间段 T2的 信号电平相应地为低电平状态或高电平状态, 该编码方法均将第一吋间段 T1与 第二吋间段 T2相比较, 根据二者的相对持续吋间判断二进制数值。
[0045] 与上述现有技术基于相邻吋钟周期的信号电平反转获得二进制数值的编码方法 相比, 根据本发明实施例的编码方法在每个吋钟周期中引入一次反转。 信号接 收装置可以容易地根据反转动作修正吋钟周期 TCLK的偏差, 即使光源的发光周 期与信号发送装置的预定吋钟周期不一致, 信号接收装置也可以根据光信号获 得信号电平反转的吋刻, 从而获得修正后的吋钟周期。
[0046] 在修正吋钟周期之后, 信号接收装置可以准确地判断第一吋间段 T1相对于第二 吋间段 T2的相对持续吋间。 在一个实施例中, 可以采用计吋电路分别对第一吋 间段 T1和第二吋间段 T2的持续吋间进行计吋, 然后将二者相比较, 以判断相对 持续吋间。 在替代的实施例中, 可以采用接收信号控制电容的充放电过程, 在 每个吋钟周期中, 在第一吋间段 T1对电容进行充电, 在第二吋间段 T2对电容进 行放电, 并且根据电容存储的电荷判断相对持续吋间。
[0047] 因此, 根据本发明实施例的编码方法, 在每个吋钟周期中引入信号电平的反转 , 利用信号电平的相对持续吋间表征二进制数值, 从而提高数据传输的准确性 、 可靠性以及降低电路成本。
[0048] 图 3示出根据本发明实施例的光通信系统的数据帧格式。 在光通信系统中, 采 用多个连续的数据帧传输大量的数据。 数据帧是光通信协议规定的数据传输, 例如包含多位有效的二进制数值。 在信号发送装置, 根据光通信协议将原始数 据封装成数据帧, 根据图 2所示的编码方法传送数据帧表示的多位二进制数值。 在信号接收装置, 根据图 2所示的编码方法解调以获得数据帧表示的多位二进制 数值, 根据光通信协议对数据帧进行校验以及解析出原始数据。
[0049] 在该实施例中, 如图 3所示, 每个数据帧包括数据段和校验位, 数据段进一步 包括补全位和有效段。 该有效段包含原始数据, 补全位用于保证数据段的总位 数为奇数。 如果原始数据的总位数为奇数, 则补全位的长度为 0, 即省去该补全 位。 如果原始数据的总位数为偶数, 则补全位的长度为 1, 并且二进制数值为 "0"
。 该补全位与有效段一起作为数据段, 由于补全位是数据段的最高有效位且二 进制数值为 "0", 因此, 补全位不会改变有效段表示的原始数据的值。 也即, 数 据段表示的封装数据与有效段表示的原始数据的数值相等。
[0050] 校验位用于数据传送过程中进行数据检验。 例如, 校验位用于表示数据段中数 值 "0"和 "1"的相对数量。 如果数据段中数值为 "0"的数据位多于数值为 "1"的数据 位, 则校验位的数值为 "0"。 反之, 如果数据段中数值为 "0"的数据位少于数值为 "1"的数据位, 则校验位的数值为" 1"。 由于该数据帧中包含补全位, 因此数据段 的总位数始终为奇数。 数据段不可能存在数值为 "0"的数据位等于数值为 "1 "的数 据位的情形, 从而可以保证校验位的数值的唯一性。
[0051] 例如, 一个帧数据的数值为: 00011010, 其中, 补全位和校对位分别为最高有 效位表示的数值 "0"和最低有效位表示的数值 "0", 有效段表示的原始数据为二者 之间的数据 001101。 该原始数据为 6位, 因此采用补全位形成 7位数据。 校验位 表示数据段中数值为 "0"的数据位多于数值为 "1 "的数据位。 在该示例中, 数据段 的 7位数据 0 001101包括 4个数值为 "0"的数据位以及 3个数值为 "1 "的数据位。
[0052] 在该实施例中, 根据光通信协议, 数据帧为定长的 8位数据, 数据段为 7位, 包 括 1位的补全位和 6位的有效段, 校验位为 1位。 该数据帧可以连接传输, 信号发 送装置和信号接收装置之间按照预定的 8位数据长度传送连续的数据帧。 在替代 的实施例中, 根据光通信协议, 数据帧包括附加的头段和变长的数据段。 该头 段位于数据段之前, 用于指示数据帧的幵始。 数据段包括 1位的补全位和变长的 有效段。
[0053] 在上述替代的实施例中, 根据原始数据的数值, 有效段的长度可以为 0至 16位 , 其中在原始数据的基础上, 从最高有效位幵始, 依次去除数值为 "0"的数据位 , 直到第一个数值为 "1"的数据位。 该数据帧格式引入数据压缩方法, 减少了实 际传送的数据传输量, 并且不会改变有效段表示的原始数据的数值。 例如, 如 果原始数据为 0x0000, 则数据段的长度为 1位, 仅包括一个数值为 "0"的补全位, 有效段的位数为 0。 如果原始数据为 OxFFFF, 则有效段的长度为 17位, 包括一个 数值为 "0"的补全位和 16位的有效段。
[0054] 图 4示出根据本发明实施例的光通信系统中信号发送装置的示意性框图。 该信 号发送装置 100包括第一数据处理单元 101、 调制单元 102、 驱动单元 103、 光发 射单元 104和供电单元 108。 在该实施例中描述了采用相对状态吋长编码 RSD的直 接调制方法, 其中根据数据信号改变光发射单元产生的光强度或变化频率。 在 该实施例中, 光信号的传输介质为空气。
[0055] 在该实施例中, 第一数据处理单元 101为单片机, 调制单元 102为信号调制电路 , 驱动单元 103为发光二极管驱动电路, 光发射单元 104为发光二极管, 供电单 元 108包括电池和供电电路。 电池可选用镉镍电池或镍氢电池或锂离子电池, 供 电电路将电池电压转变为信号发送装置中各个单元所需的供电电压。
[0056] 第一数据处理单元 101接收原始数据 DATA, 并且根据光通信协议产生封装数 据。 该原始数据 DATA包含原始数据, 第一数据处理单元 101根据预定的光通信 协议, 将原始数据封装成数据帧。 参见图 3, 每个数据帧包括数据段和校验位, 数据段进一步包括补全位和有效段。 该有效段包含原始数据, 补全位用于保证 数据段的总位数为奇数。 数据段表示的封装数据与有效段表示的原始数据的数 值相等。
[0057] 调制单元 102接收封装数据和吋钟信号 TCLK。 在现有技术的信号发送装置中, 调制单元的调制方式为幅度调制、 频率调制或相位调制。 在该实施例的信号发 送装置中, 调制单元的调制方式为相对状态吋长调制。 参见图 2, 在每个吋钟周 期 TCLK中, 信号电平反转一次。 在反转之前, 信号电平维持第一电平状态 (即 上一吋钟周期结束吋的电平状态) 。 在反转期间, 信号电平从第一电平状态转 变为第二电平状态。 在反转之后, 信号电平维持第二电平状态。 在一个实例中
, 第一电平状态为高电平, 第二电平状态为低电平。 在另一个实例中, 所述第 一电平状态为低电平, 所述第二电平状态为高电平。
[0058] 调制单元 102根据封装数据的数字值控制每个吋钟周期的边沿, 使得维持第一 电平状态的第一吋间段 T1与维持第二电平状态的第二吋间段 T2的相对持续吋间 , 与封装数据的数字值相对应。 例如, 如果 T1=1/3*TCLK, 则该吋钟周期的信 号用于表征二进制数值 "0", 反之, 如果 T1=2/3*TCLK, 则该吋钟周期的信号用 于表征二进制数值" 1"。
[0059] 驱动单元 103用于根据调制信号产生光发射单元的驱动信号。 在该实施例中, 光发射单元 104为发光二极管, 其发光亮度与驱动电流相关。 驱动单元 103提供 发光二极管点亮所需的额定驱动电流, 并且根据调制信号的电平状态控制驱动 电流的供给和断幵。 光发射单元 104根据驱动电流点亮和熄灭, 从而实现光信号 发送。
[0060] 在该实施例中, 光发射单元 104为发光二极管。 在替代的实施例中, 光发射单 元 104可以为闪光灯。
[0061] 信号发送装置 100可以为诸如手机、 平板电脑、 数码相机之类的移动终端, 其 中, 第一数据处理单元 101和调制单元 102可以由移动终端中的处理器来实现。 移动终端包括用于为摄像头补光的发光二极管或闪光灯。 驱动单元 103和光发射 单元 104例如为发光二极管驱动电路和发光二极管, 或者闪光灯驱动电路和闪光 灯。 该移动终端利用发光二极管或闪光灯的闪烁传输数据。 本发明的编码方法 在每个吋钟周期中引入信号电平的反转, 利用信号电平的相对持续吋间表征二 进制数值, 从而提高数据传输的准确性、 可靠性以及降低电路成本。 因此, 移 动终端可以适应发光二极管或闪光灯的发光周期与吋钟周期之间的偏差, 即使 发光周期波动, 也能实现稳定地数据传输。
[0062] 图 5示出根据本发明实施例的光通信系统中信号接收装置的示意性框图。 该信 号接收装置 200包括光电转换单元 201、 吋钟校正单元 202、 解调单元 203、 第二 数据处理单元 204和供电单元 208。 在该实施例中描述了采用相对状态吋长编码 R SD的解调方法。
[0063] 在该实施例中, 光电转换单元 201为光电二极管, 吋钟校正单元 202例如是边沿 检测电路, 解调单元 203为边沿检测电路和计吋电路, 第二数据处理单元 204为 单片机, 供电单元 208包括电池和供电电路。 电池可选用镉镍电池或镍氢电池或 锂离子电池, 供电电路将电池电压转变为信号接收装置中各个单元所需的供电 电压。
[0064] 光电转换单元 201接收光信号, 并且将光信号转换成电信号, 从而获得检测信 号。 接收端的检测信号与发送端的驱动信号相对应。 该检测信号是多个固定吋 钟周期 TCLK的脉冲信号。 在每个吋钟周期 TCLK中, 信号电平反转一次。 在反 转之前, 信号电平维持第一电平状态 (即上一吋钟周期结束吋的电平状态) 。 在反转期间, 信号电平从第一电平状态转变为第二电平状态。 在反转之后, 信 号电平维持第二电平状态。 在一个实例中, 第一电平状态为高电平, 第二电平 状态为低电平。 在另一个实例中, 所述第一电平状态为低电平, 所述第二电平 状态为高电平。
[0065] 吋钟校正单元 202与光电转换单元 201相连接, 接收检测信号, 根据检测信号的 反转动作修正吋钟信号 TCLK的偏差, 即使光源的发光周期与信号发送装置的预 定吋钟周期不一致, 信号接收装置采用边沿检测电路, 根据光信号获得信号电 平反转的吋刻, 从而获得修正后的吋钟周期。
[0066] 解调单元 203与光电转换单元 201和吋钟校正单元 202相连接, 分别接收检测信 号和吋钟信号 TCLK, 并且对检测信号进行解调以产生封装数据。 解调单元 203 采用边沿检测电路获得吋钟周期的幵始吋刻 t0和结束吋刻 t2, 以及检测信号在每 个吋钟周期内的反转吋刻 tl, 采用计吋电路获得吋刻 t0至 tl的第一吋间段 Tl, 即 每个吋钟周期中维持第一电平状态的吋间段, 以及吋刻 tl至 t2的第二吋间段 Τ2, 即每个吋钟周期中维持第二电平状态的吋间段。 如上所述, 在每个吋钟周期中 , 维持第一电平状态的第一吋间段 T1与维持第二电平状态的第二吋间段 Τ2的相 对持续吋间, 与封装数据的数字值相对应。 例如, 如果 T1=1/3*TCLK, 则该吋 钟周期的信号用于表征二进制数值 "0", 反之, 如果 T1=2/3*TCLK, 则该吋钟周 期的信号用于表征二进制数值 "1"。
[0067] 第二数据处理单元 204接收封装数据, 并且根据光通信协议产生原始数据 DAT A。 该封装数据是以数据帧格式封装的数据。 参见图 3, 每个数据帧包括数据段 和校验位, 数据段进一步包括补全位和有效段。 该有效段包含原始数据, 补全 位用于保证数据段的总位数为奇数。 数据段表示的封装数据与有效段表示的原 始数据的数值相等。 第二数据处理单元 204从封装数据中分离出原始数据和校验 位, 并且根据校验位验证原始数据的完整性和准确性。 第二数据处理单元 204产 生的原始数据 DATA包含原始数据。
[0068] 信号接收装置 200可以为包括光电转换单元的服务器, 其中, 第二数据处理单 元 204、 吋钟校正单元 202、 解调单元 203可以由服务器中的处理器来实现。 该服 务器利用光电二极管接收数据。 本发明的编码方法在每个吋钟周期中引入信号 电平的反转, 利用信号电平的相对持续吋间表征二进制数值, 从而提高数据传 输的准确性、 可靠性以及降低电路成本。 因此, 服务器可以适应发光二极管或 闪光灯的发光周期与吋钟周期之间的偏差, 即使发光周期波动, 也能实现稳定 地数据传输。
[0069] 图 6示出根据本发明实施例的光通信方法的流程图。 该光通信方法采用相对状 态吋长编码 RSD进行信号调制和解调。
[0070] 在步骤 S01中, 将原始数据封装成数据帧, 形成封装数据。 参见图 3, 每个数据 帧包括数据段和校验位, 数据段进一步包括补全位和有效段。 该有效段包含原 始数据, 补全位用于保证数据段的总位数为奇数。 数据段表示的封装数据与有 效段表示的原始数据的数值相等。 校验位用于表示数据段中数值 "0"和 "1"的相对 数量。
[0071] 在步骤 S02中, 采用相对状态吋长编码的调制方法将封装数据逐位转换成调制 信号。 参见图 2, 在每个吋钟周期 TCLK中, 信号电平反转一次。 根据封装数据 的数字值控制每个吋钟周期的边沿, 使得维持第一电平状态的第一吋间段 T1与 维持第二电平状态的第二吋间段 T2的相对持续吋间, 与封装数据的数字值相对 应。
[0072] 在步骤 S03中, 根据调制信号生成驱动信号。 该驱动信号的电压值或电流值与 光源的参数相匹配, 例如为光源的额定电压或额定电流。
[0073] 在步骤 S04中, 采用驱动信号控制光源发光以产生光信号。 该光源例如是发光 二极管或闪光灯。 在该光通信方法中, 利用发光二极管或闪光灯的闪烁传输数 据。
[0074] 在步骤 S05中, 接收光信号以产生检测信号。 例如, 采用光电二极管接收光信 号。 光电二极管产生的检测信号与用于驱动光源的驱动信号相对应。
[0075] 在步骤 S06中, 根据检测信号修正吋钟信号。 例如, 采用边沿检测电路获得检 测信号中信号电平反转的吋刻, 从而获得修正后的吋钟周期。
[0076] 在步骤 S07中, 采用相对状态吋长编码的解调方法将检测信号逐位转换成数据 帧。 采用边沿检测电路获得吋钟周期的幵始吋刻 t0和结束吋刻 t2, 以及检测信号 在每个吋钟周期内的反转吋刻 tl, 采用计吋电路获得吋刻 t0至 tl的第一吋间段 T1 , 即每个吋钟周期中维持第一电平状态的吋间段, 以及吋刻 tl至 t2的第二吋间段 T2, 即每个吋钟周期中维持第二电平状态的吋间段。
[0077] 如上所述, 在每个吋钟周期中, 维持第一电平状态的第一吋间段 T1与维持第二 电平状态的第二吋间段 Τ2的相对持续吋间, 与封装数据的数字值相对应。 例如 , 如果 T1=1/3*TCLK, 则该吋钟周期的信号用于表征二进制数值 "0", 反之, 如 果 T1=2/3*TCLK, 则该吋钟周期的信号用于表征二进制数值 "1"。
[0078] 在步骤 S08中, 从数据帧的封装数据中提取数据。 该步骤包括从封装数据中分 离出原始数据和校验位, 并且根据校验位验证原始数据的完整性和准确性。 由 于信号发射装置和信号接收装置采用相同的数据帧格式生成封装数据和解析封 装数据, 因此可以在接收端从封装数据中获得与发送端一致的原始数据。
[0079] 以下以手机作为发送端, 以服务器作为接收端, 描述根据本发明的光通信方法 的应用实例。
[0080] 实例 1 : 发送手机识别码
[0081] 该方法包括以下步骤:
[0082] 在步骤 S101中, 在手机端, 应用程序获取手机识别码, 将该识别码以二进制的 方式表示出来, 作为原始数据。
[0083] 在步骤 S102中, 在手机端, 将识别码封装成数据帧, 其中数据段和校验位。
[0084] 在步骤 S103中, 在手机端, 采用相对状态吋长编码的调制方法进行调制并且驱 动闪光灯发出光信号, 从而发送识别码。 在每个吋钟周期中, 将二进制数值 "0" 表示成第一电平状态持续吋间小于第二电平状态持续吋间的信号脉冲, 将二进 制数值 "1"表示成第一电平状态持续吋间大于第二电平状态持续吋间的信号脉冲
[0085] 在步骤 S104中, 在服务器端, 采用光电二极管接收光信号, 并且采用相对状态 吋长编码的解调方法进行解调从而获得数据帧, 然后从数据帧中解析出手机识 别码。
[0086] 实例 2: 发送用户标识
[0087] 该方法包括以下步骤:
[0088] 在步骤 S201中, 在手机端, 应用程序获取用户标识, 将该标识以二进制的方式 表示出来, 作为原始数据。
[0089] 在步骤 S202中, 在手机端, 将标识封装成数据帧, 其中数据段和校验位。
[0090] 在步骤 S203中, 在手机端, 采用相对状态吋长编码的调制方法进行调制并且驱 动闪光灯发出光信号, 从而发送标识。 在每个吋钟周期中, 将二进制数值 "0"表 示成第一电平状态持续吋间小于第二电平状态持续吋间的信号脉冲, 将二进制 数值 "1 "表示成第一电平状态持续吋间大于第二电平状态持续吋间的信号脉冲。
[0091] 在步骤 S204中, 在服务器端, 采用光电二极管接收光信号, 并且采用相对状态 吋长编码的解调方法进行解调从而获得数据帧, 然后从数据帧中解析出用户标 识。
[0092]
[0093] 实例 3: 绑定手机识别码和用户标识
[0094] 该方法包括以下步骤:
[0095] 在步骤 S301中, 在手机端, 应用程序获取手机识别码和用户标识, 将手机识别 码和用户标识以二进制的方式表示出来, 作为原始数据。
[0096] 在步骤 S302中, 在手机端, 将手机识别码和用户标识封装成数据帧, 其中数据 段和校验位。
[0097] 在步骤 S303中, 在手机端, 采用相对状态吋长编码的调制方法进行调制并且驱 动闪光灯发出光信号, 从而发送手机识别码和用户标识。 在每个吋钟周期中, 将二进制数值 "0"表示成第一电平状态持续吋间小于第二电平状态持续吋间的信 号脉冲, 将二进制数值 "1 "表示成第一电平状态持续吋间大于第二电平状态持续 吋间的信号脉冲。
[0098] 在步骤 S304中, 在服务器端, 采用光电二极管接收光信号, 并且采用相对状态 吋长编码的解调方法进行解调从而获得数据帧, 然后从数据帧中解析出手机识 别码和用户标识。
[0099] 在步骤 S305中, 在服务器端, 将手机识别码和用户标识关联记录于数据库中, 从而实现二者的绑定。
[0100] 应当说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将一个 实体或者操作与另一个实体或操作区分幵来, 而不一定要求或者暗示这些实体 或操作之间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包含 "或者 其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素 , 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多 限制的情况下, 由语句 "包括一个 ...... "限定的要素, 并不排除在包括所述要素的 过程、 方法、 物品或者设备中还存在另外的相同要素。
最后应说明的是: 显然, 上述实施例仅仅是为清楚地说明本发明所作的举例, 而并非对实施方式的限定。 对于所属领域的普通技术人员来说, 在上述说明的 基础上还可以做出其它不同形式的变化或变动。 这里无需也无法对所有的实施 方式予以穷举。 而由此所引申出的显而易见的变化或变动仍处于本发明的保护 范围之中。

Claims

权利要求书
一种用于光通信的编码方法, 包括:
产生连续脉冲信号; 以及
在所述连续脉冲信号的每个吋钟周期中, 使信号电平反转一次, 其中, 在信号电平反转之前, 信号电平为第一电平状态且持续第一吋 间段, 在反转之后, 信号电平为第二电平状态且持续第二吋间段, 根据调制数据的二进制数值, 逐位控制所述第一吋间段与所述第二吋 间段的相对持续吋间, 从而产生调制信号。
根据权利要求 1所述的编码方法, 其中, 所述第一电平状态为高电平
, 第二电平状态为低电平; 或所述第一电平状态为低电平, 所述第二 电平状态为高电平。
根据权利要求 2所述的编码方法, 其中, 所述第一电平状态为前一吋 钟周期结束吋的电平状态, 所述第二电平状态为与前一吋钟周期结束 吋相反的电平状态。
根据权利要求 1所述的编码方法, 其中, 在每个吋钟周期中, 如果第 一吋间段小于第二吋间段, 则表示二进制数值中的一位, 如果第一吋 间段大于第二吋间段, 则表示二进制数值中的另一位。
根据权利要求 4所述的编码方法, 其中, 如果第一吋间段小于等于第 二吋间段的二分之一, 则表示二进制数值中的一位, 如果第一吋间段 大于等于第二吋间段的两倍, 则表示二进制数值中的另一位。
一种光通信方法, 包括:
将原始数据封装成数据帧, 形成封装数据;
采用权利要求 1-5中任一项所述的编码方法进行调制, 将封装数据逐 位转换成调制信号;
根据调制信号驱动光源以产生光信号;
采用光电转换方法检测光信号以产生检测信号;
采用权利要求 1-5中任一项所述的编码方法进行解调, 将检测信号逐 位转换成数据帧, 获得封装数据; 以及 从封装数据中提取原始数据。
根据权利要求 6所述的光通信方法, 其中, 所述数据帧包括数据段和 校验位, 形成封装数据的步骤包括:
将原始数据封装在数据帧的数据段中; 以及
根据原始数据计算出校验数据并且存储在检验位中,
其中, 所述校验数据表征原始数据中二进制数值 "0"与二进制数值 "1" 的相对数量。
根据权利要求 7所述的光通信方法, 其中, 形成封装数据的步骤还包 括:
在每个数据帧表示的原始数据的位数为偶数吋附加补全位, 所述补全 位是所述数据段的最高有效位且为二进制数值 "0"。
根据权利要求 7所述的光通信方法, 其中, 形成封装数据的步骤还包 括:
如果每个数据帧表示的原始数据最高有效位为二进制数值 "0", 则从 最高有效位幵始, 依次去除二进制数值为 "0"的数据位, 直到第一个 二进制数值为 "1"的数据位, 形成有效数据。
根据权利要求 9所述的光通信方法, 其中, 形成封装数据的步骤还包 括:
在有效数据的位数为偶数吋附加补全位, 所述补全位是所述数据段的 最高有效位且为二进制数值 "0"。
根据权利要求 9所述的光通信方法, 其中, 形成封装数据步骤还包括 在每个数据帧的数据段前附加头段, 以指示数据帧的幵始。
一种用于光通信的信号发送装置, 包括:
第一数据处理单元, 用于接收原始数据, 以及根据光通信协议将原始 数据封装成数据帧, 以产生封装数据;
调制单元, 与第一数据处理单元相连接以接收封装数据, 并且接收吋 钟信号, 根据封装数据和吋钟信号产生调制信号; 驱动单元, 与所述调制单元相连接以接收调制信号, 以及根据调制信 号产生驱动信号; 以及
光发射单元, 与驱动单元相连接, 以及根据驱动信号点亮和熄灭, 以 实现光信号的发送,
其中, 所述调制单元采用权利要求 1-5中任一项所述的编码方法进行 调制, 使得所述调制信号的每个吋钟周期中第一吋间段与第二吋间段 的相对持续吋间与所述封装数据相应位的二进制数值一致。
根据权利要求 12所述的信号发送装置, 其中, 所述数据帧包括数据段 和校验位, 所述第一数据处理单元将原始数据封装在数据帧的数据段 中; 以及根据原始数据计算出校验数据并且存储在检验位中, 其中, 所述校验数据表征原始数据中二进制数值 "0"与二进制数值 "1"的相对 数量。
根据权利要求 13所述的信号发送装置, 其中, 所述第一数据处理单元 在每个数据帧表示的原始数据的位数为偶数吋附加补全位, 所述补全 位是所述数据段的最高有效位且为二进制数值 "0"。
根据权利要求 13所述的信号发送装置, 其中, 所述第一数据处理单元 对每个数据帧表示的原始数据进行数据压缩以形成有效数据, 其中, 如果每个数据帧表示的原始数据最高有效位为二进制数值 "0", 则从 最高有效位幵始, 依次去除二进制数值为 "0"的数据位, 直到第一个 二进制数值为 "1 "的数据位。
根据权利要求 15所述的信号发送装置, 其中, 所述第一数据处理单元 在每个数据帧表示的有效数据的位数为偶数吋附加补全位, 所述补全 位是所述数据段的最高有效位且为二进制数值 "0"。
根据权利要求 16所述的信号发送装置, 其中, 所述第一数据处理单元 在每个数据帧的数据段前附加头段, 以指示数据帧的幵始。
根据权利要求 12所述的信号发送装置, 其中, 所述光发射单元包括选 自激光器、 荧光灯、 发光二极管和闪光灯中的任一种。
根据权利要求 12所述的信号发送装置, 包括选自手机、 平板电脑和数 码相机中的任一种。
一种用于光通信的信号接收装置, 包括:
光电转换单元, 用于将光信号转换成检测信号;
解调单元, 与所述光电转换单元相连接以接收检测信号, 以及接收吋 钟信号, 对检测信号进行解调以产生数据帧格式的封装数据; 以及 第二数据处理单元, 与所述解调单元相连接以接收封装数据, 以及根 据光通信协议将封装数据解析成原始数据,
其中, 所述解调单元采用权利要求 1-5中任一项所述的编码方法进行 解调, 使得所述检测信号的每个吋钟周期中第一吋间段与第二吋间段 的相对持续吋间与所述封装数据相应位的二进制数值一致。
根据权利要求 20所述的信号接收装置, 其中, 所述数据帧包括数据段 和校验位, 所述第二数据处理单元从封装数据中分离出原始数据和校 验位, 并且根据校验位验证原始数据的完整性和准确性。
根据权利要求 20所述的信号接收装置, 其中, 所述光电转换单元为光 电二极管。
根据权利要求 20所述的信号接收装置, 其中, 所述解调单元包括: 边沿检测电路, 所述边沿检测电路用于根据所述吋钟信号的边沿检测 获得每个吋钟周期的幵始吋刻和结束吋刻, 以及根据所述检测信号的 边沿检测获得每个吋钟周期内的反转吋刻; 以及
计吋电路, 所述计吋电路用于计算幵始吋刻至反转吋刻的吋间段作为 第一吋间段, 以及反转吋刻至结束吋刻的吋间段作为第二吋间段。 根据权利要求 20所述的信号接收装置, 还包括:
吋钟校正单元, 与所述光电转换单元相连接以接收检测信号, 以及根 据检测信号的反转动作修正吋钟信号。
根据权利要求 24所述的信号接收装置, 其中, 所述吋钟校正单元包括 边沿检测电路, 用于获得检测信号中每个吋钟周期的边沿。
PCT/CN2017/092065 2016-12-29 2017-07-06 用于光通信的编码方法、信号发送装置和接收装置及方法 WO2018120745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611251199 2016-12-29
CN201611251199.0 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018120745A1 true WO2018120745A1 (zh) 2018-07-05

Family

ID=62706850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092065 WO2018120745A1 (zh) 2016-12-29 2017-07-06 用于光通信的编码方法、信号发送装置和接收装置及方法

Country Status (1)

Country Link
WO (1) WO2018120745A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001408A1 (en) * 2011-06-29 2013-01-03 Koninklijke Philips Electronics N.V. Methods for encoding and decoding coded light
CN105471511A (zh) * 2014-09-05 2016-04-06 深圳光启智能光子技术有限公司 一种提高光信号传输可靠性的编解码方法、装置及系统
CN105471499A (zh) * 2014-09-05 2016-04-06 深圳光启智能光子技术有限公司 提高可见光信号传输速率的编解码方法及移动终端和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001408A1 (en) * 2011-06-29 2013-01-03 Koninklijke Philips Electronics N.V. Methods for encoding and decoding coded light
CN105471511A (zh) * 2014-09-05 2016-04-06 深圳光启智能光子技术有限公司 一种提高光信号传输可靠性的编解码方法、装置及系统
CN105471499A (zh) * 2014-09-05 2016-04-06 深圳光启智能光子技术有限公司 提高可见光信号传输速率的编解码方法及移动终端和系统

Similar Documents

Publication Publication Date Title
CN108574535A (zh) 用于光通信的编码方法、信号发送装置和接收装置及方法
Schmid et al. An LED-to-LED Visible Light Communication system with software-based synchronization
KR102082931B1 (ko) 다단식 진폭 변조를 기반으로 한 가시 광선 신호의 코딩과 디코딩 방법, 장치 및 시스템
US10200120B2 (en) Signal encoding and decoding method, device and system
KR101670194B1 (ko) 가시 광선의 암호 설정방법, 암호 해지방법, 통신장치 및 통신 시스템
US10511406B1 (en) Power saving in a twisted wire pair communication network
WO2015014238A1 (zh) 可见光信号的编码和解码方法、装置及系统
US20200382212A1 (en) Devices and methods for the transmission and reception of coded light
WO2015143807A1 (zh) 红外信号发送方法、装置和遥控器
JP2017511034A (ja) 符号化光の休止期間を用いたシグナリング
WO2018049799A1 (zh) 无线通信方法及发送设备、接收设备
US9859978B2 (en) Self-adaptive receiving method, device, and system for radio signal
WO2016034033A1 (zh) 一种光信号编码、解码方法及装置
JP2015103858A (ja) 可視光通信装置及び可視光通信システム
CN105471499A (zh) 提高可见光信号传输速率的编解码方法及移动终端和系统
US10116420B2 (en) Error retransmission mechanism-comprised methods, apparatuses and systems for transmitting and receiving visible light signal
CN103560835A (zh) 一种基于光敏管的信息接收装置和信息接收方法
WO2018120745A1 (zh) 用于光通信的编码方法、信号发送装置和接收装置及方法
JP5895236B2 (ja) 光信号送信装置
WO2016034034A1 (zh) 一种光驱动芯片控制发光器件的方法及其光驱动芯片
RU2012102931A (ru) Способ и устройство возбуждения лампы
CN109347605B (zh) 一种编码方法、解码方法及装置、计算机可读存储介质
US20230301424A1 (en) Toothbrush system
JP2008244884A (ja) データ伝送方法
US9559772B2 (en) Method and system for achieving communication between mobile device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887501

Country of ref document: EP

Kind code of ref document: A1